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Abstract
A three dimensional version of the electro-elastic model allowing the description of spin-crossover

(SCO) materials taking into account for the volume change at the transition between the LS and

the HS spin states is developed. The investigations are realized on a rectangular parallelepiped

lattice with a cubic symmetry. The SCO units are modeled by two-states fictitious spins cou-

pled by springs whose equilibrium distances depend on the spin states. We implemented massive

parallel simulations using CUDA (Compute Unified Device Architecture) programming where the

spin states are updated using Monte Carlo Metropolis algorithm while the mechanical relaxation

(lattice position) is performed by molecular dynamics. In this work, we investigated: (i) the case

of the thermal spin transition showing the macroscopic deformation of the parallelepiped accom-

panying the propagation of single domains, and (ii) the isothermal relaxation of the photoinduced

metastable HS fraction at low temperature. In both cases, the interplay between the electronic and

the structural aspects of these transformations is analyzed and discussed in relation with the model

parameters.

I. INTRODUCTION

Spin-crossover solids (SCO) [1–5] have an electronic configuration ranging between 3d4

and 3d7 (chromium, manganese, iron, and cobalt) with an octahedral symmetry and are

surrounded by nitrogen atoms. They are fascinating prototypes of inorganic molecular

complexes, extensively studied for their bistability at molecular scale which is an essential

physical property for applications in the field of switchable molecular solids such as high

density memory devices, numerical displays, or actuators [6–8]. In the case of Fe(II)-based

SCO materials (which is the most studied in literature) with 3d6 configuration, the central

transition-metal ion experiences a ligand field energy which lifts the degeneracy of the 5

d-orbitals of Fe(II) and splits them into three weakly bonding t2g and two antibonding eg

orbitals. Depending on the strength of this ligand field, noted here ∆, and the intensity

of the interaction between neighbouring molecules, a competition between two spin states,

namely the diamagnetic low-spin (LS, t62ge0g, S = 0) state and the paramagnetic high-spin

(HS, t42ge2g, S = 2) state does emerge. Thus, the central metal ion is in the LS (HS) state
∗ kamel.boukheddaden@uvsq.fr
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when the value of ∆ is much stronger (weaker) than the electrons pairing energy and the

transition becomes thermally accessible when ∆ ∼ kBT , where T is the temperature. Lo-

cally, the spin transition from LS to HS is accompanied with the volume expansion of the

molecular coordination sphere (around 30%)[9] which could be interpreted by the electrons

redistribution between t2g and eg orbitals during the spin transition of the metal ion, leading

to the increase of the Fe-N bond lengths from ∼ 2.0Å in the LS state to ∼ 2.2Å in the HS

state [3, 10]. Although these local volume expansions are occuring at several points in the

lattice, the global volume expansion of the whole network is only ∼ 3–5% [11], this latter

value is small compared to the volume expansion of the molecular coordination sphere. In-

deed, a large part of the volume expansion is absorbed by the molecular structure of the

lattice through ligand rotations and changes in the molecular packing. The spin transition

can then be achieved when the pairing energy and the ligand field energy ∆ are equivalent

[12], and it can be controlled by many external parameters such as: temperature variation

[13], external pressure [14–16], magnetic fields [17], or a light radiation (via LIESST effect,

standing for Light Induced Excited Spin State Trapping; which is trapping at low tempera-

ture of HS metastable state by light) [18–20]. The LS-HS transition brings multiple changes

in properties, such as magnetic, structural, optical and vibrational changes at the transi-

tion. The state of the system can be characterized by the so-called HS fraction nHS which is

the fraction of molecules in the HS state at a given set of parameters, mainly temperature,

pressure. The behaviour of nHS brings information about the cooperativity of the system.

In the case of the thermally-induced spin transitions, the literature reports a huge variety

of spin transitions, depending on the intensity of the elastic interactions between molecules:

a continuous gradual transition - corresponding to a Boltzmann population of two degenerate

states - arises in weakly cooperative materials [21], while an abrupt transition or a first-order

transition accompanied by hysteresis can be seen in strong cooperative systems [22].

The desire to understand cooperativity (its influence and its role in the transition) has led

to the development of various theoretical models trying to explain the origin of the hysteresis

phenomenon in SCO materials: mean-field approaches using phenomenological interaction

parameters acting similarly for all molecules [3, 23, 24] or Ising-like approaches in which

the interaction was written under a form of an exchange term [25–27]. These models,

although simple, were able to catch essential aspects of the spin transition, reproducing

the conditions of existence of the gradual and first-order SCO transitions. Nevertheless,
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these descriptions are qualitative and are not adapted to give details on the reasons of the

true physical origin of the SCO phenomenon. A new class of elastic models was developped,

where the interactions between the spin state of the molecule and the lattice were introduced,

taking into account the lattice volume change at the transition: the mechanoelastic [28–30],

anharmonic [31, 32] or electro-elastic models [33, 34]. These "new models" were capable to

explicate the experimental spatiotemporal behaviours of the SCO transition, observed by

optical microscopy on single crystals [35, 36]: the transition begins from a corner or edge

of the crystal, and expands over the entirety of the material with a well-defined HS/LS

interface whose shape and orientation rely on the structural aspects of the crystal in the HS

and LS phases. In these models, the molecules are modeled as ponctual sites interacting via

springs with elastic constants depending on the spin states of the connected spins.

Numerical simulations have been performed on two-dimensional (2D) systems [28, 33, 37–

41], but fewer for three-dimensionnal (3D) [42–49]. In this paper, we perform massive par-

allel simulations of an electro-elastic model in 3D using conventional Monte Carlo alorithm

for the evolution of electronic (spin), and molecular dynamics algorithm for the structural

(lattice parameter) degrees of freedom. For our numerical implementation, we use the Com-

pute Unified Device Architecture (CUDA), released by Nvidia for their graphics accelerator

boards, in order to improve the computation time of the simulations and increase the system

size of the studied lattices.

In this paper, we investigate the thermal properties of the electro-elastic 3D lattice, the

macroscopic nucleation, growth, and propagation of the front transformation during the

spin thermal transition in a 3D parallelipedic shaped system. Several interesting physical

properties are studied throughout this work. Thus, we first analyze the dependence of

the width and the shape of the thermal hysteresis of the HS fraction on the strength of

the nearest-neighbours (1n) elastic constant, and then perform a meticulous analysis on

the dependence of this quantity along the three directions (1, 0, 0), (0, 1, 0) and (0, 0, 1) of

the lattice. Next, we study the nucleation, growth and propagation mechanisms along the

thermal transition as well as along the relaxation at low-temperature of the metastable HS

state.

This manuscript is organized as follows: in section II we present the 3D electro-elastic

model used and the simulation method; the section III present the results obtained from

these simulations, in section IV we conclude and outline some possible developments of this
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work.

