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Abstract: We study the concept of systems synchronisation in Max-Plus algebra. We show
that the problem of synchronising Max-Plus linear systems is twofold. It can be stated in terms
of controlled invariance, and of coreachability. The controlled invariance is the property of a
set for which a suitable control exists, that maintains the trajectory in the set. We recall some
properties of controlled invariance, in particular the existence of a maximal controlled invariant
set included into any given set. Beyond the determination of the admissible controlled invariant
set, we define and study a problem of coreachability. The controlled invariant set is the target
and we study the existence of a control law that brings the trajectory to the target from the
initial state within a specific number of steps. We illustrate the study with an example from the
literature.
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1. INTRODUCTION

The concept of (A,B)-invariance, or controlled invariance,
was introduced independently by Basile & Marro (1969),
and by Wonham & Morse (1970). It is the basic stone
of the so-called geometric approach, for the control design
of linear systems, that has given throughout the 70’s the
solution of many classical control problems, among which
the disturbance decoupling problem, the regulator prob-
lem, and various observer design problems, see Wonham
(1974); Basile & Marro (1992) for a complete account of
these results. Later on, it has been instrumental in the
80’s for the development of the robust control theory and
the standard approach, see e.g. Trentelman et al. (2001).
The geometric approach is an elegant framework, that
permits both the verification of the existence of a control
law solution of the problems, and the effective computation
of solutions, when they exist.
The concept of controlled invariance was shown to be
useful in the framework of systems over a ring or a
semiring. Various classes of distributed systems can indeed
be seen as linear systems over an operator ring or semiring
(see for instance Kamen (1978); McEneaney (2006)). The
concept of controlled invariant module was introduced for
the sake of generalizing the classical results to such classes
of systems. Hautus (1982), and Conte & Perdon (1995),
are seminal references for systems over a ring.
Systems over a semiring, and particularly Max-Plus linear
systems, have been thoroughly studied in the seminal

reference Baccelli et al. (1992). They are useful to model
timed discrete-event processes subject to synchronization
constraints, especially in production management, logistic
systems, transportation networks. Many control problems
from these areas have been formulated and solved within
this framework, see for instance the complete survey from
Hardouin et al. (2019), or Komenda et al. (2018). In
the case of systems over a semiring, Amari et al. (2012)
have used the notion of invariance in a problem of control
design to solve a constraint satisfaction problem. Di Loreto
et al. (2010) has addressed observation problems, and a
steady-state control problem is considered by Gonçalves et
al. (2016).
The basic results on controlled invariance for systems over
a semiring are due to Katz (2007). He stated that it exists
a maximal controlled invariant module in every given
module in the max algebra and many other semirings. He
pointed out that the computation of this maximal set is
an open problem in general, and identified a number of
important particular cases where the problem is solvable.
Sufficient conditions are often met in practice, that allow
this computation, but in turn, there are many different
problems that pose the same question, and are open
in general, for instance the computation of conditioned
invariant modules Di Loreto et al. (2010), that is needed
in observation problems Hardouin et al. (2017), or of
the reachability module of a linear system (see Gaubert
& Katz (2004)).



In the present paper, we define another notion that is
closed to the concept of controlled invariance, that is
the coreachability. We show that the synchronization of
two Max-Plus linear systems comes down to a pair of
subproblems. The first one is the problem of computing the
maximal controlled invariant set included into a module
that represent the synchronization constraint, and the
second problem consists in computing the coreachable set
of this maximal controlled invariant set, from which can
be reached a trajectory satisfying the constraints.
The paper is organized as follows. In Section 2, we intro-
duce the basic concepts, namely the controlled invariance,
the coreachability, and elementary notions on Max-Plus
modules. We treat the synchronization problem in Section
3, and illustrate the results in Section 4 using 2 examples.

