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3D electroelastic modeling of the nucleation and propagation of the spin domains in spin-crossover materials

I. INTRODUCTION

Spin-crossover solids (SCO) [START_REF] König | Mössbauer effect and magnetism down to 1.2°K in the triplet ground state of an iron(II)-phenanthroline complex[END_REF][START_REF] Kahn | Molecular bistability : an overview[END_REF][START_REF] Gütlich | Thermal and Optical Switching of Iron(II) Complexes[END_REF][START_REF] Gütlich | Spin Crossover-An Overall Perspective[END_REF][START_REF] Bousseksou | Molecular spin crossover phenomenon: recent achievements and prospects[END_REF] have an electronic configuration ranging between 3d 4 and 3d 7 (chromium, manganese, iron, and cobalt) with an octahedral symmetry and are surrounded by nitrogen atoms. They are fascinating prototypes of inorganic molecular complexes, extensively studied for their bistability at molecular scale which is an essential physical property for applications in the field of switchable molecular solids such as high density memory devices, numerical displays, or actuators [START_REF] Fouche | Mechanism for optical switching of the spin crossover [Fe(NH2-trz)3](Br)2•3H2O compound at room temperature[END_REF][START_REF] Hauser | Spin-Crossover Materials. Properties and Applications[END_REF][START_REF] Jureschi | Pressure Sensor via Optical Detection Based on a 1D Spin Transition Coordination Polymer[END_REF]. In the case of Fe(II)-based SCO materials (which is the most studied in literature) with 3d 6 configuration, the central transition-metal ion experiences a ligand field energy which lifts the degeneracy of the 5 d-orbitals of Fe(II) and splits them into three weakly bonding t 2g and two antibonding e g orbitals. Depending on the strength of this ligand field, noted here ∆, and the intensity of the interaction between neighbouring molecules, a competition between two spin states, namely the diamagnetic low-spin (LS, t 6 2g e 0 g , S = 0) state and the paramagnetic high-spin (HS, t 4 2g e 2 g , S = 2) state does emerge. Thus, the central metal ion is in the LS (HS) state when the value of ∆ is much stronger (weaker) than the electrons pairing energy and the transition becomes thermally accessible when ∆ ∼ k B T , where T is the temperature. Locally, the spin transition from LS to HS is accompanied with the volume expansion of the molecular coordination sphere (around 30%) [START_REF] Oyanagi | Synchrotron radiation study of photo-induced spincrossover transitions: Microscopic origin of nonlinear phase transition[END_REF] which could be interpreted by the electrons redistribution between t 2g and e g orbitals during the spin transition of the metal ion, leading to the increase of the Fe-N bond lengths from ∼ 2.0 Å in the LS state to ∼ 2.2 Å in the HS state [START_REF] Gütlich | Thermal and Optical Switching of Iron(II) Complexes[END_REF][START_REF] Boukheddaden | Evidence of Photo-Thermal Effects on the First-Order Thermo-Induced Spin Transition of [{Fe(NCSe)(py)2}2(m-bpypz)] Spin-Crossover Material[END_REF]. Although these local volume expansions are occuring at several points in the lattice, the global volume expansion of the whole network is only ∼ 3-5% [START_REF] Gütlich | Spin Crossover in Transition Metal Compounds I-III[END_REF], this latter value is small compared to the volume expansion of the molecular coordination sphere. Indeed, a large part of the volume expansion is absorbed by the molecular structure of the lattice through ligand rotations and changes in the molecular packing. The spin transition can then be achieved when the pairing energy and the ligand field energy ∆ are equivalent [START_REF] Ewald | Anomalous behaviour at the 6A1-2T2 crossover in iron (III) complexes[END_REF], and it can be controlled by many external parameters such as: temperature variation [START_REF] Desaix | Light-induced bistability in spin transition solids leading to thermal and optical hysteresis[END_REF], external pressure [START_REF] Gütlich | Pressure effect studies in molecular magnetism[END_REF][START_REF] Chorazy | Octacyanidorhenate(V) Ion as an Efficient Linker for Hysteretic Two-Step Iron(II) Spin Crossover Switchable by Temperature, Light, and Pressure[END_REF][START_REF] Li | Pressure-Induced Conversion of a Paramagnetic FeCo Complex into a Molecular Magnetic Switch with Tuneable Hysteresis[END_REF], magnetic fields [START_REF] Bousseksou | The Spin Crossover Phenomenon Under High Magnetic Field[END_REF], or a light radiation (via LIESST effect, standing for Light Induced Excited Spin State Trapping; which is trapping at low temperature of HS metastable state by light) [START_REF] Decurtins | Light-induced excited spin state trapping in a transition-metal complex: The hexa-1-propyltetrazole-iron (II) tetrafluoroborate spin-crossover system[END_REF][START_REF] Gütlich | Photoswitchable coordination compounds[END_REF][START_REF] Sy | Reversible Control by Light of the High-Spin Low-Spin Elastic Interface inside the Bistable Region of a Robust Spin-Transition Single Crystal[END_REF]. The LS-HS transition brings multiple changes in properties, such as magnetic, structural, optical and vibrational changes at the transition. The state of the system can be characterized by the so-called HS fraction n HS which is the fraction of molecules in the HS state at a given set of parameters, mainly temperature, pressure. The behaviour of n HS brings information about the cooperativity of the system.

In the case of the thermally-induced spin transitions, the literature reports a huge variety of spin transitions, depending on the intensity of the elastic interactions between molecules: a continuous gradual transition -corresponding to a Boltzmann population of two degenerate states -arises in weakly cooperative materials [START_REF] Shepherd | Structural origin of the gradual spin transition in a mononuclear iron(II) complex[END_REF], while an abrupt transition or a first-order transition accompanied by hysteresis can be seen in strong cooperative systems [START_REF] Takahashi | Mechanism of reversible spin transition with a thermal hysteresis loop in [FeIII(qsal)2][Ni(dmise)2] • 2CH3CN: Selenium analogue of the precursor of an Fe(III) spin-crossover molecular conducting system[END_REF].

The desire to understand cooperativity (its influence and its role in the transition) has led to the development of various theoretical models trying to explain the origin of the hysteresis phenomenon in SCO materials: mean-field approaches using phenomenological interaction parameters acting similarly for all molecules [START_REF] Gütlich | Thermal and Optical Switching of Iron(II) Complexes[END_REF][START_REF] Spiering | Elastic interaction of high-spin and low-spin complex molecules in spin-crossover compounds. II[END_REF][START_REF] Enachescu | Comparison of static and light-induced thermal hystereses of a spin-crossover solid, in a mean-field approach[END_REF] or Ising-like approaches in which the interaction was written under a form of an exchange term [START_REF] Bolvin | Ising model for low-spin high-spin transitions in molecular compounds; within and beyond the mean-field approximation[END_REF][START_REF] Boukheddaden | Dynamical model for spin-crossover solids. I. Relaxation effects in the mean-field approach[END_REF][START_REF] Varret | The Ising-like model applied to switchable inorganic solids : discussion of the static properties[END_REF]. These models, although simple, were able to catch essential aspects of the spin transition, reproducing the conditions of existence of the gradual and first-order SCO transitions. Nevertheless, these descriptions are qualitative and are not adapted to give details on the reasons of the true physical origin of the SCO phenomenon. A new class of elastic models was developped, where the interactions between the spin state of the molecule and the lattice were introduced, taking into account the lattice volume change at the transition: the mechanoelastic [START_REF] Nishino | Simple Two-Dimensional Model for the Elastic Origin of Cooperativity among Spin States of Spin-Crossover Complexes[END_REF][START_REF] Enachescu | Cluster evolution in spin crossover systems observed in the frame of a mechano-elastic model[END_REF][START_REF] Enachescu | Shape effects on the cluster spreading process of spin-crossover compounds analyzed within an elastic model with Eden and Kawasaki dynamics[END_REF],