II. NUMERICAL MODEL

A. 3D electro-elastic model

As explained briefly in the introduction, we consider the electro-elastic model in its 3D

version which couples the electronic and the elastic properties of a SCO lattice. The model

is based on the description of the HS and LS states of the i-th SCO molecule of the lattice

by a two-states fictitious spin Si, with respective values Si = +1 and Si = −1 for HS and LS

states respectively. Each molecule is linked to its neighbours by an elastic spring, as depicted

in Figure 1, whose equilibrium distance depends on the spins of the neighbours. Thus, we

obtain an elastic network in which the nodes are made of spins and the intermolecular

distances depend on these spin states by considering cubic unit cells in HS and LS phases.

The equilibrium distance between two neighbouring HS sites is naturally taken greater than

that between two LS sites.

Figure 1 – Schematic view of the 3D elastic network within an elementary simulation cell

for a test site represented in red, connected to its neighbours by springs represented in grey

for the nearest-neighbours (1n), in blue for the next-nearest neighbours (2n) and in green

for the next-next-nearest neighbours (3n). The 1n neighbours are located along the edges

of the cube, the 2n neighbours are located along the diagonals of the faces and the 3n

neighbours are located along the long diagonals of the elementary cell.
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The total effective Hamiltonian of the system is given by

H =
∑
i

(∆− kBT ln g)Si +Helast (1)

The first term in (1) corresponds to the electronic contribution, where ∆ the ligand

field energy gap, g = gHS

gLS
is the degeneracy ratio between the HS and LS states, T is

the temperature, and kB is the Boltzmann constant. The term −kBT ln g is an entropic

contribution originating from the difference of electronic and vibrational properties of HS

and LS states. The temperature-dependence appearing in (1) lies in the fact that our

system of two-state particles is characterised by eigenvalues S = ±1 with different associated

degeneracies g±. It is quite easy to demonstrate that an Ising-like Hamiltonian with and

exchange interaction J and a field h with spins S = +1 and −1 having different degeneracies

g+ and g−, is isomorphic with the usual Ising Hamiltonian with non-degenerate states having

the same exchange interaction and a temperature-dependent field h−kT ln(g+/g−). A simple

demonstration of this point by calculating the Boltzmann probability associated with a

general configuration of spin states is given in [26] (Eq. A.1 to A.3 of the appendix).

The second term Helast in (1) corresponds to the elastic contribution of the lattice, which

is written here as

Helast = V1n (|r⃗|) + V2n (|r⃗|) + V3n (|r⃗|)

= A1n

∑
(i,j)

(rij −R0(Si, Sj))
2 +B2n

∑
(i,k)

(
rik −R

′
0(Si, Sk)

)2
+ C3n

∑
(i,p)

(
rip −R

′′
0(Si, Sp)

)2 (2)

Where 1n, 2n, 3n denote the first, second and third nearest-neighbours. Therefore, the

elastic constants connecting a specific site (represented with a red sphere in Figure 1) to

its neighbours are given by: A1n for nearest-neighbours (1n) located along the 3 axis of the

elementary simulation cell of the lattice (represented with grey spheres in Figure 1), B2n for

next-nearest neighbours (2n) located along the diagonals of the faces of the cell (represented

with blue spheres in Figure 1), and C3n for next-next-nearest neighbours (3n) located along

the diagonals of the cell (represented with green spheres in Figure 1).

The Euclidean distances are denoted to rij (respectively rik and rip) between the 1n sites

i and j (respectively between 2n sites i and k, and 3n sites i and p). The equilibrium

bond lengths between two 1n sites is R0(Si, Sj) (respectively R
′
0(Si, Sk) and R

′′
0(Si, Sp)).
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Distances (nm) Elastic constants (K.nm−2)

1n distances RHH
0 = 1.20 RHL

0 = 1.10 RLL
0 = 1.00 A1n = 3 · 103

diagonal faces
√
2RHH

0 ≈ 1.70
√
2RHL

0 ≈ 1.56
√
2RLL

0 ≈ 1.41 B2n = 0.3A1n

diagonal of the cube
√
3RHH

0 ≈ 2.08
√
3RHL

0 ≈ 1.91
√
3RLL

0 ≈ 1.73 C3n = 0.3A1n

Table I – Values of the nearest-neighbours equilibrium lattice parameters and elastic

constants used in the simulations.

We denote by RHH
0 , RLL

0 , RHL
0 (RLH

0 ), the equilibrium distances between 1n HS-HS, LS-

LS and HS-LS configurations. Thus, we have R0(+1,+1) = RHH
0 , R0(−1,−1) = RLL

0 ,

R0(+1,−1) = R0(−1,+1) = RHL
0 . Table I summarizes the values of the equilibrium lattice

parameters, and elastic constants used in the simulations. For simplicity in this study, we

assume that RHL
0 =

(RHH
0 +RLL

0 )
2

, and we choose B2n = C3n for second and third neighbours.

The second and third-nearest-neighbours have been considered specifically to avoid shear-

ing inside the lattice, and to ensure its stability. Moreover, the choice of B2n = C3n = 0.3A1n

has been done to be consistent with previous works at 2D with elastic model [50], and thus

enabling an easier comparison between results from different analysed systems, but with

the same electro-elastic model. In fact, even a very small value of 2n and 3n interactions

are enough to realize the lattice stability even with open boundary conditions. However,

increasing these elastic constants more than the values of the 1n elastic constants leads to

other types of behaviours in the nucleation of the HS fraction. This part is interesting and

deserves to be studied for its own as a separate work.

The simulations, and the results presented in this paper, have been performed using,

as far as possible, realistic parameter values [51]: ∆ = 450K and g = 150 leading to the

equilibrium transition temperature of the Ising-like model Teq = ∆
kB ln g

≈ 90K. According

to the used values of elastic constants, the bulk modulus, E, is roughly evaluated as A1n

R0
,

leading to a value of 5 GPa, which is in fair agreement with those reported in literature [52].
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B. Simulation method

We consider a 3D parallelipedic lattice of size (Nx ×Ny ×Nz) = (96 × 32 × 32) with

98 304 spins, and free boundary conditions in order to consider for the macroscopic lattice

deformation arising from local volume expansions/contractions resulting from the spin flips.

The resolution of this model is based on an adaptation of code written in CUDA, developped

for a similar 2D electro-elastic model by our team [53]. This implementation takes advantage

of the performance of Nvidia computing cores integrated in graphics accelerator boards:

thanks to them, we can significantly improve the size of our simulation cells, without too

much compromise with the computation time. When the code is executed, CUDA generates

a grid of threads that are organized in a three-dimensional hierarchy. Each grid is organized

into an array of thread blocks, where each one can contain up to 1024 threads and thread

block size should be a multiple of 32 due to the multiprocessor of the cards wich can create,

manage, schedule, and execute threads in groups of 32 parallel threads called warps. For each

chosen simulation size of the system, the thread block size has to be well defined for a better

efficiency. Thus, very small block sizes, e.g. 32 threads per block, may limit performance

due to occupancy, whereas very large block sizes for example 1024 threads per block, may

also limit performance. The graphics accelerator boards used is a Nvidia RTX A5000 based

on the Ampere architecture with 8 192 cores, 24 GB GDDR6 memory available, a single

precision performance up to 27.8 TFLOPS, and the CUDA driver version installed is 11.4.

