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Abstract Nonlinear dynamic systems and chaotic systems have been quite
exhaustively researched in the domain of cryptography. However, the possi-
bility of using the fractional chaotic system in the cryptosystem design has
been much less explored while it bears advantages such as enlarged keyspace,
compared to classical nonlinear systems.

This paper, therefore, proposes a novel structure for the pseudo- random
number generator based on fractional chaotic systems which consists of 3 differ-
ent fractional chaotic systems, namely fractional Chen’s system, Lu’s system,
and fractional generalized double-humped logistic map(FGDHL). Then, the
outputs of this fractional chaotic pseudo-random number generator(FCPRNG)
are used as a keystream for an image encryption scheme. The confusion layer of
the scheme is conducted by a dynamic DNA encoding and decoding method
combined with a 2D cat map for the permutation in the DNA-bases level.
The diffusion layer is performed through the adoption of a 32 bits discrete
logistic map. The performance and security analysis have been conducted for
the above-designed cryptosystem, proving that the proposed cryptosystem is
practical and secure in image encryption.
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1 Introduction

Humans are now entering the Information Explosive Era with an unstoppable
speed in an irreversible way due to the rapid advancement of information tech-
nology and digital communication techniques. Millions of gigabits of digital
information are being transmitted every second via the internet and commu-
nication systems. In particular, under the still ongoing pandemic, much work
has been done through remote working with lower security systems or com-
puters[1]. In addition, after tasting the economic benefits gained from having
their employees working remotely, many companies have now abandoned the
traditional onsite working protocols to trim away their expenses on the fixed
cost such as electricity and the rental fee for the workplace. All of these lead
us to the point where people work more and more at home, generally in an
informationally non-secure working environment, which heavily endangers the
integrity of the transmitted information[2]. The confidentiality of the digital
data people process through the internet or other communication systems,
and the information stored locally in the personal or company computer is
hence of great importance. Moreover, the standardization and generalization
of sanitary passes, and many other applications aimed at preventing and con-
trolling the epidemic during the post-epidemic era also calls for data security
enhancement. Therefore, the urge to design advanced and secure cryptographic
systems is more vital than ever before.

It goes without saying that a sufficiently sophisticated cryptosystem (con-
sisting of key generation, encryption algorithm, and decryption algorithm),
encrypting personal and(or) private information, is supposed to stay safe from
hackers’ attacks[3]. To achieve this goal, cryptosystem with novel structures
and stronger cipher (especially the encryption algorithm) must be introduced
and developed.

Concerning a secure cryptosystem’s structure, a significant point is to be
able to resist well-known attacks such as brute force attacks, chosen-plaintext
attacks, and statistical attacks. The solution to resist brute force attacks is
to design an encryption system with sufficiently large size of keyspace (each
different key gives rise to a qualitatively dynamic different behavior). The
keystreams generated by different keys should be independent and uniformly
distributed[4]. Concerning this issue, new trends with less known but very
promising non-linear functions such as fractional chaotic functions and the
fractional chaotic pseudo-random number generator(FCPRNG) have started
to be explored. The use of the latter assures that the pseudo-random and
chaotic properties are preserved. Though other researchers also sought to de-
sign pseudo-random number generators(PRNG) using adaptive maps, such as
Zaslasvisky and Chirikov adaptive map[47] and [48] with extra parameters to
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enhance the cryptosystem security, to the best of our knowledge, none of them
has discussed the encryption issues.

Historically speaking, fractional calculus as a branch of mathematical anal-
ysis has already been established and discussed purely in the scope of mathe-
matics for centuries[5][6]. In the more recent decades, some researchers in the
field of science and engineering have seized the opportunity to take advan-
tage of the memory effect and the hereditary properties|[7] possessed by the
fractional calculus and systems to study their engineering applications. Other
recent studies have also proved that the use of fractional dynamic systems
in defining and modeling real-life systems is applicable and suitable in many
disciplines such as physics[8], biology, economics[9], etc.

The obstacles that hinder the broader implementation of fractional sys-
tems, especially for the use of fractional chaotic systems for cryptosystem
security enhancement, arise from the intrinsic complexity of fractional cal-
culus and the aspects of its digital implementation. In addition, our recent
research works [10][11] have revealed that applying different numerical cal-
culation methods and adopting different fractional calculus characterizations
may strongly impact the (short or long term) chaotic behavior of the result-
ing system. This renders the design of efficient FCPRNG a very challenging
problem. As far as we know, no one else except us has ever accomplished the
PCPRNG design, which can successfully pass the standard NIST randomness
test suites.

Along with the above mentioned significant obstructions, one should also
note the outstanding merits of the fractional chaotic system. From the cryp-
tosystem design point of view, the inherent properties of the fractional chaotic
systems can increase the complexity of the encryption scheme[12]. What’s
more, the security of the cryptosystem will be further enhanced with the em-
ployment of fractional chaotic systems. The fractional order may differ for each
state component of the system, and it works as extra parameters, enlarging
the size of the keyspace of the cipher. These remarkable features perfectly sat-
isfy the increasingly solid needs for secure cipher algorithms and motivate the
researchers to investigate the introduction of fractional chaotic systems in the
cryptosystem design.

