
HAL Id: hal-03856405
https://hal.science/hal-03856405v1

Preprint submitted on 17 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling bee movement shows how a perceptual
masking effect can influence flower discovery, foraging

efficiency and pollination
Ana Morán, Mathieu Lihoreau, Alfonso Pérez Escudero, Jacques Gautrais

To cite this version:
Ana Morán, Mathieu Lihoreau, Alfonso Pérez Escudero, Jacques Gautrais. Modeling bee movement
shows how a perceptual masking effect can influence flower discovery, foraging efficiency and pollina-
tion. 2022. �hal-03856405�

https://hal.science/hal-03856405v1
https://hal.archives-ouvertes.fr


1

1 Modeling bee movement shows how a perceptual masking effect can 

2 influence flower discovery, foraging efficiency and pollination

3 Ana Morán, Mathieu Lihoreau, Alfonso Pérez Escudero, Jacques Gautrais* 

4 Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de 

5 Toulouse, CNRS, UPS, 118 route de Narbonne, Bat 4R4, 31062 Toulouse Cedex 9, France

6 * Corresponding author: jacques.gautrais@univ-tlse3.fr

7 Abstract

8 Understanding how pollinators move across space is key to understanding plant mating patterns. Bees are 

9 typically assumed to search for flowers randomly or using simple movement rules, so that the probability 

10 of discovering a flower should primarily depend on its distance to the nest. However, experimental work 

11 shows this is not always the case. Here, we explored the influence of flower size and density on their 

12 probability of being discovered by bees by developing a movement model of central place foraging bees, 

13 based on experimental data collected on bumblebees. Our model produces realistic bee trajectories by 

14 taking into account the autocorrelation of the bee’s angular speed, the attraction to the nest, and a 

15 gaussian noise. Simulations revealed a « masking effect » that reduces the detection of flowers close to 

16 another, which may have critical consequences for pollination and foraging success. At the plant level, 

17 flowers distant to the nest were more often visited in low density environments, suggesting lower 

18 probabilities of pollination at high densities. At the bee colony level, foragers found more flowers when 

19 they were small and at medium densities, suggesting that there is an optimal flower size and density at 

20 which collective foraging efficiency is optimized. Our results indicate that the processes of search and 

21 discovery of resources are potentially more complex than usually assumed, and question the importance 

22 of resource distribution and abundance on plant-pollinator interactions. 
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24 Author’s summary 

25 Understanding how pollinators move in space is key to understanding plant reproduction, which in turn 

26 shapes entire ecosystems. Most current models assume simple movement rules that predict that flowers 

27 are more likely to be visited—and hence pollinated—the closer they are to the pollinators’ nest. Here we 

28 developed an explicit movement model that incorporates realistic features of bumblebees, including their 

29 flight characteristics and their tendency to return regularly to the nest, and calibrated it with experimental 

30 data collected in naturalistic conditions. This model revealed that the probability to visit a flower does not 

31 only depend on its position, but also on the position of other flowers that may mask it from the forager. 

32 This masking effect means that pollination efficiency depends on the density and spatial arrangement of 

33 flowers around the pollinator’s nest, often in counter-intuitive ways. Taking these effects into account will 

34 be key for improving precision pollination and pollinator conservation.

35 Introduction

36 Pollinators, such as bees, flies, butterflies, but also bats and birds, mediate a key ecosystemic 

37 service on which most terrestrial plants and animals, including us humans, rely on. When foraging for 

38 nectar, animals transfer pollen between flowers, which facilitates plant reproduction. Understanding how 

39 pollinators move, find and choose flowers is thus a key challenge of pollination ecology (1). In particular, 

40 this may help predict and act on complex pollination processes in a context of a looming global pollination 

41 crisis, when food demand increases and pollinators decline (2,3).

42 Pollinators have long been assumed to move randomly  (4–7) or use hard wired movement rules 

43 such as visiting the nearest unvisited flower (8) , exploiting flower patches in straight line movements (9), 

44 navigating inflorescences from bottom to top flowers (10), or using win-stay lose-leave strategies (11). 

