
HAL Id: hal-03856365
https://hal.science/hal-03856365v1

Submitted on 16 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Exploring Instruction Fusion Opportunities in General
Purpose Processors

Sawan Singh, Arthur Perais, Alexandra Jimborean, Alberto Ros

To cite this version:
Sawan Singh, Arthur Perais, Alexandra Jimborean, Alberto Ros. Exploring Instruction Fusion Op-
portunities in General Purpose Processors. 55th IEEE/ACM International Symposium on Microar-
chitecture (MICRO 2022), Oct 2022, Chicago, United States. �10.1109/MICRO56248.2022.00026�.
�hal-03856365�

https://hal.science/hal-03856365v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Exploring Instruction Fusion Opportunities in General Purpose Processors

Sawan Singh⇤, Arthur Perais†, Alexandra Jimborean⇤, Alberto Ros⇤

⇤Computer Engineering Department, University of Murcia, Murcia, Spain
†Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMA, Grenoble, France

Email: singh.sawan@um.es, Arthur.Perais@univ-grenoble-alpes.fr, alexandra.jimborean@um.es, aros@ditec.um.es

Abstract—The Complex Instruction Set Computer (CISC)
paradigm has led to the introduction of instruction cracking in
which an architectural instruction is divided into multiple mi-
croarchitectural instructions (µ-ops). However, the dual concept,
instruction fusion is also prevalent in modern microarchitectures
to maximize resource utilization. In essence, some architectural
instructions are too complex to be executed as a unit, so they
should be cracked, while others are too simple to waste resources
on executing them as a unit, so they should be fused with others.

In this paper, we focus on instruction fusion and explore
opportunities for fusing additional instructions in a high-
performance general purpose pipeline. We show that enabling
fusion for common RISC-V idioms improves performance by
7%. Then, we determine experimentally that enabling fusion
only for memory instructions achieves 86% of the potential
of fusion in this particular case. Finally, we propose the
Helios microarchitecture, able to fuse non-consecutive and non-
contiguous memory instructions, and discuss microarchitectural
changes required to do so efficiently while preserving correctness.
Helios allows to fuse an additional 5.5% of dynamic instructions,
yielding a 14.2% performance uplift over no fusion (8.2% over
baseline fusion).

Keywords-general purpose, microarchitecture, instruction
fusion

I. INTRODUCTION

Instruction fusion is a well-known microarchitectural tech-
nique used in many commercially available processors [1],
[3], [4], [12]. Fusion is used to better exploit available
hardware resources by leveraging the fact that instructions do
not always require all the resources the internal instruction
format allows them to claim (e.g. physical destination
registers).

A first example of fusion is architectural fusion. For
instance, the load pair architectural instruction of Armv8
loads a chunk of contiguous memory data and writes half
of it in its first destination register and the other half in its
second destination register ([2], Section C3.2.3). Other ISAs
such as x86 or RISC-V do not feature this instruction and
must rely on regular load instructions (load “single”). In
this case, performing the work done by a single Armv8 load
pair requires two distinct architectural instructions who each
occupies space in the binary and resources in the pipeline.
Armv8 is therefore advantaged in this case. Generally, some
ISAs already provide “fused” architectural instructions for
specific operations when others rely on multiple architectural

instructions to implement the operation. A typical example
is loading or storing using indirect addressing, which is two
instructions in RISC-V but a single one in Armv8 and x86.

Unfortunately, it is not always trivial or even desirable
to add “fused” architectural instructions. Notwithstanding
the fact that it introduces redundancy (e.g. two load “single”
vs. one load pair achieve the same goal), it also implies
that all compliant designs must support it, increasing design
and validation efforts. Therefore, one could rather keep
architectural instructions simple and perform any fusion
necessary to optimize pipeline resource utilization at the
microarchitectural level. This is the guideline followed –to
the extreme– by the RISC-V ISA [7].

Moreover, microarchitectural fusion allows for more ag-
gressive optimizations. For instance, load pair in Armv8
requires that the data be exactly contiguous in memory.
However, one could imagine fusing two non-contiguous
memory accesses as long as they fall within a certain memory
region, e.g., a cacheline, or even fuse non-consecutive and/or
asymmetric (different width) memory accesses [17], [29].
Consequently, this work focuses on microarchitectural fusion.

More generally, after retrieving instructions from instruc-
tion memory, many modern general purpose microarchi-
tectures will translate architectural instructions into one or
more microarchitectural operations –a.k.a. “µ-ops”– through a
hardware process called instruction cracking. After cracking,
all operations in flight in the pipeline are µ-ops. Cracking
therefore re-arranges one complex architectural instruction
into multiple µ-ops that are simple enough for the hardware
to handle efficiently, while its dual, instruction fusion, re-
arranges multiple µ-ops into one that is just complex enough
for the hardware to handle efficiently. Fusion has the potential
to improve performance by decreasing latency as well as
saving pipeline resources such as Reorder Buffer (ROB),
Scheduler (a.k.a. Instruction Queue, or IQ) and Load/Store
Queue (LQ/SQ) entries.

This work places itself in the context of the RISC-V ISA
to highlight the benefits of fusion for an ISA whose primary
feature is simplicity. Indeed, many RISC-V architectural
instructions do not express enough work given modern
hardware capabilities, therefore, fusion is a solution to
achieve higher “work per µ-op” [7]. However, the proposed
microarchitectural techniques are by no means limited to the

RISC-V ISA. Specifically, this work makes the following
contributions:

• Provide an overview of the different categories of fusion
and highlight their limitations (Section II).

• Characterize opportunities for non consecutive and non
contiguous memory fusion and highlight that focusing
on memory µ-ops provides the best return on investment
for the processor model we consider (Section III).

• Propose the Helios microarchitecture and thoroughly
discuss the challenges for providing a correct and
efficient execution in the presence of non-consecutive
fusion (Section IV).

Our experiments with the Helios microarchitecture show
that aggressive microarchitectural memory fusion improves
performance by 14.2% over no fusion and 8.2% over
consecutive and contiguous only microarchitectural memory
fusion, on average (geomean).

II. BACKGROUND

A. Definitions and Taxonomy

To the best of our knowledge, commercially available
fusion proposals and implementations focus on consecutive
and contiguous fusion [1], [3], [4], [12]. ConSecutive Fusion
(CSF) is the operation of fusing two (or more) µ-ops that are
consecutive in the dynamic execution stream of the program.
ConTiguous Fusion (CTF) is the operation of fusing two (or
more) memory µ-ops that are guaranteed to access contiguous
but non-overlapping memory bytes [7].

In this paper, we propose and study techniques to increase
the number of fused memory instructions, notably non-
consecutive and non-contiguous fusion. Non-ConSecutive
Fusion (NCSF) is the operation of fusing two (or more)
µ-ops that are not consecutive in the dynamic execution
stream of the program. Non-ConTiguous Fusion (NCTF) is
the operation of fusing two (or more) memory µ-ops that
access non-contiguous memory bytes.

In addition to the different fusion categories, this paper
borrows from nuclear fusion taxonomy to differentiate
between a fused µ-op and a simple µ-op that is fused with
another one to create a fused µ-op. The head nucleus is the
oldest µ-op (in program order) used to create a fused µ-op.
The tail nucleus is the youngest µ-op used to create a fused
µ-op. As we consider only 2-µop fusion in this paper, a fused
µ-op is therefore always created from the head nucleus and
the tail nucleus. In the context of non-consecutive fusion, we
refer to the µ-ops that are “in between” (in program order)
the head nucleus and the tail nucleus as the catalyst. This
taxonomy is exemplified for a non-consecutive but contiguous
load pair fused µ-op (ldp) in Figure 1. In this case, the head
and tail nucleii each access 8 bytes from [x2] and [x2+8]
respectively, and the tail nucleus does not depend on the
head nucleus. Hence, they can be fused in a single load
pair µ-op that accesses 16 bytes from [x2]. Note that in this

ld x1, 0(x2)
add x7, x8, x5
sub x12, x7, x11
mv x15, x8
ld x3, 8(x2)

catalyst

head
nucleus

ldp x1, x3, 0(x2)
NCSF'd CTF'd
load-pair µ-optail

nucleus

Figure 1. Non-consecutive fusion of the head nucleus and tail nucleus
over the catalyst region.

particular case, the catalyst facilitates the fusion process since
there exists no register or memory dependencies between
the nucleii and the catalyst. However, as we will show in
Section IV-B, this is not always the case, which is likely
why Kim and Lipasti [17] considered fusing non consecutive
memory accesses but only for contiguous memory accesses
and only with specific catalysts.

B. Baseline Microarchitecture for Fusion
Implementing µ-op fusion requires feeding the relevant

decoded fields of pairs of instructions to combinatorial logic.
In most cases, the opcode and architectural source and
destination registers are sufficient. For instance, given the
example of Figure 1, fusing the two ld instructions can be
determined through the following formula:

f use(op0,op1) = (op0 == ld)^ (op1 == ld)^
(breg0 == breg1)^ (mem size0 == mem size1)^
(|imm0 � imm1|== mem size0)

The substitution of regular µ-ops by their fused equivalent,
and any instruction collapsing within the decode group caused
by the disappearance of one or more µ-ops has to take
place before Rename. In effect, fusion is the replacement
of the older µ-op (head nucleus) by a fused µ-op and the
disappearance of the younger µ-op (tail nucleus) from the
pipeline. This process takes place within a fusion window,
which can for instance be a decode group in a superscalar
processor. In this case, it is not possible for two back-to-back
µ-ops that are not in the same decode group to be fused. To
do so, a queue may be added between Decode and Rename.

