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Abstract

A tight control of intracellular [Ca2+] is essential for the survival and nor-
mal function of cells. In this study we investigate key mechanistic steps by
which calcium is regulated and calcium oscillations could occur using in sil-
ico modeling of membrane transporters. To do so we give a deterministic
description of intracellular Ca2+ dynamics using nonlinear dynamics in or-
der to understand Ca2+ signaling. We first present the ordinary differential
equations (ODEs) system for cell calcium kinetics and make a preliminary
work on Sobol indices. We then describe and analyze complex transporters
action. Besides, we analyze the whole system. We finally perform numerical
simulations and compare our results to real data.

Keywords: Brain calcium kinetics, ODE non linear system, substrate
modeling regularity, well-posedness

1. Introduction

The ability of a cell to perceive and correctly respond to its microenvi-
ronment depends on very complex signaling systems. This includes various
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membrane and transmembrane proteins, which are at the interface between
the extracellular and intracellular media. Because of the wide repertoire of
spatio-temporal fluctuations in its intracellular concentrations [5, 4], Calcium
(Ca2+) signaling is exquisitely poised to link extracellular mechanisms with
intracellular modifications and to control cell fate and many cell functions in-
cluding regulation of metabolism, proliferation, death, gene transcription, cell
migration, exocytosis, and contraction [3]. The pattern of intracellular cal-
cium signaling such as intracellular calcium oscillations that can be repeated
over a longer period [2, 12] is now considered as a universal mechanism of
signal transduction and determines specific cell states; it is also involved in
specific stem cells activity [27] or in various cancer cells hallmarks [8, 26].
Since a tight control of intracellular [Ca2+] is essential for the survival and
normal function of cells, resting calcium activity is maintained at a low level
(between 50 nM and 200 nM [1]) in order to keep a large dynamics range
for the calcium signal. Membrane ionic channels and transporters, cytoso-
lic calcium buffers and calcium buffering organelles regulate calcium influx,
storage and extrusion to maintain [Ca2+] below the activation thresholds and
extraphysiological values.

The large concentration gradient of Ca2+ is created by specialized proteins
named Ca2+-ATPases, which are considered in this study, namely, (i) Plasma
membrane Ca2+-ATPase (PMCA) located on the plasma membrane, which
extrude Ca2+ to the extracellular space or (ii) Sarco/endoplasmic reticulum
Ca2+-ATPase (SERCA) inserted in the membrane of the endoplasmic retic-
ulum (ER) that is an important intracellular Ca2+ pool. Calcium signal di-
versity and the generation of receptor-triggered Ca2+ signals also rely on cell
proteins specialized in calcium transport through cell membranes, which en-
sures the transitory elevation of free cytosolic calcium concentration through
Ca2+ flux into the cytoplasm from different compartments. We consider two
main Ca2+ fluxes, which could contribute to responses to extracellular signals
and/or intracellular calcium oscillations: (i) a calcium entry along its con-
centration gradient from the extracellular compartment across the plasma
membrane into the cytoplasm of the cell and (ii) a calcium release into the
cytoplasm of the cell from intracellular stocks mainly contained in the ER. In
the model we propose, both Ca2+ fluxes (influx and release) depend on the
activity of phospholipase C (PLC), which generates the intracellular second
messengers inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). We
also consider in our model the intracellular fluctuations of these two essen-
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tial second messengers triggering both Ca2+ fluxes into the cytoplasm of the
cells: (i) IP3 diffuses rapidly within the cytoplasm and activates the inositol
1,4,5-trisphosphate receptor (IP3R), which releases Ca2+ ions from the ER
[21, 3], and usually lead to rapid and transient increase of cytosolic Ca2+;
(ii) DAG, the receptor-operated calcium channel (ROCC), activates plasma
membrane which supports entry of Ca2+ and participates to slow and sus-
tained increase of cytosolic Ca2+ [29, 9]. We also focus on the participation of
a second crucial pathway of Ca2+ influx, the store-operated calcium channel
(SOCC), which is highly dependent of the intracellular Ca2+ pool of ER [23]
and activates after Ca2+ release.

The intracellular calcium dynamics in various non-excitable cells of the
brain such as astrocytes, glial cells, neural stem cells and also glioblastoma
stem cells involves the interplay of all these calcium fluxes from and into the
ER and across the plasma membrane. This interplay conditions the pattern
of the intracellular calcium signal such as a calcium transient with various du-
rations in response to extracellular factors activating receptors or a calcium
oscillation for instance. Numerous computational models were previously
presented to describe intracellular Ca2+ oscillations (see the reviews Dupond
et al., 2011 [11] and Dupond, 2014 [10]). Other studies assume that Ca2+

dynamics remains a stochastic process even at the cellular level and that
there is poor communication between Ca2+ channels, for instance between
IP3R Ca2+-release channels. Most of the computational models for intracel-
lular Ca2+ dynamics focus on the IP3R Ca2+-release channels which play a
central role in all the cells (Dupond, 2014 [10]). Only some calcium studies
give a mathematical analysis (including well-posedness) of their models.

In this study we consider a positive feedback of Ca2+ on IP3R, due to the
mechanism of Ca2+-induced Ca2+ release (CICR), and we use the bell-shaped
dependency of IP3R activity on cytoplasmic IP3 second messenger (see for
example Houart et al. 1999 [16], Lavrentovich and Hemkin 2008 [19]). Some
of these models assume that the IP3 concentration is at a constant stimula-
tory level, as in Borghans et al. (1997) [6]. It has become possible to monitor
IP3 concentration variations in intact cells. These experiments have shown
that the IP3 concentration can oscillate together with cytoplasmic calcium
[14, 28]. Based on other works (see Politi et al., 2006 [25]) we assume that
concentrations of both IP3 and DAG produced by PLC activity are not con-
stant but oscillating in the cytoplasm. The existence of both positive and
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negative feedbacks of Ca2+ on IP3 metabolism could mediate fluctuations
in cellular IP3 levels. We also consider a positive and negative feedbacks of
Ca2+ on IP3 metabolism: Ca2+ activation of PLC producing IP3 and Ca2+

activation of IP3 3-kinase degrading IP3, respectively. Since the steep cal-
cium gradient across the ER membrane is sustained by active pumping by
SERCA, most studies considering the release of Ca2+ through IP3R calcium
release channels also take into account this pumping activity that can be
modeled by a Hill expression [10].

