
HAL Id: hal-03856095
https://hal.science/hal-03856095

Submitted on 16 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Impacts of the Numerical Calculation Methods on the
Chaoticity of the Fractional Chaotic Systems

J.-J. Loiseau, Chunxiao Yang, Ina Taralova

To cite this version:
J.-J. Loiseau, Chunxiao Yang, Ina Taralova. Impacts of the Numerical Calculation Methods on the
Chaoticity of the Fractional Chaotic Systems. IFAC Workshop on Complex Systems (COSY 2022),
Nov 2022, Bologna, Italy. �hal-03856095�

https://hal.science/hal-03856095
https://hal.archives-ouvertes.fr


Impacts of the Numerical Calculation
Methods on the Chaoticity of the

Fractional Chaotic Systems

Chunxiao Yang ∗ Ina Taralova ∗∗ Jean Jacques Loiseau ∗∗∗

Laboratoire des Sciences du Numérique de Nantes, LS2N
UMR CNRS 6004, Ecole Centrale de Nantes

Nantes, France

∗ (e-mail: chunxiao.yang@ls2n.fr)
∗∗ (e-mail: ina.taralova@ls2n.fr)

∗∗∗ (e-mail: jean-jacques.loiseau@ls2n.fr)

Abstract: In this paper, we investigate the influence of different numerical solutions methods on
the chaoticity of fractional chaotic systems. In particular, fractional Chen system is discussed and
approximated from both analytical and numerical points of view applying different calculation
methods. The impacts of the chosen methods to the chaotic behavior of the fractional system
are compared and analyzed.
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1. INTRODUCTION

The history of fractional calculus can be dated back to
the late 17th century. In 1695, the fractional derivative
made its first entrance to the domain of mathematics in
a letter written to Guillaume de l’Hôpital by Gottfried
Wilhelm Leibniz(Katugampola (2014)). The foundation of
the fractional calculus was laid by Liouville in a paper from
1832(Liouville (1832)). Ever since then, the matter has
existed solely in the domain of mathematics for centuries,
during which period many characterizations of fractional
integrals and derivatives have been discussed by numerous
contributors(Valério et al. (2014)).

Due to the memory effect and many properties possessed
by fractional calculus, researchers have found it suitable
for modeling many real-life systems and have started ex-
ploring its application in science and engineering since
the 1980s. Up till this days, the fractional differential
equations and fractional systems have been employed
in diverse disciplines like physics(Uchaikin (2013)), bi-
ology(Arfan et al. (2021)), and economics(Tarasov and
Tarasova (2018)), cryptography(Yang et al. (2020)), and
etc,. It has also been used to model composite materials
behaviour(Krasnobrizha et al. (2016)).

However, the implementation of fractional systems re-
mains relatively underdeveloped. One of the reasons con-
tributing to the difficulty of using fractional systems is that
there exist different characterizations for fractional deriva-
tives. With different numerical solution approximation ap-
proaches, the system behaves differently from one method
to another, which adds intricacy to the application of frac-
tional systems as well. In addition, depending on the spe-
cific engineering problem, different requirements(analysis
or control) of fractional systems behavior may be applied.

Therefore, it is of great importance to understand the
impacts of the different characterizations and calculation
methods on the behavior of the fractional systems before
applying them in specific applications. The problem is
even more essential for the cases where complex, chaotic
fractional systems are employed. Whether the aim is to
have an excellent approximation of the original fractional
system or a system with better chaotic properties(robust
chaos) will lead to the adoption of different numerical
approaches.

Concerning this topic, some original work on fractional
nonlinear chaotic systems has been discussed in papers
Yang et al. (2021a) and Yang et al. (2021b). However,
a more detailed analysis needs to be conducted with in-
sightful perceptions about how the numerical calculation
methods influence the chaoticity of the systems regarding
the different (control) parameters, the fractional deriva-
tives orders, etc.

In this paper, following our previous work, we continuously
oriented our research direction to the chaotic behavior
changes brought upon the fractional systems by calculat-
ing the numerical solutions based on different numerical
methods and initial conditions. The ranges of parame-
ters where the systems behave chaotically with ”robust
chaos” are found and discussed applying different calcu-
lation methods. Bear in mind that the robust chaos is
defined by the absence of periodic windows and coexisting
attractors in some neighborhoods in the parameter space
of a dynamical system(Zeraoulia and Sprott (2011)).