We implement two different approches to solve Hamiltonian (1): one for the evolution of

electronic (spins) degrees of freedom, and another one for the structural aspects by perform-

ing respectively a Monte Carlo Metropolis simulation (MC) on spin states combined with a

simulation of molecular dynamics (MD) to relax mechanically the lattice positions.

1. Monte Carlo Metropolis algorithm and simulations methodology

First of all, we initialise the elastic network by setting up the initial positions of the

sites and their initial desired spin values (for example all spins S = +1 and all distances

rij = RHH
0 ), and then we let the lattice relax mechanically to reach its equilibrium if neces-

sary.
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Afterwards, we use a parallelized MC algorithm over the spin states (S = −1 and S = +1)

to realise their thermal switching. Thus, there is no true magnetic (exchange) interactions

in the model where the spins interact through the elastic lattice (i.e. the springs). Thus,

each spin site represents a spin-crossover molecule whose degrees of freedom are defined

by its spin value ±1 and its coordinates (x, y, z) in the lattice. The entire spin network

is divided into sublattices which are then mapped onto thread blocks, where each of the

sublattice/block contains (16 × 4 × 4) = 265 threads, representing 256 molecules, that are

also called sites or nodes through the paper. Overall, this forms a three-dimensional grid of

(6× 8× 8) = 384 thread blocks. These blocks are contiguous, as the sites inside each block:

we subdivide the spin lattice into multiple blocks in order to improve the computational

time. We update the entire spin lattice in a parallel way at a frozen lattice configuration.

In other words, we do not update the spins until we finish testing all the sites, this implies

that whatever is the order in which we test the site and whether the blocks are contiguous

or not, it doesn’t change the result. Our GPU can perform operations on up to 8192 threads

simultaneously. Indeed, the GPU is built on an array of Streaming Multiprocessors (64

in our case), where each Streaming Multiprocessors has a total of 128 cores and performs

operations on only one thread block at a time. In addition, the order in which thread blocks

are scheduled on the Streaming Multiprocessors, is decided by the hardware at runtime.

Indeed, in CUDA each block of threads is scheduled (independently from the others) on any

of the available multiprocessors within the GPU, in any order, concurrently or sequentially,

so that the program can be executed on the maximum number of multiprocessors. The spin

flip procedure is done by the usual Monte-Carlo technique based on Metropolis transition

probabilities. This Metropolis procedure is performed with random numbers obtained by a

pseudo-random numbers’ algorithm of high statistical quality, thanks to the library cuRand

integrated in CUDA. To summarise, we select 8 192 sites i among the Nx × Ny × Nz sites

of the lattice, with spin values {Si} = ±{1}i and position vectors {−→ri }, and new spin

value {Si new} = −{Si} are set without changing the lattice positions. Each spin change is

accepted or rejected by the usual MC Metropolis criterion. We store {Si new} in a different

vector, adn we repeat the procedure for the next 8 192 sites until all the 98 304 sites of the

entire spin lattice are inspected for the spin change. Next, we relax mechanically the whole

lattice through a molecular dynamics algorithm described below. Thus, in the procedure all

lattice positions are updated 300 times at fixed spin configuration. We define this as the
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unit time of Monte Carlo procedure (MCS). We would like to highlight that this numerical

procedure is not a cluster algorithm, like the Swendsen-Wang one [54]. It is interesting to

mention that we could test 8 192 non-contiguous spins, update them and relax the system

mechanically, then test the next 8 192 spins and so on. However, this method significantly

slows down the simulation due to conflicts in accessing memory. This is why we test all

spins before updating and relaxing.

2. Molecular dynamics algorithm

After all spins update, the elastic lattice is relaxed in a deterministic way to reach the

stable mechanical state in a parallel way: each computing core calculates the gradient

of potential energy of each site of equation (1), in order to determine the force vector,

F⃗ = −∇⃗Helast, acting on every molecule or site. The obtained force field over the whole

system is then normalised with the larger norm of the gradient, and the lowest energy

configuration is searched by relaxing the system in overdamped dynamics with a time step

dt2 = 0.001 (and setting the value of the discretisation step for the finite differences at

10−5). This is the principle of the well-known steepest descent algorithm, useful to find

the local minimum of the elastic energy landscape. The new positions of the molecules are

recalculated using this new force field with a strong damping to avoid oscillations. This

procedure is repeated 300 times, the aim being to reach the equilibrium state, which can be

monitored with the time dependence of the total elastic energy of the system, which reaches

a minimum averaged value.

We consider that every molecule has a damped oscillatory-type motion. The system

of coupled differential equations for all molecules is md2−→ri
dt2

=
−→
Fi − µd−→ri

dt
, where −→ri is the

Cartesian site position vector of site i and m is the mass of the particle, µ is the damping

factor. In the case of overdamped dynamics, this equation becomes d−→ri
dt

= 1
µ

−→
Fi , where

−→
Fi

is the total force acting on site i. If one considers only next-nearest elastic constants, the

time scale of the dynamics is then ∼ µ
A1n

. The dynamics is stopped when the force on

each node approaches zero. As a general observation, the MC time, given in Monte Carlo

Steps, is purely artificial and is hard to connect with any real dynamics or real experimental

timescale. Molecular dynamics (MD) time is connected with the elastic constants and the

10



damping constant, however, one can easily modify the time step (dt2 = 0.001) or the number

of MD iterations (here 300) performed between the selection of two successive spins for the

MC process. A low number of MD iterations means that the lattice is not completely relaxed

after each spin update, which makes the MD and MC processes competing. In the present

MD simulations, we have chosen for practical reasons and also for the sake of simplicity,

to well relax the lattice (300 MD iterations) after each MC spin update, and therefore the

MD and MC dynamics are well separated. In other words, the lattice dynamics is assumed

to be faster than the spin state relaxation. Indeed, usually the lattice relaxation is in the

picosecond timescale, while the spin-state relaxation, that is the relaxation of the HS and LS

states of the molecule, is in the range of the micro to nanoseconds as it has been observed

in old Mossbauer experiments [55–57] in non-cooperative spin-crossover materials where the

fluctuations of the spin state of the molecule falls in the timescale of the Mossbauer technique

(10−8s) leading to widen the spectra when the frequency of the HS to LS fluctuation crosses

that of the observation technique.

It is worth mentioning that using 0 K molecular dynamics simulation may lead the lattice

subsystem to fall into a metastable state. However, since we allow spin state fluctuations

in the MC process which affect the lattice energy, because of spin-distortion interaction, it

is always possible to leave these metastable states in a reasonable finite time, except when

the simulations are done at very low-temperature, which exponentially increases the lifetime

of the metastable states. Although, this type of dynamics is also used by other authors

when treating 2D and 3D mechano-elastic systems [29]. Nevertheless, performing finite

temperature Verlet or Nose-Hoover algorithms would allow to have the same temperature for

the spin and lattice subsystems, but it would lengthen the computational time simulations.