2. BASIC CONCEPTS

2.1 Notation

Roman letters like a, b, · · · , denote numbers or vectors.
Roman capitals A,B, · · · denote matrices, and calligraphic
capitals A,B, · · · denote sets. For two matrices A and
B having the same number of rows, (A,B) denotes the
matrix obtained by the concatenation of the columns of
A and B. The ith component of a vector v is denoted vi,
and the entry of a matrix M that is situated in row i and
column j is denoted Mij . In the sequel, Rmax denotes the
max-plus semiring, that is the set R ∪ {−∞}, endowed
with the operations max, that is denoted ⊕, and plus, the
usual addition, denoted ⊗. Both operations are extended
to vectors and matrices of compatible dimensions, in
a usual way. We sometimes omit the product sign ⊗,
writing for instance Ax = A ⊗ x. The max-plus semiring
completed by the element +∞ is denoted Rmax. Both
are idempotent semirings, say the max and the plus
operations are internal laws, associative. They have −∞
and 0 as neutral elements, respectively. The operation plus
distributes over the operation max, and in addition, the
operation max is idempotent, i.e. for every elements x in
Rmax or Rmax, we have x⊕x = x. We denote In the n×n
matrix in which diagonal elements are equal to 0, and the
other entries are equal to −∞. We also denote ε the neutral
element for operation ⊕, say ε = −∞, and we use the same
notation ε to denote any matrix with all components equal
to −∞.
In the following, we make an intense use of set operations.
The collection of all subsets of a given set S is denoted
P(S). A matrix M ∈ Rn×m

max being given, we denote by
ImM its image.

ImM = {x ∈ Rn
max | ∃v ∈ Rm

max, x = Mv} .
The image by M of any set S ⊂ Rm

max is denoted MS, and
the preimage by M of any set T ⊂ Rp

max is denoted M−1T .
The difference of two sets S,S ′ ⊂ Rm

max, denoted S 	S ′ is
defined as {x” ∈ Rm

max | ∃x ∈ S, x′ ∈ S ′, x”⊕ x′ = x}.

2.2 Controlled invariance

We consider in this part a controlled system of the form
x(k + 1) = Ax(k)⊕Bu(k + 1) for k ∈ N , (1)

where A ∈ Rn×n
max , B ∈ Rn×m

max , n and m are positive
integers, and for k ∈ N, x(k) ∈ Rn

max and u(k) ∈ Rm
max.

The variable x is called the state of the system, and u is
called its input. The vector x(0) is called the initial value
of (1).
Such a system is called a Max-Plus linear system. This
class of models is of frequent use in production manage-
ment, communication or transportation networks, and eco-
nomical systems (see for instance Komenda et al. (2018)).
An important and actual tendency is to make use of a
geometric point of view, and the basic concept of this
approach is that of controlled invariance.
Definition 2.1. A set S is said to be controlled invariant
if, for every vector x0 ∈ S, there exists a control u such
that the solution of system (1), initialized at x(0) := x0
remains entirely in S, i.e. ∀k ∈ N, x(k) ∈ S.

The properties of controlled invariant sets are still under
investigation, however there are a number of properties
that are well known (the case of the submodules of Rn

max,
or over various other semirings, has been particularly
studied, see for instance Katz (2007); Di Loreto et al.
(2010)).
Prop 2.1. A set S ⊂ Rn

max is controlled invariant if and
only if the following inclusion holds true: AS ⊂ S 	 ImB.
Equivalently, S is controlled invariant if and only if the
following inclusion holds true: S ⊂ A−1(S 	 ImB).

Proof By definition, the set S is controlled invariant if
each of its elements x satisfies Ax ⊕ Bu ∈ S for some
vector u ∈ Rm

max. The result follows since Bu takes all
the values in ImB when u varies, and by definition of the
operation 	.
Further, we state the property, that is well-known for
systems over a field.
Prop 2.2. The union of any family of controlled invariant
subsets in P(Rn

max) is also a controlled invariant set. As
a consequence, every subset of Rn

max, say S, contains a
unique maximal controlled invariant subset, which con-
tains every other controlled invariant subset of S. This set
is equal to the union of all the controlled invariant sets
included in S. This maximal controlled invariant subset is
denoted V?

S(A,B).