2. PRELIMINARIES

2.1 Fractional derivatives

During the long existence of fractional derivatives in the
domain of applied mathematics, numerous characterisa-
tions(the term ’definitions’ is also used) have been brought
up by different mathematicians. However, for the applied
problems, the most well-accepted and widely applied char-
acterisation is the fractional derivatives in the Caputo
sense. (Since it is the one whose initial conditions have
clear interpretation in applied problem according to Petrás̆
(2011)). The fractional derivative of this type can be ex-
pressed as follows(Caputo (1967)),

Dα
∗ f (t) =

1

Γ (n− α)

t∫
0

(t− τ)
n−α−1

f (n) (τ)dτ (1)

where α is the non-integer order; n is the ceiling of α;
t ≥ 0; and Γ(.) in the equation stands for the Euler Gamma
function given by:

Γ (α) =

∞∫
0

tα−1

et
dt. (2)

2.2 Fractional chaotic system

Fractional order system. In the field of dynamic sys-
tems and control theory, fractional order systems are
the dynamic systems that can be modeled by differential
equations with non-integer order derivatives(Monje et al.
(2010)). The equations for the fractional order dynamic
system in Caputo sense can be expressed as given below,

Dαi
t x (t) = f(x(t)) = fi (x1 (t) , x2 (t) , ..., xn (t) , t)

xi (0) = ci, i = 1, 2, ..., n.
(3)

In equation (3), αi denotes the fractional derivative order
for i-th differential equation consisting of the system; xi(0)
stands for the initial condition; and fi is in general a
nonlinear function(i = 1, 2, ...n).

Fractional chaotic system. The fractional chaotic sys-
tems are the fractional dynamic systems which exhibit
chaotic behaviour. It has been found that the chaotic
behaviour of many integer-order derivative chaotic sys-
tems can be preserved after extending them to fractional
orders(Petrás̆ (2011)). Hence, in our following work, the
fractional chaotic systems adopted are obtained through
extension from classical integer order derivative chaotic
functions.

2.3 The stability of the fractional chaotic system

The equilibrium points x∗ of system (3) can be obtained
by solving the following equation,

f(x(t), t) = 0 (4)

If a commensurate system with αi = α, i = 1, 2, ..., n
is considered, then, according to the stability theorem
defined in Tavazoei and Haeri (2007), the equilibrium
points are locally asymptotically stable if the eigenvalue
of the Jacobian matrix of the system (3) satisfies the
following equation evaluated at equilibria.

|arg (eig (J))| = |arg (λi)| > α
π

2
, i = 1, 2, ..., n (5)

where J denotes the Jacobian matrix of (3), α is the
commensurate fractional order, λi(i = 1, 2, ...n) are its
eigenvalues.

2.4 Lyapunov exponent

Lyapunov exponent measures the average rate of separa-
tion of close orbits of a dynamic system and has been
widely used to indicate the presence of chaos. This rate can
be mathematically expressed by the following equations,

|δX (t)| ≈ eλt |δX (t)| (6)

The λ in equation (6) is the Lyapunov exponent(LE)
and δ(t) denotes the initial separation vector between two
trajectories.

For an integer order derivative dynamic system with evolu-
tion equation of the form ẋi(t) = fi(x1(t), x2(t), ...xn(t)),
i = 1, 2, ..., n , the Lyapunov exponents can be obtained
from calculating the eigenvalues of matrix Λ, given by
following equations,

Jij (t) =
dfi (x)

dxj

∣∣∣∣
x(t)

Ẏ = JY,Yij (0) = δij

Λ = lim
t→∞

1

2t
log

(
Y (t)YT (t)

) . (7)

In the above equations, J is the Jacobian matrix of f, which
defines the evolution of the tangent vectors, given by the
matrix Y; δij is the initial condition for Y denoting the
small change at point x(0).

3. ANALYTICAL ANALYSIS OF FRACTIONAL
CHAOTIC CHEN AND LU SYSTEMS

3.1 System equations

Hereafter we focus on the analysis of one fractional chaotic
system, fractional Chen system with commensurate order
αc (smaller than 1) for all its differential equations, respec-
tively. The system equation is given in equation (8).

Dαcx1(t) = ac(x2(t)− x1(t))

Dαcx2(t) = (cc − ac)x1(t)− x1(t)x3(t) + ccx2(t)

Dαcx3(t) = x1(t)x2(t)− bcx3(t)

(8)

In the above equation, (ac, bc, cc) are the parameters of the
system.

To analyze the behavior of the fractional chaotic system,
we first evaluate the fixed points of the fractional systems
from the analytical point of view.