Looking at the recent research work in the field of cryptography when em-
ploying fractional order chaotic systems, very few papers analyzed the pseudo-
random features of the systems’ outputs which is a fundamental feature for the
generated keystreams. In [13], authors proposed an encryption scheme based
on fractional-order Lorenz system and a simple algorithm based only on pixel
confusion. In [14], authors explored and analyzed the characteristic of a new
fractional-order complex system based on the Adomian decomposition method
(ADM) with a novel image encryption algorithm proposed applying the dis-
cussed system and Galois field (GF). An ”improper fractional chaotic system”
was constructed and realized based on the DSP platform in [15], an image en-
cryption algorithm was then structured and analyzed. In a recently published
paper [16], a different encryption scheme based on a fractional hyperchaotic
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system has been investigated where multiple grayscale images were fused into
a color image and then scrambled and diffused.

All the above-mentioned papers deal with only one unique fractional chaotic
system at a time. Most of the papers([13][14][15]) directly use the system’s
states as the keystream to permutate the image pixels as a scrambling proce-
dure for the cryptosystem. Hence, the complexity of the generated keystream
and the encryption scheme was relatively minor. Moreover, the chaotic and
pseudo-random properties of the system’s outputs over the parameters have
not been tested. The increase of keyspace size, which some authors deemed
(such as in [13] and [16]), was, therefore, not guaranteed. With respect to
this problem, the implementation of the FCPRNG appears as a perfect solu-
tion. Indeed, as a pseudo-random number generator, its outputs must firstly
be independent and secondly follow a uniform distribution; hence, a complex
structure combining different fractional systems is usually adopted. In addi-
tion, different pairs of parameters (secret keys) must be tested for randomness
as a requirement of the international standard for the design of pseudo-random
number generators, which leads to the assertion of the homogeneous proper-
ties[17] over the keyspace for the cryptosystem.

As for the encryption algorithm of the cryptosystem, a new trend has
emerged using DNA computing which has received unceasing attention [18][19]
[20][21] [22]. Since the first experiment of DNA computing conducted by Adle-
man|[23] in 1994, the idea of implementing DNA computing in the domain of
cryptography reveals itself due to its numerous advantages such as massive
parallelism, huge storage capacity, and energy consumption[24]. Under the be-
lief that with the development and advance of biochemistry, the difficulties and
limitations of DNA cryptography, which now exist at the experimental level,
will be conquered in the foreseeable future. Many researchers have been trig-
gered to explore the possibility of designing a good and practical encryption
algorithm using DNA cryptography|[24][25][26][27].

Regarding the application of image encryption, a dynamic DNA-based ci-
pher with two chaotic maps, namely fractional Chen’s system and Lorenz
system, has been investigated in [28]. In [29], the authors analyzed an encryp-
tion algorithm combining a novel proposed 2D Hénon-sine map DNA ciphering
methods and achieved better performance in terms of security. A new one-time
pad encryption scheme has been designed based on the coupled map lattices
(CML system) and DNA diffusion sequence in [30] with good security analysis
results. In [31], authors proposed a color light field image encryption algorithm
using DNA sequence and well-known chaotic systems(logistic map and Chen
system), which is proved to be applicable, reliable, and secure enough. All these
encryption schemes employed structures based on chaotic systems, which to
some extent, render the security of the cryptosystem dependent on the per-
formance of the chaotic systems. Besides, the papers brought in complex and
cumbersome encryption operations, whose necessity and effectiveness are in-
conclusive, to overcome the shortcomings of DNA ciphering methods, such as
poor diffusion properties.
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To palliate these problems, in this paper, we introduce for the first time
an original FCPRNG comprised of three different fractional chaotic systems
to generate pseudo-random numbers. In addition, a novel image encryption
algorithm based on DNA ciphering methods is also proposed and analyzed.
The outputs of the FCPRNG work as the keystreams for the cryptosystem.
The dynamic DNA encoding and decoding methods with the benchmark cat
map are performed to achieve the permutation operation. The diffusion is
conducted by a straightforward but efficient logistic diffusion process. The two
essential components for this cryptosystem, the FCPRNG, and the cipher, are
discussed separately in the following.

2 Preliminaries

In this part, we shall recall some preliminaries on fractional calculus, fractional
systems and DNA computing.

2.1 Fractional calculus and fractional systems
2.1.1 fractional calculus

Fractional calculus discusses the integrals and derivatives of non-integer order.
It is a generalization of integration and differentiation to non-integer order fun-
damental operator ,Df |, where « is the non-integer order(fractional order),
a and t are the bounds of the operation[32]. Along with the long existence of
fractional calculus, various characterizations (also indicated as ’definitions’ in
many works) have been developed, such as Griinwald-Letnikov(GL) characteri-
zation, Riemann-Liouville(RL) characterization, Caputo characterization, and
etc. These different characterizations can be equivalent when certain bounds
and conditions are satisfied.

Hereafter, we list out two characterizations for fractional integrator and
derivative, which are adopted for our fractional pseudo chaotic random number
generator design. For a more comprehensive introduction on this topic, one can
refer to [32] and other textbooks such as[33].

The fractional integral of fractional order « (o > 0) under RL definition is
described as follows,

. t
JEI0) = g [ = (1)
a
The formula is a generalization of the standard integral, which is the particular
case of RL integral when o« = 1. I'(.) in (1) represents the Euler Gamma
function which is expressed as below,

r(a) = / LA )

et
0
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The RL definition for the fractional derivative is the left inverse of ,Dg* and
is described using the formula below,

oD f (1) = DIy f (1)

_ 1 dan ft f(7) dr (3)

= 41_‘ (n — O[) dtn Je (t _ T)afnJrl
where n = [« represents the smallest integer greater or equal to ae. D™ denotes
the standard integer-order derivative. @ and t are the limits of operation ,Dg.
It is to be remarked that for a causal function f(t), when ¢ < 0, f(¢) is equal
to 0, and we have a = 0. Therefore, a fractional derivative in the Caputo sense
with f(t) being causal can be defined as follows[34],

Def(t) =1""D"f(t)

— L t n—oa— n (4)
—mfo(t—ﬂ L (r)dr

wheren -1 <a<n,t>0.