anharmonic [START_REF] Nicolazzi | Two-variable anharmonic model for spin-crossover solids: A like-spin domains interpretation[END_REF][START_REF] Nicolazzi | Elastic Ising-like model for the nucleation and domain formation in spin crossover molecular solids[END_REF] or electro-elastic models [START_REF] Slimani | Microscopic spin-distortion model for switchable molecular solids: Spatiotemporal study of the deformation field and local stress at the thermal spin transition[END_REF][START_REF] Ndiaye | Electro-elastic Modelling of the Two-Step High-Spin to Low-Spin Relaxation with Transient Self-Organized Spin States in 2D Spin Crossover Solids[END_REF]. These "new models" were capable to explicate the experimental spatiotemporal behaviours of the SCO transition, observed by optical microscopy on single crystals [START_REF] Chong | Electronic and Structural Aspects of Spin Transitions Observed by Optical Microscopy. The Case of [Fe(ptz)6](BF4)2[END_REF][START_REF] Slimani | Velocity of the High-Spin Low-Spin Interface Inside the Thermal Hysteresis Loop of a Spin-Crossover Crystal, via Photothermal Control of the Interface Motion[END_REF]: the transition begins from a corner or edge of the crystal, and expands over the entirety of the material with a well-defined HS/LS interface whose shape and orientation rely on the structural aspects of the crystal in the HS and LS phases. In these models, the molecules are modeled as ponctual sites interacting via springs with elastic constants depending on the spin states of the connected spins.

Numerical simulations have been performed on two-dimensional (2D) systems [START_REF] Nishino | Simple Two-Dimensional Model for the Elastic Origin of Cooperativity among Spin States of Spin-Crossover Complexes[END_REF][START_REF] Slimani | Microscopic spin-distortion model for switchable molecular solids: Spatiotemporal study of the deformation field and local stress at the thermal spin transition[END_REF][START_REF] Konishi | Monte Carlo Simulation of Pressure-Induced Phase Transitions in Spin-Crossover Materials[END_REF][START_REF] Enachescu | Model for Elastic Relaxation Phenomena in Finite 2D Hexagonal Molecular Lattices[END_REF][START_REF] Nishino | Macroscopic nucleation phenomena in continuum media with long-range interactions[END_REF][START_REF] Enachescu | Elastic models, lattice dynamics and finite size effects in molecular spin crossover systems[END_REF][START_REF] Nishino | Tutorial on elastic interaction models for multistep spin-crossover transitions[END_REF], but fewer for three-dimensionnal (3D) [START_REF] Boukheddaden | Towards the elastic properties of 3D spin-crossover thin films: Evidence of buckling effects[END_REF][START_REF] Stoleriu | Cluster evolution in molecular three-dimensional spin-crossover systems[END_REF][START_REF] Rohlf | Influence of substrate electronic properties on the integrity and functionality of an adsorbed fe(ii) spin-crossover compound[END_REF][START_REF] Affes | Magneto-elastic properties of a spin crossover membrane deposited on a deformable substrate[END_REF][START_REF] Popa | Tutorial on the elastic theory of spin crossover materials[END_REF][START_REF] Kumar | Sublimable spin-crossover complexes: From spin-state switching to molecular devices[END_REF][START_REF] Kelai | Thermal bistability of an ultrathin film of iron(ii) spin-crossover molecules directly adsorbed on a metal surface[END_REF][START_REF] Sanchez-De Armas | Spin-crossover complexes in nanoscale devices: main ingredients of the molecule substrate interactions[END_REF]. In this paper, we perform massive parallel simulations of an electro-elastic model in 3D using conventional Monte Carlo alorithm for the evolution of electronic (spin), and molecular dynamics algorithm for the structural (lattice parameter) degrees of freedom. For our numerical implementation, we use the Compute Unified Device Architecture (CUDA), released by Nvidia for their graphics accelerator boards, in order to improve the computation time of the simulations and increase the system size of the studied lattices.

In this paper, we investigate the thermal properties of the electro-elastic 3D lattice, the macroscopic nucleation, growth, and propagation of the front transformation during the spin thermal transition in a 3D parallelipedic shaped system. Several interesting physical properties are studied throughout this work. Thus, we first analyze the dependence of the width and the shape of the thermal hysteresis of the HS fraction on the strength of the nearest-neighbours (1n) elastic constant, and then perform a meticulous analysis on the dependence of this quantity along the three directions (1, 0, 0), (0, 1, 0) and (0, 0, 1) of the lattice. Next, we study the nucleation, growth and propagation mechanisms along the thermal transition as well as along the relaxation at low-temperature of the metastable HS state.

This manuscript is organized as follows: in section II we present the 3D electro-elastic model used and the simulation method; the section III present the results obtained from these simulations, in section IV we conclude and outline some possible developments of this The equilibrium distance between two neighbouring HS sites is naturally taken greater than that between two LS sites. The total effective Hamiltonian of the system is given by

H = i (∆ -k B T ln g) S i + H elast (1) 
The first term in (1) corresponds to the electronic contribution, where ∆ the ligand field energy gap, g = g HS g LS is the degeneracy ratio between the HS and LS states, T is the temperature, and k B is the Boltzmann constant. The term -k B T ln g is an entropic contribution originating from the difference of electronic and vibrational properties of HS and LS states. The temperature-dependence appearing in (1) lies in the fact that our system of two-state particles is characterised by eigenvalues S = ±1 with different associated degeneracies g ± . It is quite easy to demonstrate that an Ising-like Hamiltonian with and exchange interaction J and a field h with spins S = +1 and -1 having different degeneracies g + and g -, is isomorphic with the usual Ising Hamiltonian with non-degenerate states having the same exchange interaction and a temperature-dependent field h-kT ln(g + /g -). A simple demonstration of this point by calculating the Boltzmann probability associated with a general configuration of spin states is given in [START_REF] Boukheddaden | Dynamical model for spin-crossover solids. I. Relaxation effects in the mean-field approach[END_REF] (Eq. A.1 to A.3 of the appendix).

The second term H elast in (1) corresponds to the elastic contribution of the lattice, which is written here as

H elast = V 1n (|⃗ r|) + V 2n (|⃗ r|) + V 3n (|⃗ r|) = A 1n (i,j) (r ij -R 0 (S i , S j )) 2 + B 2n (i,k) r ik -R ′ 0 (S i , S k ) 2 + C 3n (i,p) r ip -R ′′ 0 (S i , S p ) 2 (2) 
Where 1n, 2n, 3n denote the first, second and third nearest-neighbours. Therefore, the elastic constants connecting a specific site (represented with a red sphere in Figure 1) to its neighbours are given by: A 1n for nearest-neighbours (1n) located along the 3 axis of the elementary simulation cell of the lattice (represented with grey spheres in Figure 1), B 2n for next-nearest neighbours (2n) located along the diagonals of the faces of the cell (represented with blue spheres in Figure 1), and C 3n for next-next-nearest neighbours (3n) located along the diagonals of the cell (represented with green spheres in Figure 1).