3.2 Equilibrium of the systems

Knowing that equilibrium points of the classical derivative
order chaotic systems and their stability can be preserved
with fractional derivative orders, the equilibria of frac-
tional Chen system can be obtained using equation (4)
by solving the following equations (9).

ac(x
∗
2 − x∗

1) = 0

(cc − ac)x
∗
1 − x∗

1x
∗
3 + ccx

∗
2) = 0

x∗
1x

∗
2 − bcx

∗
3 = 0

(9)



In Table.1, we give the 3 equilibrium points of the frac-
tional Chen system. The parameters of the systems used
for the calculation are (ac, bc, cc) = (35, 3, 28).

3.3 Singularity and the stability of the equilirbria

The singularity of the equilibrium point can be obtained
through the conventional method, by calculating the eigen-
values of the system at the equilibria as given below,

det (λcI−Jc) =

[
λc + ac −ac 0

−cl + al + x∗
3 λc − cc x∗

1
−x∗

2 −x∗
1 λc + bc

]
= 0 (10)

where Jc in equation(10) represents the Jacobian matrix
of the system equation for Chen system at the equilibrium
points Ec = (x∗

1, x
∗
2, x

∗
3); λc and stands for the eigenvalues

of the system. Since both systems are of dimension 3,
each equilibrium has 3 eigenvalues. The singularities of
the 3-dimensional system’s equilibrium can be determined
through the following criteria:

(1) Node : all eigenvalues are real and have the same
sign.

(2) Saddle : all eigenvalues are real and at least one of
them is positive, at least and one is negative.

(3) Focus-node : one real eigenvalue and two conjugate
complex eigenvalues with same signs for their real
parts.

(4) Saddle-Focus : one real eigenvalue with the sign
opposite to the sign of the real part of a pair of
complex-conjugate eigenvalues.

With the same parameters for section 3.2, the singularities
of the fractional Chen and Lu systems’ corresponding
equilibrium points are given in Table.1.

Analytically, according to the theorem proposed in paper
Tarasov and Tarasova (2018) and equation (5), we also
calculate the boundary fractional derivative orders for the
equilibria of the system to be asymptotically stable. The
stability results are also given in Table.1. The numerical
GL method introduced in the book Petrás̆ (2011) has been
discussed in our paper Yang et al. (2021a), which confirms
the analytical stability analysis.

4. NUMERICAL SIMULATION RESULTS

This section mainly analyzes and compares the numerical
simulation results of the fractional Chen system calculated
using two different numerical approaches. The first(M1)
is the classical fractional ABM corrector predictor cal-
culation method, which is performed on a uniform grid.
The explicit formula deduction can be found in Diethelm
et al. (2002). The second method(M2) is based on the
classical ABM method but with a non-uniform grid that
has variable steps generated by a chaotic skew tent map.
A more detailed explanation can be found in our previous
paper Yang et al. (2021a). For the confirmation of the
stability results(last column) in Table.1, we have used
the fractional derivative characterisation, and numerical
calculation method introduced in paper Petrás̆ (2011).

Fig. 1. Lyapunov exponent of fractional Chen system over
fractional derivative order (αc)

4.1 Lyapunov exponent results over fractional derivative
orders

The Lyapunov exponent(LE), as mentioned in section 2.4,
measures the separation of two closely initialized orbits of
the dynamic systems. It is considered that for a dynamic
system, a LE value greater than 0 indicates the presence
of chaotic behavior. In addition, the greater LE value one
system has, the higher level of disorder it possesses. For
our following Lyapunov exponent analysis, the LEs of the
fractional systems are calculated the same way as given in
Danca and Kuznetsov (2018).

We first calculated the LE values for the Chen system over
different fractional derivative orders. The ranges of frac-
tional orders are from 0.45 to 1 and the system parameters
are set to (35, 3, 28). Fig.1 shows the LE simulation results
for the three state components(x1, x2, x3) of the systems.
The fractional derivative orders are evaluated with the
step of 0.005. For each fractional order, we randomly
choose the initial states other than the equilibria of the
system and iterate 300000 times. The red curves stand
for the results employing the non-uniform grid calculation
method(M2), and the blue curves are for the classical
calculation method(M1).