The Caputo definition is widely applied in engineering applications due
to the fact that the fractional differential equations of the Caputo type are
suitable in providing the applied problems with clearly interpretable initial
conditions.

2.1.2 Fractional systems

The fractional system, as briefly explained in [33], is the dynamic system that
can be modeled by differential equations with non-integer order derivatives.
Hereafter, we illustrated the form of differential equation in the sense of Caputo
characteristics as follows,

Dex(t) = f(t,z(t)) (5)
z®(0) =2k k=0,1,2,...,n — 1.

where n = [a] denotes the fractional order ceiling, and =(*)(0) represents the
initial conditions for k-th order.

The fractional system can be expressed by a series of fractional differential
equations. In our following work, the systems discussed have a same order
between 0 to 1 for all their fractional derivatives. Hence, their system equations
can be expressed in the following form,

Dex (t) = fi(xr (8),22(8) .., zp (T) , 1)
x; (0) =c¢,t=1,2,...,n. (6)

In equation (6), ¢;,i = 1,2, ...,n denote the initial conditions of different com-
ponent x;, and « is the commensurate fractional order.
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Table 1 DNA encoding and decoding rules

Rule 1 2 3 4 5 6 7 8
00 A A C G C G T T
01 c G A A T T C G
10 G ¢ T T A A G C
11 T T G C G C A A

2.2 DNA encryption basis
2.2.1 DNA encoding and decoding

A DNA sequence in the biological sense is composed of four different nucleic
acid bases, ’A’ (Adenine),” T’ (Thymine),” C’ (Cytosine),” G’ (Guanine). The
composition of these nucleic acid bases follows the Watson—Crick principle,
where 'A’ and "T” are complementary, and 'C’ and 'G’ likewise[35].

In DNA computing, other than the binary computation for traditional com-
puters, the information is carried and expressed by these four acid bases A’
(Adenine), "I’ (Thymine), 'C’ (Cytosine), ’G’ (Guanine). The transformation
between the binary values and the DNA sequence involves the DNA encoding
and DNA decoding process. Typically, to map a binary sequence by a DNA
sequence, every two bits of binary sequence are grouped and encoded into one
of the DNA nucleic acid-bases ’A’, 'T’, 'C’, and G’ through a specific DNA
encoding rule. Its reverse procedure applies the DNA decoding rules and turns
a DNA sequence back into a binary sequence. There are 24(4!) combinations
for the mapping of 2-bit binary symbols to DNA bases. Among them, if we
consider ’00’ and 11’ as a pair of complement, 01’ and '10’ another, then
only 8 combinations satisfy the above-mentioned Watson-Crick complemen-
tary principle, which are shown in the Table.1 working as 8 different encoding
and decoding rules[36].

Intuitively, if the same rule has been chosen for both encoding and decoding
processes, then the binary value remains unchanged after the process. Other-
wise, the binary value is changed; hence, the original information is masked.

To further explain the application of this in image encryption, we take one
8-bit decimal pixel value 234" as an example to illustrate the DNA encoding
process as shown in Fig.1. The decimal value of ’234’ is first converted to binary
bits’ 11101010’. Then adopting DNA encoding rule 4, the corresponding DNA
sequence 'CTTT’ is obtained. Obviously, with different encoding rules, the
same value can be transformed into distinguished DNA sequences. (With rule
5,°11101010" turns to '"GAAA’). The same sets of rules are adopted for DNA
decoding to turn the DNA bases back to binary values. Take the previously
obtained DNA sequence 'CTTT’ as an example. If the DNA decoding rule 8
is taken, we will get an 8 bits binary value of ’10000000’, whose corresponding
decimal value is ’128’. This decoding process is also illustrated in Fig.1.

For some early works of DNA encoding and decoding methods in cryp-
tography, for instance, [37][38], the encoding and decoding rules are fixed for
the whole encryption process. However, it has been argued that an encryption
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H i DNA encoding:
[Rulea [ 00 [ 01
(I R

Fig. 1 Example of DNA encoding and decoding

scheme with a fixed rule can be easily detected and broken, thus is not compe-
tent enough for the design of cryptosystem[39][40]. So the dynamic DNA en-
coding and decoding method has been proposed. The principle of this method
is to select different DNA encoding rules for the encryption of the plain text,
which change dynamically during the whole encoding and decoding process. In
this paper, we adopt the FCPRNG’s outputs as the dynamic DNA encoding
and decoding rules for the encryption of the image.

3 Fractional pseudo random number generator design

For our cryptosystem, we use an original fractional chaotic pseudo-random
number generator (FCPRNG) to generate a sequence of pseudo-random num-
bers which further works as the keystream for the encryption algorithm. It
shoule be noticed that, the generator is called pseudo-random due to the fact
that the numbers are generated by computer simulations rather than true
random process.

The generator implemented in this work is mostly based on the FCPRNG
proposed in our paper|[41]. Unlike the generator proposed in [41], our generator
employs two separate sets of non-uniform grids to solve the 3D fractional
systems numerically. In the following, the fractional systems and the methods
for their numerical solution approximation will be illustrated in detail. The
FCPRNG structure and test results are given.