Some newly identified players in intracellular Ca2+ dynamics have been
less often incorporated in computational models, mostly because their ki-
netics are poorly described quantitatively. As already mentioned, release
of stored Ca2+ from the ER activates influx through SOCCs, which de-
pend on activation of STIM1 oligomers, sensing the decrease of Ca2+ in the
ER lumina. SOCCE thus play an important part in the interplay between
Ca2+ of the ER and Ca2+ fluxes from the external pool through the plasma
membrane. Moreover, increasing evidences show that changes in SOCCE
or ROCCE may affect in some cells, which are more dependent of external
Ca2+, the amplitude and duration of Ca2+ signals and frequency of Ca2+ os-
cillations. The study of Liu et al.[20] proposed a model that reproduces the
steady-state dependence of the SOCCE on the level of Ca2+ in the ER lu-
mina, assuming a cooperative binding of ER Ca2+ to STIM. Another model,
introducing a delay between store emptying and Orai opening [7], has been
proposed. To our knowledge no mathematical analysis takes into account at
the same time the calcium release and the pumping flux with Ca2+ entries
through SOCCE and ROCCE, both depending on PLC activity, yet.

In this study we investigate key mechanistic steps by which calcium os-
cillations could occur using in silico modeling. To do so we present here a
deterministic description of intracellular Ca2+ dynamics using nonlinear dy-
namics in order to understand Ca2+ signaling. We first present the ordinary
differential equations (ODEs) system for cell calcium kinetics and make a
preliminary work on Sobol indices. We then describe and analyze complex
transporters action. Besides, we analyze the whole system. We finally make
simulations and compare our results to real data.

The mathematical analysis focuses first on the action of several trans-
porters separately and study their combined effect on calcium concentra-
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tions. We have chosen to study the combined effect of the IP3-dependent
flux leading to release of ER Ca2+ stores, with two different pathways of
Ca2+ entry, ROCCE (depending on DAG) and SOCCE (depending on Ca2+

ER stores), together with transporters supporting Ca2+ uptake into the ER
and Ca2+ extrusion through the plasma membrane by two different trans-
porters (PMCA and NCX). We also introduce a continuous Ca2+ flux from
ER to cytoplasma (leak channels) in addition to the IP3-dependent Calcium
release, since this leak can be observed in all cell when the pumping ac-
tivity of SERCA is inhibited. The IP3-dependent calcium release, ROCCE
and SOCCE, all depend on the activity of PLC. This enzyme is also un-
der the control of membrane receptors responding to various extracellular
signals, whose patterns of change over time are unknown if not controlled
experimentally. These external signals stimulating the intracellular activity
of PLC are set to constants in some mathematical studies cited previously,
but could also be defined as oscillatory signals. Modeling allows us to explore
the combined effects of membrane Ca2+ transporters in presence of extracel-
lular stimulation or in absence, considering only the mechanistic interplay
between the membrane transporters.

2. Mathematical modeling

The present model is proposed in order to study spontaneous calcium os-
cillations in glial cells or neural stem cells based on in vitro observations and
literature results. It is built in vitro. Therefore, it is considered closed with
exchanges with the extracellular calcium. Two compartments are considered
: the cytosol and the endoplasmic reticulum (ER) as defined in Figure 1.
We also introduce four metabolic concentrations : calcium on the cytosol
(C), calcium on the ER (R), inositol trisphosphate or IP3 on the cytosol (I)
and diacylglycerols or DAG on the cytosol (D) which are produced by the
Phospholipase C (PLC) activity. The external calcium concentration E is
highly regulated; we therefore assume that it is constant through time. We
do not follow its dynamics.
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Figure 1: Schematic representation of calcium exchanges in a cell. There are two com-
partments : the cytosol and the endoplasmic reticulum.

Cytosolic calcium concentration is subject to two main phenomena : ex-
changes with the ER and exchanges with the extracellular space. First we
focus on calcium exchanges between the cytoplasm and the ER. Three differ-
ent calcium transporters are included in the model. First an ATP-dependant
calcium uptake from the cytosol to the ER done by the SERCA pump at
the maximal rate Vs and with the half saturation ks. Then the IP3 recep-
tor channel (IP3R) with the maximal transport rate Vp depending on the
reticulum calcium concentration (with the half saturation kr,p) and the IP3
concentration (with the half saturation ki,p). It also varies according to the
cytosolic calcium concentration with a maximal affinity of µp and a standard
deviation of σp. Finally there is an additional calcium leak flux at the maxi-
mal rate Vf . Figure 1 shows the different interactions.

We have the four different kinds of calcium exchanges between the cy-
tosol and the extracellular space. Among them there is the sodium-calcium
exchanger NCX with the maximal rate Vn and with the half saturation kn for
calcium exit. There is also the PMCA pump of maximal rate Vm and of half
saturation km allowing calcium outflux. The ROCC channel of maximal rate
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VT depends on external stimulations f , DAG concentration (with half satura-
tion kD,T ) and on a balance between the cytosolic calcium the concentration
and the external calcium concentration. To do so we define the quantity
ET = E

E+kE,T
where E is the external calcium concentration and kE,T is the

constant of half saturation for external calcium through the ROCC channel.
We also denote by kC,T the half saturation for cytosolic calcium through the
same channel. Finally the protein STIM1 is able to activate the SOCC in the
plasma membrane. When the reticulum endoplasmic calcium concentration
is lower than Ro, the SOCC channel opens, stimulated by the protein STIM1,
allowing a calcium influx of maximal rate Vo from the extracellular space to
the cytosol.