45 Therefore, pollination models relying on these observations typically predict diffusive movements in every 

46 direction (12). However, recent behavioral research shows this is not true when animals forage across large 

47 spatial scales (13). In particular, studies using radars to monitor the long distance flight paths of bees 
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48 foraging in the field demonstrate foragers learn features of their environment to navigate across 

49 landscapes and to return to known feeding locations (14,15). This enables them to develop shortcuts 

50 between food sources (16) and build efficient multi-location routes (also called “traplines” ) minimizing 

51 overall travel distances (17,18). These routes are re-adjusted each time a food source is depleted and new 

52 ones are discovered (19).

53 How bees learn such foraging routes has been modelled using algorithms implementing spatial 

54 learning and memory (20–22). While this has greatly advanced our understanding of bee exploitative 

55 movements patterns, none of these models have looked at search behaviors, either assuming insects 

56 already know the locations of all available feeding sources in their environment or discover them according 

57 to fixed probabilistic laws (i.e. the probability to discover a flower at a given location is proportional to 1/L2 

58 where L represents the distance to that flower (20–22)). However, experimental data indicate that this is 

59 not the case. Firstly, bees, like many pollinators, are central place foragers (i.e., every foraging trip starts 

60 and ends at the nest site (23)). This means that their range of action is limited. Recordings of bee search 

61 flights, although scarce, show how individuals tend to make loops centered at the nest when exploring a 

62 new environment and look for flowers (14,24). These looping movements are not compatible with the 

63 assumption that bees make diffusive random walks or Lévy flights (25,26). Secondly, the spatial structure 

64 of the foraging environment itself may also greatly influence flower discovery by bees. In particular, the 

65 probability of finding a flower heavily depends on the location of the flower visited just before, ultimately 

66 influencing the direction and geometry of the routes developed by individuals (17–20,27,28). Since bees 

67 are more attracted by larger flowers than by smaller ones (29), this suggests that small isolated flowers 

68 could be missed if they are located next to a larger patch. Ultimately, this potential « masking effect » on 

69 the probability to visit specific flowers depending on the presence of other flowers around could have 

70 important consequences for bee foraging success, for instance by precluding the discovery of some highly 

71 rewarding flowers that are isolated or further away from the nest. This could also dramatically influence 

72 plant pollination, if bees are spatially constrained to single flower patches and plant outcrossing is limited.

73 Here we developed a model of bee search movement simulating the tendency of bees to make 

74 loops around their nest and examined the influence of these looping flights on the probability for bees to 
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75 discover flowers in environments defined by resources of various sizes and abundances. We hypothesized 

76 that considering looping movements characteristic of bee exploratory flights would result in strikingly 

77 different predictions than the typical diffusive random walk movements. We also described perceptual 

78 masking effects by which the probability of finding given flowers is affected by the presence of others, and 

79 analyzed their consequences on discovery rates, bee foraging efficiency and plant pollination success.

80 The model

81 Description

82 Our model is an extension of the Persistent Turning Walker (PTW) developed by Gautrais et al. (30) to 

83 model fish movements in a tank. For the sake of simplicity, here we modelled bee movements in 2D, 

84 neglecting altitude. We assumed that bees fly at constant speed and with varying angular speed, ω(t), 

85 which is governed by

86 𝑑𝜔(𝑡) = ―𝛾[𝜔(𝑡) ― 𝜔∗(𝑡)]dt + 𝜎𝑑𝑊(𝑡),

87 ( 1 )

88 where  is an auto-correlation coefficient and dW(t) introduces a gaussian noise, governed by a 

89 Wiener process (31). The two terms of Equation 1 have opposing effects: The first term pushes the angular 

90 speed towards a target angular speed, ω(t), with a strength controlled by the auto-correlation coefficient 

91 γ. The second term introduces noise in the angular speed making bees change direction. Therefore, high 

92 values of  lead to smoother and more predictable trajectories. Setting ω*(t) = 0 leads to a trajectory with 

93 no preferred direction, whose angular speed changes smoothly around zero. This is the simplest condition, 

94 resembling a diffusive process in which the animal moves aimlessly and gets further and further from its 

95 initial position as time goes by (32–37).