Two of the proposed fusion idioms for RISC-V (although
not limited to RISC-V) are load pair and store pair, where
two consecutive loads (resp. stores) to contiguous memory
are fused into a single load pair (resp. store pair) µ-op
[7]. Assuming the microarchitecture can handle µ-ops with
two destination registers in the load execution pipeline, a
load pair µ-op can then perform a single cache access to
retrieve two registers worth of data, which reduces latency.
Interestingly, at the microarchitectural level, we can even
fuse non-contiguous memory operations if the cache circuit
allows it. That is, two loads may be fused even if they access
non-contiguous data as long as that data fits within a specific
memory region (e.g., cacheline).

Cacheline Crossers: A key limitation of baseline fusion
is that it can only inspect static information. As a result,
while a load pair idiom can easily be identified, it cannot
be guaranteed that both accesses fall within the same cache
line. Indeed, consider ld x4, 0(x1) immediately followed by
ld x5, 8(x1). These two instructions form a load pair idiom,
however, there is no guarantee that a single cacheline can
provide all the requested data. As a result, one has to consider
that the fusion of memory µ-ops may not necessarily improve
latency, as one load pair µ-op may translate to two serialized
cache accesses.1 Fortunately, hardware to handle this case
is already present in modern pipelines since even a single
memory µ-op may access two consecutive cache lines. The
penalty of crossing a cache line is generally small in modern
microarchitectures, e.g., a single cycle in Amd processors
([1], Section 2.6.2), suggesting two serialized accesses to the
cache).

This further entails that for load pair fusion to behave
optimally, the two destination registers should be provided
to dependents independently.

Dependent loads: Consider instruction ld x1, 0(x1) im-
mediately followed by ld x5, 0(x1). At first glance, the two
loads appear to qualify for fusion since they use the same
base register. However, the second load actually depends on
the first through x1. Thus, the two loads cannot compute
their effective address and access the cache concurrently and
they cannot be fused.

Store-to-load forwarding (STLDF): This technique is
implemented in modern microarchitectures to i) allow a load
to obtain data produced by a store that is still in flight and ii)
detect when a younger load was issued before an older store
to the same address. STLDF already has to handle accesses
that cross cachelines or even pages. This work assumes that
all LQ/SQ entries contain the address of the first byte they
access as well as a max access size bit-vector informing
which bytes are being accessed. Given this design, finding a
match requires subtracting the two base addresses, shifting
one of the bit-vector by the relevant amount, and finally
OR’ing and AND’ing the bit-vectors to determine overlap
and full match respectively. We note that several LQ/SQ
designs are possible, some of which would remove the need
for shifting at the cost of larger bitvectors. However, the
particular details of the LQ/SQ design are out of the scope
of this paper.

III. MOTIVATION

Exploring additional microarchitectural fusion opportuni-
ties is motivated by several observations. First, the rise of
the RISC-V ISA which features very simple, and therefore
very fuseable instructions. Second, the fact that architectural
fusion (e.g. the load pair instruction in Armv8 [2]) is

1This is also the case for “architectural” fusion when the compiler
transforms two regular Armv8 ldr instructions into one Armv8 ldp
instruction.

Table I
SEVERAL RISC-V FUSION IDIOMS ENVISIONED IN [7].

add rd, rs1, rs2
ld rd, 0(rd)

lui rd, imm[31:12]
addi rd, rd, imm[11:0]

ld rd, imm(rs1)
add rs1, rs1, 8

auipc t, imm20
jalr ra, imm12(t)

slli rd, rs1, {1,2,3}
add rd, rd, rs2

mulh[[S]U] rdh, rs1, rs2
mul rdl, rs1, rs2

slli rd, rs1, 32
srli rd, rd, 29/30/31/32

div[U] rdq, rs1, rs2
rem[U] rdr, rs1, rs

lui rd, imm[31:12]
ld rd, imm[11:0](rd)

auipc rd, symbol[31:12]
ld rd, symbol[11:0](rd)

ld rd1, imm(rs1)

ld rd2, imm+8(rs1)

st rs2, imm(rs1)

st rs3, imm+8(rs1)

limited in what it can fuse. Third, the fact that currently
implemented microarchitectural fusion remains, to the best of
our knowledge, conservative, by only considering consecutive
µ-ops.

A. The Case of RISC-V

RISC-V favors simple and uniform instructions that adhere
strictly to the RISC “Two Sources One Destination” (2S1D)
paradigm [30]. This philosophy explains the absence of
indirect addressing in RISC-V, even for loads. Other typical
missing idioms include pre- and post-increment addressing
which are natively present in Armv8 ([2], Section C1.3.3) but
require multiple instructions in RISC-V. As a result, RISC-V
is an interesting vessel to revisit instruction fusion since it
is bound to have noticeable impact on the performance of a
RISC-V microarchitecture.

B. A focus on Memory Pairing Fusion Idioms

The fusion idioms introduced by Celio et al. [7] for RISC-
V are summarized in Table I. One observation we make in
this work is that memory pairing idioms (in bold in Table I)
are more common than other idioms, and furthermore, they
also provide larger performance benefits as they not only
reduce IQ/ROB pressure but also LQ and SQ pressure.

This first observation is illustrated in Figure 2. The Figure
shows the percentage of fused pairs divided into Memory, i.e.,
those pairs in bold in Table I and Others, i.e., the other pairs
in Table I, for the applications evaluated in this work (see
Section V-A for details). On average 5.6% of the dynamic
µ-ops belong to the Memory category while 1.1% belong to
Others. Exceptions are 657.xz 2, bitcount, and susan where
non memory fusion is prevalent.

Figure 3 reports the corresponding IPC normalized to a
baseline without fusion. We can observe that differences
between fusing all µ-ops and just fusing memory µ-ops are
minimal (1 percentage point on average). Indeed, only susan
shows a significant performance degradation (6.5 percentage
points) when only memory pairs are considered compared to
all idioms. Our initial findings motivate the need to explore
additional fusion opportunities of memory µ-ops.

 600.perlbench_1

 600.perlbench_2

 600.perlbench_3

 602.gcc_
1

 602.gcc_
2

 602.gcc_
3

 605.mcf

 620.omnetpp

 623.xa
lancbmk

 631.deepsje
ng

 641.leela

 648.exch
ange2

 657.xz
_1

 657.xz
_2
 adpcm

 basic
math

 bitco
unt

 blowfish
 crc

32

 dijks
tra fft

 gsm
_toast

 gsm
_untoast

 jpeg

 patric
ia

 qsort

 rijn
dael

 rsy
nth sh

a

 str
ingsearch

 su
san

 typ
eset

 Av
era
ge

 0

 5

 10

 15

D
yn

. I
ns

ts
. (

%
)

Other Memory1. AllFusion 2. MemFusion

Figure 2. Percentage of fused µ-ops considering all or just memory fusion idioms, relative to total dynamic µ-ops.

 600.perlbench_1

 600.perlbench_2

 600.perlbench_3

 602.gcc_
1

 602.gcc_
2

 602.gcc_
3

 605.mcf

 620.omnetpp

 623.xa
lancbmk

 631.deepsje
ng

 641.leela

 648.exch
ange2

 657.xz
_1

 657.xz
_2
 adpcm

 basic
math

 bitco
unt

 blowfish
 crc

32

 dijks
tra fft

 gsm
_toast

 gsm
_untoast

 jpeg

 patric
ia

 qsort

 rijn
dael

 rsy
nth sh

a

 str
ingsearch

 su
san

 typ
eset

 Av
era
ge

 0.8

 1.0

 1.2

N
or

m
. I

PC

AllFusion MemFusion

Figure 3. Normalized IPC improvement of fusion pairs presented in Figure 2 with respect to no fusion as baseline.

C. Architectural vs. Microarchitectural Fusion of Memory
Operations

Armv8 features the load pair (ldp) and store pair (stp)
architectural instructions ([2], Section C3.2.3). One could
therefore argue that those instructions should be added to
RISC-V (or x86) as extensions to let the compiler perform
fusion and simplify the microarchitecture. However, architec-
tural pairing is limited in that i) it requires both accesses to be
exactly contiguous in memory and ii) it requires both accesses
to have the same size. Hence, architectural fusion misses on
accesses that have overlapping bytes, are asymmetric, or are
close accesses but do not have overlapping bytes.

Conversely, at the microarchitectural level, the cache circuit
access granularity may be greater than 8B and may be as high
as the whole cache line (e.g., to support full width AVX512
[13]). Performing wider than strictly necessary accesses is a
known technique to improve cache bandwidth [6], [14], [31],
but previous work has so far considered it to avoid accessing
the data cache multiple times, rather than to reduce pressure
on pipeline structures.

Thus, memory µ-ops may be fused in the microarchitecture
as long as they access data that falls within a cache access
granularity region. This requirement is satisfied by accesses
with overlapping bytes, asymmetric accesses, and accesses
that do not have overlapping bytes but are close enough.