Proof Any vector in the union, say x, lies into one of the
sets of the set family that is considered. Since the sets are
assumed to be controlled invariant, there exists a control
u such that Ax⊕Bu lies into the same set, which in turn
is an element of the union of all the sets in this family.
This shows the result.
As for systems over a field, one can try to compute the
maximal controlled invariant subset of a given set, using
the following procedure:
V0 = S , Vi+1 = S ∩A−1(Vi 	 ImB) , for i ∈ N . (2)

This set recurrence defines a sequence of subsets {Vi}, that
has the following properties.
Prop 2.3. The sequence of subsets {Vi} is decreasing. The
intersection of all its terms, denoted Vω :=

⋂
i∈N Vi,

satisfies V?
S(A,B) ⊂ Vω.

In addition, this inclusion is an equality if there exists an
integer k such that Vk = Vk+1.

Proof By the definition (2) of the sequence, we notice that
V1 ⊂ V0. Further, we remark that the operator defining



the sequence iteration is isotone. As a consequence, the
inclusion Vi+1 ⊂ Vi is implied by Vi ⊂ Vi−1. This permits
to realize, by induction, that the sequence is decreasing.
Further, we show that every step of the sequence is a
set that contains the maximal controlled invariant set
included into S. This is the case of the initial step, since
V?
S(A,B) ⊂ S, by definition. In addition, V?

S(A,B) is
included into its image by the operator that defines the
sequence (2). Since the operator is isotone, this permits
to show that V?

S(A,B) is a subset of Vi, for i ∈ N,
which proves the second statement. Finally, if for some
integer i, the equality Vi = Vi+1 is true, then the sequence
stabilizes, and we have Vk = Vi for every k ≥ i, and
therefore Vω = Vi. Further, we have Vω = S ∩ A−1(Vω 	
ImB). Thus, we deduce using Proposition 2.1 that Vω
is a controlled invariant set, which is included in S,
and therefore, it is included into the maximal controlled
invariant set V?

S(A,B). This reverse inclusion ends the
proof.

2.3 Coreachability

Another basic concept that is useful in many control
problems is that of coreachability. This concept is of
frequent use in the framework of languages and automata.
We introduce it in the context of max-plus linear systems.
Definition 2.2. Being given an integer k ∈ N, a state x0
is said to be k-coreachable w.r.t. a set S ∈ P(Rn

max), and
system (1), if there exists a control sequence u such that
the state of system (1) is driven to x(k) ∈ S.
The state x0 is said to be coreachable w.r.t. a set S ∈
P(Rn

max), and system (1), if there exists a control sequence
u and an integer k such that the state of system (1) is
driven to x(k) ∈ S.
The set of coreachable states w.r.t. S is denoted Cor (S),
and the set of k-coreachable states Cork (S).

The system (1) being given, together with the set S, we
define the sequence of sets Ci by the following recursion:

C0 = S , Ci+1 = A−1(Ci 	 ImB) . (3)
This sequence gives a characterization of the k-coreachable
sets of S.
Prop 2.4. With the previous notations, we have Ck =
Cork (S), for k ∈ N. As a consequence, we have Cor (S) =⋃

i∈N Ci.

Proof Indeed, we can see that S is the 0-coreachable
set of S. Further, let us define the set operator φ by
φ(X ) = A−1(Xi 	 ImB), for every X ∈ P(Rn

max). By
Definition 2.2, if a vector x0 ∈ Rn

max is 1-coreachable, then
there exists two vectors x ∈ S, and u ∈ Rm

max, such that
Ax0 ⊕ Bu = x. This is equivalent to x0 ∈ φ(S). More
generally, φ(X ) is equal to the 1-reachable set of X , for
every set X ∈ P(Rn

max). The first conclusion comes from
the fact that, indeed, the (k + 1)-coreachable set of S is
nothing but the 1-reachable set of the k reachable set of S.
The final statement is deduced from this characterization,
and from Definition 2.2.
Notice that, in general, (3) does not permit to easily
calculate the coreachable state of S. Indeed, general sets
are difficult to parameterize, the computation of each
iteration may be difficult, and the sequence of set does

not stabilize or converge to any set. There is an important
particular case, when the set S is controlled invariant. In
this case indeed, the sequence is increasing, so that the
union of its elements can be interpreted as a limit, in the
sense of the following statement.
Theorem 2.1. Assume that S is a controlled invariant set
of system (1). Then, the sequence Ci is increasing. Its limit,
defined by Cω =