96 We modelled central place foraging by adding an attraction component to the model in order to 

97 make bees return to the nest after a certain amount of time. To implement the return to the nest we 

98 assumed that bees can locate the direction of their nest at any time using path integration (i.e. navigational 

99 mechanism by which insects continuously keep track of their current position relative to their nest position 

100 (38)), and define a homing vector, 𝐻(t) that points towards the nest (13). Then, we assumed that the bee 
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101 tries to target the angular speed that will align its trajectory with the homing vector, so we modeled the 

102 target angular speed as

103 𝜔∗(𝑡) = 𝜂(𝑡)𝜑(𝑡),

104 ( 2 )

105 where φ(t) is the angle between the bee’s heading 𝑣(𝑡)and the homing vector 𝐻(𝑡) (Fig. 1A), and  (t) is 

106 the attraction strength that controls a switch between the exploration and return phases: During the initial 

107 exploration phase we make (t) = 0, so that bees explore randomly and distance themselves from the nest, 

108 while during the return phase we make (t) = * > 0, so that the bee has a tendency to turn towards the 

109 nest. We assumed that bees switch instantaneously between the exploration and return phases, so

110 { 𝜂(𝑡) = 0 if 𝑡 < τ
𝜂(𝑡) = 𝜂∗ if 𝑡 ≥ 𝜏,

111 ( 3 )

112 where τ is the time at which the switch happens (Fig. 1B). This switch may happen at any time, with a 

113 constant probability per unit time, preturn. This means that the switching times are exponentially distributed, 

114 with an average time of approximately 1/ preturn.

115 The model therefore has four main parameters: The auto-correlation () and the randomness () 

116 control the characteristics of the flight, while the probability to return (preturn) and the strength of the 

117 attraction component (*) control the duration of each exploration trip. Here we have described the 

118 continuous version of the model, but to implement it numerically we discretized it in finite time steps (see 

119 Methods).
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120

121 Fig 1. Illustration of the model. (A) Example of theoretical trajectory. Blue line: Trajectory during the 

122 exploration phase. Black line: Trajectory during the return phase. Black circle: bee. Black square: nest. H is 

123 the homing vector pointing towards the nest. 𝑣 is the heading of the bee. 𝜑 is the angle between 𝑣 and 𝐻. 

124 (B) Evolution of the return strength (𝜂) over time. At time = ,  switches from 0 (no attraction) to *. (C) 

125 Example of an experimental trajectory (39). Each dot represents the position of a bee recorded by a 

126 harmonic radar approximately every 3s. Different colors represent different loops around the nest. The 

127 sequential order of the loops is represented by the color gradient where the first loops have lightest colors 

128 (yellow to purple). (D) Same as C, but for a simulated trajectory with parameters  = 1.0 s−1,  = 0.37 rad/ 

129 s1/2, preturn = 1/30 s−1 and * = 0.2 s-1. 

130 Calibration with experimental data

131 In principle, our model can describe search movements of any central place forager. Here we explored its 

132 properties focusing on a model species for which we had access to high-quality experimental data: the 

133 buff-tailed bumblebee Bombus terrestris. We used the dataset of Pasquaretta et al. (39) in which the 

134 authors used a harmonic radar to track  2D exploratory flight trajectories of bees in the field. Bees carrying 

135 a transponder were released from a colony nest box located in the middle of a large and flat open field, 

136 and performed exploration flights without any spatial limitation. The radar recorded the location of the 
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137 bees every 3.3s over a distance of ca. 800 m (Fig 1C). In these experiments the bees were tested until they 

138 found artificial flowers randomly scattered in the field. We used 32 radar tracks for 18 bees.

139 To quantify the experimental trajectories, we first divided tracks into ”loops”, each loop being a 

140 segment of trajectory that starts and ends in the nest (Fig 1C). This extraction yielded 207 loops. We then 

141 computed four observables for each loop (Fig 2):

142  Loop length: Total length of the trajectory for a given loop (Fig. 2A).

143  Loop extension: Maximum distance between the bee and the nest for a given loop (Fig. 

144 2B).

145  Number of intersections: Number of times the loop intersects with itself (Fig. 2C).

146  Number of re-departures, where a re-departure is defined as three consecutive positions 

147 such that the second position is closer to the nest than the first one, but the third is again 

148 further away than the second. These events indicate instances in which the bee seemed 

149 to be returning towards the nest and turned back (Fig. 4D).