3. Measurements and calculations

The numerical simulations on temperature are done, thanks to the previous two algo-

rithms, by using a defined amount of MCS as a waiting time to reach the stationary states

at each temperature: the number of MCS depends of the simulation parameters and is

defined empirically (typically NMCS
therm = [100, 500], depending of the elastic constant value

A1n). The temperature sweep rate is taken to 1 K every NMCS
therm steps. Then, over the

next 50 MCS, statistics are made to determine average physical values, like the HS frac-
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tion nHS (T ), the mean distance between molecules, etc... Each averaged measurement is

carried out after performing 3 independent runs to ensure that the different configurations

used for means are statistically independent, so as to obtain uncorrelated equilibrium states.

For example with an elastic constant value A1n = 3 000, for each temperature step the

simulation takes about 5 min 30 sec for a number NMCS
therm = 500 with CUDA: the time needed

to perform a thermal cycling of Figure 2 is about 22 hours for the A1n = 3 000 case. For

comparison, in sequential (on a desktop computer with Intel Core i5-10500 at 3.10 GHz with

27.953 MFLOPS and 32 GB of memory), for the same parameters, it would take about 1

hour and 35 min for each temperature step, and then about 16 days for the same thermal

cycle in the A1n = 3 000 case. Thanks to our parallel computing with CUDA, here we

enhance the calculation time by a factor 17.

The HDF5 library [58] is used for writing into files the spin state, the position and other

configuration’s information in order to store, manage and do post-processing on them easily.

III. RESULTS

A. Thermal spin transition

The thermal properties of the electro-elastic 3D lattice is monitored by the HS fraction

nHS = (1+<Si>)
2

as a function of T . Figure 2 represents the thermal hysteresis loop of our

98 304 spins for various elastic constant values A1n. We observe that in the absence of any

kind of interactions (A1n = 0 = B2n = C3n), the thermal transition is smooth and gradual,

and no hysteresis is detected. For low elastic constant values A1n, the hysteresis is also

undetectable. When the magnitude of elastic interactions is larger than a critical value,

AC
1n = 250, a hysteresis does appear: its shape and width depend on these interactions,

becoming larger and more abrupt for more important values of A1n. This expected behaviour

is similar to the experimental situations where compounds with strong interactions between

the SCO complexes show wider hysteresis. We also notice that larger values of A1n involve

a squarer thermal hysteresis loop as observed in other 2D and 3D studies [43, 59].

The width of the hysteresis ∆T is defined as a temperature interval between the heating

Tup and the cooling Tdown branches. These temperatures are defined as equilibrium temper-
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Figure 2 – Thermal dependence of the HS fraction nHS for different values of elastic

constants A1n with error bars representing the standard deviation on the average nHS for

each temperature for the simulation cell size (96× 32× 32). Remark: each presented point

has an error bar; however, the latter are visible only near the HS-LS transition, above and

below the size of the error bars is smaller than the size of the points.

atures at nHS = 1
2
, and so ∆T = Tup − Tdown. As can be seen in Figure 3 where we plot the

hysteresis width ∆T as a function of elastic constant values A1n above the critical threshold

AC
1n, we realise that the dependence of ∆T follows a power law almost parabolic. We plot

a nonlinear regression with a power law ∆T = f(A2
1n) where a 95% confidence is found. Of

course, this dependence doesn’t take into account others physical parameters of the system

(different sizes of the simulation cell, elastic constants of the B2n and C3n neighbours, lattice

misfit between HS and LS, etc...) whose slope may depend, which should be considered

in a more detailed study to verify whether this power law exponent β ≈ 2 can fall in a

universality class at 3D or not.

Since we have a 3D lattice, we want to study the effect of the shape anisotropy of the

system by analysing the nHS fraction for each plane of spins along the three directions of

space. For instance in the (Ox) direction, we have sliced the simulation cell in perpendicular
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Figure 3 – Hysteresis width ∆T as a function of the square of the elastic constant values

A1n above the critical threshold AC
1n showing a linear behaviour. We take the values of

A1n ≥ 1 000 K.nm−2 which are more easily measurable. In blue, we plot a linear regression

with 95% confidence bounds.

planes (yOz) at each spin node along the (Ox) direction, and we calculated the mean nHS

fraction in each of the 96 planes. Figure 4 shows the hysteresis loop as a function of T for

each of the Ni planes of spins, perpendicular to the (Oi) direction, with i = {x, y, z}. We

observe that there is a privileged direction for the propagation of the spin transition inside

the system along the (Ox) direction, that is the elongated direction of the simulation cell.

As a matter of fact, in that direction, we can see a cascade effect of the perpendicular spin

planes that flip during the heating or the cooling branches of the loop at the approach of the

transition temperature Teq ≈ 90K, whereas there is no cascade effect in the (Oy) and (Oz)

directions where the spin transition takes place simultaneously in all perpendicular planes.

The difference between the transition temperature, between the transformation along (Ox)

and both (Oy) and (Oz) directions is mainly attributed to bulk transformation for (Ox) and

transitions on lattice surfaces for (Oy) and (Oz).

We are also interested in elastic variations of the lattice. For that, we compute the volume

of the simulation cell as a function of T , and then we calculate the relative volume change,

Vrelat =
V (T )−VLS
VHS−VLS

, where VLS and VLS are respectively the volume of the simulation cell when
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(a) 96 planes of spins perpendicular to the (Ox) direction.

(b) 32 planes of spins perpendicular to the (Oy) direction.

(c) 32 planes of spins perpendicular to the (Oz) direction.

Figure 4 – Mean nHS fraction as a function of T for each of the Ni planes of spins,

perpendicular to the (Oi) direction, with i = {x, y, z}. Remark the cascade effect along

(Ox) direction and the simultaneous transitions of all planes along (Oy) and (Oz)

directions.
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Figure 5 – Elastic variations of the lattice Vrelat as a function of electronic variations nHS

during hysteresis loop presented for the case of the cooling branch for A1n = 3 000 for

illustration. The same results are found for the heating branch, or for others elastic

constant values. Insert: The two considered variations Vrelat and nHS as a function of T .

all spins are in the LS or HS state. To compare the changes of electronic nHS and elastic

Vrelat order parameters, we represent in the Figure 5 Vrelat(T ) vs nHS(T ) for the case of the

cooling branch for A1n = 3 000. The two variations align perfectly, meaning that there is

a good correlation between the behaviour of the electronic and the mechanical properties

during the thermal transition. We show in insert the two variations as a function of T for

information. The same results are found for the heating branch, or for others elastic constant

values, when hysteresis appears in the system. As a note, this result relates to the lifetime of

the metastable states around the thermal hysteresis and the interplay between the dynamics

of the spin and lattice degrees of freedom. Indeed, according to the simulation procedure

in which the system is sufficiently relaxed mechanically (300 runs), after each spin flip, the

volume follows adiabatically the behaviour of the HS fraction, as shown in Figure 5, where
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Vrelat and nHS are superimposed. Conversely however, if we perform the simulations with

less molecular dynamics runs (for example 10 instead of the previous 300, to exaggerate the

effect) after each spin flip, then the lattice relaxation will interfere with that of the spin

network and the thermal responses of Vrelat and nHS will be different with wider thermal

hysteresis, see the Figure S1 of [60].