The first thing to be noticed is that, for both systems, the
x1 component of their state vectors possess LE greater
than 0. This means that the systems are chaotic under the
parameters given within some specific fractional deriva-
tive ranges. In terms of the different calculation methods
adopted, we observe that the red and blue curves behave
differently for the system’s LE figure. To begin with,
the red one for the x1 component crosses the horizontal
axis(where LE equals 0) at a smaller fractional deriva-
tive order prior to the blue one. With the red curves
representing the results for the non-uniform grid calcu-
lation method(M2), and blue curves for the classical ABM
method(M1), we can conclude that the fractional order’s
range for the system to be chaotic is greater applying
the former method than the latter one. In addition, it is
observable that the curves for the non-uniform grid are
relatively smoother with fewer drop-down values along
the different orders than the uniform grid curves. This



Table 1. Fractional systems equilibria and their stability

System
Equilibrium

f(x)=0
Eigenvalue

Singularity
Fractional order for analyti-
cally stable system(eq.5)λ1 λ2 λ3

Fractional
Chen

(0,0,0) -30.8359 23.8359 -3 Saddle αc < 0
(-7.9373,-7.9373,21) -18.4280 4.2140+14.8846i 4.2140-14.8846i Saddle Focus αc < 0.8244
(7.9373,7.9373,21) -18.4280 4.2140+14.8846i 4.2140-14.8846i Saddle Focus αc < 0.8244

shows that more robust chaos is acquired through the non-
uniform grid calculation method.

Another point worth mentioning is that one can observe a
gap around fractional derivative order αc = 0.5 for the
non-uniform grid curve in Fig.4.1. In other words, the
LEs calculated around this fractional order could not be
computed. This means the robustness of the chaos in this
range for the fractional Chen system is questionable and
not guaranteed.

The reason that causes these discontinuous LE curves is
inconclusive but most likely linked to the floating-point
arithmetic that MATLAB performed. Looking into the
numerical solutions of the system with these fractional or-
ders, we noticed that after numerous iterations, the system
solutions expand dramatically(even to the magnitude of
10300 sometimes), which renders the MATLAB incapable
of identifying and computing furthermore. The initial con-
ditions adopted for the system may also contribute to
this discontinuity and will be illustrated in our following
bifurcation and phase portrait analysis.

4.2 Bifurcation diagrams and phase space analysis over
fractional orders

To acquire further information on the impact of the
numerical calculation methods on the systems’ chaoticity
and justify the LE results in section 4.1, we also analyze
the numerical solutions of the system from the observation
of bifurcation diagrams and phase space.

The window of fractional order αc ∈ [0.45, 6] for the
fractional Chen system is chosen and evaluated with a step
of 0.002. For each evaluated fractional order, we calculated
its numerical solutions with 100000 iterations applying
both methods starting from the random values close to
each equilibrium. The parameters used for simulation are
the same as those adopted in the previous sections.

We plotted in Fig.2 the bifurcation diagrams(last 500 iter-
ations) for the 3 state components of the system applying
both methods. For each sub-figure, the blue color repre-
sents the phase portrait obtained with initial condition
close to first equilibrium(namely Ep1 = (0, 0, 0), for frac-
tional Chen system with (ac, bc, cc) = (35, 3, 28)); the red
color stands for the states acquired starting from the sec-
ond equilibrium of the system(Ep2 = (−7.937,−7.937, 21)
for the given Chen system); and the green for those of the
third equilibrium(Ep3 = (7.937, 7.937, 21)).

It can be observed from Fig.2(a) that for the fractional
Chen system starting close to Ep1(blue circles), before the
system exhibits the behavior of chaos, the last 500 states
acquired applying uniform grid method altered between
the two other equilibria, Ep2 and Ep3. In comparison,
the system solutions(represented by red ’*’), starting from
the initial conditions close to Ep2, stay at the equilibrium

(a) Chen Bifurcation

Fig. 2. Bifurcation diagram of fractional Chen system
over fractional order with initial conditions generated
randomly close to the equilibria

Ep2((−7.937,−7.937, 21)) after the transient. The same
phenomenon occurs for the Chen system with initial con-
ditions close to Ep3. The results are in accordance with
the analytical analysis where Ep1 is a saddle point, which
is unstable and repulses the trajectory starting from initial
conditions close to Ep1.

As mentioned in the previous section, the different choices
of initial conditions contribute to the different appearance
of chaotic behavior of the systems. This phenomenon can
be clearly observed from Fig.2(a) applying both methods.
For the bifurcation diagram of uniform grid method M1,
the Chen system with an initial condition close to the
equilibrium point (0, 0, 0) starts to act chaotically before
the systems starting from the initial conditions in the
vicinity of the two other equilibria at derivative order of
0.528. The phase portrait given in Fig.3(a) confirms this
finding. Whereas applying the non-uniform grid method



M2, for the fractional Chen system, we can observe areas
where there are either no blue color or green color data at
fractional order smaller than 0.52. This means that there
exist fractional orders for which the system does not have
MATLAB-computable solutions if it starts from initial
conditions close to Ep1 or Ep3. Hence, we can conclude
that non-robust chaos appears within these regions. We
also give here some phase space figures in Fig.3(b) to
justify the observations of bifurcation diagrams.