Figure 4 reports the contribution of different consecutive
memory fusion categories: contiguous, overlapping, same
cacheline and two contiguous cachelines, assuming the cache
access granularity is 64 bytes. Interestingly, very few pairs
access overlapping bytes, hinting that architectural fusion
would capture most consecutive and contiguous load pair
idioms, at the cost of increasing ISA complexity. Nonetheless,
architectural fusion would still leave potential on the table

since 1% additional memory µ-ops could fuse with the
adjacent memory µ-op if non-contiguous fusion within a
64B region were supported (SameLine + NextLine).

D. Limitations of Microarchitectural Fusion
Consecutivity: Fusion is usually thought of as a technique

that will fuse two (or more) µ-ops that are consecutive in
the dynamic instruction stream. However, we find that if
this constraint were to be relaxed, a non-negligible amount
of additional µ-ops could be fused. Figure 5 reports the
additional fusion potential brought by non-consecutive fusion
(NCSF) for memory µ-ops. Note that in NCSF, the number of
asymetric accesses is quite high, at 12.1% of the NCSF pairs.
Conversely, the vast majority of CSF pairs are symmetric
accesses.

Static Information Only: Fusion hardware relies on static
information to decide whether to fuse two memory µ-ops or
not. In the context of RISC-V, memory µ-ops may be fused
if : i) They are either all loads, or all stores and ii) They
share the same physical base register and iii) They access
data that resides within a cacheline size region.

However, not all fuseable µ-op pairs meeting condition iii)
also validate condition ii). Indeed, we find there exist pairs
of both consecutive and non-consecutive memory µ-ops that
do not share a physical base register and yet access the same
cacheline sized memory region, meaning that they could be
fused. Yet, it is not easy or even possible to identify those
pairs using only static information, as effective addresses are
needed to confirm fuseability. Therefore, fusion based on
static information is leaving potential on the table. Figure 5
also reports the fusion potential brought by fusing instructions
that do not share the same physical base register (DBR suffix
in the Figure), and amount to 1.5% of dynamic µ-ops on
average, including CSF and NCSF.

 600.perlbench_1

 600.perlbench_2

 600.perlbench_3

 602.gcc_
1

 602.gcc_
2

 602.gcc_
3

 605.mcf

 620.omnetpp

 623.xa
lancbmk

 631.deepsje
ng

 641.leela

 648.exch
ange2

 657.xz
_1

 657.xz
_2
 adpcm

 basic
math

 bitco
unt

 blowfish
 crc

32

 dijks
tra fft

 gsm
_toast

 gsm
_untoast

 jpeg

 patric
ia

 qsort

 rijn
dael

 rsy
nth sh

a

 str
ingsearch

 su
san

 typ
eset

 Av
era
ge

 0

 5

 10

 15

D
yn

. I
ns

ts
. (

%
)

Contiguous Overlap SameCacheLine TwoCacheLines1. AllFusion 2. MemFusion 3. OracleFusion

Figure 4. Paired consecutive memory µ-ops relative to total dynamic µ-ops.

 600.perlbench_1

 600.perlbench_2

 600.perlbench_3

 602.gcc_
1

 602.gcc_
2

 602.gcc_
3

 605.mcf

 620.omnetpp

 623.xa
lancbmk

 631.deepsje
ng

 641.leela

 648.exch
ange2

 657.xz
_1

 657.xz
_2
 adpcm

 basic
math

 bitco
unt

 blowfish
 crc

32

 dijks
tra fft

 gsm
_toast

 gsm
_untoast

 jpeg

 patric
ia

 qsort

 rijn
dael

 rsy
nth sh

a

 str
ingsearch

 su
san

 typ
eset

 Av
era
ge

 0
 5

 10
 15
 20
 25
 30

D
yn

. I
ns

ts
. (

%
)

Consecutive-DBR Consecutive-SBR Non-consecutive-DBR Non-consecutive-SBR

Figure 5. Paired memory µ-ops with consecutive, non-consecutive, and different-base register relative to total dynamic µ-ops.

IV. THE HELIOS MICROARCHITECTURE

To support non-consecutive (NCS) and non-contiguous
(NCT) fusion of memory µ-ops that potentially use a Different
Base Register (DBR), Helios relies on multiple changes along
the pipeline, which are summarized in Figure 6.

At a high level, Helios relies on three key mechanisms.
First, one way to perform NCSF is to have each µ-op
inspect all older µ-ops in the Allocation Queue, which sits
between Decode and Rename. Such an exhaustive approach
to NCSF is costly. Therefore, Helios uses a predictive
approach to identify not only NCS but also NCT and DBR
candidates. Second, NCS fusion may suffer from the presence
of dependencies between nucleii and their catalyst. Helios
identifies dependencies and, when possible, addresses them
so that fusion can still proceed. Third and last, Helios handles
incorrectly fused instructions as well as other mispredictions
(e.g., branch) within a catalyst.

A. A Unified Predictor

Helios implements a unified hardware predictor for NCSF,
NCTF, and DBR that, given a µ-op PC,2 provides the distance,
in µ-ops, to the head nucleus to fuse with.

The predictor infrastructure consist of 2 structures: the
Unfused Committed History (UCH) and the Fusion Predictor
(FP). UCH lives in Commit stage. It is used to find potential
fusion pairs, i.e., memory operations that access the same
cache line, to train FP. FP is placed in the frontend (Decode),
and predicts which µ-ops should be speculatively fused.

2In this paper, RISC-V memory instructions always translate to a single
µ-op, hence the PC to µ-op equivalence for memory µ-ops.

1) Unfused Committed History (UCH): UCH keeps the
cache lines accessed by the last committed memory µ-ops
eligible for fusion, i.e., the non-already fused memory µ-ops.
It is organized as a cache where each entry contains a valid
bit, a 32-bit tag (partial cache line address), and a 7-bit
commit number (CN), for a total of 5 bytes per entry. Each
entry may also feature replacement information depending
on the actual design (LRU is done through the CN in this
work). Distinct histories are implemented for loads and for
stores.

For loads, the UCH is organized as a fully-associative
cache. In our experiments, we find that the head nucleus
can generally be found a few loads ahead, and therefore we
implement a 6-entry UCH for loads with LRU replacement.
For stores, a single entry holding the last unfused committed
store is kept in the UCH as in Helios, stores cannot be fused
across other stores to prevent memory consistency issues.
At Commit, loads search the UCH for loads (Ld-UCH) and
stores search the UCH for stores (St-UCH). Overall, the
UCH structure requires just 280 bits.

When a retiring µ-op matches a tag in the UCH, a potential
fuseable pair has been found. The distance between the two
µ-ops is computed by subtracting the CN of the committing
µ-op to the matching entry’s CN, and the matching entry
is invalidated, as µ-ops can only fuse with a single other
µ-op. The maximum distance that we allow for fusion is 64
µ-ops, so the CN field requires 7 bits (the last bit controls the
CN overflow). The FP is then updated using the computed
distance as explained in the next Section.

On a miss in the UCH, the µ-op is inserted into the UCH.
Invalid entries resulting from a previous match are preferred
victims for replacement, followed by the LRU entry. It should

Alloc
QueueDecode Rename Dispatch Execute Commit... ...

- Fuse consecutive
µ-ops
- Access fusion
predictor

Fusion Pred.

- Mark NCSF/
NCTF predicted
µ-ops as fused

- Discover reg.
dependencies.
between catalyst
and nucleii
- Discover fusion-
preventing cases
(e.g., deadlocks)

- Repair incorrect
dependencies in
IQ
- Unfuse incorrectly
NCSF/NCTF µ-ops

- Discover address-
based NCSF misp.
- Update fusion
predictor

- Train the fusion
predictor
- Track fusion-based
commit groups

UCH

Figure 6. Overview of fusion-related responsibilities in Helios.

be noted that this process is out of the execution critical
path and can be done post-commit. That is, a post-commit
decoupling queue in which at most n committing loads
(resp. store) µ-ops are inserted each cycle can be implemented.
If the queue is full, µ-ops are simply dropped and will get
a chance to train at a later time. The queue is drained at
a rate of m µ-op each cycle, with m the number of UCH
ports. In our experiments, on average 0.23 loads update and
0.28 loads search the UCH per cycle at commit (0.13 and
0.16 per cycle for stores). Experiments further suggest that
implementing an 8-entry queue in front of the load UCH
and allowing a single UCH search and update per cycle has
no impact on the performance of Helios.

2) Fusion Predictor (FP): FP contains information about
potential tail nucleii. FP is organized similarly to a cache,
each entry containing an 8-bit tag, a 6-bit µ-op distance to
the head nucleus to fuse with, a 2-bit saturating counter, and
a pseudo-LRU bit. Each entry therefore requires 17 bits.

The processor attempts to allocate an FP entry for a
committing µ-op when a match is found with an older UCH
entry. If a match is found, FP is searched and if the tag is
already present in FP and the distance matches, the confidence
counter of the entry is increased. If the distance does not
match, the new distance is inserted and the confidence is set
to 1. If the tag is not found, an entry is selected for eviction
following a pseudo-LRU replacement policy.