The Euclidean distances are denoted to r ij (respectively r ik and r ip ) between the 1n sites i and j (respectively between 2n sites i and k, and 3n sites i and p). The equilibrium bond lengths between two 1n sites is R 0 (S i , S j ) (respectively We denote by R HH 0 , R LL 0 , R HL 0 (R LH 0 ), the equilibrium distances between 1n HS-HS, LS-LS and HS-LS configurations. Thus, we have I summarizes the values of the equilibrium lattice parameters, and elastic constants used in the simulations. For simplicity in this study, we

R ′ 0 (S i , S k ) and R ′′ 0 (S i , S p )). Distances (nm) Elastic constants (K.nm -2 ) 1n distances R HH 0 = 1.20 R HL 0 = 1.10 R LL 0 = 1.00 A 1n = 3 • 10 3 diagonal faces √ 2R HH 0 ≈ 1.70 √ 2R HL 0 ≈ 1.56 √ 2R LL 0 ≈ 1.41 B 2n = 0.3A 1n diagonal of the cube √ 3R HH 0 ≈ 2.08 √ 3R HL 0 ≈ 1.91 √ 3R LL 0 ≈ 1.73 C 3n = 0.3A 1n
R 0 (+1, +1) = R HH 0 , R 0 (-1, -1) = R LL 0 , R 0 (+1, -1) = R 0 (-1, +1) = R HL 0 . Table
assume that R HL 0 = (R HH 0 +R LL 0 )
2 , and we choose B 2n = C 3n for second and third neighbours.

The second and third-nearest-neighbours have been considered specifically to avoid shearing inside the lattice, and to ensure its stability. Moreover, the choice of B 2n = C 3n = 0.3A 1n has been done to be consistent with previous works at 2D with elastic model [START_REF] Slimani | Effect of intermolecular interactions on the nucleation, growth, and propagation of like-spin domains in spin-crossover materials[END_REF], and thus enabling an easier comparison between results from different analysed systems, but with the same electro-elastic model. In fact, even a very small value of 2n and 3n interactions are enough to realize the lattice stability even with open boundary conditions. However, increasing these elastic constants more than the values of the 1n elastic constants leads to other types of behaviours in the nucleation of the HS fraction. This part is interesting and deserves to be studied for its own as a separate work.

The simulations, and the results presented in this paper, have been performed using, as far as possible, realistic parameter values [START_REF] Traiche | Spatio-temporal aspects of the domain propagation in a spin-crossover lattice with defect[END_REF]: ∆ = 450K and g = 150 leading to the equilibrium transition temperature of the Ising-like model T eq = ∆ k B ln g ≈ 90K. According to the used values of elastic constants, the bulk modulus, E, is roughly evaluated as A 1n R 0 , leading to a value of 5 GP a, which is in fair agreement with those reported in literature [START_REF] Jung | The cooperative spin transition in [FexZn1 -x(ptz)6](BF4)2: I. Elastic properties -an oriented sample rotation study by Brillouin spectroscopy[END_REF].

B. Simulation method

We consider a 3D parallelipedic lattice of size (N x × N y × N z ) = (96 × 32 × 32) with 98 304 spins, and free boundary conditions in order to consider for the macroscopic lattice deformation arising from local volume expansions/contractions resulting from the spin flips.

The resolution of this model is based on an adaptation of code written in CUDA, developped for a similar 2D electro-elastic model by our team [START_REF] Paez-Espejo | Elastic Frustration Causing Two-Step and Multistep Transitions in Spin-Crossover Solids: Emergence of Complex Antiferroelastic Structures[END_REF]. This implementation takes advantage of the performance of Nvidia computing cores integrated in graphics accelerator boards: thanks to them, we can significantly improve the size of our simulation cells, without too much compromise with the computation time. When the code is executed, CUDA generates a grid of threads that are organized in a three-dimensional hierarchy. Each grid is organized into an array of thread blocks, where each one can contain up to 1024 threads and thread block size should be a multiple of 32 due to the multiprocessor of the cards wich can create, manage, schedule, and execute threads in groups of 32 parallel threads called warps. For each chosen simulation size of the system, the thread block size has to be well defined for a better efficiency. Thus, very small block sizes, e.g. 32 threads per block, may limit performance due to occupancy, whereas very large block sizes for example 1024 threads per block, may also limit performance. The graphics accelerator boards used is a Nvidia RTX A5000 based on the Ampere architecture with 8 192 cores, 24 GB GDDR6 memory available, a single precision performance up to 27.8 TFLOPS, and the CUDA driver version installed is 11.4.

We implement two different approches to solve Hamiltonian (1): one for the evolution of electronic (spins) degrees of freedom, and another one for the structural aspects by performing respectively a Monte Carlo Metropolis simulation (MC) on spin states combined with a simulation of molecular dynamics (MD) to relax mechanically the lattice positions.

Monte Carlo Metropolis algorithm and simulations methodology

First of all, we initialise the elastic network by setting up the initial positions of the sites and their initial desired spin values (for example all spins S = +1 and all distances r ij = R HH 0 ), and then we let the lattice relax mechanically to reach its equilibrium if necessary.

to realise their thermal switching. Thus, there is no true magnetic (exchange) interactions in the model where the spins interact through the elastic lattice (i.e. the springs). Thus, each spin site represents a spin-crossover molecule whose degrees of freedom are defined by its spin value ±1 and its coordinates (x, y, z) in the lattice. The entire spin network is divided into sublattices which are then mapped onto thread blocks, where each of the sublattice/block contains (16 × 4 × 4) = 265 threads, representing 256 molecules, that are also called sites or nodes through the paper. Overall, this forms a three-dimensional grid of (6 × 8 × 8) = 384 thread blocks. These blocks are contiguous, as the sites inside each block: we subdivide the spin lattice into multiple blocks in order to improve the computational time. We update the entire spin lattice in a parallel way at a frozen lattice configuration.

In other words, we do not update the spins until we finish testing all the sites, this implies that whatever is the order in which we test the site and whether the blocks are contiguous or not, it doesn't change the result. Our GPU can perform operations on up to 8192 threads simultaneously. Indeed, the GPU is built on an array of Streaming Multiprocessors (64 in our case), where each Streaming Multiprocessors has a total of 128 cores and performs operations on only one thread block at a time. In addition, the order in which thread blocks are scheduled on the Streaming Multiprocessors, is decided by the hardware at runtime. Indeed, in CUDA each block of threads is scheduled (independently from the others) on any of the available multiprocessors within the GPU, in any order, concurrently or sequentially, so that the program can be executed on the maximum number of multiprocessors. The spin flip procedure is done by the usual Monte-Carlo technique based on Metropolis transition probabilities. This Metropolis procedure is performed with random numbers obtained by a pseudo-random numbers' algorithm of high statistical quality, thanks to the library cuRand integrated in CUDA. To summarise, we select 8 192 sites i among the N x × N y × N z sites of the lattice, with spin values {S i } = ±{1} i and position vectors { -→ r i }, and new spin value {S i new } = -{S i } are set without changing the lattice positions. Each spin change is accepted or rejected by the usual MC Metropolis criterion. We store {S i new } in a different vector, adn we repeat the procedure for the next 8 192 sites until all the 98 304 sites of the entire spin lattice are inspected for the spin change. Next, we relax mechanically the whole lattice through a molecular dynamics algorithm described below. Thus, in the procedure all lattice positions are updated 300 times at fixed spin configuration. We define this as the unit time of Monte Carlo procedure (MCS). We would like to highlight that this numerical procedure is not a cluster algorithm, like the Swendsen-Wang one [START_REF] Swendsen | Nonuniversal critical dynamics in monte carlo simulations[END_REF]. It is interesting to mention that we could test 8 192 non-contiguous spins, update them and relax the system mechanically, then test the next 8 192 spins and so on. However, this method significantly slows down the simulation due to conflicts in accessing memory. This is why we test all spins before updating and relaxing.