Furthermore, as illustrated in Figure S2 of [60], we notice that the thermal evolution of

the averaged 1n, 2n and 3n distances of the neighbouring pairs throughout the lattice follows

the same trend as the thermal dependence of the HS fraction nHS. Moreover, we note that

the extrema values of these averaged distances are consistent with the nearest-neighbours

equilibrium lattice parameters defined in table I.

B. Spatio-temporal aspects of the nucleation, growth, and propagation of the spin

states

The thermal dependence of the order parameters, nHS and < r >, allow to distinguish

gradual transition from first-order, but don’t bring any information about the spatial mech-

anism on the organisation of the spin states along the transition. Here, we aim to investigate

these aspects for the case of the thermally-induced SCO transition, as well as the special

case of low-temperature relaxation of metastable HS states.

1. Along the thermal transition

Figure 6 displays the spatial organisation of the spin states for nHS = 0.55, for a value of

A1n below the critical value (here A1n = 50), showing a random switch of the spin inside the

simulation cell, in agreement with the weak cooperative character of the elastic interactions,

compared to ligand field energy. Whereas value A1n = 3 000 above the critical value lead to

the formation of clusters in the lattice configuration as depicted in Figure 7. In the latter,

the propagation of the spin transition inside the system corresponds to multiple domains of

flipped spins that start independently from all corners and grow toward the center of the

lattice.

We are interested in the lattice strain during the thermal procedure focusing on the study

of the displacement field of lattice spins of the spatial configurations Figure 6 and Figure 7.
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Figure 6 – Snapshot showing the spatiotemporal configurations of the lattice during the

cooling branch at nHS = 0.55 and T = 92K for A1n = 50. Yellow (blue) spheres represent

HS (LS) sites.

As we have done previously for 2D systems [33, 51], we denote by −→u (i, j, k) the displacement

field associated with the spin coordinates (i, j, k), whose expression is defined by the following

equation: −→u (−→r ) = −→u (i, j, k) = −→r (i, j, k) − −→r0 (i, j, k), where −→r (i, j, k) and −→r0 (i, j, k) are

respectively the final and initial positions of the spin vectors (i, j, k) in the lattice. We take

the positions of the LS state as reference initial positions: −→r0 (i, j, k) = (i RLL
0 , j RLL

0 , k RLL
0 ).

Elements of the strain tensor εαβ ({α, β} = {x, y, z}), given by: εαβ = 1
2

(
∂uα

∂β
+

∂uβ

∂α

)
, bring

information about the mechanical effects induced by the growth areas. Here, the derivatives

of the various components of the displacement field are calculated within the approximation

of continuous medium, for example: ∂ux

∂x
= ux(i+1,j,k)−ux(i,j,k)

RLL
0

, ∂uy

∂y
= uy(i,j+1,k)−uy(i,j,k)

RLL
0

, ∂uz

∂z
=

uz(i,j,k+1)−uz(i,j,k)

RLL
0

. Others derivatives ∂ux

∂y
, ∂uz

∂y
, etc... bringing information about deviatoric

strain are calculated in the same way. In particular, the divergence of the displacement

field, the expression of which is:
−→
∇ · u⃗(r⃗) = εxx(r⃗) + εyy(r⃗) + εzz(r⃗), that is the trace of

the strain tensor which describes the local relative volume expansion and gives information

about mechanical effects inside the simulation cell, allows to highlight the elastic character

of the LS-HS interface during the transition.

Figure S3 of [60] and Figure 8 show the spatial distribution of the divergence of the

displacement field during hysteresis loop corresponding to snapshots of spins configurations

of Figure 6 and Figure 7. Since the reference state is that of LS, this leads to a map of the

divergence going from zero (in the LS state - bluish in the figures) to positive values (in the
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(a) nHS = 0.87 at T = 79K

(b) nHS = 0.57 at T = 78K

(c) nHS = 0.21 at T = 77K

Figure 7 – Selected snapshots showing the spatiotemporal configurations of the lattice

during the cooling branch at various nHS values: 0.87 (a), 0.57 (b) and 0.21 (c) for

A1n = 3 000. Yellow (blue) spheres represent HS (LS) sites. Remark the macroscopic

domain character of the HS → LS transformation.
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(a) nHS = 0.87 at T = 79K

(b) nHS = 0.57 at T = 78K

(c) nHS = 0.21 at T = 77K

Figure 8 – Snapshots showing the spatial distribution of the divergence of the

displacement field along the cooling branch of the thermal SCO transition, corresponding

to snapshots of Figure 7.
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(a) nHS = 0.87 at T = 79K (b) nHS = 0.57 at T = 78K

(c) nHS = 0.21 at T = 77K

Figure 9 – Sectional view in the planes (xOz) and (xOy): (a) at Ny (top) and Nz

(bottom), and at Ny

2
(top) and Nz

2
(bottom) for (b) and (c), of the spatial distribution of

the divergence of the displacement field corresponding to snapshots of Figure 8.

HS state - reddish in the figures). We realise that for A1n = 50, below the critical value

of elastic constant, the strain is randomly distributed in the simulation cell, as depicted in

Figure S4 of [60] illustrating different sectional views, wheres for A1n = 3 000, above the

critical value, the most important changes occur in the interface regions as can be seen thanks

to the sectional views of Figure 9. A correlation is of course observed between the divergence

of the displacement field (dilation of the system) and the spins configurations. Furthermore,

the interface shape is almost straight and perpendicular to the simulation cell border. In
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contrast, Figure 9(b) and Figure 9(c) clearly indicate that, contrary to the corresponding

electronic interface of Figure 7(b) and Figure 7(c), the divergence field diffuses far from

both sides of the interface, demonstrating the long-range character of the transformations

operating in the simulated material.