The molecule IP3 is a product of the hydrolysis of PIP2 by the enzyme
PLC that, through the same reaction and in the same proportions, produces
DAG. This creation has a maximal rate VL and depends on both external
sinusoidal stimulations f and the cytosolic calcium concentration with the
half saturation kL. These molecules are then degraded in both a linear way
and on a way linearly depending on the cytosolic calcium concentration. We
denote by αi the proportion of IP3 linearly degraded, Vi the maximal rate
of degradation related to the cytosolic calcium concentration and ki the con-
stant of half saturation. Degradation of DAG is supposed to follow the same
pattern with different rates (results not shown). Therefore we denote by αd
the proportion of DAG linearly degraded, Vd the maximal rate of degrada-
tion related to the cytosolic calcium concentration and kd the constant of
half saturation.

Finally, we have the following ordinary differential equations (ODEs),
∀ t ∈ R+,
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C ′(t) =− Vs
C(t)2

C(t)2 + ks
+ Vf (R(t)− C(t)) + Vp

R(t)

R(t) + kr,p

I(t)2

I(t)2 + ki,p
exp(−(C(t)− µp)2

2σ2
p

)

+
Vo
π

arctan(Ro −R(t)) +
Vo
2
− Vn

C(t)

C(t) + kn
− Vm

C(t)2

C(t)2 + km
(1)

+ f(t)VT
D(t)

D(t) + kD,T
(ET −

C(t)

C(t) + kc,T
),

R′(t) =Vs
C(t)2

C(t)2 + ks
+ Vf (C(t)−R(t))− Vp

R(t)

R(t) + kr,p

I(t)2

I(t)2 + ki,p
exp(−(C(t)− µp)2

2σ2
p

),

(2)

I ′(t) =f(t)VL
C(t)

C(t) + kL
− (αi + Vi

C(t)

C(t) + ki
)I(t), (3)

D′(t) =f(t)VL
C(t)

C(t) + kL
− (αd + Vd

C(t)

C(t) + kd
)D(t), (4)

The first equation stands for cytosolic calcium concentration kinetics. The
three terms on the first line describe exchanges between the cytosol and
the ER. The five terms on the second and third lines stand for exchanges
between the cytosol and the extracellular space. Accordingly, equation 2
describes ER calcium concentration kinetics. Equation 3 relates IP3 influx
and outflux while equation 4 describes DAG dynamics. All the parameters
meaning are detailed above. The initial condition is given by:

(C(0), R(0), I(0)) = (C̄, R̄, Ī, D̄) ∈ (R+ × R+ × R+ × R+),

Assumption 1. If not precised the involved parameters are assumed to be
positive.

Assumption 2. The function f is supposed to be periodic, nonnegative and
bounded. Therefore ∃F ∈ R∗ such that ∀ t ∈ R+:

0 6 f(t) 6 F.

In cells the IP3-dependent calcium release, ROCCE and SOCCE all depend
on the activity of PLC. This enzyme is also under the control of membrane
receptors responding to various extracellular signals that is described in our
model by using the function f . This function f representing the external
signals stimulating the intracellular activity of PLC is set constant in our
study, or as oscillatory signals.
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3. Preliminary work : sensitivity analysis

We perform a global sensitivity analysis to assess the impact of model
parameters on the main model output. In this study, we analyze the effect of
each parameter on the cytosolic calcium concentration for each time through
first order Sobol indices [17] given by the following expression :

Si =
V (E[C|Xi])

V (C)
, i = 1 . . . N,

where C is the cytosolic calcium concentration for a given time, Xi is a
model parameter, V (C) represents the total variance of C, C[Y |Xi] is the
conditional mean of C given Xi, and N is the number of model parameters.
Therefore, the value Si measures the part of Y variance that is explained by
parameter Xi. In other terms, first order Sobol indices determine how much
the cytosolic calcium concentration varies when a chosen parameter value
varies. Sobol indices are always between 0 and 1. The closest to 1 a Sobol
indice is, the higher the model output is sensitive to the related parameter
variations. Using Sobol analysis helps to determine parameters contribution
to the output throughout time. We limit our study to first order Sobol in-
dices. The impact of the interaction of several parameters on model output
can be assessed through other Sobol indices. However they are more difficult
to interpret. The sum of all Sobol indices is equal to 1.

Each sub-figure in Figure 2 displays Sobol indices variations through time
for a given parameter. We display the higher Sobol indices. First order in-
dices for other parameters are lower than 10−3. The first order Sobol indices
sum is approximately 30%.

This preliminary work underlines the importance of maximal transporter
rates and in particular those of the SERCA (Vs), SOCC (Vo), NCX (Vn)
and PMCA (Vm). In this study we will therefore focus on these transporters
impact. Moreover the impact of Ro has to be put into perspective because
it is only high on the early stages. Besides, sums of first order Sobol indices
in long times are close to 0.3 (id est not close to 1). This means that most
of the time, parameters interact with each other to impact the variability of
the cytosolic calcium concentration. We will investigate the nature of these
interactions in Section 5.

9



Figure 2: Sensitivity analysis with first order Sobol indices in time for each model param-
eter. Displayed parameters are Vs, Vo, Vm, Vn, VT and Ro.