150 We extracted these four parameters from each loop and found substantial variability in all of them (Fig. 3, 

151 black lines). We then used this information to find the optimal model parameters, aiming to describe not 

152 only the average value of each observable, but also their variability. To do so, we performed simulations 

153 covering exhaustively all relevant combinations of our four parameters. For each combination of 

154 parameters, we simulated 1000 loops, extracted the distributions for the four observables, and chose the 

155 parameter combination that best approximated the experimental distributions for the four observables 

156 (see Methods). This procedure resulted in the optimal parameters  = 1.0 s−1,  = 0.37 rad/s * s1/2, preturn = 

157 1/30 s−1 and * = 0.2 s-1, which give a good approximation to the experimental distributions of observables 
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158 (Fig. 2, red lines), and trajectories that qualitatively resemble the experimental ones (Fig. 1D)

159

160 Fig 3. Distributions of the four observables, for experimental and simulated data. Black lines: 

161 experimental data. Red lines: model predictions using the optimal  = 1.0 s−1,  = 0.37 rad/s * s1/2, preturn = 

162 1/30 s−1 and * = 0.2 s-1. Insets: Schematic of each observable. (A) Cumulative distribution function of loop 

163 lengths for our full dataset.  (B) Same as A, but for the loops extension. (C) Probability distribution of the 

164 number of trajectories intersects per 100m traveled. (D) Same as C, but for the number of re-departures 

165 per 100 m traveled.

166 Model predictions

167 Attraction to the nest limits the exploration range of bees

168 An unrealistic feature of existing diffusive models is their long-term behavior: If given enough time, the 

169 forager reaches extremely far distances with respect to the nest, never returning to it. To measure the 

170 impact of central place foraging on bee exploration range, we compared our model with attraction to the 

171 nest to an alternative one in which the attraction is absent (i.e., making * = 0 in Equation 3). We then 
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172 simulated 1000 trajectories with each model for different amounts of time, and studied how the 

173 distribution of bees around the nest changes over time.

174 This analysis revealed two main effects of the attraction component. First, it retains bees tightly localized 

175 around the nest (~250m) (Fig. 3A-B, blue). Second, it makes the distribution of bees stationary: In a 

176 model without attraction, bees constantly wander away from the nest, and their distribution depends on 

177 how much time we allow for the bee to explore, becoming wider as time goes by (Fig. 3B-C, orange). In 

178 contrast, the attraction component makes the forager return to the nest periodically, so the distribution 

179 remains constant once the forager has had enough time to perform more than one loop on average (Fig. 

180 3D, blue)

181

182 Fig 3. Probability of presence of a bee around the nest. (A) Overlay of 1000 trajectories with attraction to 

183 the nest (*= 0.2 s−1) simulated during 900 s. (B) Same as A but without attraction to the nest (* = 0) (C) 

184 Probability to find a bee below a given distance to the nest (i.e., inverse cumulative probability distribution 

185 for the distance to the nest) after different amounts of time. (D) Example trajectories with and without 

186 attraction, simulated during 500 s. The nest is located at (0,0). Blue: model with attraction. Orange: model 

187 without attraction.
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188 Distant flowers are more often visited in low-density environments

189 A key consequence of bee movement is its influence on plant reproduction through pollen dissemination. 

190 We estimated the probabilities of flowers to be discovered (and thus pollinated) by bees in a field 

191 characterized by a random and uniform distribution of flowers, an average density of 1.3 10-4 flowers/m2 

192 and a diameter of 70cm (for the sake of simplicity here a “flower” is equivalent to a feeding location, which 

193 may be a single flower or a plant containing several ones). We assumed that a flower was visited whenever 

194 its distance to the bee’s trajectory was below a threshold, given by the bee’s visual perception range (see 

195 Methods). We focused on vision rather than olfaction because vision is the main sense that bees use to 

196 accurately navigate the last meters towards a particular flower, while olfaction is used at a broader spatial 

197 scale (23). Using these conditions, we simulated 1000 foraging trips, each of them lasting 900 seconds, and 

198 for each flower we computed the probability to be found in a given trip (i.e., the proportion of simulations 

199 in which the trajectory overlaps with the flower’s area of attraction). This probability falls exponentially 

200 with the distance between the flower and the nest (Fig. 4A, red line).

201 However, this simulation does not take into account the fact that the probability of visiting a flower 

202 does not only depend on its distance to the nest, but can also be influenced by the presence of other 

203 flowers around. This dependence exists because a bee that finds a flower does not continue its trajectory, 

204 but will rather stop to collect nectar. Once nectar collection is over, the bee may continue exploring, but 

205 after visiting a few flowers the bee returns to the nest to unload its crop. For example, in a scenario where 

206 there are just 2 flowers equidistant to the nest, both flowers should be visited equally. However, if another 

207 flower is added, it can capture visits that would otherwise visit one of the original flowers, reducing the 

208 probability that it’s discovered (Fig. 4B). We call this "the masking effect" (Figure 4B).