Molecular dynamics algorithm

After all spins update, the elastic lattice is relaxed in a deterministic way to reach the stable mechanical state in a parallel way: each computing core calculates the gradient of potential energy of each site of equation ( 1), in order to determine the force vector, ⃗ F = -⃗ ∇H elast , acting on every molecule or site. The obtained force field over the whole system is then normalised with the larger norm of the gradient, and the lowest energy configuration is searched by relaxing the system in overdamped dynamics with a time step dt 2 = 0.001 (and setting the value of the discretisation step for the finite differences at 10 -5 ). This is the principle of the well-known steepest descent algorithm, useful to find the local minimum of the elastic energy landscape. The new positions of the molecules are recalculated using this new force field with a strong damping to avoid oscillations. This procedure is repeated 300 times, the aim being to reach the equilibrium state, which can be monitored with the time dependence of the total elastic energy of the system, which reaches a minimum averaged value.

We consider that every molecule has a damped oscillatory-type motion. The system of coupled differential equations for all molecules is

m d 2-→ r i dt 2 = - → F i -µ d -→ r i dt , where - → r i is the
Cartesian site position vector of site i and m is the mass of the particle, µ is the damping factor. In the case of overdamped dynamics, this equation becomes

d -→ r i dt = 1 µ - → F i , where - → F i
is the total force acting on site i. If one considers only next-nearest elastic constants, the time scale of the dynamics is then ∼ µ A 1n . The dynamics is stopped when the force on each node approaches zero. As a general observation, the MC time, given in Monte Carlo

Steps, is purely artificial and is hard to connect with any real dynamics or real experimental timescale. Molecular dynamics (MD) time is connected with the elastic constants and the damping constant, however, one can easily modify the time step (dt 2 = 0.001) or the number of MD iterations (here 300) performed between the selection of two successive spins for the MC process. A low number of MD iterations means that the lattice is not completely relaxed after each spin update, which makes the MD and MC processes competing. In the present MD simulations, we have chosen for practical reasons and also for the sake of simplicity, to well relax the lattice (300 MD iterations) after each MC spin update, and therefore the MD and MC dynamics are well separated. In other words, the lattice dynamics is assumed to be faster than the spin state relaxation. Indeed, usually the lattice relaxation is in the picosecond timescale, while the spin-state relaxation, that is the relaxation of the HS and LS states of the molecule, is in the range of the micro to nanoseconds as it has been observed in old Mossbauer experiments [START_REF] Bousseksou | Dynamic spin crossover in [fe(2bik)3](clo4)2 and [fe(me22-bik)3](bf4)2 investigated by mossbauer spectroscopy[END_REF][START_REF] Adler | Dynamics of spin state conversion processes in the solid state[END_REF][START_REF] Adler | Thermodynamics and kinetics of spin state conversion processes studied by pressure dependent mossbauer spectroscopy[END_REF] in non-cooperative spin-crossover materials where the fluctuations of the spin state of the molecule falls in the timescale of the Mossbauer technique (10 -8 s) leading to widen the spectra when the frequency of the HS to LS fluctuation crosses that of the observation technique.

It is worth mentioning that using 0 K molecular dynamics simulation may lead the lattice subsystem to fall into a metastable state. However, since we allow spin state fluctuations in the MC process which affect the lattice energy, because of spin-distortion interaction, it is always possible to leave these metastable states in a reasonable finite time, except when the simulations are done at very low-temperature, which exponentially increases the lifetime of the metastable states. Although, this type of dynamics is also used by other authors when treating 2D and 3D mechano-elastic systems [START_REF] Enachescu | Cluster evolution in spin crossover systems observed in the frame of a mechano-elastic model[END_REF]. Nevertheless, performing finite temperature Verlet or Nose-Hoover algorithms would allow to have the same temperature for the spin and lattice subsystems, but it would lengthen the computational time simulations.

Measurements and calculations

The numerical simulations on temperature are done, thanks to the previous two algorithms, by using a defined amount of MCS as a waiting time to reach the stationary states at each temperature: the number of MCS depends of the simulation parameters and is defined empirically (typically N MCS therm = [100, 500], depending of the elastic constant value A 1n ). The temperature sweep rate is taken to 1 K every N MCS therm steps. Then, over the next 50 MCS, statistics are made to determine average physical values, like the HS frac-tion n HS (T ), the mean distance between molecules, etc... Each averaged measurement is carried out after performing 3 independent runs to ensure that the different configurations used for means are statistically independent, so as to obtain uncorrelated equilibrium states.

For example with an elastic constant value A 1n = 3 000, for each temperature step the simulation takes about 5 min 30 sec for a number N MCS therm = 500 with CUDA: the time needed to perform a thermal cycling of Figure 2 is about 22 hours for the A 1n = 3 000 case. For comparison, in sequential (on a desktop computer with Intel Core i5-10500 at 3.10 GHz with 27.953 MFLOPS and 32 GB of memory), for the same parameters, it would take about 1 hour and 35 min for each temperature step, and then about 16 days for the same thermal cycle in the A 1n = 3 000 case. Thanks to our parallel computing with CUDA, here we enhance the calculation time by a factor 17.

The HDF5 library [START_REF] Group | Hierarchical Data Format[END_REF] is used for writing into files the spin state, the position and other configuration's information in order to store, manage and do post-processing on them easily.

III. RESULTS

A. Thermal spin transition

The thermal properties of the electro-elastic 3D lattice is monitored by the HS fraction

n HS = (1+<S i >) 2
as a function of T . Figure 2 represents the thermal hysteresis loop of our 98 304 spins for various elastic constant values A 1n . We observe that in the absence of any kind of interactions (A 1n = 0 = B 2n = C 3n ), the thermal transition is smooth and gradual, and no hysteresis is detected. For low elastic constant values A 1n , the hysteresis is also undetectable. When the magnitude of elastic interactions is larger than a critical value, A C 1n = 250, a hysteresis does appear: its shape and width depend on these interactions, becoming larger and more abrupt for more important values of A 1n . This expected behaviour is similar to the experimental situations where compounds with strong interactions between the SCO complexes show wider hysteresis. We also notice that larger values of A 1n involve a squarer thermal hysteresis loop as observed in other 2D and 3D studies [START_REF] Stoleriu | Cluster evolution in molecular three-dimensional spin-crossover systems[END_REF][START_REF] Stoleriu | Thermal hysteresis in spin-crossover compounds studied within the mechanoelastic model and its potential application to nanoparticles[END_REF].

The width of the hysteresis ∆T is defined as a temperature interval between the heating T up and the cooling T down branches. These temperatures are defined as equilibrium temper- atures at n HS = 1 2 , and so ∆T = T up -T down . As can be seen in Figure 3 where we plot the hysteresis width ∆T as a function of elastic constant values A 1n above the critical threshold

A C
1n , we realise that the dependence of ∆T follows a power law almost parabolic. We plot a nonlinear regression with a power law ∆T = f (A 2 1n ) where a 95% confidence is found. Of course, this dependence doesn't take into account others physical parameters of the system (different sizes of the simulation cell, elastic constants of the B 2n and C 3n neighbours, lattice misfit between HS and LS, etc...) whose slope may depend, which should be considered in a more detailed study to verify whether this power law exponent β ≈ 2 can fall in a universality class at 3D or not.