4. Preliminary work on transporters

Different kinds of transporters are involved in the studied dynamics. We
therefore make a step by step analysis by focusing first on each transporter
dynamics separately. In this section, we analyze three kinds of possible re-
actions from a transporter to a substrate,

• Symport like transports. Symport like transporters work in the mem-
brane and several molecules are transported across the cell membrane
at the same time, and is, therefore, a type of cotransporter. It possess
a saturation value. The symport like transport is defined by a maximal
rate V , a half saturation value k and a degree of reaction i, i ∈ {1, 2},
such as ∀ x ∈ R,

T (x) = V
xi

xi + k

• The bell-shaped transporter. It describes a transporter possessing a
maximal affinity with a substrate for a given value of the latter. The
bell-shaped transport involved in IP3R dynamics has a maximal affinity
µp and a standard deviation σp with cytosolic calcium concentration
such as ∀ x ∈ R,

Hp(x) = exp(−(x− µp)2

2σ2
p

).

10



• The switch transporter. It describes a transporter with an On/Off be-
havior towards a substrate. The switch transporter involved in SOCC
dynamics has a maximal rate Vo and a value of switch for R(t) = Ro

such as ∀ x ∈ R,

Go(x) =
Vo
π

arctan(Ro − x) +
Vo
2
.

4.1. Lemmas on symport like transporters

We define for V ∈ R+, k ∈ R+, i ∈ {1, 2} ∀ x ∈ R,

Ti(x) = V
xi

xi + k
.

Lemma 1. For the symport transporter of degree 1 (id est i = 1) and for
x ∈ R+, then Ti is V

k
-Lipschitz continuous, nonnegative and bounded by V .

Proof. We set, ∀x ∈ R+,

T1(x) = V
x

x+ k
.

We therefore have ∀x ∈ R+,

0 6 T1(x) 6 V.

Let x and y be in R+. Then,

|T1(x)− T1(y)| = V
k|x− y|

(k + x)(k + y)
6
V

k
|x− y|,

so that T1 is V
k

-Lipschitz continuous.

Lemma 2. For the symport transporter of degree 2 (id est i = 2) and for
x ∈ [0, A], A ∈ R+ then Ti is 2V A

k
-Lipschitz continuous, nonnegative and

bounded by V .

Proof. We set, ∀x ∈ R+,

T2(x) = V
x2

x2 + k
.
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We therefore have ∀x ∈ R+,

0 6 T2(x) 6 V.

Let x and y be in [0, A], A ∈ R+. Then,

|T2(x)− T2(y)| = |V k(x2 − y2)
(x2 + k)(y2 + k)

|,

6
V

k
|x+ y||x− y|,

6
2V A

k
|x− y|,

so that T2 is 2V Ak-Lipschitz continuous.

In Figure 3 we give examples of symport like functions.

Figure 3: Examples of symport like functions Ti with V = 1 and k = 3.
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4.2. Study of the bell-shaped transporter

We define for µp ∈ R+, σp ∈ R+ ∀ x ∈ R,

Hp(x) = exp(−(x− µp)2

2σ2
p

).

Lemma 3. For x ∈ R then Hp is Lipschitz continuous, nonnegative and
bounded by 1.

Proof. We set ∀ x ∈ R,

Hp(x) = exp(−(x− µp)2

2σ2
p

).

Then its derivative is ∀ x ∈ R,

H ′p(x) =
−1

σ2
p

(x− µp) exp(−(x− µp)2

2σ2
p

),

and the second derivative is ∀ x ∈ R,

H ′p(x) =
1

σ2
p

(
1

σ2
p

(x− µp)2 − 1) exp(−(x− µp)2

2σ2
p

).

We therefore have the following variation table.
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x

H ′′p (x)

H ′p(x)

H ′p(x)

Hp

−∞ µp − σp µp µp + σp +∞

+ − − +

0+0+

1
σp

exp(−1
2
)1

σp
exp(−1

2
)

−1
σp

exp(−1
2
)−1

σp
exp(−1

2
)

0−0−

0

+ + − −

0+0+

11

0−0−

The derivative H ′p is bounded by 1
σp

exp(−1
2
) and therefore Hp is Lipschitz

continuous.

In Figure 4 we give an example of a bell-shaped Hp function.

4.3. Study of the switch transporter

We define for V0 ∈ R+, RoR+ ∀ x ∈ R,

Go(x) =
Vo
π

arctan(Ro − x) +
Vo
2
.

Lemma 4. For x ∈ R Go is V0
π

Lipschitz continuous, nonnegative and
bounded by Vo.

Proof. We set ∀ x ∈ R,

Go(x) =
Vo
π

arctan(Ro − x) +
Vo
2
.

Then its derivative is ∀ x ∈ R,

G′o(x) =
−Vo
π

1

1 + (Ro − x)2

14



Figure 4: Example of a bell-shaped function Hp with µp = 5 and µp = 0.3.

and we have ∀ x ∈ R,

0 6 G′(x) 6
Vo
π

Therefore G0 is Vo
π

-Lipschitz continuous and we have the following varia-
tion table.

x

G′o(x)

Go(x)

−∞ +∞

−

VoVo

0+0+

This function is therefore nonnegative with an upper bound V0.

In Figure 5 we give an example of a bell-shaped Go function.
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Figure 5: Example of a switch function G0 with Vo = 0.3 and Ro = 300.

4.4. Cross-results

Lemma 5. The product of Lipschitz continuous and bounded functions is
Lipschitz continuous.

Proof. We assume that the function f is kf -Lipschitz continuous such that
∃F ∈ R+/ |f | 6 F . We also assume that the function g kg-Lipschitz such
that ∃G ∈ R+/ |g| 6 G.

Let x, y ∈ R. We have

|(fg)(x)− (fg)(y)| 6 |f(x)||g(x)− g(y)|+ |g(y)||f(x)− f(y)|,
6 Fkg|x− y|+Gkf |x− y|,
6 max(Fkg, Gkf )|x− y|,

and therefore the function fg is Lipschitz continuous.