⋃
i∈N Ci, is equal to Cor (S), and it satisfies

Cω = A−1(Cω 	 ImB), and:

Cω = inf{X ∈ P(Rn
max) |A−1(X 	 ImB) ⊂ X} .

Proof Define the set operator φ by φ(X ) = A−1(X 	
ImB), for every X ∈ P(Rn

max). This operator defines the
recurrence (3), and is also a characterization of controlled
invariance. Therefore, if S is controlled invariant, then
S ⊂ φ(S) Hence, in this situation, we have the inclusion
C0 ⊂ C1. Further, since φ is isotone, one checks by
induction that the inclusion Ci ⊂ Ci+1 is actually true for
i ∈ N, so that the sequence Ci is increasing. We know from
Proposition 2.4 that the union of all the elements of the
sequence (3) is equal to the coreachable set of S. We now
show that Cω ⊂ φ(Cω). This ultimately comes from the
fact that S is controlled invariant. This first implies that
C0 ⊂ C1, which in turns implies that

⋃
i∈N Ci =

⋃
i≥1 Ci.

Then, we observe that
⋃

i≥1 Ci =
⋃

i∈N φ(Ci), and the
conclusion follows from the fact that the latter union is
included into φ(Cω), like each of its terms φ(Ci). Reversely,
by definition of Cω, for every vector x into Cω, there exists
an integer k such that x ∈ Ck. This implies φ({x}) ⊂ Ck+1,
so that φ({x}) ⊂ Cω, since Cω is the union of all the sets
Ci. This ends the proof.

2.4 Max-plus modules

In practice, equations (2) and (3) are useful if we are
able to compute efficiently the successive images by the
operator φ. This is in particular the case when the sets
Vi and Ci are finitely generated modules. In this case,
there are algorithms that permit to compute the image
of B, the difference between any finitely generated module
and this image, and its preimage by A, and all this sets
are finitely generated modules. Another useful property
is that the iterations stabilize. It is not always met, and,
as a consequence, it is not certain that the limit is finitely
generated (there are examples in the literature, which were
inspired from Wagneur (1996), of sequences that tend to
a limit that is not finitely generated). See also Conte &
Perdon (1995), for a discussion in the case of systems
over a ring, and Katz (2007) for Max-Plus linear systems.
We just recall the basic definitions and results.
By definition, a submodule of Rn

max is said to be of finite
type, or finitely generated, if there exists an integer q, and
a matrix M ∈ Rn×q

max so that M = ImM . There are two
different ways to represent modules of finite type. This
was shown in Butkovic & Hegedüs (1984). They stated
that the family of finitely generated submodules of Rn

max
coincides with the family of cones of finite type, which are
sets of the form

Cone (C,D) = {x ∈ Rn
max | Cx = Dx} ,

where C and D are p× n matrices, for some integer p.



Theorem 2.2. Being given a max-plus moduleM⊂ Rn
max,

the following assertions are equivalent.
(i) There exists an integer q and a matrix M ∈ Rn×q

max
such that M = ImM .
(ii) There exists an integer p and matrices C,D ∈ Rp×n

max
such that M = Cone (C,D).

This result has been often commented in the literature.
The algorithms to pass from a representation to the other
one have been first introduced by Butkovic & Hegedüs
(1984). They were interpreted in terms of duality by
Gaubert & Katz (2007), and they have been refined and
generalized by Allamigeon et al. (2010).