209 In order to model this masking effect in a simple way, we assumed that each bee returns to the 

210 nest after discovering a single flower. The first qualitative consequence of the masking effect is to reduce 

211 the probability that flowers distant to the nest are discovered (Fig. 4A, blue). The second consequence is 

212 that it introduces a dependence of flower density on pollination efficiency. In the absence of masking, only 

213 two factors determine the probability that a flower is discovered: its size (which determines the distance 

214 from which it can be perceived) and its distance to the nest. In contrast, when masking is taken into 
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215 account, the number of visits also depends on the overall density of flowers in the environment, falling 

216 more sharply with distance when this density is higher (Fig. 4C).

217 This dependence with flower density means that the area around the nest where flowers have a 

218 high probability of being pollinated depends on flower density. To estimate the size of this area, we set a 

219 threshold at a probability of 10-2 per trip (black dotted line in Fig. 4C), and computed the “pollination 

220 radius” as the distance at which flowers’ probability of being discovered remains above this threshold, 

221 assuming than one visit is enough for pollinating a plant. At low flower densities the pollination radius 

222 reaches 160 meters, and is limited by the bees’ exploration range (i.e., their tendency to return to the nest 

223 after a certain time, even if no flowers have been found; compare this radius with the distribution in Fig. 

224 3C). Due to the masking effect, the pollination radius decreases as flower density increases (Fig. 4D).

225

226 Fig 4. Predicted pollination efficiency. (A) Probability that a flower is found as a function of its distance 

227 to the nest. We simulated exploration trips in a field of uniformly distributed flowers with density 1.3 10-4 

228 flowers/m2 and flower size 70 cm. For each flower, we computed the probability that it was found in each 

229 exploration trip, and we show this probability as a function of the distance between the flower and the 
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230 nest. Results computed over 6000 simulated trips of 900s in 10000 environments for each density. Red 

231 line: Probability calculated without taking into account the masking effect. Blue line: Probability calculated 

232 taking into account the masking effect (i.e., only counting the first flower that was discovered in each trip). 

233 (B) Illustration of the masking effect. The probability of finding a flower depends on the presence of other 

234 flowers. In a scenario where there are just 2 flowers equidistant to the nest, both flowers should be visited 

235 equally (top). However, if another flower is added, it can capture visits that would otherwise visit one of 

236 the original flowers (bottom). Black square: nest. (C) Same as (A), but for different flower densities. Red 

237 dotted line: Probability calculated without taking into account the masking effect. This probability is 

238 independent of the density of flowers. Solid lines: Probability calculated taking the masking effect into 

239 account. Black dotted line: threshold probability at which we consider an area that has a high probability 

240 of being pollinated. (D) Radius of the area around the nest that has a high probability of being pollinated 

241 (i.e., where the probability that flowers are discovered is above 10-2) as a function of flower density.

242 Bees find more flowers at intermediate densities

243 We then explored potential influences of the masking effect on the foraging success of the bees. This 

244 success depends on the number of flowers discovered collectively by all the bees of a colony, because a 

245 flower discovered and exploited by a bee will be at least partially depleted, giving little additional benefit 

246 to later visitors. For this reason, what counts is not the total number of visits that bees perform, but rather 

247 the total number of different flowers discovered by the colony. One would expect that higher flower 

248 density would make it easier for the colony to discover a higher number of flowers, but our model showed 

249 a counterintuitive effect: Because of the masking effect, higher flower density may result in fewer 

250 discovered flowers.

251 To study this effect, we computed the total number of flowers discovered by a bee colony as a 

252 function of density and flower size. We considered a field with flowers of a given size uniformly and 

253 randomly distributed with a given flower density, simulated 1000 exploration trips, and counted the 

254 number of flowers that were discovered at least once. When we performed this simulation neglecting the 

255 masking effect (i.e., assuming that a bee discovers all the flowers that intersect with its trajectory, not being 
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256 affected by such discoveries), we found that the number of flowers discovered increased with flower 

257 density and flower size, as these factors make flowers more plentiful and easier to find (Fig. 5, dashed 

258 lines). However, the masking effect reverses this trend (Fig. 5, solid lines): For low densities, the masking 

259 effect is weak and the number of discovered flowers increases with density, but at high flower densities 

260 bees become “trapped” around the nest by the flowers immediately surrounding it, which accumulate 

261 most of the visits. Therefore, there is an optimum density that results in the highest number of different 

262 flowers discovered. Since the masking effect is stronger for larger flowers, the effect of size also reversed, 

263 with the number of discovered flowers decreasing as flower size increases (Fig. 5, solid lines).