However, despite the problem of this non-robust chaos,
the fractional Chen system acquired using the non-uniform
grid calculation method still has a greater chaotic range
in terms of fractional derivative orders compared to that
calculated applying the uniform grid method. The former
starts to show robust chaos after order 0.514, while the
latter starts at fractional derivative order 0.53.

4.3 Analysis in terms of parameter impacts

To better understand the impacts of the chosen numerical
calculation methods on the system’s chaoticity in terms
of the range of system parameters, we also evaluated the
fractional Chen system behavior over different parameter
values by applying classical and non-uniform grid cal-
culation methods. Some LE and phase portrait results
over different parameters for the fractional Chen system’s
chaotic vector component x1 are given in Fig.4(a).

In the figures, the red color stands for the result of the
Chen system calculated by the non-uniform grid method
M2, while the blue curves represent the result for the
uniform grid method M1. For the first and third param-
eters ac and cc, we give here the LEs of the fractional
derivative order 0.65 and 0.85, respectively. The ranges of
the parameters are ac ∈ [25, 50] and cc ∈ [15, 35] with a
step of 0.25. For the second parameter bc, the parameter
is evaluated every 0.05 from bc = 0.05 to 5 with fractional
derivative order 0.75. It is to be mentioned the originally
the parameters are set as (ac, bc, cc) = (36, 3, 28). Only the
parameter under investigation is varied for the evaluation
of each parameter, leaving the other two unchanged.

It can be easily observed from the first subfigure of Fig.4(a)
that applying the non-uniform gird method, the range of
the parameter ac for LE>0 is greater compared to that
of the uniform grid at fractional derivative order 0.65.
This means the chaotic range is larger with the Chen
system calculated using the non-uniform grid method. The
observation is confirmed by the phase portraits given in
Fig.4(b). The last 1000 states among the total 100000
iterations for ac = 46.5 are plotted. The states calculated
by the non-uniform calculation method show the shape of
the attractor. Whereas the states of uniform grid method
stay at a fixed point which is one of the equilibrium
(−5.539,−5.539, 9.5) with system parameters (ac, bc, cc) =
(46.5, 3, 28). From the second sub-figure in Fig.4(a), it can
be seen that with fractional order equal to 0.75, even
though the region where LE>0 is relatively similar in size,
the LE curve obtained by the non-uniform grid method
has relatively greater values and fewer dropdowns. The
latter indicates that chaos with a greater chaotic window
is obtained by applying the non-uniform grid calculation
method for the given order and parameters. The phase
portrait in Fig.4(c) also confirms the finding by showing

that the states calculated by the uniform grid follow a more
regular and predictable trajectory, whereas the behavior
of the non-uniform grid states appears to be much more
irregular.

5. CONCLUSION

In this paper, we show that the chaoticity of fractional
chaotic systems can be affected by the employed numerical
calculation methods. We first discussed the chaoticity and
stability of the fractional Chen system from the conven-
tional analytical point of view through the equilibrium
point analysis. Then we calculate the solutions of the
systems numerically by applying two different calcula-
tion methods. The impacts of the different approximation
methods adopted on the system’s chaotic behavior are
illustrated and analyzed. The results show that different
calculation methods, as well as the initial conditions em-
ployed, lead to varied chaotic behavior for the fractional
chaotic systems.

From the aspect of fractional derivative orders, even
though the chaos exhibited by the Chen system is not
robust for some specific fractional derivative orders, the
conclusion of a greater chaotic range possessed by the
system calculated using the non-uniform grid method com-
pared to the classical ABM method still holds. In terms of
the fractional parameters, systems calculated by the non-
uniform grid acquired relatively enhanced chaotic proper-
ties in terms of greater chaotic parameter ranges and more
robust chaos compared to the classical method.

For the enlarged chaotic ranges for fractional derivative
orders and parameters, we also give here one explana-
tion related to the memory effect, which are taken into
consideration when calculating the solutions numerically.
When all the previous states are taken into consideration,
like in the long memory GL method, the stability of the
numerically obtained results will be the same as that of
the analytically acquired. With respect to this assumption,
further work is to be conducted.
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