3. FORCED SYNCHRONIZATION OF MAX-PLUS
LINEAR SYSTEMS

3.1 Problem definition

Consider two systems, say (Σ1), and (Σ2) defined as
follows, for k ∈ N:

(Σ1)
{
x(k + 1) = A⊗ x(k)⊕B ⊗ u(k + 1) ,
y(k) = C ⊗ x(k) ,

(Σ2)
{
w(k + 1) = D ⊗ w(k) ,
v(k) = E ⊗ w(k) .

The systems (Σ1) and (Σ2) are said to have synchrone
outputs if their output solutions coincide: y(k) = v(k), for
k ≥ 0. When no input is applied (say u(k) = ε, for k ≥ 0),
we say that they synchronize in finite time if there exist an
integer k0 such that y(k) = v(k), for k ≥ k0. The interest
for these notions comes from the definition of convergence
in the framework of timed discrete-event systems.
The problem that is addressed here is that of the forced
synchronization, which is formulated as follows.
Problem 3.1. (Forced synchronization) We say that the
system is synchronizable, by control, if there exists a
control law u that forces the synchronisation of (Σ1) and
(Σ2) in finite time, other said there exists an integer k0,
such that ∀k ≥ k0, the outputs of both systems (Σ1) and
(Σ2) are equal: y(k) = v(k).
Such a control u is said to be admissible for the synchro-
nization of (Σ1) and (Σ2). If the conditions arise for a given
k0, then the system is said to be k0-synchronizable

There are many variants of this problem. We introduce
here two of them.
Problem 3.2. (Forced subsynchronization) We say that
the system is subsynchronizable, by control, if there exists
a control law u and an integer k0, such that ∀k ≥ k0,
the output of (Σ1) is less than or equal to that of (Σ2):
y(k) ≤ v(k).
If the conditions arise for a given k0, then the system is
said to be k0-subsynchronizable

This last problem is very useful in practice. When the
exact synchonization is not possible, one seeks for the sub-
synchronizability. When the max-plus systems represent
the evolution of the daters of timed discrete event systems
(see for instance Hardouin et al. (2019)), the system (Σ2)
represents the dynamics or the trajectory that must be
tracked, which can be interpreted as the specification of
deadlines for the occurence of events. The inequality in
Problem 3.2 means that the outputs of the controlled

system are produced before the deadline. In manufacturing
problems, one often seeks for just-in-time strategies, where
the difference between the prescribed dates and the ones
that are actually realized is minimized.
Remark 3.1. (Forced state synchronization) A particullar
case that is often considered in the literature is the
synchronization of states. We say that the system is state
synchronizable, by control, if there exists a control law
u and an integer k0, such that ∀k ≥ k0, the states of
both systems (Σ1) and (Σ2) are equal: x(k) = w(k).
If the conditions arise for a given k0, then the system
is said to be k0-state synchronizable. This last problem
is often implicitely considered in the literature, in the
sense that many an author propose control design methods
that are illustrated by examples where the trajectories are
synchronized. To handle it, one simply chooses C = In,
and E = In.

3.2 Twofold conditions of synchronization

We show here that synchronizability is reduced to two
sub problems. We should identify a region that is both
controlled invariant and coreachable from the initial con-
ditions. This is the region of vectors x(k0) that appear in
Problem 3.1.
The first step toward this formulation consists in defining
the extended system (Σe), composed of (Σ1) and (Σ2):

(Σe) xe(k + 1) = Ae ⊗ xe(k)⊕Be ⊗ u(k + 1) ,
where xTe = (xT , wT ), and :

Ae =
(
A ε
ε D

)
, Be =

(
B
ε

)
.

The second step is to show that the condition for forced
synchronization, in Problem 3.1, can be stated in terms of
properties of xe(k0). This is the following fact.
Fact 3.1. The system is synchronizable if and only if there
exists a control u, and an integer k0, such that both
following conditions hold true:
(i) xe(k0) is the initial condition of a trajectory that
remains in Cone (Ce, De), where the matrices Ce and De

are defined as:
Ce = (C ε) , De = (ε E) .

(ii) xe(k0) is reachable from xe(0).