Results in this preliminary work have two aims : giving a first idea of
each transporter dynamics and get mathematical results which are useful in
view of the mathematical analysis.
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5. Mathematical analysis

In force of Section 4, we will prove the existence and nonnegativity of the
solutions. We will also exhibit bounds on the solutions and a steady-state.

5.1. Nonnegativity, existence and bounds

5.1.1. Nonnegativity

Recall that an ODE system x′(t) = f(x(t)) on Rn, x = [x1, · · · , xn],
f = [f1, · · · , fn] is called quasipositive if the condition :

x > 0, xk = 0⇒ fk(x) > 0

is verified for all k = 1, · · · , n. Using Section 4, we know that system (1)-(4)
is quasipositive. Hence solutions with nonnegative initial data (C̄; R̄, Ī; D̄)
remain in (R+)4 for all positive times.

5.1.2. Upper bounds

From 1-4, we have the following inequalities :

R′(t) 6 Vs + Vf (C(t)−R(t)), (5)

C ′(t) 6 Vf (R(t)− C(t)) + Vp + Vo + FVT , (6)

I ′(t) 6 FVL − αiI(t), (7)

D′(t) 6 FVL − αdD(t). (8)

Inequalities 7 and 8 imply, using Gronwall’s lemma,

I(t) 6 I(0) +
FVL
αi

:= BI ,

and

D(t) 6 D(0) +
FVL
αd

:= BD,

Lemma 6. We can exhibit a sufficient, but not necessary, condition to ensure
a bound on C and R. Let Vn, Vm, F, VT , ET and Vo be such that :

Vn + Vm > FVTET + Vo

In that case, ∃BC , BR ∈ R+∗

C 6 BC , (9)

R 6 BR. (10)
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Proof. Setting ∀ x ∈ R+

u(x) = Vo − Vn
x

x+ kn
− Vm

x2

x2 + km
+ FVTET

and using 1-4 we have

R′(t) + C ′(t) =
Vo
π

arctan(Ro −R(t)) +
Vo
2
− Vn

C(t)

C(t) + kn
− Vm

C(t)

C(t) + km

+ f(t)VT (ET −
C(t)

C(t) + kc,T
) (11)

6 u(C(t)). (12)

We want to study u variations for x ∈ R+. Its derivative reads

u′(x) = −Vn
kn

(x+ kn)2
− Vm

2xkm
(x2 + km)2

< 0,

so that u is a strictly decreasing function and

x

u′(x)

u(x)

0 +∞

−

Vo + FVTETVo + FVTET

V o+ FVTET − (Vn + Vm).V o+ FVTET − (Vn + Vm).

Therefore, assuming that Vn + Vm > FVTET + Vo, we have, using the
intermediate value theorem, ∃!y > 0 such that u(y) = 0. Moreover for all
x ∈ R+, x > y, we have u(x) < u(y) = 0. If this condition is not satisfied, u
is nonnegative.

Therefore using Equation 12 and assuming Vn +Vm > FVTET +Vo, there
exists an unique nonnegative constantNc such that u(Nc) = 0 and for C > Nc
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u is strictly negative meaning that R′ + C ′ is strictly negative.

Let C be such that C > Nc. Then R′ + C ′ is negative and at least C ′ or
R′ has to be negative. Let us show that, assuming R′ is negative, C ′ has to
be negative too. Using 2, we have ∀ t ∈ R+

Vs
C(t)

C(t) + ks
+ Vf (C(t)−R(t)) < Vp

R(t)

R(t) + kr,p

I(t)

I(t) + ki,p
exp(−(C − µp)2

2σ2
p

),

so that, using 1

C ′(t) <
Vo
π

arctan(Ro −R(t)) +
Vo
2
− Vn

C(t)

C(t) + kn
− Vm

C(t)

C(t) + km

+f(t)VT
D(t)

D(t) + kD,T
(ET −

C(t)

C(t) + kc,T
), (13)

<Vo − Vn − V m− FVTET .

Therefore C ′(t) is negative, so that R′ + C ′ < 0 implies C ′ < 0.
We will now demonstrate that under this condition R et C are bounded. For
C > Nc, we proved that C ′ < 0, so that

C(t) < max(Nc, C(0)) := BC .

Using 5, this implies that

R′(t) < Vs + Vf (Bc −R(t)),

so that, using Gronwall lemma,

R(t) 6 R(0) +
Vs
Vf

+Bc := BR,

and therefore R and C are bounded.

Remark 1. Lemma 6 ensures bounds on C and R under the condition

Vn + Vm > FVTET + Vo.

This result has to be compared with Sobol indices results in Section 3. It is
assumed that Vn, Vm, Vo and VT have a strong impact on the dynamics in
both studies.
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5.1.3. Existence of the solution

Since we have nonnegativity and bounds of C, R, D and I then, based
on Section 4, Lemma 1 to Lemma 5, we can ensure that terms related to
symport like, bell-shaped or swtich transporters are Lipschitz continuous.
Moreover products and sums of Lipschitz continuous and bounded functions
are Lipschitz continuous.

Then we can rewrite (1)-(4), setting

X(t) := (C(t);R(t); I(t);D(t)),

to have ∀t ∈ R+ :

X ′(t) = H(t,X(t)), X(0) = X0,

where H is locally Lipschitz continuous with respect to the second variable.
We finally conclude, thanks to the Cauchy-Lipschitz theorem, that we have
existence and uniqueness of the solution to the system ∀t ∈ R+.