In this work, we chose a tournament predictor [15], which
selects from a “local” PC-based predictor and a “global”
gshare-like predictor, to implement FP. It includes a 512-
set, 4-way structure indexed by the PC and another 512-
set, 4-way structure indexed by a XOR of the PC and
the global branch direction history. Each structure therefore
features 2048 entries, amounting to 34Kbits each. A 2048-
set direct-mapped and untagged selection table containing
2-bit saturating counters (4Kbits) is used to select which
prediction is used. The total predictor bitcount is therefore
72Kbits (9KB). Alternatively, other predictors, such as TAGE-
based [27] or local history based [32], can be employed. In
the context of RISC-V, which features aligned instructions,
the predictor structures may be implemented as multiple
single-ported banks interleaved on PC. In practice, a number
of banks greater than the decode width is preferable to handle
cases where µ-ops belonging to different basic blocks are at

Decode. A high number of banks also permits to perform
both predictions and updates in the same cycle if they go to
different banks, as described by Seznec et al. [26].

Once a distance is retrieved from the FP at Decode, fusion
is attempted in the Allocation Queue, and is successful only
if the following conditions are met:

1) The saturating counter has the maximum value (3).
2) The two µ-ops form a valid fusion idiom, that is:

• Both µ-ops are loads or both are stores.
• The head nucleus is not already a fused µ-op.

3) The head nucleus still resides in the Allocation Queue
or is in the same Decode Group as the tail nucleus.

The 2-bit saturating counter is updated when the fused
µ-op executes by computing the target addresses, and a
misprediction is uncovered. On a correct prediction, the
entry is not updated since the confidence counter has already
saturated from the UCH-based training process. Updates
are achieved through a dedicated structure that contains
relevant prediction information (e.g., index of tables used
for prediction, predicted distance, confidence) for µ-ops that
flow down the pipeline, similarly to how branch or value
prediction update may be handled [24]. While its exact size
depends on implementation details (e.g. how many entries
are sufficient to prevent stalling), each entry requires 29-bit
of storage given the predictor we consider (assuming selector
and PC-based set indexes can be regenerated from the PC at
update time). In our experiments, we consider an unlimited
queue. The confidence counter is reset to 0 on a fusion
misprediction.

FP can be integrated in a microarchitecture featuring a µ-op
cache by having FP and the µ-uop cache searched in parallel.
Further integration of FP in the µ-op cache appears wasteful
because not all µ-ops are eligible for non-consecutive fusion.
However, directly caching consecutively fused µ-ops in µ-op
cache entries is a possibility, as long as consecutively fused
µ-ops contain enough information to be unfused at the output
of the cache if a branch jumps to the tail-nucleus. Caching
NCSF’d µ-ops appears less synergistic because NCS fusion
is inherently dynamic. For instance, depending on control
flow, a load may fuse with younger load A or younger load
B (e.g. if A is on the taken path and B is on the fallthrough
of the same conditional branch). Statically caching one of
the two possible NCSF’d µ-ops in the µ-op cache would be

unable to capture this behavior. It may however be adapted
to constrained NCS fusion schemes that do not allow any
control-flow change within the catalyst.

B. Preserving ISA Semantics

Helios builds on consecutive memory fusion. Thus, µ-ops
already feature three source and two destination registers, as
this is required even for consecutive and contiguous fusion
of memory operations [7]. To support DBR, store pair µ-ops
may actually need four source registers. Fortunately, we find
that DBR store pair fusion represents a negligible fraction of
the fused stores (0.54%), as a result, we only support SBR
store pair fusion. In the remainder of this paper, the reported
storage cost are compared to a baseline with consecutive and
contiguous (for memory µ-ops) fusion.

To correctly fuse non-consecutive µ-ops, NCSF does not
remove the tail nucleus from the Allocation Queue (AQ). At
fusion time, the head nucleus is replaced by the NCSF’d µ-op,
and the tail nucleus is left in the queue. This contrasts with
consecutive fusion where the tail nucleus can disappear after
fusion. Furthermore, we introduce the following definitions:

• A validated NCSF’d µ-op is known to i) Possess
its correct source physical register identifiers, ii) Not
produce a deadlock through a register dependency or
a serializing instruction and iii) Not have a store in its
catalyst if it is a store pair µ-op.

• A pending NCSF’d µ-op is an NCSF’d µ-op that is not
yet validated.

1) Allocation Queue: To track which µ-ops are head
or tail nucleii, each AQ entry is augmented with the
Is Head Nucleus and Is Tail Nucleus bits. Each entry is
also augmented with a tag field, NCS Tag. The tag is actually
a pointer to the other nucleus µ-op in the AQ, which is
140 entries in our model, yielding an 8-bit tag. The tags
are managed implicitly as µ-ops enter and leave the AQ.
head nucleii carry their own AQ entry number until they
are dispatched to the ROB/IQ/LQ/SQ, while tail nucleii
leaving the AQ carry their respective NCS Tag until they are
dispatched. Those changes to the AQ are depicted in 1 of
Figure 7 and amount to 1.37Kbits of storage in the AQ.

2) Register Renaming & NCSF: For generality, we de-
scribe a scheme that can handle nested3 NCSF. We first aug-
ment the Rename stage with two counters: Max Active NCS
and Active NCS. The first tracks the number of head nucleii
of the current NCSF nest that have entered Rename so far.
The second is used to determine when Rename finishes
processing the NCSF nest. Both counters are incremented
when a head nucleus enters Rename. Only Active NCS
can be decremented, when a tail nucleus leaves Rename.
However, when Active NCS is decremented to 0, Rename is
not processing an NCSF nest anymore, and Max Active NCS

3In this paper, “nested” includes interleaved pairs, e.g., µ-ops
ld0 ld1 ld2 ld3 where ld0 fuses with ld2 and ld1 fuses with ld3.

is reset. Both counters are also reset on a pipeline flush. We
found that supporting only two nested NCSF’d µ-ops at any
given time is sufficient to achieve most of the benefits. Any
head nucleus entering Rename while Max Active NCS is
saturated behaves as unfused and the tail nucleus is marked
as not fused in the AQ through the NCS Tag. The additions to
the Rename stage are depicted in 2 of Figure 7 and amount
to 4 bits of storage. Moreover, one bit is added to each
source and destination physical register identifier flowing in
the pipeline to inform whether that physical register belongs
to the head nucleus or to the tail nucleus, as shown in 3
of Figure 7. This amounts to 700 bits in the AQ, 800 bits in
the IQ and 256 bits in the LQ.

Nevertheless, non-consecutive fusion is problematic if there
exists register dependencies between i) The catalyst and the
tail nucleus and ii) The head and tail nucleii, either direct or
indirect. To illustrate the first class of dependencies, consider
the following example where µ-op 3 is fused with µ-op 1:

[1] ld x1, 0(x2)
[2] add x2, x4, 1
[3] ld x4, 8(x2)

Instruction 3 has a Write-after-Read (WaR) dependency
with 2 through x4 as well as a Read-after-Write (RaW)
dependency through x2. Both dependencies can be circum-
vented through register renaming.

Write-after-Read (x4): All the destination registers of
the fused µ-op are renamed together, when the fused µ-op
(replacing 1) enters rename. This is incorrect because it
means that 2 will be able to see the version of x4 produced
by 3 in the Register Alias Table (RAT) and use it as a source.

To prevent 2 from observing the new name of x4, Helios
prevents the NCSF’d µ-op from updating the RAT for the
destination register(s) of the tail nucleus. Rather, those
physical registers are stored in a dedicated buffer. When the
corresponding tail nucleus goes through Rename, destination
renaming is performed by reading the physical register
identifier(s) from the buffer to update the RAT. In this work,
a 2-entry buffer (one per NCSF nesting level) is sufficient,
each entry storing a physical register identifier. This buffer is
tagged using the entry number of the head nucleus, which is
the NCS Tag of the tail nucleus. It is shown in 4 of Figure 7
and amount to 34 bits of storage (additional information is
needed to handle deadlocks and discussed later). This scheme
enforces in-order destination register renaming, allowing the
Active List (which contains the in-flight register mappings) to
remain consistent with program order. The buffer is entirely
invalidated and physical registers names in valid entries are
put back on the Free List on a pipeline flush.

Read-after-Write (x2): When the NCSF’d µ-op renames
its sources, 2 has neither been allocated a new physical
register for x2 nor has it updated the RAT. Consequently,
the fused µ-op will incorrectly rename the source operand
of 3.

Queue

INT Free List (FIFO)
Phy Reg[280]

INT Active List (FIFO)
Payload[280]

SeqNum
Arch. Reg.
Prev. Phy. Reg.

Rename Dispatch

4

Is_Head_Nucleus(1b)

Instr. Payload[140]
OpCode

Is_Tail_Nucleus(1b)

Alloc. Queue (FIFO)

Arch. regs[5]
Head/Tail(1b)

NCS_Tag(8b)
Instr. Payload[160]

SeqNum

NCSF_Ready(1b)

Scheduler

OpCode
Phy. regs[5]

Head/Tail(1b)NCS Rename Buffer[2]
Dst. Phy. Reg. of tail-nuc.(9b)
NCS_Tag(8b)

Active_NCS(2b)

NCSF_Serializing(1b)
Max_Active_NCS(2b) Arch Reg[32]

Phy. Reg.
Inside_NCS(1b)
Deadlock_Tag(2b)

Register Alias Table (RAT)

NCS_Tag(8b)

IQEntryPtr(8b)
ROBEntryPtr(9b)

NCS_Tag(8b)

Dispatch NCS Buffer[2]

LQ/SQEntryPtr (7b)

Instr. Payload[128/72]
SeqNum

LQ/SQ (FIFO)

Phy. regs[2/0]
Head/Tail(1b)

...