3.1 Fractional systems used for FCPRNG design

In this work, we adopt three fractional systems, 3D fractional chaotic Chen’s
systems (f1), 3D fractional chaotic Lu’s systems (f2), and fractional general-
ized double-humped logistic system (FGDHL, f,). The continuous time system
equations of these three systems are given in equations (7), (8), and (9), re-
spectively.
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DFixy (t) = ac (z2 (t) — 71 (1))
fi(t,z(t) =< DAy (t) = (co — ac) my (t) — 1 () 23 (1) + coxa (1) (7)
D’Bl.’bg (t) =X (t) i) (t) — bcxg (t)

DPz2g4 (t) = a; (z2 (t) — z1 (1))
fo(t,z(t)) = D2y (1) = —xq () 23 (1) + cjao () (8)
DBQl‘g (t) =T t X9 t) - bll‘3 (t)

fo (4 (t)) = D% (t) = p((x(t

~—

—e)? (c2 ~ (a(t) — C)Q) >0 (9)

In the above equations, 51, 32 and 3, are the commensurate fractional deriva-
tive orders of the systems (7), (8), and (9), respectively; (ac, be, cc), (ar, by, 1),
and (c, p) denote the parameters of the systems. In order to be implemented
into the FCPRNG design, the continuous time fractional systems need to be
first approximated and discretized.

3.2 Numerical solutions calculation of the systems
3.2.1 Approximation for FGDHL

For the FGDHL system, a piecewise constant arguments discretization method
as described in [42] is applied to solve the fractional differential equation. We
omit the discretization process, which can be found in [42] and only give out
the obtained formula as follows,

rPa

plxn = ) (¢ = (x0 = )?) (10)

Xptl =Xp + ———mm—
i I'(1+8,)

where I'(.) is the gamma function given in 2, n is the discretized time. It is
worth mentioning that r in equation (10) is a parameter introduced by the
discretization procedure. With different r values, the solutions of the system
for each iteration can be very different. For the sake of simplification and
consistency, we set r = 0.2 for the following work.

3.2.2 Numerical solution of 3D systems with non-uniform grid

For the 3D fractional chaotic Chen’s and Lu’s system, the fractional Corrector
predictor ABM method with non-uniform grid calculation method discussed
in [12] is adopted to calculate the systems’ states. Hereafter we only display

z11(n)
and explain the formulas for the calculation of the states X;(n) = [ﬂ?lZ(TL)] for
z13(n)
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fractional Chen’s system(8), to avoid repetitions.

Xy (n+1) = Ff [h (n) X, (n)]

=X, 0+ T P )
= 1() ml 1 n )
h(n)

B1 n
1 |
ERCERP

0< B <1
where I'(.) represents the gamma function, h(n) stands for the non-uniform

grid space(calculation step size) for n-th output, and the coefficient a},n 11
(indice ’1’ correspond to the discussed f; system)is given by

W —(n—B)(n+ 1), it =0,
n—iq+2 31+1+ n— j)ftl ]

aly = it S 7(]_ . ‘17))51“ if1<j<n, (12)
1, if j=n+1.

The XI*(n+ 1) in 11 denotes the prediction of X;(n + 1) which is defined as,

X (14 1) = X0 0+ s b A (K ()0 <<t (13
=0

where b}, is written as

L )™
jn+1 —

(n+1=7" (=7, (14)

The non-uniform grid we propose and employ has in total 5 possible grid
spaces varying from 0.001 to 0.005 with a gap of 0.001. That is to say, the step
size h(n) takes a value in the set S = {0.001,0.002,0.003,0.004,0.005}.

To acquire the step size for each n, we establish a multiplexing mechanism
composed of two skew tent maps. One of them is used to assign different values
to h(n), and the other is adopted to increase the system’s complexity by taking
account of different step size allocation possibilities. For the sake of clarity, we
first display the mathematical formula for step size h(n) as following equation
(15) to (20), then we discuss the interpretation of these equations briefly.

h(n) = th[Xstq (n), Xste (n)]

> 2 , (15)
= 3" 1a, (Xsty (n)) H (((2%2 — 1) x Xst) (mod120) + 1,7)
i=1

The Xstq(n) and Xsty(n) in the above equation are the n-th states of the skew
tent maps given by (16) and (17), where p;, pa are the control parameters,
Xsty (n) = Sty [Xsty (n — 1)]
Wﬁ <Xst;(n—1)<p;
= M,p1<Xst1(n—l)<l .

1-p1
Xsty (n — 1) — 0.05, otherwise

(16)
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Xstg (n) = Stg [Xstg (n — 1)]
Hetaln=D) ) < Xsty (n — 1) < po

17
= 717Xft_21§:71),p2< Xstag (n—1) <1 - (17)
Xstg (n — 1) — 0.05, otherwise
In equation (15), 14,(.) is an indicator function expressed as
. 1, Xstq (n) cA; . _
14, (Xsty (n)) = {QXS“ (n) ¢ A, 0= 123,45 (18)
where A; denoting the following interval
1 . TN .
A = y|g(z—1)<y§gz ,1=1,2,3,4,5. (19)

H (((2%2 — 1) x Xstz) (mod120) + 1,4) in equation (15) denotes the element
on (((2%% — 1) x Xstz) (mod120) + 1)-th row and i-th column of the Matrix
H who is of size 120 x 5 and is consists of all the possible combinations of the
elements in set S and holds the form as following,