5.2. Steady-state study

Assuming f = 0, the steady-state of system 1-4 is given by

Ĩ = 0,

D̃ = 0,

R̃ =
Vs
Vf

C̃2

C̃2 + ks
+ C̃,

Vo
π

arctan(Ro − R̃) +
Vo
2

= Vn
C̃

C̃ + kn
+ Vm

C̃2

C̃2 + km
.

We define the function S such that, ∀x ∈ R2,

S(x) =
Vo
π

arctan(Ro −
Vs
Vf

x2

x2 + ks
− x) +

Vo
2
− Vn

x

x+ kn
− Vm

x2

x2 + km
.

We are looking for a solution at E(C̃) = 0. The related derivative reads

S ′(x) =
Vo
π

−2ksx
Vs
V f
− (x2 + ks)

2

(x2 + ks)2(1 + (Ro − Vs
Vf

x2

x2+ks
− x)2)

−Vn
kn

(x+ kn)2
−Vm

2kmx

(x2 + km)2
< 0.

We therefore have
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x

S ′(x)

S(x)

0 +∞

−

V0V0

00

Using the intermediate value theorem, ∃ ! xc > 0 such that S(xc) = 0.
The related steady-state is therefore given by

Ĩ = 0,

D̃ = 0,

C̃ = xc,

R̃ =
Vs
Vf

x2c
2
c + ks

+ xc.

We deduce that there is only one steady-state. Moreover at equilibrium,
the ER calcium concentration is higher than the cytosolic concentration. This
difference is directly linked to the maximal capacity of the SERCA pump (Vs)
and the one of the leak channel (Vf ). This underlines the importance of these
transporters capacity.

We will show that the stead-state is always included on the viability do-
main defined by the bounds. We know that C̄ and R̄ are nonnegative. We
have to verify they are lower than the related upper bounds. In other words
we want to show that xc 6 Bc = max(C(0), Nc). To do so it is sufficient to
prove that xc 6 Nc. We also want to prove that R̃ < Br

Remark 2. This verification is only possible when upper bounds are exhib-
ited, that is to say when Vn + Vm > FVTET + Vo. If this inequality does not
hold there is no more analysis to do and the steady-state is in the viability
domain because concentrations are greater than 0. Having a steady-state does
not mean that variables are bounded; in fact the steady-state can be unstable.
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We know that, ∀x ∈ R,

u(x)− S(x) = FVTET + Vo(1−
1

π
arctan(Ro −

Vs
Vf

x2

x2 + ks
− 1

2
),

u(x) > S(x).

Hence, recalling that S(xc) = 0,

u(xc) > 0,

Recalling that u is strictly decreasing and that u(Nc) = 0, then u(xc) > u(Nc)
and we have

xc < Nc 6 Bc.

Hence C̄ is always on the viability domain of C.

We will now prove that R̃ < Br. We know that

Br = R(0) +
Vs
Vf

+Bc,

so that we have

R̃ =
Vs
V f

x2c
x2c + ks

+ xc,

6
Vs
Vf

+ xc,

6
Vs
Vf

+Bc,

6 Br,

and R̄ is always on the viability domain of R.

6. Simulations

In this section, we first comment on data from the relevant literature and
from our in vitro experiences. We then present several numerical simula-
tions, assuming a constant function f = F . We also compare the numerical
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simulations with different values of Vn, Vm, Vo, VT and Vs. Then we present
simulations with a periodic function f . We finally compare our results to
experimental data. These simulations have been done with the Matlab soft-
ware. We used the functions ode45 and ode23s to simulate the whole dynam-
ics. These functions adjust integration time steps. Because of the important
number of the involved parameters, we will not give exact parameters values
for each simulation in the article. They are available upon request.

7. Literature and experimental data

Spontaneous oscillations were measured in human glioma stem cells. Cells
were incubated with a permeable ratiometric calcium probe Fura2. This
probe binds free cytosolic Ca2+ and allows the measurement of cytoplasmic
calcium variations in a solution containing 1,8 mM of calcium. The intensity
of fluorescence of each cell were measured and next converted into calcium
concentration by calibration. Figure 6 shows 3 representative measurements
of spontaneous oscillations of cytoplasmatic calcium in 3 different resting
human glioma stem cells. Only few cells in different recording area produced
oscillation in basal conditions.

Figure 6: Representative cytosolic calcium oscillations. Experiments were done in human
glioma stem cells with the calcium sensitive probe Fura2.

23



The Figure shows the oscillation recorded during 60 to 90 seconds. The
amplitude and the frequency of these oscillations are different in the 3 cells.
For example, the amplitude of the first graph is between 0,6 and 0,3 µM and
around 0,01 µM in the 2 last graph.

Other calcium oscillation cell shapes can be found in the work of Borghans
et al. [6] and Keener and Sneyd [18]. They display different frequencies,
amortizations and period shapes. Therefore it is well-known that cytosolic
calcium may present oscillations. What is questionable is the origin of these
oscillations [22]. There are two major hypotheses :

• External stimulus variations lead to cytosolic calcium oscillations through
pump fluxes. While the external calcium concentration can be directly
impacted by protein variations, other variations may affect pumps and
channels behavior and therefore change the calcium dynamics.

• Since cell calcium is self-regulated, oscillations arise from the mechan-
ical properties of the dynamical system. In other words, if there is not
enough cytosolic calcium, pumps and channels sum of efforts will make
it increase. A contrario, if it is too high according to a reference value
pumps and channels sum of efforts will make it decrease.

We use in silico modeling to address this question. For that purpose, we
base our work on the study of Lavrentovich et al. [19] adding the results of

• Politi et al. [25] on the PMCA,

• Behringer et al. [1] on the IP3R,

• Haeri et al. [13] on the cytosolic calcium impact on the IP3R trans-
porter,

• Hofer et al. [15] on the IP3 dynamics.