1

3
5

6

7
2

8

Instr. Payload[352]
SeqNum
Ext_ComGroup(1b)

Reorder Buffer (FIFO)

9

Deadlock_Tag(2b)

3

3

8

NCSF_StorePair(1b)

10

11

Tail Offset(6b)
Tail Acc. Size(2b)12

NCS_Starts(1b)

Figure 7. Key pipeline structure changes (bold) in AQ (blue), Rename (orange) and Dispatch (green). Pipeline structures are sized similarly to Intel Icelake.

When the existence of a RaW dependency is eventually
determined, it may not be trivial to re-execute the NCSF’d µ-
op as it may already have left the IQ cycles ago. To alleviate
this concern, Helios prevents pending NCSF’d µ-op from
issuing until the existence or absence of a RaW dependency
is determined. This allows the correct source register name
to be provided to the IQ entry of the NCSF’d µ-op as it
becomes validated.

To that extent, each IQ entry is first augmented with a
NCS Ready bit, which encodes whether an NCSF’d µ-op is
pending or validated. A µ-op may issue only if NCS Ready
is set. All µ-ops in flight between Rename and the IQ also
carry this bit. When an NCSF’d µ-op leaves Rename, its
associated NCS Ready bit is reset, while all other µ-ops leave
Rename with the bit set. Those additional bits are depicted
in 6 of Figure 7, and amount to 160 bits of IQ storage.

Second, each entry of the RAT is augmented with an
Inside NCS bit. Inside NCS is set in the RAT entry when a
µ-op renames its destination register and Rename is currently
processing an NCSF’d µ-op (Active NCS is not 0). All
Inside NCS bits are reset when Rename stops processing
NCSF’d µ-ops (Active NCS is decremented to 0), or when
the pipeline flushes. Those additional bits are depicted in
5 of Figure 7, and amount to 32 bits of storage in the

RAT. When a tail nucleus enters Rename, it still looks up its
source registers in the RAT for the purpose of validating the
NCSF’d µ-op. If one of the source has the Inside NCS bit
set, there is a RaW dependency between the tail nucleus and
the catalyst. This design may yield false positives, however,
this is inconsequential in Helios since absence or presence
of a RaW incurs the same validation latency.

To summarize, when an NCSF’d µ-op dispatches to the IQ,
it cannot issue because the NCSF Ready bit is not set yet.
Eventually, the corresponding tail nucleus leaves Rename
having potentially detected a RaW dependency, hence an

incorrect NCSF’d µ-op residing in the IQ.
Regardless, the tail nucleus flows to Dispatch to set the

NCSF Ready bit in the corresponding NCSF’d µ-op IQ entry,
and, if needed, to correct the source register name(s). To do
so, it uses a Dispatch slot to write the IQ entry. The ROB
and LQ/SQ do not need to be amended.

The precise IQ entry to amend is tracked by the Dispatch
stage using a small fully associative buffer that has as many
entries as the supported nesting NCSF depth (2 in our case),
much like the Rename buffer. Entries are tagged with the AQ
entry number of the head nucleus (which is the NCS Tag of
the tail nucleus) and are allocated when a pending NCSF’d µ-
op dispatches. Entries are reclaimed when the corresponding
tail nucleus validates the head nucleus IQ entry, or there
is a pipeline flush. The Dispatch buffer is shown in 7 of
Figure 7 and amounts to 64 bits of storage (the buffer also
stores pointers to the ROB and LQ/SQ for the purpose of
dynamically unfusing a pending NCSF’d µ-op).

Note that if the two nucleii are in the same rename group,
we assume that the Rename stage can take care of any RaW
dependency in-place, and the NCSF’d µ-op therefore leaves
Rename validated.

Deadlocks: In Section II-B, we highlighted that standard
fusion does not consider consecutive load pair patterns if
the tail nucleus directly depends on the head nucleus. This
also applies in the context of NCSF, although given the
predictive nature of Helios, there is no easy way to determine
that two non-consecutive µ-ops are directly dependent in
the AQ. Moreover, indirect dependencies also have to be
considered. Let us consider the example below where 1 and 3
are assumed to be fused despite having different architectural
base registers:

[1] ld x1, 0(x2)
[2] add x3, x1, 1
[3] ld x4, 0(x3)

We cannot issue the fused load pair comprised of 1 and
3 until x2 and x3 are available. However, x3 cannot be
produced until x1 is produced by the load pair µ-op, which
cannot happen until x3 is produced by 2. In other words,
the load pair cannot issue until it executes and execution is
therefore deadlocked.

To detect if the tail nucleus directly or indirectly depends
on the head nucleus, we rely on a dedicated detection
mechanism that lives in the Renamer: When an NCSF’d µ-op
is renamed, it writes a Deadlock Tag field in the RAT entries
of its destination register(s). This field is a one-hot vector with
as many bits as nesting levels (2 in our case) that encodes the
current value of Maximum Active NCS. The Deadlock Tag
is propagated from source(s) to destination(s) as younger
µ-ops are renamed. If there are multiple source registers,
their Deadlock Tag fields are OR’d before being written in
the RAT entries of the destination register(s). Similarly, a
younger (i.e., nested) head nucleus sets its corresponding bit
in the Deadlock Tag of its destination register(s) but also
propagates the Deadlock Tag from its sources by OR’ing
the two tags. All Deadlock Tag bits are reset when the last
tail nucleus of an NCSF nest leaves Rename or when the
pipeline flushes. Those additional bits are illustrated in 8
of Figure 7 and amount to 64 bits of storage in the RAT as
well as 4 bits in the Rename Buffer.

If any of the source registers of a tail nucleus has a
Deadlock Tag with the relevant bit set, then there is a
dependency-based deadlock and NCSF should not have taken
place. The relevant bit to check can be retrieved from the
2-entry Rename buffer used to handle WaR dependencies
which is tagged with the NCS Tag of the tail nucleus (hence
the 4 additional bits of storage in this buffer). Recovery
is done by letting the tail nucleus flow through Dispatch
and unfuse the corresponding NCSF’d µ-op by amending
the relevant structures (pointer to ROB/IQ/LQ/SQ entries of
pending NCSF’d µ-op are kept in the dedicated Dispatch
buffer to enable this). In particular, the source and destination
registers that belong to the tail nucleus will be marked as
invalid in the IQ and LQ, and the tail access offset and size
will be amended to 0 in the LQ. The tail nucleus further
occupies a second dispatch slot to get its own entries.

Deadlocks stemming from the presence of serializing
instructions (including fences) within the catalyst can be
identified by adding a single bit, NCSF Serializing, in the
Rename stage which is set if Max Active NCS is at least
one and a serializing instruction enters Rename. When a
tail nucleus enters Rename and this bit is set, it performs
the same actions as when a dependency-based deadlock is
identified to “unfuse” the corresponding pending NCSF’d
µ-op. This bit is depicted in 9 of Figure 7.

3) Instruction Commit, Exception and Interrupts: To
preserve in-order semantics, both nucleii and catalyst must
be ready to retire for the NCSF’d µ-op to commit. This
ensures that if a misprediction or an exception (also known

as fault) is detected in the catalyst, the head-nucleus has
not retired yet and it can be unfused or flushed, thereby
guaranteeing precise exceptions. This does not mean that
the nucleii and catalyst have to commit in a single cycle,
however. As a consequence, if an extended commit group
has started committing, the group must finish committing
before any pending interrupt is processed. In our experiments,
the catalyst size is often limited (10.5 µ-ops on average),
meaning that the latency increase in processing interrupts
will be minor.

This is achieved through the Active NCS Rename counter.
Specifically, all µ-ops that went through Rename when
Active NCS was not 0 are part of an “extended” commit
group, which they indicate by setting the Ext ComGroup
bit in their ROB entry. To avoid deadlocks, a second bit is
added in each ROB entry. This bit set to 1 by the first head
nucleus of an NCSF nest, and serves to delineate “extended”
commit groups. The Commit stage then leverages those bits
to determine if the ROB head can retire. We note that Commit
may establish the boundaries of such groups off the critical
path by scanning the ROB as µ-ops dispatch. Those bits
are depicted in 10 of Figure 7 and amounts to 704 bits of
storage in the ROB.

4) Memory Consistency & Sequential Semantics: In
Helios, NCSF is speculative, therefore, it cannot guarantee
that i) There is no store µ-op in the catalyst of a store pair
NCSF’d µ-op and ii) If there is such a store µ-op, it cannot
guarantee that is does not overlap with the tail nucleus. As a
result an NCSF’d store pair µ-op risks violating store-store
ordering in models enforcing it and same-address sequential-
consistency for all memory models.

Helios prevents NCS store pair fusion when finding a
store µ-op in the catalyst. This is achieved by adding a
NCSF StorePair bit to Rename, which is set when any store
µ-op other than the first head nucleus of the NCSF nest
is renamed. Any store tail nucleus seeing this bit set will
proceed to unfuse the corresponding pending NCSF’d store
pair µ-op waiting in the IQ, similarly to the deadlock case.
The NCSF StorePair bit is depicted in 11 of Figure 7.

Conversely, NCS load pair fusion may have loads and
stores in the catalyst since loads already execute speculatively
out-of-order with respect to other loads while respecting load
order [9] and with respect to other stores while respecting
sequential semantics [18].