0.001 0.002 0.003 0.004 0.005
0.001 0.002 0.003 0.005 0.004
0.001 0.002 0.004 0.003 0.005
H = { 0.001 0.002 0.004 0.005 0.003 (20)

0.005 0.004 0.003 0.002 0.001

A brief interpretation of the formula is given here. With an output of skew
tent map in the range of (0, 1), we introduce 5 intervals A;, (i = 1,2, ...5) of the
same size obtained by (19) for the assignment of 2(n). To match the intervals to
the five possible step sizes in S, we construct the matrix H (equation (20)). By
performing the modulo operation, the states Xsto(n) is processed to acquire
a row indice r for the matrix. Then, the interval A; are matched with the
corresponding steps sizes value on the i-th column and r-th row of H. Finally,
the step size is assigned to h(n) depending on which interval A; among the
five that Xstq(n) lies in.

The calculation for the Lu system(7) states can be obtained by substituting
all the control parameters and initial conditions for the systems and the non-
uniform step size to the corresponding ones.

In our previous investigations concerning the nonuniform-grid calculation
methods and their implementation for fractional chaotic systems ([10][11][41],
etc.), we analyzed the systems dynamics of both 3D fractional Chen and Lu
systems. Here, to recall the chaotic properties of the systems, some results
of Chen and Lu systems with respect to their LEs values and bifurcation
diagrams are given in Fig.2 and 3. It can be easily observed from Fig.2, for
the fractional Chen system, only the first component of the system state z;
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Non-uniform Grid

Lyapunov exponents Bifurcation for x1 Bifurcation for x2 Bifurcation for x3
o T 40 T

< X
N O
9o
;N
w
&R
x1(n}

0.6 08 1 06 0.8 1 0.6 08 1 0.6 08 1
Order Order Order Order

Fig. 2 Lyapunov Exponent and Bifurcation diagrams for Chen system of different fractional
orders with (ac, be, cc) = (35, 3,28)

has LEs greater than 0, and the chaotic behavior appears with the fractional
order no smaller than 0.52. The bifurcation results in Fig.3 also reveal that
while the fractional order is from 0.75 to 1, there is a promising mutual chaotic
range for parameter ¢; which lies in [25, 30]. Whereas for the parameter a. of
the Chen system, this range is between 35 to 40.

Lu system Bifurcation ¢, v.s Order 3, Chen system Bifurcation a_v.s Order 3

Fig. 3 Bifurcation diagram of Lu and Chen systems of different fractional orders

3.3 FCPRNG structure

The structure of the FCPRNG proposed is given in Fig.4. The systems (con-
trol) parameters, together with the initial conditions constitute the secret
key. With the equations (15)-(20) formulated in the previous section, the
grid spaces h.(n) and h;(n) are obtained through fh[Xstq(n), Xsto(n)] and
fh[Xsts(n), Xsty(n)] given by equation (15). We then calculate the states of
fractional Chen’s and Lu’s systems, X; (n) and Xs(n), on the non-uniform grid
he(n) and hy(n) applying Ff[h.(n), X;(n —1)] and Ff[h)(n), X3(n — 1)], respec-
tively (equation (11)). Fg[Xg(n —1)] in the figure is the function employed to
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I
Sti[Xsti(n-1)] Xsti(n)
Bitiln-1) | th[Xst(n). Xsty(n)]

Xsty(n-1
23 St[Xsta(n-1)] S é’
1 Xsty ) >
Secret X-DV 5 ~orm I A X
o » Fg[Xg(n-1)] X,

Xstz(n-1
Xsty(n-1

¥l
)

s Y s s

Xa(n-1) 7T

Fig. 4 Structure of the designed FCPRNG

calculate the states of FGDHL following the equation (9). The parameters and
fractional derivative orders of Chen and Lu systems for the FCPRNG are as
given: B € [0.75,1), B2 € [0.75,1), a. € [35,40], b. € [1.5,3.5], C. € [23,28],
a; € [30,35], b, € [3,8], ¢; € [20,25].

The control parameters p1, po, p3, pa of the skew tent maps are all in the
ranges of (0,1); and the initial conditions Xst1(0), Xsto(0)(for the calcula-
tion of h.(n)), and Xst3(0), Xst4(0) (for the calculation of h;(n)) are also in
the same range. In addition,the initial condition Xg(0) for FGDHL is equally
adopted as a component of secret key, and it is in the range of [0,0.3].

It is proved that only the first component of the state vectors possess
positive Lyapunov exponents(LEs) for both Lu and Chen 3D systems, which
means that the first component among the three implies the chaotic dy-
namic of the whole system. (eg. z11(n) for Chen system states Xi(n) =
[z11(n),212(n), z15(n)]). Therefore, we only employ the first one for further
use as the output of the FCPRNG.

After converting X;(n), Xz(n) and X, (n) into 32 bits binary values, the
final output of the FCPRNG X(n) is obtained by performing or-exclusive op-
erations (XOR) between the outputs of these three fractional systems. It is
worth mentioning that in order to improve uniformity for the output sequence
distribution, we inject the state values of the two fractional 3D systems into
the interval of [—10, 10] by a folding mechanism, and the states of FGDHL is
truncated with a window of [—0.15,0.7] as it has been demonstrated in our
previous paper [41].
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4 Proposed encryption scheme
4.1 General concept of the encryption scheme

For our proposed encryption scheme, we employ a CBC mode block cipher
of size by = 1024 (32*32 pixels) based on the encryption scheme discussed in
[43] and a dynamic DNA encoding and decoding method. The general block
diagram of the proposed encryption scheme is given in Fig.5. r rounds of this
confusion and diffusion process are performed to the whole image in order
to obtain the secured ciphered image. During each round, the images are en-
crypted block by block through the CBC mode by the encryption algorithm
Ex(.). The structure of the encryption scheme is illustrated in Fig.6. In the
figure, Py stands for the first block of size 1024 bits from the plain image. IV is
the Initial Vector pre-generated, Cy is the first encrypted block. The cyphered
block is then working as the initial vector to encrypt the next block etc.