Information about the shear stresses, which causes the distortion of the lattice during

the spin transition, are given by the curl of the displacement field
−→
∇ × u⃗(r⃗). This curl can

be written in term of the rotation vector −→ω by the relation
−→
∇ × u⃗(r⃗) = 2−→ω . Elements

of the rotation tensor ωαβ are given by the equation ωαβ = 1
2

(
∂uα

∂β
− ∂uβ

∂α

)
. This tensor is

skew symmetric: ωαβ = −ωβα, it has only three independent scalar components defining the

rotation vector −→ω , with ωi (i = {x, y, z}) components signifying the i-axis around which

there is a rotation. The components are: ωx = 1
2

(
∂uz

∂y
− ∂uy

∂z

)
, ωy = 1

2

(
∂ux

∂z
− ∂uz

∂x

)
and

ωz = 1
2

(
∂uy

∂x
− ∂ux

∂y

)
. We have calculated the averages of each of the three component ωi

during the thermal cycle, for A1n = 50 (gradual transition) and for A1n = 3 000 (hysteretic

transition) whose respective results are summarized in Figure 10a and Figure 10b. We note

that for gradual transition the same kind of thermal evolution for the three component

appears, with weak oscillations around a mean value (equal to zero for ωx), and almost a

symmetric behaviour for ωy and ωz relative to x coordinate. This implies that rotational

effects arise specifically around the y and z axis in the system. In contrast, for A1n =

3 000, while similar general trend is observed for the three components, an hysteresis is

perceptible, but only for ωy and ωz. This hysteresis occurs for both of them exactly at the

same temperatures, that is between T = 79K and T = 99K, which also correspond to the

switching temperatures found in the corresponding thermal behaviour of the HS fraction.

For further investigations, we compare the spatial distribution of the curl of the displacement

field with previous results at A1n = 3 000. As can be seen in Figs. S4, S5, S6, S7 and S8

of [60], we observe different behaviours in the curl of the displacement field between the

heating and the cooling branches. A correlation between the curl of the displacement field,

the spatial distribution of the divergence (and the electronic interface) is found for the

heating branch, but during the cooling one, the changes in the curl starts some Kelvins

before the interface propagation (more precisely in the same interval of temperatures where

the distortion of the lattice occurs during the heating branch, i.e. around the equilibrium

temperature of the heating branch which is Tup ≈ 99K at nHS = 1
2

via Figure 2), which can

be then seen as a precursor phenomena announcing the occurrence of the front propagation
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event. More details about this peculiar behaviour are given in [60].

2. Along the relaxation at low-temperature of the metastable HS state

We are now interested in the mechanism of relaxation of the metastable HS state at low-

temperature. Such a metastable state can be obtained experimentally by photoexcitation

(LIESST effect) or by rapid quenching of the high-temperature stable HS state. Here, the

lattice is initially prepared in the HS state from both electronic (Si = +1, ∀i) and structural

(rij = RHH
0 ) point of view. This configuration is naturally metastable at low temperature

and, consequently, the system is expected to relax towards the LS state. We perform such

a relaxation isothermally at T = 1K to minimise thermal fluctuations. Through that ap-

proach, we want to understand the effects of the elastic constant values A1n on the nucleation

and growth processes of the LS domains and their propagation through the present 3D lattice

within the present Hamiltonian.

Numerically, we measure nHS every MCS from 0 to 400 MCS. The shape of the relaxation

curves of the HS fraction, nHS, of Figure 11a, which changes from exponential or stretched

exponential to sigmoidal, indicates, as expected, a shift from weak cooperative to strong

cooperative behaviour when increasing elastic constant values A1n. We have outlined the

same elastic values of A1n as in Figure 2, but we have added more values above the crit-

ical threshold A1n = 4 000, 5 000, 6 000, 7 000, 8 000. The calculations of the isothermal

relaxation curves are less time-consuming than the thermal process, that’s why we added

them here to highlight the behaviour at large A1n values. We can see that the lifetime of

the metastable HS state increases in the beginning of the relaxation curve for large values of

A1n, supporting the fact that there is an increase in the elastic energy barrier to overcome

for a spin to flip from a HS to LS state. It is interesting to comment about the sigmoidal

shape of the HS fraction curves in the case of strong cooperative systems (A1n ≥ 6 000).

There, two regimes are obtained: the first one is characterised by a slight decrease of the

HS fraction during the 100 MCS for A1n = 7 000, followed by a new regime where the HS

fraction falls down almost linearly on time. By inspecting the time evolution of the average

nearest-neighbours bond-lengths (< r1n >), represented in Figure 11b, one sees that during

the so-called first regime, which is in fact a stochastic regime, the lattice is already moving

towards the LS structure, by nucleating small LS domains (here mainly in the corners).
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(a)

(b)

Figure 10 – Thermal dependence of the three components ωx, ωy and ωz of the rotation

vector −→ω during the heating-cooling cycle for two different values of elastic constants: (a)

A1n = 50 for gradual transition and (b) A1n = 3 000 for hysteretic transition, where the

presence of a hysteresis in ωy and ωz components is detected. The two vertical dashed lines

indicate T = 79K and T = 99K.
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(a) (b)

(c) (d)

Figure 11 – Time-dependence of the HS fraction (a) and average 1n (b), 2n (c) and 3n (d)

lattice parameters along the relaxation from HS to LS of a lattice initially prepared in the

HS state at low temperature (T = 1K), for various elastic constant, A1n, values. Remark

the significant increase of the lifetime of the metastable state with respect to A1n.

The second regime is then a kind of a flow regime, where the lattice has overpassed the

elastic energy barrier preventing the relaxation. In this regime, the front interface travels

at almost constant velocity, which results in the linear behaviour of the HS with time. For

A1n ⪅ 1 000, corresponding to weak elastic energy barriers, "exponential-shaped" relaxation

curves, suggest that only the second deterministic regime is operating. In Figure 11c, 11d,

we have represented the corresponding time evolution of the 2n, < r2n >, and 3n, < r3n >,

bond-lengths for which a similar behaviour is observed with the two already defined regimes.

In particular, the correlation between the HS fraction, nHS, and the three nearest-neighbours
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bond-lengths is more marked with < r1n > for strong elastic constant, A1n, values, where a

two-step relaxation behaviour is visible during the second regime. Moreover, one can clearly

see that for smaller A1n values (e.g. A1n = 50, 100, 250), the 2n and 3n lattice bondlengths,

whose elastic constants (A2n = A3n = 0.3A1n) are weaker than that of 1n sites, relax faster,

following the already discussed deterministic regime. Besides, in Figure 12 we draw the

variation of the lifetime of the metastable state τ at nHS = 1
2

as a function of the value

of the elastic constant: a power law can be found. We plot a nonlinear regression using a

logarithmic scale on the x and y-axis, with a power law τ ∼ (A1n)
α, with α ≈ 4.41.

Figure 12 – Variation, in log-log scale, of the lifetime of the metastable state τ , evaluated

at nHS = 1
2

in Figure 11)a as a function of A1n, which fits with the linear regression (blue

curve) with a slope α ≃ 4.4, suggesting the power law τ ∼ (A1n)
4.4.

Configurations of the lattice, Figure 13, 14 and Figure S10 of [60] during the relaxation

process reveal interesting spatiotemporal aspects of the spin transition: multi-droplet be-

haviour for weak values of elastic constant values A1n, and cluster behaviour for larger ones,

in good agreement with the previous observation made on the thermal transition.