5) Memory µ-ops with Different Base Registers: As
pointed out in Section III-D, a non-negligible amount
of pairs of loads access data that fit within a cacheline
through a different base address register. In the context
of a microarchitecture with register renaming, this can be
either through a different physical base register or a different
architectural base register. In the former case, the frontend
can make a reasonable decision by inspecting the nucleii and
the catalyst, but this requires inspecting an arbitrary number
of µ-ops from the AQ, which is not desirable.

Moreover, in the other case (different architectural reg-
isters), the frontend cannot generally determine that two
µ-ops are candidates for pairing with static information
only. Fortunately, DBR load pair fusion is captured by the
predictive scheme employed by Helios.

6) Load/Store Queue: NCSF by itself does not impact
the baseline LQ/SQ designs as introduced in Section II-B.
However, although that information is already encoded in the
base address and the bitvector, the LQ/SQ entries may also
store i) an offset from the base address for the second access,
such that the base address of the second access can easily be
re-generated if needed (6 bits) and ii) The access size of the
second access if different access sizes are considered (2 bits).
Given the processor configuration we consider, this amounts
to 704 bits as we assume the LQ/SQ entries can already track
64B accesses (e.g., to support wide vector extensions such
as AVX512). This storage is reported by 12 of Figure 7.

7) Summary: Supporting NCSF in the different stages
of the pipeline requires a total of 4.77Kbits, or 0.60KB,
for the processor configuration we consider (see Table II).
Adding the Fusion predictor yields a grand total of 76.77Kbits
(9.60KB).

C. Repairing Microarchitectural State
In Helios, several events require the microarchitectural

state to be repaired:
1) Rename: An NCSF’d µ-op has at least one incorrect

source name because of a RaW between the catalyst
and the tail nucleus.

2) Rename: A dependency-based deadlock is discovered.
3) Rename: A store tail nucleus enters Rename and the

NCSF StorePair bit is set.
4) Rename: A tail nucleus enters Rename and the NCSF

Serializing bit is set.
5) Execute: The head and tail nucleii could not fuse

because they span more than a cacheline size region.
6) Execute: The memory access belonging to the tail

nucleus faults.
7) Execute: A mispredicted µ-op (e.g., branch, memory

dependency, fault) is discovered in the catalyst.
Case 1: The pending NCSF’d µ-op is kept in the IQ, so

the tail nucleus can amend it in place using a dispatch slot.
Cases 2, 3 & 4: The NCSF’d µ-op is unfused in place using

the same mechanism as in Case 1 and the fact that we attach
one bit to each physical register identifier to inform whether
the register belongs to the head or the tail nucleus (Section
IV-B1). Unfusing also requires amending the NCSF’d µ-op
Load Queue (resp. Store Queue) entry, which is also tracked
in the dedicated Dispatch side buffer. In those cases, the tail
nucleus also dispatches and therefore occupies two dispatch
slots, preventing one younger µ-op to dispatch that cycle as
an additional penalty.

Case 5, 6 & 7: In the two first cases, the NCSF’d µ-op
tail nucleus became validated and the tail nucleus has left

the pipeline after fused µ-op validation. Therefore, it needs
to be refetched after flushing the pipeline. In the last case,
the control flow is incorrect, hence a pipeline flush is needed.
The only degree of freedom is the flush point. Indeed, we can
either i) Unfuse any NCSF’d µ-op whose catalyst contains the
mispredicted (resp. faulting) instruction and flush from the
mispredicted (resp. faulting) instruction or ii) Flush from the
oldest NCSF’d µ-op whose catalyst contains the mispredicted
(resp. faulting) instruction.

Since we only consider at most two nested/interleaved
NCSF’d µ-op, any mispredicted (resp. faulting) instruction
may need to unfuse at most two NCSF’d µ-op (only one for
cases 5 & 6 since the mispredicted/faulting µ-op is one of
the two nested NCSF’d µ-ops). As a result, in this paper, we
consider solution i) by having all µ-ops that can potentially
trigger a pipeline flush keep two pointers to their associated
“encompassing” NCSF’d µ-ops. The pointers are obtained
at Rename by first grabbing the NCS Tag of valid entries
in the Rename buffer used to handle WaR and then using
this tag to retrieve a ROB entry number or sequence number
from the Dispatch buffer used to handle RaW dependencies
of NCSF’d µ-ops. The pointers are then stored in a FIFO
queue that stores the information needed to recover from
pipeline flushes (e.g., PC). Note that since most µ-ops fuse
with a µ-op that is close by, the impact of flushing more
than necessary (solution ii)) will remain limited. However,
even solution ii) requires µ-ops that can trigger a pipeline
flush to be able to determine the older NCSF’d µ-ops whose
catalyst they belong to (e.g., through a pointer). As pointed
out in Section IV-B3, a mispredicted (resp. faulting) µ-op
will always find relevant head-nucleii in the ROB and be
able to unfuse them through the pointers, which guarantees
precise exceptions and correct branch misprediction recovery.

An upper bound cost for solution i) is therefore two 9-bit
ROB pointers per ROB entry,4 amounting to 6336 bits and
increasing the total cost of supporting NCS fusion in Helios
to around 83Kbits (around 10.4KB).

V. EVALUATION

A. Simulation Methodology

Our simulation infrastructure employs a modified version
of the RISC-V Spike Simulator [21] and an in-house cycle-
level simulator modeling a seven-stage pipeline as described
by González et al. [10]. Spike runs in full-system mode
with a Linux kernel and injects instructions into our out-
of-order processor model, modeled after an Intel Icelake
microarchitecture. A first insight obtained from evaluating
Helios is that using such a deep machine with equally
wide frontend (Fetch/Decode/Rename) stages prevents the
Allocation Queue from getting filled and greatly limits fusion
opportunities. As a result, Helios features 8-wide Fetch and

4A dedicated queue smaller than the ROB may be implemented to track
this information for potential flushers only.

Table II
BASELINE CONFIGURATION.

Out-of-order processor

Model Intel Icelake
Predictors L-TAGE [25], Store-set [8]
Stages Fetch/Decode/Rename/Allocation

/Issue/Execution/Memory/Commit
Frontend Stages 8-wide Fetch/Decode, 5-wide Rename
Allocation Queue 140 entries
Backend Stages 5-wide Alloc., 10x Exec. Ports, 2x loads

2x stores, 4x AGU
4x ALU, 1x DIV, 2x FP Add/Sub
1x SQRT, 20-wide Commit

ROB/IQ/LQ/SB 352/160/128/72 entries

Memory hierarchy

L1I 32KB, 8 ways, 4-cycle hit lat., pipelined
L1D 48KB 12 ways, 4-cycle hit lat., pipelined
L1D prefetcher Stride, degree 3
L2 256KB, 8 ways, 12 hit cycles
LLC 8MB, 8 ways, 35 hit cycles
RAM 160-cycle latency

Decode stages to ensure that the Allocation Queue gets filled
even in high IPC workloads. Our model implements a Total-
Store-Order consistency model, thereby being compliant
with the RISC-V TSO extension (Ztso). The high level
characteristics of the system used in our simulations are
displayed in Table II.

We evaluate Helios with the SPEC CPU 2017 [28]5

and MiBench [11] benchmark suites. We skip the Linux
kernel boot and setup for all the applications. Then, SPEC
applications skip an additional 10B instructions and report
results for the next 500M instructions. MiBench applications
run until completion. SPEC workloads run using reference
inputs while MiBench workloads use the large input set.
The binaries were compiled with GCC 10.2.0 targeting the
RV64G ISA with flags -O3 -static.

We consider five configurations. RISCVFusion fuses µ-
ops using the non-bold idioms of Table I (i.e., no memory
pairs), as suggested by Celio et al. [7]. CSF-SBR fuses only
consecutive memory instruction that access contiguous data
through the same base register, but may be asymmetric (dif-
ferent access sizes). RISCVFusion++ fuses all instructions
from Table I. Helios implements a predictor and machinery
to fuse consecutive as well as non-consecutive memory pairs.
Finally, OracleFusion is an upper bound configuration that
fuses all eligible memory pairs as well as non memory pairs
from Table I.

B. Results
1) Fusion pairs: Figure 8 shows the percentage of CSF

and NCSF in Helios and OracleFusion with respect to total
dynamic memory instructions. On average, the total number

5Due to a known Spike limitation at the time of the study
(https://github.com/riscv-collab/riscv-gcc/issues/175), we were unable to
run application 625.x264 s in full system mode.

Table III
HELIOS FUSION PREDICTOR’S COVERAGE, ACCURACY AND MPKI FOR

ALL THE APPLICATIONS USED IN THIS PAPER.