These values help to find accurate model dynamics.
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7.1. Mechanical periodicity

To test our model, we provide simulations setting f = F . In Figure 7 we
give cytosolic calcium, ER calcium, IP3 and DAG trajectories for a chosen
set of parameters values. This set of parameters is kept as reference in this
subsection

Figure 7: Trajectories of cytosolic calcium, ER calcium, IP3 and DAG with no external
stimulation (F constant). We can observe a periodic behavior for all the concentrations
with a period of little more than an hour.

All the concentrations remain nonnegative through time. On the one
hand and since they have the same production rate and comparable degra-
dation rates, IP3 and DAG concentrations are almost the same, showing only
a higher degradation rate for DAG. On the other hand, cytosolic calcium and
ER calcium have complementary dynamics leading to a calcium transfilling.
This model supports the idea that spontaneous Ca2+ oscillations can be
generated without the aid of external stimulation [24]. However related os-
cillations occur in long time and look different that recordings obtained in
living cells, reported by Figure 6.
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Figure 8: Portrait phases of calcium concentrations on the left and DAG/IP3 concentra-
tions on the right. While DAG and IP3 increase (or decrease) at the same time, calciums
concentration vary roughly in turn.

To figure out how these mechanical periods may vary, we test several val-
ues of some maximal fluxes : Vn for the NCX (Figure 9), Vm for the PMCA
(Figure 10), VT for the ROCC (Figure 11) and Vf for the leak flux (Figure
12). Figure 13 investigates Ro impact which is the value of switch for SOCC.
Moreover since the SERCA is supposed to have a strong impact on the dy-
namics, we give results for crossed ks and Vs variations on Figure 14 and 15.
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Figure 9: Trajectories of cytosolic calcium, ER calcium, IP3 and DAG with no external
stimulation (F constant) and different values of Vn. Three kinds of dynamics set appart
: the one for Vn < 0.25 having a ”high” stable state, the one for 0.25 < Vn < 0.35 with a
periodic behavior and the one for Vn > 0.35 having a ”low” stable state. Figure fig:meca1
gives reference parameters
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Figure 10: Trajectories of cytosolic calcium, ER calcium, IP3 and DAG with no external
stimulation (F constant) and different values of Vm. Two kinds of dynamics set appart
: the one for Vm > 0.07 having a stable state and the one for Vm < 0.07 with a periodic
behavior. Figure fig:meca1 gives reference parameters
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Figure 11: Trajectories of cytosolic calcium, ER calcium, IP3 and DAG with no external
stimulation (F constant) and different values of Vo. Again three kinds of dynamics set
appart : the one for Vo < 0.03 having a ”low” stable state, the one for 0.03 < Vo < 0.07
with a periodic behavior and the one for Vo > 0.07 having a ”high” stable state. Figure
fig:meca1 gives reference parameters
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Figure 12: Trajectories of cytosolic calcium, ER calcium, IP3 and DAG with no external
stimulation (F constant) and different values of Vf . The value of Vf has an impact on
the period observed, the higher Vf is, the faster the dynamics is. Figure fig:meca1 gives
reference parameters
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Figure 13: Trajectories of cytosolic calcium, ER calcium, IP3 and DAG with no external
stimulation (F constant) and different values of Ro. Two kinds of dynamics set appart
: the one for Ro < 300 having a stable state and the one for Ro > 300 with a periodic
behavior. When it exists, the steady-state for R is given by the value of Ro. Figure
fig:meca1 gives reference parameters
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Figure 14: Trajectories of cytosolic calcium with no external stimulation (F constant) and
different values of Vs and ks. Not only is the value of Vs by itself important but also the
union of all given transport parameters (Vs but also ks for the SERCA). Figure fig:meca1
gives reference parameters
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Figure 15: Trajectories of ER calcium with no external stimulation (F constant) and
different values of Vs and ks. Not only is the value of Vs by itself important but also the
union of all given transport parameters (Vs but also ks for the SERCA). Figure fig:meca1
gives reference parameters
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Results from Figure 9 to 15 prove that there exists a set of values for
which the mechanical system exhibits a periodic behavior. Moving a param-
eter value outside the related domain makes the system reach a steady-state.
Moreover, when all the parameters but one are fixed, letting the last parame-
ter vary makes the system reach at most two steady-states. However all these
values do not impact the whole dynamics separately. Letting two parameters
vary at the same time on 14 and 15 we prove the existence of crossed dynam-
ics. De facto it seems impossible to explain the dynamics based on only one
or two parameters. We thus prove similar results to those with Sobol indices
in Section 3.

7.2. Adding external proteic variations

The goal of this subsection is to investigate in more details the conditions
in which complex oscillatory phenomena occur in the model and to charac-
terize more thoroughly the various modes of dynamical behavior that can be
obtained. To test our model, we provide simulations for F > 0, freq > 0
and ∀ t ∈ R+,

f(t) =
F

2
(cos(freq ∗ t) + 1).

This function f is periodic, nonnegative and bounded by F . It describes
external proteic variations. It is displayed in Figure 16. In Figure 17 we
give cytosolic calcium, ER calcium, IP3 and DAG trajectories for a chosen
set of parameters values. This set of parameters is kept as reference in this
subsection. Figure 18 gives portrait phases of the related concentrations.
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Figure 16: External stimulation impacting ROCC and PLC dynamics given by the function
f for F = 1.5 and freq = 0.42.
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Figure 17: Trajectories of cytosolic calcium, ER calcium, IP3 and DAG with external
stimulation (periodic f). We can observe a periodic behavior for all the concentrations
with a period of ∼ 60s = 1m.