For weak values of A1n, the weakness of cooperative interactions spreads the domain forma-
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tion, and therefore the nucleation of the LS state takes place everywhere in the lattice with

a ramified structure, as can be seen in spatiotemporal configurations of the lattice in Figure

S10 of [60].

Figure 13 – Snapshots showing the spatiotemporal configurations of the lattice during the

relaxation process at T = 1K from an initial HS phase for a large 1n elastic constant value

A1n = 7 000. Yellow (blue) spheres represent HS (LS) sites.

For large values of A1n, we see that four macroscopic LS domains located at the corners of

the simulation starting from opposite tips of the lattice grow "independently" as far as they

are far from each other, and advance towards the inner part of the sample, as represented in

the spatiotemporal configurations of Figure 13. It is consistent that nucleation of LS phase

take place around the four corners of the lattice in a squared geometry, and spreads over the

whole system, from energetic arguments. The spins in the corner (with only three nearest-

neighbours 1n) and on the edge (with only four nearest-neighbours 1n) are energetically

preferable for the nucleation, which then explains the observations as well as those of the

thermal hysteresis.
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Figure 14 – Specific views of the snapshots showing the spatiotemporal configurations of

the lattice during the relaxation process at T = 10K from an initial HS phase for a large

value A1n = 8 000, with only the LS spins visible during the transition. Yellow (blue)

spheres represent HS (LS) sites.

As an illustration, we present specific views of spatiotemporal configurations for A1n =

8 000 in Figure 14 with only the LS spins visible during the transition to emphasise the

nucleation and propagation processes: the 1n elastic constant becomes strong from this

value, and to achieve the spin transition during the relaxation, we need to let almost 4 000

MCS at T = 10K in lieu of approximately 300 MCS at T = 1K for A1n = 7 000. From

this intensity of nearest-neighbours elastic constant, the nucleation and propagation process

changes and a single cluster appears in a corner of the simulation cell, that propagates along

the propagation direction, through a unique interface HS/LS, to reach the other side of the

cell. The same pattern of nucleation at the very beginning of the MCS occurs, with the

spins in the corner and on the edge are energetically preferable.

We display in Figure 15a the spatial distribution of the local pressure field of the lat-
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(a) View in the plane (xOz) at Ny

2 at various time (MCS).

(b) View in the plane (yOx) at Nz
2 for 4 151 MCS.

Figure 15 – Sectional view in different planes showing the spatial distribution of the local

pressure field of the lattice during the relaxation process at T = 10K from an initial HS

phase for a large value A1n = 8 000.
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tice for A1n = 8 000. To lighten the manuscript, we only show a sectional view in the

plane (xOz) at Ny

2
. The local pressure, Pi at site i, is calculated by the following expres-

sion (which is merely the gradient of the local elastic energy of the lattice at each site i):

Pi = −A1n

∑
j

(rij −R0(Si, Sj)) − B2n

∑
k

(
rik −R

′
0(Si, Sk)

)
− C3n

∑
p

(
rip −R

′′
0(Si, Sp)

)
. This

physical quantity is interesting because it provides additional information than the spatial

distribution of the divergence of the displacement field. Actually the local pressure may

be positive or negative according to the stress applied on the site : a compressive strain is

equivalent to a positive pressure exerted on the site, while a tensile strain results in a neg-

ative pressure. Figure 15a provides detailed information concerning two important points:

(i) the first one concerns the orientation of the front interface which changes from a tilted

shape in the beginning of the transformation to a straight one around t = 4 151 MCS as

a result of the minimization of the total elastic energy by minimizing the interface length.

Second (ii), we can see that the elastic strain deploys at long distance from both sides of

the electronic HS/LS interface, where we see that the LS (resp. HS) phase is experiencing

a negative (resp. positive) pressure. Overall, these results confirm the long-range nature

of the elastic interactions as a driving force of the front propagation along the HS to LS

relaxation. In Figure 15b we show the distribution of the pressure in the plane (yOx) at Nz

2

for 4 151 MCS: the same kind of behaviour is observed, even if the interface seems to be

more jagged in the y direction. Figure S11 of [60] highlight this saw-like pattern through

planes (yOz) at various x direction values, from both sides of the interface, for 4 151 MCS.

We observe this peculiar blueprint for the distribution of the pressure around the interface.

For views in the LS phase (between 44 nm and 39.5 nm) the tensile strain is obvious and

occupies almost all the plane, while for the HS phase (between 39 and 33 nm), the com-

pressive strain is visible, but with a concentric-serrated shape. It is important to notice

that the latter is an artefact due to the meshing of the representation of the local pressure

in the simulations. Actually, the propagation of the pressure wave is isotropic along the x

propagation direction as displayed in Figure S12 and the associated movie S5 inside [60],

where we observe concave-shape in LS phase and convex one in the HS phase.

We study the energetic properties of this transformation through the dependence of the

density of elastic energy, ⟨Eelastic⟩, of the lattice with respect to the growing LS fraction,

nLS = (1− nHS) (see Figure 16a) during the relaxation process. Four distinct regimes are

clearly identified. (i) First, a stationary regime, called here a stochastic regime, takes place
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(a) LS fraction dependence of the elastic energy density showing a non-monotonous behavior

along the relaxation process. See text for more explanations.

(b) Time-dependence of the DTE. Insert: zoom around the energy barrier of the DTE curve.

Figure 16 – Total elastic energy of the lattice in a), and density of total energy (DTE) of

the lattice in b), during the relaxation process at T = 10K from an initial HS phase for a

large value A1n = 8 000. These results correspond to the spatiotemporal configurations of

the lattice in Figure 14.
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around nLS = 0, characterized by an important density of points in this location (see Figure

16a), that lasts for a long time, ∼ 3 300 MCS, as shown in the corresponding Figure 16b. It is

followed by a second regime (ii) where ⟨Eelastic⟩ rapidly increases in the interval of nLS values

ranging between 0 and 0.2 corresponding to the nucleation of LS phase from the lattice corner

(see Figure 14). This increase of the elastic energy is caused by the increase of the surface of

the HS/LS interface, Sinterf =
πR2

8
(R is the interface radius), along the growing LS domain

size which has the shape of an eighth-sphere. When the radius of the sphere becomes equal

to the lattice height or width R = Lz, the interface’s surface goes through a maximum and

so the elastic energy. At this point, the LS fraction can be roughly estimated as equal to

the relative LS volume over the total lattice volume, i.e nLS =

1

8

4

3
πL3

z

L2
zLx

≃ 0.25 which is in

fair agreement with the value nLS ≃ 0.2 derived form Figure 16a. In the third regime (iii),

⟨Eelastic⟩ goes through a minimum at nLS = 0.3 corresponding to the change of the interface

shape which adapts to the new boundary conditions imposed by the lattice borders. When

the interface shape becomes stationary (i.e. straight and parallel to the (yOz) planes) it

propagates keeping an invariant shape, which results in a flat and stationary elastic energy.