264

265 Fig 5. Number of different flowers discovered by a group of bees as a function of flower density. Number 

266 of different flowers discovered in 1000 exploration trips of 900 s, in an environment with randomly 

267 distributed flowers. Results are averaged over 10 simulations, keeping the environment fixed for every 

268 simulation. Solid lines: Probability calculated taking into account the masking effect (i.e., only counting the 

269 first flower that was discovered in each trip). Dotted lines: Probability calculated without taking into 

270 account the masking effect.

271 Discussion

272 How pollinators search for flowers is of fundamental importance but remains poorly understood. Here we 

273 developed a realistic model of bee search movements based on their observed tendency to make 

274 exploratory loops that start and end at their nest location. Our model, calibrated with real behavioral data, 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 13, 2022. ; https://doi.org/10.1101/2022.09.12.507525doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.12.507525
http://creativecommons.org/licenses/by/4.0/


14

275 produces two-dimensional trajectories with progressive changes of direction driven by the continuous 

276 evolution of the angular velocity ω(t). Using this approach, we documented a neglected yet potentially 

277 fundamentally important effect for bee foraging success and pollination: a perceptual masking effect that 

278 influences the probability of bees to discover flowers depending not only based on their size and spatial 

279 location, but also on the presence and characteristics of other flowers around them.

280 Previous models assume that bees explore the environment randomly using Lévy flights or other 

281 diffusive processes (12,21,22). In a diffusive model, individuals are able to wander away from the nest 

282 indefinitely if given enough time. In contrast to these models, our model replicates looping trajectories 

283 observed in real bees (14,40), which confines the presence of individuals around a nest. As a consequence 

284 of the periodic returns of bees to the nest, their distribution becomes independent of the time given to 

285 explore. This result has the important consequence that, under the assumptions of our model, longer 

286 simulation durations will result in a more thorough exploitation and pollination of the area around the nest, 

287 but not in a larger area being exploited and pollinated.

288 By explicitly simulating individual trajectories in complex environments, our model revealed how 

289 the presence of a flower may decrease the probability of discovering another. We named this phenomenon 

290 a “perceptual masking effect” and explored its consequences in the probability of bees to discover flowers, 

291 ultimately extrapolating on pollination and bee foraging success. At the plant level, flowers distant to the 

292 nest were more often visited in low density environments, suggesting lower probabilities of pollination at 

293 high densities. Therefore, the area that is pollinated around the nest decreases when the flower density 

294 increases. The overall distribution of flower patches directly impacts their pollination and should be taken 

295 into account when designing strategies for crop production and assisted pollination. At the bee colony 

296 level, insects tended to find more flowers when they were small and at medium densities, suggesting that 

297 there is an optimal flower size and density at which collective foraging efficiency is optimized (although the 

298 effect of size on foraging efficiency will be compounded with the greater reward provided by bigger flowers 

299 on average). The perceptual masking effect may also have an impact on site learning and the formation of 

300 traplines: At different scales, flower patches may not be discovered in the same order and the probability 

301 of forming an optimal route may depend on the scale at which exploration occurs.
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302 Our search model is a scaffold for future characterization of the movement of bees across time 

303 and landscapes. Although we limited our study to flower discovery probability, and therefore only provided 

304 predictions for first flower discovery, the model could be used to investigate the full foraging trips of bees, 

305 and how they change through time as bees acquire experience with their environment and develop spatial 

306 memories (13). It would be particularly interesting to integrate this exploration model into existing learning 

307 exploitation models proposed to replicate route formation by bees (20–22). Once a flower is discovered, 

308 its location can be learned, and new exploration may start, ultimately allowing for the establishment of 

309 traplines. This would be modelled via a modification of the attraction component, which can be modified 

310 to point towards previously-discovered flowers instead of the nest. Importantly, model predictions (flower 