Since we have a 3D lattice, we want to study the effect of the shape anisotropy of the system by analysing the n HS fraction for each plane of spins along the three directions of space. For instance in the (Ox) direction, we have sliced the simulation cell in perpendicular 1n showing a linear behaviour. We take the values of A 1n ≥ 1 000 K.nm -2 which are more easily measurable. In blue, we plot a linear regression with 95% confidence bounds. planes (yOz) at each spin node along the (Ox) direction, and we calculated the mean n HS fraction in each of the 96 planes. Figure 4 shows the hysteresis loop as a function of T for each of the N i planes of spins, perpendicular to the (Oi) direction, with i = {x, y, z}. We observe that there is a privileged direction for the propagation of the spin transition inside the system along the (Ox) direction, that is the elongated direction of the simulation cell.

As a matter of fact, in that direction, we can see a cascade effect of the perpendicular spin planes that flip during the heating or the cooling branches of the loop at the approach of the transition temperature T eq ≈ 90K, whereas there is no cascade effect in the (Oy) and (Oz) directions where the spin transition takes place simultaneously in all perpendicular planes.

The difference between the transition temperature, between the transformation along (Ox) and both (Oy) and (Oz) directions is mainly attributed to bulk transformation for (Ox) and transitions on lattice surfaces for (Oy) and (Oz).

We are also interested in elastic variations of the lattice. For that, we compute the volume of the simulation cell as a function of T , and then we calculate the relative volume change,

V relat = V (T )-V LS
V HS -V LS , where V LS and V LS are respectively the volume of the simulation cell when all spins are in the LS or HS state. To compare the changes of electronic n HS and elastic

V relat order parameters, we represent in the Figure 5 V relat (T ) vs n HS (T ) for the case of the cooling branch for A 1n = 3 000. The two variations align perfectly, meaning that there is a good correlation between the behaviour of the electronic and the mechanical properties during the thermal transition. We show in insert the two variations as a function of T for information. The same results are found for the heating branch, or for others elastic constant values, when hysteresis appears in the system. As a note, this result relates to the lifetime of the metastable states around the thermal hysteresis and the interplay between the dynamics of the spin and lattice degrees of freedom. Indeed, according to the simulation procedure in which the system is sufficiently relaxed mechanically (300 runs), after each spin flip, the volume follows adiabatically the behaviour of the HS fraction, as shown in Figure 5, where V relat and n HS are superimposed. Conversely however, if we perform the simulations with less molecular dynamics runs (for example 10 instead of the previous 300, to exaggerate the effect) after each spin flip, then the lattice relaxation will interfere with that of the spin network and the thermal responses of V relat and n HS will be different with wider thermal hysteresis, see the Figure S1 of [60].

Furthermore, as illustrated in Figure S2 of [60], we notice that the thermal evolution of the averaged 1n, 2n and 3n distances of the neighbouring pairs throughout the lattice follows the same trend as the thermal dependence of the HS fraction n HS . Moreover, we note that the extrema values of these averaged distances are consistent with the nearest-neighbours equilibrium lattice parameters defined in table I.

B. Spatio-temporal aspects of the nucleation, growth, and propagation of the spin states

The thermal dependence of the order parameters, n HS and < r >, allow to distinguish gradual transition from first-order, but don't bring any information about the spatial mechanism on the organisation of the spin states along the transition. Here, we aim to investigate these aspects for the case of the thermally-induced SCO transition, as well as the special case of low-temperature relaxation of metastable HS states. We are interested in the lattice strain during the thermal procedure focusing on the study of the displacement field of lattice spins of the spatial configurations Figure 6 and Figure 7. As we have done previously for 2D systems [START_REF] Slimani | Microscopic spin-distortion model for switchable molecular solids: Spatiotemporal study of the deformation field and local stress at the thermal spin transition[END_REF][START_REF] Traiche | Spatio-temporal aspects of the domain propagation in a spin-crossover lattice with defect[END_REF], we denote by -→ u (i, j, k) the displacement field associated with the spin coordinates (i, j, k), whose expression is defined by the following equation:

Along the thermal transition

- → u ( - → r ) = - → u (i, j, k) = - → r (i, j, k) -- → r 0 (i, j, k)
, where -→ r (i, j, k) and -→ r 0 (i, j, k) are respectively the final and initial positions of the spin vectors (i, j, k) in the lattice. We take the positions of the LS state as reference initial positions: -→ r 0 (i, j, k) = (i R LL 0 , j R LL 0 , k R LL 0 ). Elements of the strain tensor ε αβ ({α, β} = {x, y, z}), given by: ε αβ = 1 2 ∂uα ∂β + ∂u β ∂α , bring information about the mechanical effects induced by the growth areas. Here, the derivatives of the various components of the displacement field are calculated within the approximation of continuous medium, for example: ∂ux ∂x = ux(i+1,j,k)-ux(i,j,k) R LL

0

, ∂uy ∂y = uy(i,j+1,k)-uy(i,j,k)

R LL 0 , ∂uz ∂z = uz(i,j,k+1)-uz(i,j,k) R LL 0
. Others derivatives ∂ux ∂y , ∂uz ∂y , etc... bringing information about deviatoric strain are calculated in the same way. In particular, the divergence of the displacement field, the expression of which is: HS state -reddish in the figures). We realise that for A 1n = 50, below the critical value of elastic constant, the strain is randomly distributed in the simulation cell, as depicted in Figure S4 of [60] illustrating different sectional views, wheres for A 1n = 3 000, above the critical value, the most important changes occur in the interface regions as can be seen thanks to the sectional views of Figure 9. A correlation is of course observed between the divergence of the displacement field (dilation of the system) and the spins configurations. Furthermore, the interface shape is almost straight and perpendicular to the simulation cell border. In We have calculated the averages of each of the three component ω i during the thermal cycle, for A 1n = 50 (gradual transition) and for A 1n = 3 000 (hysteretic transition) whose respective results are summarized in Figure 10a and Figure 10b. We note that for gradual transition the same kind of thermal evolution for the three component appears, with weak oscillations around a mean value (equal to zero for ω x ), and almost a symmetric behaviour for ω y and ω z relative to x coordinate. This implies that rotational effects arise specifically around the y and z axis in the system. In contrast, for A 1n = 3 000, while similar general trend is observed for the three components, an hysteresis is perceptible, but only for ω y and ω z . This hysteresis occurs for both of them exactly at the same temperatures, that is between T = 79K and T = 99K, which also correspond to the switching temperatures found in the corresponding thermal behaviour of the HS fraction.

- → ∇ • ⃗ u(⃗ r) = ε xx (⃗ r) + ε yy (⃗ r) + ε zz (⃗ r),
For further investigations, we compare the spatial distribution of the curl of the displacement field with previous results at A 1n = 3 000. As can be seen in Figs. S4, S5, S6, S7 and S8 of [60], we observe different behaviours in the curl of the displacement field between the heating and the cooling branches. A correlation between the curl of the displacement field, the spatial distribution of the divergence (and the electronic interface) is found for the heating branch, but during the cooling one, the changes in the curl starts some Kelvins before the interface propagation (more precisely in the same interval of temperatures where the distortion of the lattice occurs during the heating branch, i.e. around the equilibrium temperature of the heating branch which is T up ≈ 99K at n HS = 1 2 via Figure 2), which can be then seen as a precursor phenomena announcing the occurrence of the front propagation event. More details about this peculiar behaviour are given in [60].