Within each block, the permutation is performed by dynamic DNA encod-
ing and decoding method with 2D cat map, which will be explained in the
following sections. A logistic map is then used to complete the encryption by
further diffusing the resulting cyphered block.
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Fig. 7 Encryption structure of the cryptosystem

4.2 Encryption scheme of the proposed cryptosystem

The proposed encryption scheme is illustrated in Fig.7. For the first block
of 1024 pixels, each pixel po(k),(k = 1,...,bs) are first XOR-~ed with the
byte(iv(k)) of the initial vector(IV) of the same size given randomly by the
function randi in MATLAB. Then, a value in the range of 1 to 8 is obtained
by converting 3 bits of the generated FCPRNG outputs KDNAe to a decimal
value. Adding one to this value gives us the dynamic DNA encoding rules Re(k)
to encode the 8 bits of the XOR-ed pixels. After that, the DNA complementary
rules are employed to switch the encoded DNA bases to their complementary
ones('A-T?, ’C’-’G’). After encoding all the pixels in the block, we will get a
block of DNA bases that has 64 x 64 (One DNA base consists of 2 binary bits,
the total number of 1024 x 8 bits divided by 2, equal to 4096 = 64 x 64 DNA
bases). To relocate the acquired DNA bases to a new position, the modified
2D cat map discussed in [44] is performed on the DNA base level. Up to this
point, the confusion of the first block has been accomplished. For the diffusion
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Algorithm 1 Encryption steps

1: Generate the IV values to encrypt the first block B; for r = 1
2: forr=1:rg do

3 for j =1: Bn do

4 if r=1and j =1 then

5 w(k) = IV (k)

6: else if r # 1,5 =1 then

7: w(k) = Cpy (k)

8: else

9: ’L”L)(k) = Cj_l(k)

10: end if

11: Calculate y; (k) = Pj(k) XOR iv(k)

12: Get Re(k) by converting 3 bits in K DN Ae to decimal value

13: Encode y; (k) by the rule Re(k) given in Table.1 to y; pNA

14: Apply the DNA complementary rules to change 1; pnxa to y;,DNA
15: Reshape y;,DNA to a matrix of DNA bases Mypna of size v/4bs * \/4bs
16: for i = 1:/4bs do

17: for | = 1:/4bs do

18: Calculate (inew,lnew) using Equation 21

19: My]/:)NA(inewylnew) = MyDNA(ivl)
20: end for
21: end for , ,
22: Reshape My to a DNA bases string Yj DNAnew
23: Get Rg4(k) by converting 3 bits in K DN Ad to decimal value
24: Decode y;’DNAneW t0 Yj,new applying Rq(k)
25: if j=1and r =1 then
26: Get z;(0) from KMp
27: else if r # and j=1 then
28: z1(0) equals the 32 bits decimal value converted from the binary

string consisted of [cp,, (bs — 3),¢B,, (bs — 2),¢B,, (bs — 1), ¢cp,, (bs)]
29: else
30: 21(0)) equals the 32 bits decimal value converted from the binary
string consisted of [c;(bs — 3),¢;(bs — 2),¢;(bs — 1), ¢j(bs)]
31: end if

32: Calculate s(0) = fi(x;(0) using Equation 23

33: Convert y; new to string y;’new consisted of 32-bits decimal values
34: fort=1:bs/4 do

35: if t =1 then

36: s(1) = f1(s(0)) using Equation 23

37: else

38: Calculate s(t) = fi(z(t — 1)) using Equation 23
39: end if ,

40: T(t) = Yj pew (t) XOR s(t)

41: end for

42: Get Cj(k) from converting the string of  to 8 bits values
43: end for

44: end for

layer, the permuted DNA bases are decoded to binary bits by the dynamic
DNA decoding method, where the decoding rules Rq(k) are again acquired
through FCPRNG outputs KDNAd the same way as introduced above for the
dynamic DNA encoding. Then, a discrete logistic map of 32 bits is employed
to construct the final cyphered output. During this process, every 4 pixels (32
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bits) of decoded DNA bases are XOR-ed with the output of the discrete logis-
tic map, and the input of the map is the 32 bits decimal value converted by
the 4 pixels of previously decoded DNA bases.

The encryption process of the second block to the last block, block number
By, is almost the same(By denotes the total number of blocks in the image).
However, rather than use the initial vector IV, each pixel p;(k), (I =1, ..., BN —
1) is XOR~ed with the pixel at the same position of the previous cyphered
block(¢;—1(k)) to achieve the CBC mode. In addition, the first input of the
diffusion based discrete logistic map is acquired by processing the last 4 pixels
of the previous cyphered block, namely ¢;—1(bs—3), ¢;—1(bs—2) and ¢;—1(bs—1),
c1—1(bs)(in total 1024 pixels in each block). The four pixels are converted to 8
bits binary values ¢!_, (bs —i), (i = 3,2,1,0) and form a 32 bits string which is
then converted to the decimal value z;(0) as the input of the discrete logistic
map.