The fourth regime (iv) corresponds to the so-called deterministic regime, during which the

total energy decreases and the gain in the electronic energy largely compensates the elastic

energy barrier (see Figure 16b after the maximum). Finally a rapid decrease of ⟨Eelastic⟩

occurs for nLS > 0.8, corresponding to the interface disappearance on the other side of the

propagation axis.

Let us now briefly comment about the time-dependence of the density of total energy (DTE),

given by DTE = ∆eff (2nHS − 1)+ < Eelastic >. This quantity, displayed in Figure 16b,

exhibits all the previous regimes discussed above. In particular, between 0 and 3 500 MCS

the system is in the stochastic regime and the DTE is almost constant to DTE = +∆

because the system occupies the HS state (nHS ∼ 1 and < Eelastic >∼ 0). When the first LS

nucleus appears, the DTE increases due to the appearance of elastic energy excess, which

competes with the electronic energy, giving rise to a macroscopic energy barrier which peaks

around 3 700 MCS, a point which corresponds to the maximum surface of the HS/LS front

interface. Beyond this point, the DTE quickly decreases, announcing the setting up of the

deterministic/flow regime. Lastly, the DTE reaches a negative value almost constant to

DTE ≃ −∆, when all spins are flipped to the LS state (nHS = 0 and < Eelastic >∼ 0).
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Another figure is presented in Figure S13 of [60], showing the spatial distribution of the local

elastic energy for the spatiotemporal configurations of the lattice given in Figure 14, which

confirm that the elastic energy is mainly stored around the HS/LS interface.

When one looks at the propagation front of Figure 14 for A1n = 8 000, we would like to

consider the spread of the elastic interface profiles. To do this, we calculate the Euclidean

distance between two successive spins < d > along the propagation direction (Ox), by

averages in (Oy) and (Oz) directions: we draw different MCS values correlated to the

established propagation front in the simulation cell, as can be seen in Figure 17a. Since

in this case the propagation takes place from one corner with a unique interface HS/LS,

we have to deal with one front coming from one side of the propagation axis, reaching

the other side of the simulation cell. As we can see, the speed of propagation is constant,

and a "cruising speed" is reached. The elastic interface is spatially wide, and cover a

width of approximatively 20 nm. When approaching the interface, the LS region undergoes

to compressive stress, while moving away the interface, the HS region goes through an

expandable stress. To highlight this behaviour, we have shown in Figure 18 the spatial

distribution of the local elastic energy field during the relaxation process in the plane (xOz)

at Ny

2
: one can simply visualise the broad width of the elastic interface confirming the

assessment. This result is in agreement with experimental optical microscopy data of SCO

single crystal [61]. Furthermore, this tends to imply that the shape of the HS/LS interface

can adjust itself to the geometry of the system in order to reduce the total energy of the

lattice. We compare these results with the spread of the electronic interface profiles for the

same parameters, as shown in Figure 17b. Due to the propagation process, the same kind

of behaviour is observed with one front coming from one side of the propagation axis to the

other. The electronic interface is spatially sharper and covers a width of approximately 8 nm,

while the elastic interface is significantly broader (several tens on nanometers) extending

from both sides of the electronic interface.

IV. CONCLUSIONS

In this paper, we studied the thermal properties of the electro-elastic 3D lattice, the

macroscopic nucleation, growth, and propagation (NGP) of the front transformation during

the spin transition in a 3D parallelipedic shaped system.
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(a) Elastic interface profiles corresponding to the Euclidean distance between two successive spins.

The dashed lines represent the equilibrium 1n distances RHH
0 = 1.20 nm and RLL

0 = 1.00 nm.

(b) Electronic interface profiles.

Figure 17 – Elastic and electronic interface profiles along the propagation direction (Ox)

by averages in (Oy) and (Oz) directions. Some different MCS values correlated to the

established propagation front of Figure 14 have been shown. The arrows represent the

propagation direction, as visual indicators.
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Figure 18 – Sectional view in the plane (xOz) at Ny

2
showing the spatial distribution of

the local elastic energy field during the relaxation process at T = 10K from an initial HS

phase for a large value A1n = 8 000.

We examined the shape of the thermal hysteresis of the HS fraction through the variation

of the magnitude of the nearest-neighbours (1n) elastic constant, and we realised that above

a critical threshold value of the 1n elastic constant, hysteresis arose out from elastic interac-

tions. We analysed the dependence of the width of this thermal hysteresis window according

to the 1n elastic constant value, and a power law emerged with an exponent approximately

equal to 2. We performed an analysis on the dependence of the thermal HS fraction along

the three directions (1, 0, 0), (0, 1, 0) and (0, 0, 1) of the lattice, and we pointed out a cascade

effect along the extended direction of the simulation cell. A good correlation between the
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elastic variations of the lattice and the electronic variations of the spins during the hysteresis

loop in thermal process has been displayed.

We investigated the NGP mechanisms along the thermal transition and similar tendencies

as those observed in 2D lattices are found: above a critical value of the 1n elastic constant,

the spin transition changed from random switching of the spin states to collective macro-

scopic domains starting from the corners of the simulation cell and propagating toward the

inner part. We calculated the divergence of the displacement field, representing the relative

volume expansion/contraction of the simulation cell, and a good agreement has been found

between the spatiotemporal configurations of the spins and the divergence field during all the

thermal transition. The interface shape was identified as being straight and perpendicular

to the border of the cell thanks to that field.

We also computed the curl of the displacement field, accounting for the deviatoric strain

in the lattice: during the heating branch a good correlation has been found with the spa-

tiotemporal configurations, however there was a delay of some degrees for the appearance

of the distorsion during the cooling branch compared to the propagation of the interface

in spatiotemporal configurations (the distorsion appeared before the interface in configura-

tions). This phenomenon suggested a memory effect during the cooling branch relative to

the heating branch happening in the first place.

We also investigated the NGP mechanisms over the relaxation process at low-temperature

of the metastable HS state: the time dependence of the relaxation curves of the HS fraction

confirmed the shift from weak cooperative to strong cooperative behaviour when the 1n elas-

tic constant increase. Moreover, for strong interactions the spatiotemporal configurations

indicated that nucleation of LS phase take place around the corners of the lattice (on the

edge and in the corner), spreading over the whole system toward the center of the simulation

cell.

All of these results provided an overview of the 3D behaviour of spin transition materials

modeled by a electro-elastic 3D lattice.

Among the possible developments of the present work, we quote: (i) the interesting ex-

tension to anisotropic elastic lattices by considering different A1n values in three directions

of space, which would be more consistent with the experimental reality of the materials

studied in laboratory, (ii) the study of the lattice’s shape effects by changing the simula-

tion cell, or by considering different symmetry of the elementary cell is also an important

36



objective of these 3D simulations. We could investigate under isotropic, or uni-axial, pres-

sure to determine the effects on thermal transition and propagation dynamics of the HS/LS

interface.
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