Along the relaxation at low-temperature of the metastable HS state

We are now interested in the mechanism of relaxation of the metastable HS state at lowtemperature. Such a metastable state can be obtained experimentally by photoexcitation (LIESST effect) or by rapid quenching of the high-temperature stable HS state. Here, the lattice is initially prepared in the HS state from both electronic (S i = +1, ∀i) and structural (r ij = R HH 0 ) point of view. This configuration is naturally metastable at low temperature and, consequently, the system is expected to relax towards the LS state. We perform such a relaxation isothermally at T = 1K to minimise thermal fluctuations. Through that approach, we want to understand the effects of the elastic constant values A 1n on the nucleation and growth processes of the LS domains and their propagation through the present 3D lattice within the present Hamiltonian.

Numerically, we measure n HS every MCS from 0 to 400 MCS. The shape of the relaxation curves of the HS fraction, n HS , of Figure 11a, which changes from exponential or stretched exponential to sigmoidal, indicates, as expected, a shift from weak cooperative to strong cooperative behaviour when increasing elastic constant values A 1n . We have outlined the same elastic values of A 1n as in Figure 2, but we have added more values above the critical threshold A 1n = 4 000, 5 000, 6 000, 7 000, 8 000. The calculations of the isothermal relaxation curves are less time-consuming than the thermal process, that's why we added them here to highlight the behaviour at large A 1n values. We can see that the lifetime of the metastable HS state increases in the beginning of the relaxation curve for large values of A 1n , supporting the fact that there is an increase in the elastic energy barrier to overcome for a spin to flip from a HS to LS state. It is interesting to comment about the sigmoidal shape of the HS fraction curves in the case of strong cooperative systems (A 1n ≥ 6 000).

There, two regimes are obtained: the first one is characterised by a slight decrease of the HS fraction during the 100 MCS for A 1n = 7 000, followed by a new regime where the HS fraction falls down almost linearly on time. By inspecting the time evolution of the average nearest-neighbours bond-lengths (< r 1n >), represented in Figure 11b, one sees that during the so-called first regime, which is in fact a stochastic regime, the lattice is already moving towards the LS structure, by nucleating small LS domains (here mainly in the corners). The second regime is then a kind of a flow regime, where the lattice has overpassed the elastic energy barrier preventing the relaxation. In this regime, the front interface travels at almost constant velocity, which results in the linear behaviour of the HS with time. For A 1n ⪅ 1 000, corresponding to weak elastic energy barriers, "exponential-shaped" relaxation curves, suggest that only the second deterministic regime is operating. In Figure 11c, 11d, we have represented the corresponding time evolution of the 2n, < r 2n >, and 3n, < r 3n >, bond-lengths for which a similar behaviour is observed with the two already defined regimes.

In particular, the correlation between the HS fraction, n HS , and the three nearest-neighbours bond-lengths is more marked with < r 1n > for strong elastic constant, A 1n , values, where a two-step relaxation behaviour is visible during the second regime. Moreover, one can clearly see that for smaller A 1n values (e.g. A 1n = 50, 100, 250), the 2n and 3n lattice bondlengths, whose elastic constants (A 2n = A 3n = 0.3A 1n ) are weaker than that of 1n sites, relax faster, following the already discussed deterministic regime. Besides, in Figure 12 we draw the variation of the lifetime of the metastable state τ at n HS = 1 2 as a function of the value of the elastic constant: a power law can be found. We plot a nonlinear regression using a logarithmic scale on the x and y-axis, with a power law τ ∼ (A 1n ) α , with α ≈ 4.41. For large values of A 1n , we see that four macroscopic LS domains located at the corners of the simulation starting from opposite tips of the lattice grow "independently" as far as they are far from each other, and advance towards the inner part of the sample, as represented in the spatiotemporal configurations of Figure 13. It is consistent that nucleation of LS phase take place around the four corners of the lattice in a squared geometry, and spreads over the whole system, from energetic arguments. The spins in the corner (with only three nearestneighbours 1n) and on the edge (with only four nearest-neighbours 1n) are energetically preferable for the nucleation, which then explains the observations as well as those of the thermal hysteresis. 
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tice for A 1n = 8 000. To lighten the manuscript, we only show a sectional view in the plane (xOz) at Ny 2 . The local pressure, P i at site i, is calculated by the following expression (which is merely the gradient of the local elastic energy of the lattice at each site i):

P i = -A 1n j (r ij -R 0 (S i , S j )) -B 2n k r ik -R ′ 0 (S i , S k ) -C 3n p r ip -R ′′ 0 (S i , S p )
. This physical quantity is interesting because it provides additional information than the spatial distribution of the divergence of the displacement field. Actually the local pressure may be positive or negative according to the stress applied on the site : a compressive strain is equivalent to a positive pressure exerted on the site, while a tensile strain results in a negative pressure. Figure 15a provides detailed information concerning two important points:

(i) the first one concerns the orientation of the front interface which changes from a tilted shape in the beginning of the transformation to a straight one around t = 4 151 MCS as a result of the minimization of the total elastic energy by minimizing the interface length.

Second (ii), we can see that the elastic strain deploys at long distance from both sides of the electronic HS/LS interface, where we see that the LS (resp. HS) phase is experiencing a negative (resp. positive) pressure. Overall, these results confirm the long-range nature of the elastic interactions as a driving force of the front propagation along the HS to LS relaxation. In Figure 15b we show the distribution of the pressure in the plane (yOx) at Nz 2 for 4 151 MCS: the same kind of behaviour is observed, even if the interface seems to be more jagged in the y direction. Figure S11 of [60] highlight this saw-like pattern through planes (yOz) at various x direction values, from both sides of the interface, for 4 151 MCS.

We observe this peculiar blueprint for the distribution of the pressure around the interface.

For views in the LS phase (between 44 nm and 39.5 nm) the tensile strain is obvious and occupies almost all the plane, while for the HS phase (between 39 and 33 nm), the compressive strain is visible, but with a concentric-serrated shape. It is important to notice that the latter is an artefact due to the meshing of the representation of the local pressure in the simulations. Actually, the propagation of the pressure wave is isotropic along the x propagation direction as displayed in Figure S12 and the associated movie S5 inside [60],

where we observe concave-shape in LS phase and convex one in the HS phase.

We study the energetic properties of this transformation through the dependence of the density of elastic energy, ⟨E elastic ⟩, of the lattice with respect to the growing LS fraction, n LS = (1 -n HS ) (see Figure 16a) during the relaxation process. Four distinct regimes are clearly identified. (i) First, a stationary regime, called here a stochastic regime, takes place around n LS = 0, characterized by an important density of points in this location (see Figure 16a), that lasts for a long time, ∼ 3 300 MCS, as shown in the corresponding Figure 16b. It is followed by a second regime (ii) where ⟨E elastic ⟩ rapidly increases in the interval of n LS values ranging between 0 and 0.2 corresponding to the nucleation of LS phase from the lattice corner (see Figure 14). This increase of the elastic energy is caused by the increase of the surface of the HS/LS interface, S interf = πR 2 8 (R is the interface radius), along the growing LS domain size which has the shape of an eighth-sphere. When the radius of the sphere becomes equal to the lattice height or width R = L z , the interface's surface goes through a maximum and so the elastic energy. At this point, the LS fraction can be roughly estimated as equal to the relative LS volume over the total lattice volume, i.e n LS = propagates keeping an invariant shape, which results in a flat and stationary elastic energy.