The 2D map adopted here for the permutation is derived from the Arnold’s
cat map and has been discussed in [45]. The equations for the map is defined

as follows,
inew _ ) Tl—|—TC M
)z (o [ L)) e

The matrix Aj in equation (21) is defined as

A0:[1 Y ] (22)

v1i4+uxw

The determinant of matrix Ag is equal to 1, which indicates that each point
(i, 7) of the square matrix is transferred to a unique point at position (inew, Jnew)-
The parameter u, v, rl, rc are the outputs of FCPRNG and form the dynamic
key (Kpm). The use of re,rl is under the intention of overcoming the fixed
point problem, possessed by the Arnald Cat map[4].

It is to be noticed that these dynamic keys w,v,rl, rc are fed by the pro-
posed FCPRNG, and the values for them change every block.

For the digital implementation, we need a 32 bits discrete logistic map
employed for the diffusion, which is expressed as follows[43],

Xk X (2N — Xk) . _
_ f Xy # [3x 2N=2 2N
Xk+1 — fi(Xk) — \‘ 2N—2 ’ 1 k # [ X 9 }
2N —1, if Xy = [3 x 2N-2 2N]

(23)

where Xy 11 stands for the new output calculated from its previous one Xy; N
is the number of bits representing the integer output of the discrete logistic
map. In our proposed cryptosystem, since a 32-bit discrete logistic map is
applied, we have N = 32.

To determine the optimal value of the rounds r needed for the encryption
scheme to pass successfully the security tests, we evaluate first the confusion
and diffusion performance by calculating the Hamming distance(HD) between
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two ciphered images corresponding to original images with one bit difference.
The calculation is given in the form below,

b
HD (Cy,Cy) = % > Cy k] @ Cy k] (24)
k=1

In the above equation, C;, C5 represent two cipher images; [b is the bit
length of the image which is calculated by Ib = Np;; X I x L. The Np;, is the
number of pixels in the image; [ is equal to 1 if a grey image is encrypted and
equals 3 for a colored image; L denotes the number of bits for each pixel.

Three images of different types (grey or colored) with different sizes and
features have been tested. Twenty pairs of C; and C3 have been obtained
for each plain image by randomly changing one bit of a pixel in the original
image. Then, equation (24) is employed to calculate the HDs of the images.
The average HD over these 20 pairs of cyphered images shows that when r = 2,
the HD is already close to 50%. The result indicates that the probability of a
bit change is 0.5, which is the optimal value meaning the diffusion is effective.

4.3 Decryption scheme of the proposed cryptosystem

The diagram for decryption scheme is given in Fig.8. It is the reversed process
of the encryption scheme.

For each round, the decryption starts from the last block cp,_; to the
first block ¢g. For block ¢ (I = 1,2,...B,, — 1), XOR operation is first operated
between the cyphered pixels and the output of logistic map. The input z;(0)
for the first 4 pixels ¢;(k), (k = 1,...,4), is the decimal value of the 32-bit string
converted from the last 4 pixels of the previous cyphered block ¢;_1; and the
inputs for the rest of the cyphered pixels are obtained from performing XOR
operation between the 4 current cyphered pixels and 4 previously XORed
pixels. Dynamic DNA encoding method applying DNA encoding rules Ry(k)
obtained from KDNAd is employed to turn the XORed pixels’ values into
DNA bases. Same way as for the encryption process, a DNA base matrix of
size 64 x 64 is constructed. After the matrix has been acquired, the modified
2D cat map with Kp,, generated by FCPRNG and DNA complementary rules
permutates the bases. The dynamic DNA decoding process with decoding
rules R.(k) is then employed, after which XOR operations between obtained
sequence and the cyphered pixels of previous blocks ¢;_1 proceed.

For the first block, ¢g for round r( r # 1), the first input of the logistic
map is acquired correspondingly to the last four pixels of the whole image.
The final XOR operation over the block is done between the obtained block
and the decyphered cp,_; of last round r — 1. Whereas for r = 1, the first
input z;(0) is given by Kd,, from FCPRNG, and the XOR is done with initial
vector I'V.

To prove that our proposed FCPRNG and cryptosystem are reliable, a
series of well-recognized tests and indicators have been adopted, and the per-
formance has been analyzed in the next section.
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Algorithm 2 Decryption steps

1: Generate the IV values to decrypt the first block B; for r = 1
2: forr=rg:1do
for j = Bn:1do
if j=1and r =1 then
Get z;(0) from KMp
else if r # and j=1 then
21(0) equals the 32 bits decimal value converted from the binary
string consisted of [Dp,, (bs — 3), D, (bs —2),Dp,, (bs — 1), Dp,, (bs)]
else
9: 21(0)) equals the 32 bits decimal value converted from the binary
string consisted of [D;(bs — 3), D;(bs — 2), D;(bs — 1), D;(bs)]
10: end if

%

11: Calculate s(0) = fi(z;(0)) using Equation.23

12: Convert D; to string Dy; consisted of 32-bits decimal values

13: fort=1:bs/4 do

14: if ¢t =1 then’

15: Calculate s(1) = f;(s(0)) using Equation.23

16: else

17: Calculate s(t) = f;(Dy;(t — 1))

18: end if

19: z(t) = Dy;(t) XOR s(t)