Proof The first item comes from the definition of Problem
3.1, and from the fact that the system (Σe) is time
invariant, as are Σ1 and Σ2. The second item directly
comes from the statement of Problem 3.1.
Using the concepts introduced in Section 2.2, one can
rephrase the above facts as necessary and sufficient con-
ditions for synchronizability, stated in terms of controlled
invariance and coreachability. It ultimately appears that
synchronizability is a property of the initial condition
xe(0). We formulate here the conditions both for synchro-
nizability, and k0-synchronizability when a finite horizon
is prescribed.
Theorem 3.1. Both following statements hold true.
(i) The systems (Σ1) and (Σ2) are synchronizable if and
only if the initial condition of (Σe), that is xe(0), lies in
the coreachable set of the supremal controlled invariant
module included into Cone (Ce, De):



xe(0) ∈ Cor(V?
Cone (Ce,De)) .

(ii) Be given an integer k0 ∈ N, the systems (Σ1) and (Σ2)
are k0-synchronizable if and only if the initial condition
of (Σe), that is xe(0), lies in the k0-coreachable set of
the supremal controlled invariant module included into
Cone (Ce, De):

xe(0) ∈ Cork0(V?
Cone (Ce,De)) .

Proof According to section 2.2, the first condition of
Fact 3.1 means that x(k0) lies in the maximal controlled
invariant module included into into Cone (Ce, De), say
V?

Cone (Ce,De). The results mentioned in Section 2.3 show
in turn that x(k0) must be reachable from the initial
condition, which leads to the second statement of the
theorem. If the horizon k0 is not prescribed, then there
exists an integer k0 such that the trajectory reaches
V?

Cone (Ce,De) at time k0 if and only if this set is reachable
from the initial condition. This ends the proof.
We can state the solution of problems 3.2. The proof
directly follows from that of Theorem 3.1.
Corollary 3.1. We have the following solution of problems
3.2.
(iii)Problem 3.2 has a solution if and only if

xe(0) ∈ Cor(V?
Cone (C′

e,De)) ,

with C
′

e = (CE).
(iv)Problem 3.2 has a solution for a given k0 if and only if

xe(0) ∈ Cork0(V?
Cone (C′

e,De)) .

In the following, we shall illustrate Theorem 3.1 with a
simple example, and Corollary 3.1 on an example taken
from the literature.

4. EXAMPLES

We have implemented the algorithms (2) (3) on ScicosLab,
using in particular the Max-Plus toolbox and a personal
implementation of the algorithms developed by Allami-
geon et al. (2010) to calculate cone or image representa-
tions of Max-Plus modules.
Example 4.1. In order to illustrate Theorem 3.1, we con-
sider two systems. (Σ1) is a system to be controlled and
(Σ2) is a reference system. We wish to find integer k̂ from
which the output trajectory of (Σ1) will synchronise with
that of (Σ2), starting with

x0 =
(

0
0

)
, w0 =

(
0
2

)
.

The systems are defined as follows:

(Σ1)
{
x(k + 1) = A1 ⊗ x(k)⊕B1 ⊗ u(k + 1) ,
y(k) = C ⊗ x(k) ,

(Σ2)
{
w(k + 1) = A2 ⊗ w(k) ,
v(k) = E ⊗ w(k) ,

with

A1 =
(

1 0
ε 0

)
, B1 =

(
0
1

)
, A2 =

(
1 0
3 0

)
.

Here C and E are the 2 × 2 identity matrices. We first
build the extended system (Σe) and seek for the supremal
controlled invariant module included into

Cone
((

0 ε ε ε
ε 0 ε ε

)
,

(
ε ε 0 ε
ε ε ε 0

))
.

This module is generated by the columns of a matrix M ,
that is defined below. Here, starting from (x0, w0), no
synchronisation is possible before k = 2. Indeed, xe(0)
lies in C2, the second step of the algorithm (3) initialized
by S = V?

Cone (Ce,De). The set C2 is generated from the
columns of matrix N , defined as:

M =

 0 ε
ε 0
0 ε
ε 0

 , N =

 ε ε ε 0 −1 ε
ε ε 0 ε ε 0
0 ε ε −1 ε −2
ε 0 0 ε 0 ε

 .