The fourth regime (iv) corresponds to the so-called deterministic regime, during which the total energy decreases and the gain in the electronic energy largely compensates the elastic energy barrier (see Figure 16b after the maximum). Finally a rapid decrease of ⟨E elastic ⟩ occurs for n LS > 0.8, corresponding to the interface disappearance on the other side of the propagation axis.

Let us now briefly comment about the time-dependence of the density of total energy (DTE),

given by DTE = ∆ ef f (2n HS -1) + < E elastic >. This quantity, displayed in Figure 16b, exhibits all the previous regimes discussed above. In particular, between 0 and 3 500 MCS the system is in the stochastic regime and the DTE is almost constant to DT E = +∆ because the system occupies the HS state (n HS ∼ 1 and < E elastic >∼ 0). When the first LS nucleus appears, the DTE increases due to the appearance of elastic energy excess, which competes with the electronic energy, giving rise to a macroscopic energy barrier which peaks around 3 700 MCS, a point which corresponds to the maximum surface of the HS/LS front interface. Beyond this point, the DTE quickly decreases, announcing the setting up of the deterministic/flow regime. Lastly, the DTE reaches a negative value almost constant to DT E ≃ -∆, when all spins are flipped to the LS state (n HS = 0 and < E elastic >∼ 0).

elastic energy for the spatiotemporal configurations of the lattice given in Figure 14, which confirm that the elastic energy is mainly stored around the HS/LS interface.

When one looks at the propagation front of Figure 14 for A 1n = 8 000, we would like to consider the spread of the elastic interface profiles. To do this, we calculate the Euclidean distance between two successive spins < d > along the propagation direction (Ox), by averages in (Oy) and (Oz) directions: we draw different MCS values correlated to the established propagation front in the simulation cell, as can be seen in Figure 17a. Since in this case the propagation takes place from one corner with a unique interface HS/LS, we have to deal with one front coming from one side of the propagation axis, reaching the other side of the simulation cell. As we can see, the speed of propagation is constant, and a "cruising speed" is reached. The elastic interface is spatially wide, and cover a width of approximatively 20 nm. When approaching the interface, the LS region undergoes to compressive stress, while moving away the interface, the HS region goes through an expandable stress. To highlight this behaviour, we have shown in Figure 18 the spatial distribution of the local elastic energy field during the relaxation process in the plane (xOz)

at Ny 2 : one can simply visualise the broad width of the elastic interface confirming the assessment. This result is in agreement with experimental optical microscopy data of SCO single crystal [START_REF] Slimani | Visualization and quantitative analysis of spatiotemporal behavior in a first-order thermal spin transition: A stress-driven multiscale process[END_REF]. Furthermore, this tends to imply that the shape of the HS/LS interface can adjust itself to the geometry of the system in order to reduce the total energy of the lattice. We compare these results with the spread of the electronic interface profiles for the same parameters, as shown in Figure 17b. Due to the propagation process, the same kind of behaviour is observed with one front coming from one side of the propagation axis to the other. The electronic interface is spatially sharper and covers a width of approximately 8 nm, while the elastic interface is significantly broader (several tens on nanometers) extending from both sides of the electronic interface.

IV. CONCLUSIONS

In this paper, we studied the thermal properties of the electro-elastic 3D lattice, the macroscopic nucleation, growth, and propagation (NGP) of the front transformation during the spin transition in a 3D parallelipedic shaped system. We examined the shape of the thermal hysteresis of the HS fraction through the variation of the magnitude of the nearest-neighbours (1n) elastic constant, and we realised that above a critical threshold value of the 1n elastic constant, hysteresis arose out from elastic interactions. We analysed the dependence of the width of this thermal hysteresis window according to the 1n elastic constant value, and a power law emerged with an exponent approximately equal to 2. We performed an analysis on the dependence of the thermal HS fraction along the three directions (1, 0, 0), (0, 1, 0) and (0, 0, 1) of the lattice, and we pointed out a cascade effect along the extended direction of the simulation cell. A good correlation between the elastic variations of the lattice and the electronic variations of the spins during the hysteresis loop in thermal process has been displayed. We investigated the NGP mechanisms along the thermal transition and similar tendencies as those observed in 2D lattices are found: above a critical value of the 1n elastic constant, the spin transition changed from random switching of the spin states to collective macroscopic domains starting from the corners of the simulation cell and propagating toward the inner part. We calculated the divergence of the displacement field, representing the relative volume expansion/contraction of the simulation cell, and a good agreement has been found between the spatiotemporal configurations of the spins and the divergence field during all the thermal transition. The interface shape was identified as being straight and perpendicular to the border of the cell thanks to that field.

We also computed the curl of the displacement field, accounting for the deviatoric strain in the lattice: during the heating branch a good correlation has been found with the spatiotemporal configurations, however there was a delay of some degrees for the appearance of the distorsion during the cooling branch compared to the propagation of the interface in spatiotemporal configurations (the distorsion appeared before the interface in configurations). This phenomenon suggested a memory effect during the cooling branch relative to the heating branch happening in the first place.

We also investigated the NGP mechanisms over the relaxation process at low-temperature of the metastable HS state: the time dependence of the relaxation curves of the HS fraction confirmed the shift from weak cooperative to strong cooperative behaviour when the 1n elastic constant increase. Moreover, for strong interactions the spatiotemporal configurations indicated that nucleation of LS phase take place around the corners of the lattice (on the edge and in the corner), spreading over the whole system toward the center of the simulation cell.

All of these results provided an overview of the 3D behaviour of spin transition materials modeled by a electro-elastic 3D lattice. Among the possible developments of the present work, we quote: (i) the interesting extension to anisotropic elastic lattices by considering different A 1n values in three directions of space, which would be more consistent with the experimental reality of the materials studied in laboratory, (ii) the study of the lattice's shape effects by changing the simulation cell, or by considering different symmetry of the elementary cell is also an important objective of these 3D simulations. We could investigate under isotropic, or uni-axial, pressure to determine the effects on thermal transition and propagation dynamics of the HS/LS interface.

  electro-elastic modelAs explained briefly in the introduction, we consider the electro-elastic model in its 3D version which couples the electronic and the elastic properties of a SCO lattice. The model is based on the description of the HS and LS states of the i-th SCO molecule of the lattice by a two-states fictitious spin S i , with respective values S i = +1 and S i = -1 for HS and LS states respectively. Each molecule is linked to its neighbours by an elastic spring, as depicted in Figure1, whose equilibrium distance depends on the spins of the neighbours. Thus, we obtain an elastic network in which the nodes are made of spins and the intermolecular distances depend on these spin states by considering cubic unit cells in HS and LS phases.

Figure 1 -

 1 Figure 1 -Schematic view of the 3D elastic network within an elementary simulation cell for a test site represented in red, connected to its neighbours by springs represented in grey for the nearest-neighbours (1n), in blue for the next-nearest neighbours (2n) and in green for the next-next-nearest neighbours (3n). The 1n neighbours are located along the edges of the cube, the 2n neighbours are located along the diagonals of the faces and the 3n neighbours are located along the long diagonals of the elementary cell.

Figure 2 -

 2 Figure 2 -Thermal dependence of the HS fraction n HS for different values of elastic constants A 1n with error bars representing the standard deviation on the average n HS for each temperature for the simulation cell size (96 × 32 × 32). Remark: each presented point has an error bar; however, the latter are visible only near the HS-LS transition, above and below the size of the error bars is smaller than the size of the points.