Benchmark Coverage Accuracy MPKI

600.perlbench s 1 76.56 99.96 0.0183
600.perlbench s 2 75.30 99.90 0.0592
600.perlbench s 3 71.99 99.97 0.0170

602.gcc s 1 63.32 99.51 0.1776
602.gcc s 2 62.73 99.52 0.1709
602.gcc s 3 63.43 99.52 0.1722
605.mcf s 62.24 98.60 0.8350

620.omnetpp s 67.86 99.40 0.3018
623.xalancbmk s 82.94 99.97 0.0269
631.deepsjeng s 58.82 98.68 0.4602

641.leela s 62.15 97.74 0.8172
648.exchange2 s 50.04 99.56 0.1595

657.xz s 1 99.99 99.99 0.0000
657.xz s 2 73.90 99.90 0.0207

adpcm 58.90 99.99 0.0005
basicmath 61.68 99.99 0.0013
bitcount 74.54 99.56 0.1083
blowfish 48.00 99.89 0.0254

crc32 66.49 99.99 0.0046
dijkstra 85.64 99.99 0.0058

fft 57.05 99.93 0.0210
gsm toast 65.34 99.51 0.3765

gsm untoast 67.89 99.99 0.0010
jpeg 72.74 99.99 0.0061

patricia 62.80 99.99 0.0036
qsort 66.97 99.77 0.0965

rijndael 62.22 99.85 0.0471
rsynth 64.23 99.99 0.0047

sha 69.22 99.99 0.0023
stringsearch 67.76 99.97 0.0115

susan 91.36 99.99 0.0010
typeset 69.26 99.17 0.5758

Average 68.23 99.68 0.1416

of fused pairs in Helios is close to the upper limit of
OracleFusion. Helios delivers 6.7% CSF and 5.5% NCSF
pairs. It is interesting to note that the number of CSF in Helios
is slightly higher when compared to OracleFusion which fuses
only 6.1%. The reason is that OracleFusion will immediately
be able to fuse distant µ-ops the first time it encounters
them. Conversely, Helios has a training phase during which
it may fuse two consecutive µ-ops, the head nucleus of which
is actually the tail nucleus of the NCSF’d µ-op identified
by OracleFusion. Since CSF µ-ops are not inserted in the
UCH, Helios will “favor” CSF over NCSF in this case. In
our experiments, the distance between head nucleus and
tail nucleus averages at 10.5 dynamic instructions (amean),
suggesting that currently implemented decode width are not
sufficient to perform “brute force” NCSF at Decode.

2) Helios Fusion predictor: Table III summarizes the
performance of the fusion predictor. Coverage includes only
the pairs that need predictions: NCSF and CSF load pairs
that use different base registers.

On average, the predictor is able to correctly fuse 68.2%
of the eligible dynamic memory µ-ops. The relative increase
in CSF compared to OracleFusion is one of the factors for

 600.perlbench_1

 600.perlbench_2

 600.perlbench_3

 602.gcc_
1

 602.gcc_
2

 602.gcc_
3

 605.mcf

 620.omnetpp

 623.xa
lancbmk

 631.deepsje
ng

 641.leela

 648.exch
ange2

 657.xz
_1

 657.xz
_2
 adpcm

 basic
math

 bitco
unt

 blowfish
 crc

32

 dijks
tra fft

 gsm
_toast

 gsm
_untoast

 jpeg

 patric
ia

 qsort

 rijn
dael

 rsy
nth sh

a

 str
ingsearch

 su
san

 typ
eset

 Av
era
ge

 0
 5

 10
 15
 20
 25
 30

D
yn

. I
ns

ts
. (

%
)

Consecutive Non-consecutive1. Helios 2. OracleFusion

Figure 8. Number of CSF and NCSF pairs in Helios and OracleFusion.

missing coverage as it results in fewer available µ-ops for
NCSF/CSF-DBR. A related reason is the delay caused by the
training phase of the fusion predictor itself. Overall, Helios
fuses 12.2% of the dynamic µ-ops, approaching the 13.6%
of OracleFusion.

Prediction accuracy in a deeply pipelined processor is
crucial, especially since the misprediction penalty may be
higher than the expected gains of a correct fusion prediction.
Through tagging and confidence estimation, the Helios fusion
predictor provides high accuracy: 99.7% on average. 641.leela
has the lowest accuracy among all the application, at 97.7%.
Note that higher accuracy may always be traded for lower
coverage using better confidence estimation e.g., probabilistic
counters [20]. Average mispredictions per kilo instructions
(MPKI) in Helios stands at 0.1416.

3) Processor Stalls & IPC: Figure 9 shows the percentage
of Rename and Dispatch structural stalls with respect to the
total execution cycles for baseline, Helios and OracleFusion.
Figure 10 reports the IPC for all configurations.

In applications that encounter many dispatch stalls in
the baseline, fusion generally provides high IPC gains, for
example applications (e.g., 600. perlbench 1 & 2, 602.gcc,
657.xz 1, rsynth). In 657.xz 1, Dispatch spends 88% of
the execution cycles waiting for an SQ entry. Thanks to
Helios, 657.xz 1 gets a high IPC improvement of 70% due
to 27.6% additional NCSF pairs (Figure 8). Application
602.gcc (resp. rijndael, typeset) also suffer from many
SQ stalls in the baseline, a significant part of which are
avoided in Helios, yielding an IPC improvement of 14.8%
(resp. 11.94%, 20.6%).

Nonetheless, applications that do not have significant stalls
in the baseline still benefit from Helios on the IPC front
due to reduced execution latency of paired loads and the
potential doubling of the load/store throughput (e.g., most
MiBench workloads). One interesting case that does not
follow this trend is 605.mcf, who suffers few stalls in the
baseline and features a reasonable number of fused memory
pairs in Helios. Yet, a fusion MPKI slightly higher than
average results in an overall IPC degradation of 1%.

On average Helios provide an IPC improvement of 14.2%
over a baseline without fusion, and 8.2% over only fusing
consecutive and contiguous memory pairs that use the
same base register (CSF-SBR). Helios achieves most of the

benefits of OracleFusion which stands at 16.3% improvement.
Part of the gap could undoubtedly be bridged by tuning
the fusion predictor or considering other algorithms [27].
Other configurations discussed in the paper achieve 0.8%
(RISCVFusion), 6% (CSF-SBR), and 7% (RISCVFusion++)
IPC improvement, respectively.

VI. RELATED WORK

Coalescing memory operations. Wilson et al. suggest
to leverage the access FIFO in front of the L1D in some
designs to serve multiple loads in one go by reading the
whole cacheline and letting entries of the FIFO match against
returning data [31]. Rivers et al. follow a similar –in spirit–
path in the pursuit of efficient data cache multiporting, in
which each bank of the data cache is augmented with a single
highly ported line buffer from which multiple loads can be
served each cycle [22]. Similarly, Baoni et al. introduce Fat
loads [6] in which an initial fat load brings a full cacheline in
a dedicated buffer to allow subsequent loads to that cacheline
to be served from this fast buffer. Fat loads is a very effective
technique to reduce pressure on the L1D and DTLB while
also speeding up performance since buffers can be accessed
faster than the L1D.

Other techniques to coalesce memory accesses include to
always read double words (8 bytes) from the data cache,
even for smaller accesses, and store the result in a load-load
forwarding capable Load-Store Queue [14], keeping retired
loads and stores alive longer than needed to create more load-
store and load-load forwarding opportunities [5], [19], and
coalescing non-consecutive stores after they commit while
guaranteeing total store order [23].

These techniques are oblivious to consecutivity, dependen-
cies, and whether the accesses use different base or offset
registers. In addition, they do not require augmenting the
µ-ops with additional source and/or destination register fields.
Although they may coalesce more than two accesses into a
single one, all coalesced µ-ops are still treated as distinct en-
tities in the pipeline, preventing them from providing savings
in the ROB/IQ/LQ/SQ. Conversely, microarchitectural fusion
and especially Helios reduces occupancy in the pipeline
structures while also coalescing two accesses into a single
one. Nevertheless, Helios and such prior proposals are quasi-
orthogonal in the sense that if the Helios prediction scheme

 600.perlbench_1

 600.perlbench_2

 600.perlbench_3

 602.gcc_
1

 602.gcc_
2

 602.gcc_
3

 605.mcf

 620.omnetpp

 623.xa
lancbmk

 631.deepsje
ng

 641.leela

 648.exch
ange2

 657.xz
_1

 657.xz
_2
 adpcm

 basic
math

 bitco
unt

 blowfish
 crc

32

 dijks
tra fft

 gsm
_toast

 gsm
_untoast

 jpeg

 patric
ia

 qsort

 rijn
dael

 rsy
nth sh

a

 str
ingsearch

 su
san

 typ
eset

 Av
era
ge

 0
 10
 20
 30
 40

St
al

ls
 (%

) IQ RAT RoB LQ SQ
48.4 88.0

51.4 86.344.1 86.0

1. NoFusion 2. Helios 3. OracleFusion

Figure 9. Percentage of processor stalls with respect to total execution cycles.

 600.perlbench_1

 600.perlbench_2

 600.perlbench_3

 602.gcc_
1

 602.gcc_
2

 602.gcc_
3

 605.mcf

 620.omnetpp

 623.xa
lancbmk

 631.deepsje
ng

 641.leela

 648.exch
ange2

 657.xz
_1

 657.xz
_2
 adpcm

 basic
math

 bitco
unt

 blowfish
 crc

32

 dijks
tra fft

 gsm
_toast

 gsm
_untoast

 jpeg

 patric
ia

 qsort

 rijn
dael

 rsy
nth sh

a

 str
ingsearch

 su
san

 typ
eset

 Av
era
ge

 0.8

 1.0

 1.2

 1.4

N
or

m
. I

PC

RISCVFusion CSF-SBR RISCVFusion++ Helios OracleFusion1.7 1.7

Figure 10. Normalized IPC with respect to baseline configuration with no instruction fusion.

were built to fuse only accesses that fall within the same
cacheline, then fused µ-ops would be able to leverage Fat
Loads line buffers [6].