Figure 18: Portrait phases of calcium concentrations on the left and DAG/IP3 concentra-
tions on the right. While DAG and IP3 increase (or decrease) at the same time, calciums
concentration have a complex variation with two periods.
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Cytosolic calcium displays two kinds of periods. These results are in ac-
cordance with literature data (see Section 7). It is difficult to access ER
calcium using in vivo experiences. Figure 16 describes ER calcium periods
using in silico modeling. Each period is made of two phases : one growing
with oscillations and one roughly decreasing. IP3 and DAG concentrations
oscillate in phase.

Figure 19 displays cytosolic calcium variations in time according to dif-
ferent values of freq.

Figure 19: Trajectories of ER calcium with external stimulation (f periodic) and different
frequencies freq. Three kinds of dynamics set appart : the one for freq < 0.035 with
smooth oscillations, the one with freq ∈ [0.35, 0.45] with two periods and the ones for
freq > 0.45 with sharped oscillations.
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This Figure displays a particular phenomenon for a given interval of fre-
quencies (here [0.35, 0.45]). At this frequency, two kinds of oscillations appear
with different periods. For the majority of tested frequencies, the dynamics
has only one kind of oscillation. It is possible to test several frequencies of
f to see how the cytosolic calcium concentration varies. Figure 20 displays
cytosolic calcium variations in time according to different values of freq.

Figure 20: Example of cytosolic calcium trajectory with different values of freq. Figure
fig:osc2 gives reference parameters.
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These Figures display particular oscillations behavior with two frequen-
cies. The most present oscillations are huge spikes at low frequencies and
small spikes at huge frequencies.

Finally Figure 21 displays what happens when f = 0. In that case one
can observe a steady-state as predicted by the mathematical analysis.

Figure 21: Trajectories of cytosolic calcium, ER calcium, IP3 and DAG with f equal to
zero. Note that the time scale is not the same. IP3 and DAG concentrations quickly reach
a steady-state at 0 (time scale 500s) while calcium concentrations reach more slowly a
non-zero steady-state (time scale 100 000s ∼ 28h). Figure 17 gives reference parameters

8. Conclusion

In this study we analyze a model for calcium dynamics at a cellular level
using nonlinear dynamics. This model is a first step in view of a better under-
standing of calcium dynamics between the cytosol and the ER. Indeed, even if
calcium oscillations are often described and discussed [18], this phenomenon
is complicated by the wide diversity of the nature of implicated dynamics. To
the best of our knowledge, no mathematical analysis focuses on transporters
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actions. In this paper, we study the action of several transporters sepa-
rately. We then study their combined effect on calcium concentrations. We
obtain existence, uniqueness and bounds on the solutions for the related sys-
tem. We also underline the particular impact of given maximum transporter
rates. We finally give several numerical simulations, for different values of
the main parameters, and we compare the model with in vitro data.

We show that the mechanism through which cytosolic calcium oscillates
is complex and involves several transporters action with different dynamics
described previously. In particular, this study suggests that

1. Not just the mechanical action of transporters nor the external proteic
variations are responsible for observed oscillations, but a combined ac-
tion of both is. In fact, while taken apart, these actions may make the
system oscillate but the resulting dynamics are not the one observed
in in vivo nor in vitro experiences. Moreover it displays only one kind
of period when the experimental dynamics have two periods.

2. There is a special parameters domain for which the system oscillates.
This domain is defined by the combined action of involved parameters.
In other words, we cannot define the precise value of one parameter to
make the system oscillate focusing only on the given parameter. This
result may explain why oscillations are not always observed in in vitro
experiences and may have different shapes [6, 18].

3. The periodic behavior is only true for a narrow set of parameters in-
cluding Vs and ks for the activity of the SERCA but also maximal
rates of calcium extrusion through NCX exchanger and the calcium
pump PMCA or calcium entry through TRPC channels. Moving a pa-
rameter value outside this window of values makes the system reach a
steady-state.

4. Spontaneous periodic variations of calcium can be obtained in the cyto-
plasm and the ER lumina that display complementary dynamics. The
resulting calcium transfilling between the two compartments maintains
the necessary calcium stores in the ER lumina but also sustains a peri-
odic variation of the cytoplasmic calcium concentration that follows the
trajectories of IP3 and DAG, which are product by the basal activity
of PLC without external stimulation. These mechanical periods have
however nothing to do in frequency and shape with the cytoplasmic
calcium oscillations that can be recorded in cells, but highlight that
the mechanical properties of the system per se and the interplay be-
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tween the transporters and the second messenger can support a basic
calcium oscillation.

5. Some transporters stand out in both the Sobol indices and the de-
terministic analysis. It appears that the SERCA, and in particular its
maximal transport rate, but also the leak channels are the most impact-
ful on the definition of the steady-state. In other words, this modeling
shows that the maximal transporters rates of SERCA (Vs), Orai1 (Vo),
NCX (Vn) and PMCA (Vm) have a high impact on the cytosolic Ca2+

flux and variation, for small changes of their values. It suggests that
the activity of these transporters is critical for calcium homeostasis.

6. The fluxes maximal rate between the cytosol and the extracellular space
(both inside and outside through the SERCA pump and the leak chan-
nel) maintain the difference in calcium between the two compartments
and is directly linked with the maximal capacities Vs and Vf of these
transporters.

7. The Store-operated channels (SOCC) seem to have a role of safeguard.
The switch value permits a quick regulation of all the concentrations.
Indeed with different value of maximal SOCC tranport rate Ro, the
maximal calicum, IP3 and DAG concentrations are not the same and
possibly limit oscillations (Figure 13).

This in silico study aims at giving some clues on calcium oscillating be-
haviors between ER, cytosol and extracellular space. It could be completed
with in vivo or in vitro experiments to support or reject results on cal-
cium dynamics detailed previously and improve calcium modeling. More-
over, more precise quantitative data on calcium, IP3 or DAG concentration
or transporters rates would significantly improve model calibration and de
facto model prediction capacities.
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