311 discovery probability, visitation order, flight trajectories) can be experimentally tested and the model 

312 calibrated for specific study species. This will facilitate improvement and validation for potential 

313 applications. For instance, robust predictive models of bee movements including both exploration and 

314 exploitation would be particularly useful for improving precision pollination (to maximize crop pollination), 

315 pollinator conservation (to ensure population growth and maintenance), but also in ecotoxicology (to avoid 

316 exposure of bees to agrochemicals) and legislation (to avoid unwanted gene flow between plants). Beyond 

317 pollinators, our minimal persistent turning walker model could be calibrated to apply to a wide range of 

318 species, providing a scaffold for further exploration of the broader interactions between central place 

319 foraging animals and their environment.

320 More broadly speaking, the Persistent Turning Walker model has inspired some developments in 

321 other animals, especially fish (41–43) as well as in robotics (44) where is has been proven to display better 

322 coverage properties than classical random walks(45). The addition of the attraction component paves the 

323 avenue for further developments of this model in these areas as well.

324

325 Methods

326 The codes used to perform all the simulations, data analyses and figures are available in the Supplementary 

327 Information (Zip file S3).

328 Modeling nest and flower detection
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329 Bumblebees can detect an object when it forms an angle of 3° on the retina of their compound eyes (46). 

330 Therefore, for every model simulation, we set the flowers’ size and calculated the distance at which the 

331 bees are able to detect them. We call this the “perception distance”. We considered that a bee visited a 

332 flower when it was located at a distance to the bee inferior to the perception distance. We did not take 

333 into account the olfactory perception since it could be less reliable because of other factors like wind 

334 direction and the flower’s species. However, if taken into account, it would only impact the perception 

335 distance of the flowers and the results would not be qualitatively different. 

336 Analysis of experimental data

337 We used the dataset of Pasquaretta et al. (39) in which the authors tracked exploratory flight trajectories 

338 of bumblebees in the field with a harmonic radar. Bees carrying a transponder were released from a colony 

339 nest box located in the middle of a large and flat open field, and performed exploration flights without any 

340 spatial limitation. The radar recorded the location of the bees every 3.3s over a distance of ca. 800 m, and 

341 with an accuracy of approximately 2 m (14). The bees were tested until they found one of three 20-cm 

342 artificial flowers randomly scattered in the field. The position of these flowers was changed whenever one 

343 of them was found to prevent the bees from learning their location, but their presence may still affect the 

344 bees’ trajectories. We first attempted to control for this factor by removing all trajectories where bees 

345 passed near an artificial flower, but this introduced a significant bias towards short trajectories, because 

346 bees are less likely to find a flower when they stay near the nest. Therefore, we used the full dataset, and 

347 in order to remove the effect of the bees hovering around and exploiting the artificial flowers, we 

348 summarized all the points detected in an area within 6 m of an artificial flower as a single point at the 

349 location of the flower. This threshold of 6 m was derived from a 4 m perception distance corresponding to 

350 20 cm flowers, plus 2 m to account for the experimental noise. All trajectories are given in S2-section V. 

351 Dividing trajectories into loops

352 In order to quantify the trajectories, we divided the tracks into ”loops”. We defined a loop as a fragment 

353 of a trajectory that starts when the bee leaves that nest and finishes when it enters back. The colony nest 

354 box used in the experiments was rectangular, with a diagonal of 37 cm, meaning that the bees were able 

355 to see it at approximately 7m. However, in this case we set a higher threshold of 13 m to avoid including 
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356 learning flights (i.e., flights during which the bee makes characteristic loops to acquire visual memories of 

357 target locations such as the nest for navigation (38) into the set of exploratory data. While our model does 

358 not produce learning flights, for consistency we also used the 13-m radius around the nest in our 

359 simulations.

360 Model simulations

361 All simulations start at the nest (which is located at position 0,0), with a random initial direction, and with 

362 zero angular velocity. To simulate the trajectories, we discretized the model using the on a time step t = 

363 0.01. Therefore, at every step we calculated the direction (t + t) as

364 𝜃(𝑡 +  ∆𝑡) =  𝜃(𝑡) +  𝜔(𝑡)∆𝑡.