Example 4.2. In their article Necoara et al. (2006) pro-
pose a design method, called Receding Horizon Control
method. They give an example of model tracking, where
the aim is to design a control law so that the state vector
of the system follows a reference signal rsys given by

rsys(k) = (17 15 1 10)T + (4.5 4.5 4.5 4.5)T ∗ k ,
with initial state r0 = (17 15 1 10)T .

In this case, we consider that the system (Σ1) is a system
to be controlled and (Σ2) is the reference system rsys(k).
We wish to find integer k̂ from which the state trajectory
of (Σ1) will subsynchronise with the state of (Σ2), starting
with w0 = r0 and x0 = (20 31.5 42 51.5)T . Here we have:

(Σ1)
{
x(k + 1) = A1 ⊗ x(k)⊕B1 ⊗ u(k + 1) ,
y(k) = C ⊗ x(k) ,

(Σ2)
{
w(k + 1) = A2 ⊗ w(k) ,
v(k) = E ⊗ w(k) ,

with

A1 =

 ε 1 ε ε
ε ε 2 ε
ε ε ε 3
4 ε ε ε

 , B1 =

 2
ε
ε
ε

 ,

and

A2 =

 4.5 ε ε ε
ε 4.5 ε ε
ε ε 4.5 ε
ε ε ε 4.5

 .

Here C and E are 4 × 4 identity matrices. In order to
solve this forced subsynchronization problem (3.2), we first
build the extended system (Σe) and seek for the supremal
controlled invariant module included into

Cone


 0 ε ε ε 0 ε ε ε
ε 0 ε ε ε 0 ε ε
ε ε 0 ε ε ε 0 ε
ε ε ε 0 ε ε ε 0

 ,

 ε ε ε ε 0 ε ε ε
ε ε ε ε ε 0 ε ε
ε ε ε ε ε ε 0 ε
ε ε ε ε ε ε ε 0


 .

This module is not controlled invariant. Therefore we pro-
ceed as in Cárdenas et al. (2017) seeking for the supremal
controlled invariant module V?

Cone (C′
e,De) = ImM , where:

M =



ε ε ε ε ε 0 ε ε
ε ε ε ε ε ε 0 ε
ε ε ε ε ε ε ε 0
−7.5 0 ε ε ε 0 −3.5 −6
−4 ε 0 ε ε −4.5 0 −2.5
−1.5 ε ε 0 ε −2 −5.5 0
ε ε ε ε ε ε ε 0
0 ε ε ε 0 −0.5 −4 −6.5


.

Here, starting from (x0, w0), no synchronisation is possible
before k = 26, indeed, xe(0) ∈ C26, the 26th step of
algorithms (3) initialized by S = V?

Cone (C′
e,De). Here, C26

is generated from the columns of matrix N defined as:



N =



ε ε 0 ε ε ε ε ε
0 ε ε ε ε ε ε ε
ε ε ε ε ε ε 0 ε
ε ε ε ε ε ε ε 0

−59.5 0 −56 ε ε ε −54 −55.5
−56 ε −52.5 0 ε ε −58.5 −52
−53.5 ε −50 ε 0 ε −56 −57.5
−52 ε −56.5 ε ε 0 −54.5 −56


.

Problem 3.2 is solved with k0 = 26, after Corollary 3.1.

5. CONCLUSION

We have introduced the concept of coreachable set, re-
called the definition of controlled invariance, and defined a
controlled synchronization problem for a pair of systems,
in the context of Max-Plus linear systems. The problem
consists of driving the first system in such a way that its
solution coincides with that of the second system, after
a finite time. We have shown that synchronization is a
property of the initial conditions of the two systems. The
computation of the set of admissible initial conditions is
reduced to the computation of the maximal controlled
invariant module, contained in a cone that represents the
synchronization constraint, and of its infimal coreachable
module. We also treated on the same way a problem of
subsynchronization, that can appear when formalizing a
just-in-time control design question. The results have been
illustrated on two examples.
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