Fusion. Kim and Lipasti introduce macro-op scheduling
for the purpose of simplifying the IQ logic [16]. In this work,
candidate pairs of µ-ops are scheduled as a unit to relax the
wakeup & select loop since the IQ has to schedule half as
often if it schedules “fused” pairs of µ-ops. While macro-ops
occupy a single slot in the IQ, thereby saving capacity, they
do not execute faster.

Celio et al. [7] make the case that fusion can be used to
improve “work per µ-op” in RISC-V designs, rather than
adding more powerful –yet common– instructions to the ISA,
and discuss a number of potential idioms amenable to fusion.
In this case, fusion is restricted to consecutive and contiguous
(for memory) instructions.

The works closest to this paper are Kim and Lipasti
[17] and Thakker et al. [29]. Both refer to non-consecutive
fusion of memory instructions. The key differences with our
proposal is that they remain conservative in the content of
the catalyst. Kim and Lipasti only handle a catalyst made
up of ALU instructions and do not handle non-consecutive
store combining. Thakker et al. is more aggressive but still
does not fuse in the presence of a RaW or WaR with the
catalyst, contrarily to Helios. Conservative catalyst content
limits the potential of non-consecutive fusion (18.89% of the
NCSF’d µ-ops have a RaW or WaR in the catalyst, 82.25%
have a µ-op that may cause a pipeline flush). Moreover,
our approach uses a predictive scheme and can therefore
scale to large Allocation Queues, whereas the two proposed
mechanism appear to rely on combinatorial logic to identify
candidates.

VII. CONCLUSION

This work demonstrates that there exists significant poten-
tial for fusing non-consecutive memory instructions in RISC-
V binaries and introduces the Helios microarchitecture to
leverage this potential. Helios relies on a predictive scheme
to fuse distant µ-ops and tackles numerous challenges to
guarantee correct execution. Helios achieves a significant
performance uplift over microarchitectures supporting various
flavours of fusion, notably 14.2% over no fusion and 8.2%
over consecutive and contiguous only memory fusion. While
Helios was introduced in the context of the RISC-V ISA,
we expect that similar potential exists in general purpose
programs regardless of ISA, and Helios could therefore
benefit other widely available processor families (e.g., x86,
Arvm8).

ACKNOWLEDGMENT

This work was supported by the European Research
Council under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 819134), the
Ramón y Cajal Research Contract (RYC2018-025200-I), and
the Vicerrectorado de Investigación e Internacionalización of
the University of Murcia under the Talento 2021 programme.

REFERENCES

[1] Advanced Micro Devices, “Software Optimization Guide for
AMD EPYC™ 7003 Processors, Pub 56665, Rev 3,” [Online;
accessed Apr.-2022].

[2] Advanced RISC Machines, ARM Architecture Reference
Manual ARMv8-A, [Online; accessed Apr.-2022].

[3] Advanced RISC Machines, “Arm® Cortex™-A77 Core Soft-
ware Optimization Guide, Issue 3,” p. 68 Section 4.13, [Online;
accessed Apr.-2022].

[4] Advanced RISC Machines, “Arm® Neoverse™-N2 Core
Software Optimization Guide, issue 3,” p. 88 Section 4.13,
[Online; accessed Apr.-2022].

[5] R. Alves, A. Ros, D. Black-Schaffer, and S. Kaxiras, “Filter
caching for free: The untapped potential of the store buffer,”
in 46th Int’l Symp. on Computer Architecture (ISCA), Jun.
2019, pp. 436–448.

[6] V. Baoni, A. Mittal, and G. S. Sohi, “Fat loads: Exploiting
locality amongst contemporaneous load operations to optimize
cache accesses,” in 54th Int’l Symp. on Microarchitecture
(MICRO), Oct. 2021, pp. 366–379.

[7] C. Celio, P. Dabbelt, D. A. Patterson, and K. Asanović,
“The renewed case for the reduced instruction set computer:
Avoiding isa bloat with macro-op fusion for risc-v,” arXiv
preprint arXiv:1607.02318, Jul. 2016.

[8] G. Z. Chrysos and J. S. Emer, “Memory dependence prediction
using store sets,” in 25th Int’l Symp. on Computer Architecture
(ISCA), Jun. 1998, pp. 142–153.

[9] K. Gharachorloo, A. Gupta, and J. Hennessy, “Two techniques
to enhance the performance of memory consistency models,”
in 20th Int’l Conf. on Parallel Processing (ICPP), Aug. 1991,
pp. 355–364.

[10] A. González, F. Latorre, and G. Magklis, Processor Microarchi-
tecture: An Implementation Perspective, ser. Synthesis Lectures
on Computer Architecture. Morgan & Claypool Publishers,
2011.

[11] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge,
and R. Brown, “Mibench: A free, commercially representa-
tive embedded benchmark suite,” in 4th Int’l Workshop on
Workload Characterization (WWC), Dec. 2001, pp. 03–14.

[12] Intel, “Intel® 64 and IA-32 Architectures Optimization Ref-
erence Manual, Pub 248966-045,” pp. 3–12 Section 3.4.2.2,
[Online; accessed Apr.-2022].

[13] Intel, “Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Pub 325383-076us,” [Online; accessed Apr.-2022].

[14] L. Jin and S. Cho, “Reducing cache traffic and energy with
macro data load,” in Proceedings of the 2006 Int’l Symp. on
Low Power Electronics and Design (ISLPED), Oct. 2006, p.
147–150.

[15] R. E. Kessler, E. J. McLellan, and D. A. Webb, “The alpha
21264 microprocessor architecture,” in Proceedings Interna-
tional Conference on Computer Design. VLSI in Computers
and Processors (Cat. No. 98CB36273), Oct. 1998, pp. 90–95.

[16] I. Kim and M. Lipasti, “Macro-op scheduling: Relaxing
scheduling loop constraints,” in 36th Int’l Symp. on Microar-
chitecture (MICRO), Dec. 2003, pp. 277–288.

[17] I. Kim and M. H. Lipasti, “Implementing optimizations at
decode time,” in 29th Int’l Symp. on Computer Architecture
(ISCA), May 2002, pp. 221–232.

[18] A. Moshovos and G. S. Sohi, “Streamlining inter-operation
memory communication via data dependence prediction,” in
30th Int’l Symp. on Microarchitecture (MICRO), Dec. 1997,
pp. 235–245.

[19] D. Nicolaescu, A. Veidenbaum, and A. Nicolau, “Reducing
data cache energy consumption via cached load/store queue,”
in Proceedings of the 2003 Int’l Symp. on Low Power
Electronics and Design (ISLPED), Aug. 2003, pp. 252–257.

[20] N. Riley and C. Zilles, “Probabilistic counter updates for
predictor hysteresis and stratification,” in 12th Int’l Symp. on
High-Performance Computer Architecture (HPCA), Feb. 2006,
pp. 110–120.

[21] RISC-V Software, “Spike RISC-V ISA Simulator.” [Online].
Available: https://github.com/riscv-software-src/riscv-isa-sim

[22] J. A. Rivers, G. S. Tyson, E. S. Davidson, and T. M.
Austin, “On high-bandwidth data cache design for multi-issue
processors,” in 30th Int’l Symp. on Microarchitecture (MICRO),
Dec. 1997, p. 46–56.

[23] A. Ros and S. Kaxiras, “Non-speculative store coalescing in
total store order,” in 45th Int’l Symp. on Computer Architecture
(ISCA), Jun. 2018, pp. 221–234.

[24] A. Seznec, “A 256 kbits L-TAGE branch predictor,” Journal of
Instruction-Level Parallelism (JILP) Special Issue: The Second
Championship Branch Prediction Competition (CBP-2), pp.
1–6, Dec. 2007.

[25] A. Seznec, “The L-TAGE branch predictor,” Journal of
Instruction-Level Parallelism (JILP), pp. 1–13, May 2007.

[26] A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides, “Design
tradeoffs for the alpha ev8 conditional branch predictor,” in
29th Int’l Symp. on Computer Architecture (ISCA), May 2002,
pp. 295–306.

[27] A. Seznec and P. Michaud, “A case for (partially) tagged geo-
metric history length branch prediction,” Journal of Instruction-
Level Parallelism (JILP), p. 23, Feb. 2006.

[28] Standard Performance Evaluation Corporation, “SPEC
CPU2017,” 2017. [Online]. Available: http://www.spec.org/
cpu2017

[29] H. Thakker, T. P. Speier, R. W. Smith, K. Jaget, J. N. Dieffend-
erfer, M. Morrow, P. Ghoshal, Y. C. Tekmen, B. Stempel, S. H.
Lee, and M. Garg, “Combining load or store instructions,” U.S.
Patent 20 200 004 550A1, Feb., 2020.

[30] A. Waterman, Design of the RISC-V instruction set architec-
ture. University of California, Berkeley, Jan. 2016.

[31] K. M. Wilson, K. Olukotun, and M. Rosenblum, “Increasing
cache port efficiency for dynamic superscalar microprocessors,”
in 23rd Int’l Symp. on Computer Architecture (ISCA), May
1996, p. 147–157.

[32] T.-Y. Yeh and Y. N. Patt, “Two-level adaptive training branch
prediction,” in 24th Int’l Symp. on Microarchitecture (MICRO),
Nov. 1991, pp. 51–61.