365 ( M 1 )

366 We then calculated the velocity v(t + t) with

367 𝑣(𝑡 + ∆𝑡) = 𝑣(cos (𝜃(𝑡 + ∆𝑡))
sin (𝜃(𝑡 + ∆𝑡))),

368 ( M 1 )

369 where v is the speed, which is a constant in our model. Then, the new position is

370 𝑥(𝑡 +  ∆𝑡) =  𝑥(𝑡) + 𝑣(𝑡)∆𝑡.

371 ( M 2 )

372 Lastly, we calculated the angular speed ω(t + ∆t). For this, we used the Green functions for 

373 Ornstein-Uhlenbeck processes over t (see (30) for details), obtaining

374 𝜔(𝑡 + ∆𝑡) = 𝜔(𝑡)𝑒―𝛾∆𝑡 + 𝜔∗(1 ― 𝑒―𝛾∆𝑡) +𝜀,

375 ( M 3 )

376 where ω* is the target angular speed (governed by Equations 2 and 3), and ε is a random number 

377 governed by a Gaussian distribution with mean 0 and variance

378 𝑠2 = 𝜎21 + 𝑒―2𝛾∆𝑡

2𝛾 .

379 ( M 4)

380 Parameter fitting
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381 In order to fit the parameters of the model, we explored systematically all relevant combinations within 

382 the relevant range for each parameter. To do this more efficiently, we substituted the variance of the noise 

383 introduced by the Wiener’s process () for the variance of , which has a more direct impact on the 

384 experimental data. These two variables are related by (30):

385 𝑉𝑎𝑟(𝜔) =  𝛺 =  𝜎
2

2𝛾.

386 We also defined

387 𝛼 =
1

preturn
.

388 We simulated 103 loops using 6160 different combinations of the parameters of the model (,,,*)

389   ∈ (0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5)

390   ∈ (0.01,0.03,0.05,0.06,0.07,0.08,0.09,0.1,0.125,0.15)

391   ∈ (10,20,25,30,35,40,50)

392  * ∈ (0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4)

393 Since the four observables are heterogeneous (two are continuous measures, two are discrete), a 

394 cost function averaging over the four had to be designed to ensure that each observable is given the same 

395 weight. For each observable, we computed one score as a distance from the simulated set to the observed 

396 set. For the two continuous observables (loop length and extension), the score was computed as the area 

397 between the observed cumulative distribution function, and the simulated one. For the two discrete 

398 observables (numbers of self-intersection and re-departures), the score was computed, as the absolute 

399 difference between the two probability distributions. This yielded four distributions of scores over the 6160 

400 combinations. Scores were then translated into their quantile their corresponding cumulative distribution 

401 (e.g., a score translated into 0.12 means that it is within the lowest 12%). Finally, we retained the 

402 combination that yielded the lower quantile averaged over the four observables (see S2, section 2).

403 The best parameters combination was found to be:  = 1.0 s−1,  = 0.07 rad2/s-2,  = 30 s and * = 

404 0.2 s−1. It corresponds to the marginal local minima for the four observables (see S2, section 2). Simulated 
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405 trajectories closely resemble data trajectories (Fig 1B), and the model is able to produce loops with an 

406 elongated shape, as well as a diversity of loop lengths.

407 This unique set of parameters assumes that all bees are identical, while in reality inter-individual 

408 differences exist (Fig. S1), for example due to differences in age, experience, learning or size (47,48). 

409 However, each bee can display a large diversity of loop parameters, covering a similar range as the overall 

410 population (Fig SI-1). We therefore considered that separate fits for each individual were not justified. The 

411 fact that our model reproduces not only the mean but also the variability of the four observables we 

412 defined (Fig. 3) supports this choice.

413  
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531  Supporting information

532 S1 Fig. Variability of each observable across individuals in the experimental dataset. (A) Loop lengths (m) 

533 for each bee, as defined in Fig. 3 in the main text. Boxplots, show the median (middle line), 25 and 75% 

534 quantiles (box), range of data within 1.5 interquartile deviations (whiskers), and outliers (dots). (B) Same 

535 as A but for the loop extension (maximum distance between the nest and the individual). (C) Same as A, 

536 but for the number of re-departures per 100m traveled. A re-departure is defined as three consecutive 

537 positions such that the second position is closer to the nest than the first one, but the third is again further 
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538 away than the second. (D) Same as A but for the intersections (number of times the loop intersects with 

539 itself)

540 S2 Text. Raw results and figures

541 S3 Data and code sources for analysis and simulations.
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