Figure 3 -

 3 Figure 3 -Hysteresis width ∆T as a function of the square of the elastic constant values A 1n above the critical threshold A C1n showing a linear behaviour. We take the values of A 1n ≥ 1 000 K.nm -2 which are more easily measurable. In blue, we plot a linear regression

  (a) 96 planes of spins perpendicular to the (Ox) direction. (b) 32 planes of spins perpendicular to the (Oy) direction. (c) 32 planes of spins perpendicular to the (Oz) direction.

Figure 4 -

 4 Figure 4 -Mean n HS fraction as a function of T for each of the N i planes of spins, perpendicular to the (Oi) direction, with i = {x, y, z}. Remark the cascade effect along (Ox) direction and the simultaneous transitions of all planes along (Oy) and (Oz) directions.

Figure 5 -

 5 Figure 5 -Elastic variations of the lattice V relat as a function of electronic variations n HS during hysteresis loop presented for the case of the cooling branch for A 1n = 3 000 for illustration. The same results are found for the heating branch, or for others elastic constant values. Insert: The two considered variations V relat and n HS as a function of T .

Figure 6

 6 Figure 6 displays the spatial organisation of the spin states for n HS = 0.55, for a value of A 1n below the critical value (here A 1n = 50), showing a random switch of the spin inside the simulation cell, in agreement with the weak cooperative character of the elastic interactions, compared to ligand field energy. Whereas value A 1n = 3 000 above the critical value lead to the formation of clusters in the lattice configuration as depicted in Figure 7. In the latter, the propagation of the spin transition inside the system corresponds to multiple domains of flipped spins that start independently from all corners and grow toward the center of the lattice.

Figure 6 -

 6 Figure 6 -Snapshot showing the spatiotemporal configurations of the lattice during the cooling branch at n HS = 0.55 and T = 92K for A 1n = 50. Yellow (blue) spheres represent HS (LS) sites.

  FigureS3of[60] and Figure8show the spatial distribution of the divergence of the displacement field during hysteresis loop corresponding to snapshots of spins configurations of Figure6and Figure7. Since the reference state is that of LS, this leads to a map of the divergence going from zero (in the LS state -bluish in the figures) to positive values (in the

Figure 7 -

 7 Figure 7 -Selected snapshots showing the spatiotemporal configurations of the lattice during the cooling branch at various n HS values: 0.87 (a), 0.57 (b) and 0.21 (c) for A 1n = 3 000. Yellow (blue) spheres represent HS (LS) sites. Remark the macroscopic domain character of the HS → LS transformation.

Figure 8 -

 8 Figure 8 -Snapshots showing the spatial distribution of the divergence of the displacement field along the cooling branch of the thermal SCO transition, corresponding to snapshots of Figure 7.

Figure 9 -

 9 Figure 9 -Sectional view in the planes (xOz) and (xOy): (a) at N y (top) and N z (bottom), and at Ny 2 (top) and Nz 2 (bottom) for (b) and (c), of the spatial distribution of the divergence of the displacement field corresponding to snapshots of Figure 8.

contrast, Figure 9

 9 (b) and Figure 9(c) clearly indicate that, contrary to the corresponding electronic interface of Figure 7(b) and Figure 7(c), the divergence field diffuses far from both sides of the interface, demonstrating the long-range character of the transformations operating in the simulated material. Information about the shear stresses, which causes the distortion of the lattice during the spin transition, are given by the curl of the displacement field -→ ∇ × ⃗ u(⃗ r). This curl can be written in term of the rotation vector -→ ω by the relation -→ ∇ × ⃗ u(⃗ r) = 2 -→ ω . Elements of the rotation tensor ω αβ are given by the equation ω αβ = tensor is skew symmetric: ω αβ = -ω βα , it has only three independent scalar components defining the rotation vector -→ ω , with ω i (i = {x, y, z}) components signifying the i-axis around which there is a rotation. The components are: ω x = 1 2 ∂uz ∂y -∂uy ∂z , ω y =

Figure 10 -

 10 Figure 10 -Thermal dependence of the three components ω x , ω y and ω z of the rotation vector -→ ω during the heating-cooling cycle for two different values of elastic constants: (a) A 1n = 50 for gradual transition and (b) A 1n = 3 000 for hysteretic transition, where the presence of a hysteresis in ω y and ω z components is detected. The two vertical dashed lines indicate T = 79K and T = 99K.

Figure 11 -

 11 Figure 11 -Time-dependence of the HS fraction (a) and average 1n (b), 2n (c) and 3n (d) lattice parameters along the relaxation from HS to LS of a lattice initially prepared in the HS state at low temperature (T = 1K), for various elastic constant, A 1n , values. Remark the significant increase of the lifetime of the metastable state with respect to A 1n .

Figure 12 -

 12 Figure 12 -Variation, in log-log scale, of the lifetime of the metastable state τ , evaluated at n HS = 1 2 in Figure 11)a as a function of A 1n , which fits with the linear regression (blue curve) with a slope α ≃ 4.4, suggesting the power law τ ∼ (A 1n ) 4.4 .

Figure 13 -

 13 Figure 13 -Snapshots showing the spatiotemporal configurations of the lattice during the relaxation process at T = 1K from an initial HS phase for a large 1n elastic constant value A 1n = 7 000. Yellow (blue) spheres represent HS (LS) sites.

Figure 14 -

 14 Figure 14 -Specific views of the snapshots showing the spatiotemporal configurations of the lattice during the relaxation process at T = 10K from an initial HS phase for a large value A 1n = 8 000, with only the LS spins visible during the transition. Yellow (blue) spheres represent HS (LS) sites.

Figure 15 -

 15 Figure 15 -Sectional view in different planes showing the spatial distribution of the local pressure field of the lattice during the relaxation process at T = 10K from an initial HS phase for a large value A 1n = 8 000.

  (a) LS fraction dependence of the elastic energy density showing a non-monotonous behavior along the relaxation process. See text for more explanations. (b) Time-dependence of the DTE. Insert: zoom around the energy barrier of the DTE curve.

Figure 16 -

 16 Figure 16 -Total elastic energy of the lattice in a), and density of total energy (DTE) of the lattice in b), during the relaxation process at T = 10K from an initial HS phase for a large value A 1n = 8 000. These results correspond to the spatiotemporal configurations of the lattice in Figure 14.

  [START_REF] Bolvin | Ising model for low-spin high-spin transitions in molecular compounds; within and beyond the mean-field approximation[END_REF] which is in fair agreement with the value n LS ≃ 0.2 derived form Figure16a. In the third regime (iii), ⟨E elastic ⟩ goes through a minimum at n LS = 0.3 corresponding to the change of the interface shape which adapts to the new boundary conditions imposed by the lattice borders. When the interface shape becomes stationary (i.e. straight and parallel to the (yOz) planes) it

  (a) Elastic interface profiles corresponding to the Euclidean distance between two successive spins. The dashed lines represent the equilibrium 1n distances R HH 0 = 1.20 nm and R LL 0 = 1.00 nm.(b) Electronic interface profiles.

Figure 17 -

 17 Figure 17 -Elastic and electronic interface profiles along the propagation direction (Ox) by averages in (Oy) and (Oz) directions. Some different MCS values correlated to the established propagation front of Figure 14 have been shown. The arrows represent the propagation direction, as visual indicators. 34

Figure 18 -

 18 Figure 18 -Sectional view in the plane (xOz) at Ny 2 showing the spatial distribution of the local elastic energy field during the relaxation process at T = 10K from an initial HS phase for a large value A 1n = 8 000.

Table I -

 I Values of the nearest-neighbours equilibrium lattice parameters and elastic constants used in the simulations.
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