20: end for

21: GetDy;. from converting the string of x to 8 bits value

22: Get R4(k) by converting 3 bits in K DN Ad to decimal value

23: Encode Dy; to Dy;’DNA applying Rq4(k)

24: Reshape Dy;',DNA to a matrix of DNA bases M Dypna of size v/4bs
*/4bs

25: for i = 1:+/4bs do

26: for I =1:+/4b, do

27: Calculate (inew,lnew) using Equation.21

28: DMypya (inew, lnew) = MDypxa (i, 1)

29: end for

30: end for , ,

31: Reshape DMy, to a DNA bases string DyijNAnew

32: Apply the DNA complementary rules to change Dy;’DNA to Dy; bNA

33: Get Re(k) by converting 3 bits in K DN Ae to decimal value

34: Decode Dy; pna by the rule Re(k) given in Table.1 to Dy;

35: if r=1and j =1 then

36: w(k) = IV (k)

37: else if r # 1,5 =1 then

38: w(k) = Pg,, (k)

39: else

40: w(k) = Pj_1(k)

41: end if

42: Calculate P;(k) = Dy;(k) XOR iv(k)

43: end for
44: end for
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Fig. 8 Decryption structure of the cryptosystem

5 Performance and Security analysis

The following performance and security analyses are divided into two parts. We
will 1) discuss the performance of the proposed FCPRNG structure through
statistical analysis and NIST(National Institute of Standard and Technol-
ogy)test[17]; 2) the whole cryptosystem’s security is evaluated through various
tests on the encrypted images.

5.1 FCPRNG statistical analysis
5.1.1 Histogram and Chi square test

The histogram is often used to exhibit the distribution of the data. For a
well-designed random number generator, its outputs should be uniformly dis-
tributed. Therefore, hereafter, we employ the histogram and Chi-square test
to evaluate the distribution of the proposed FCPRNG’s outputs. One hun-
dred sequences with one million, 1000000 bits) are generated with 100 pairs
of different secret keys(3125000 samples). The distribution of these outputs
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is shown in Fig.9. It can be observed that these 3125000 values are almost
uniformly distributed, which meets the uniformity requirement of the pseudo
random generator.

Apart from the histogram, which can visually illustrate the uniform dis-
tribution of the outputs, the Chi-square test is also employed. To do the test,
a null hypothesis is to be established, and a significance level « signifying
the probability of rejecting the null hypothesis while it is true, is chosen. If
one obtains a test statistic (experimental value) smaller than the critical Chi-
square value(CV) under the given degree of freedom of the samples for the
Chi-square test with a significance level of «, then the null hypothesis is con-
sidered to be true and validated. The experimental value V for the Chi-square
test is calculated through the following formula,

N.—1

v=3%" % (25)
1=0

In equation (25), N, denotes the number of classes, O; is the number of samples
in the i-th class, and FE; represents the number of expected samples for a
uniform distribution.

For our uniformity test, we assume the null hypothesis Hy states that
the outputs of the proposed FCPRNG are uniformly distributed (numbers
of samples in each of the 1000 classes are identical). With a o = 0.05, the
critical Chi-square value x? can be obtained which is equal to 1073.6473. The
calculated experimental value V' with N, = 1000, E; = 3125000/N,. = 3125
equals to 999. The fact that V < x? leads to the acceptance of Hy, which in
turn confirms that the FCPRNG outputs have a uniform distribution.

It is worth mentioning that, the same chi-square test is also employed to
test the uniformity of the ciphered images’ pixel values latter in the cryptosys-
tem’s security analysis. But the number of classes IV, and degree of freedom is
different, since there are only 256 different possibilities for pixel values (0-255).

5.1.2 NIST test suite

To evaluate the pseudo-randomness of the FCPRNG outputs, we employ the
NIST test suite. The NIST test is a suite of tests consisting of 15 randomness
tests. For the outputs to be pseudo-random, each of the tests should have a p-
value greater than 0.01 and a proposition greater than 96 (Detailed information
of this test suite and the criteria can be found in [17]).

To do the test, a sequence of 100000000 bits from 100 distinct sets of secret
keys (100 sequences of 31250 samples) is needed. The tests’ results are given
in Table.2. With all the p-values greater than 0.01, and propositions greater
than 96.000, the pseudo randomness of the generated outputs is certified.

After having demonstrated the performances of the newly designed FCPRNG,
now let’s investigate the performances of the whole cryptosystem.
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Table 2 NIST test suite results

Test P-value Prop Test P-value prop
Frequency test 0.834 99.000 Block-frequency test 0.115 100.000
Cumulative-sums test 0.698 99.000 Runs test 0.192 98.000
Lognest-run test 0.290 100.000 Rank test 0.276 98.000
FFT test 0.016 100.000 Nonperiodic-templates 0.532 98.885
Overlapping-templates 0.740 99.000 Universal 0.290 97.000
Appropximty entropie  0.419 100.000 random-excursions-variant 0.240 99.138
Serial test 0.382 99.000 Linear-complexity 0.437 99.000
random-excursions 0.437 99.000

5.2 Cryptosystem security analysis

To evaluate the security and the performance of the proposed encryption al-
gorithm, we encrypted several benchmark images in black and RGB colored
by our proposed encryption algorithm. Some well-recognized tests against se-
curity attacks, such as statistical attacks, differential attacks, and so on, have
been adopted, and the results will be reported in the following.

5.2.1 Histogram and Chi-square test results

For a cryptosystem to resist a statistical attack, one basic requirement must be
met first, which is that the ciphered image should possess a uniform distribu-
tion in terms of its pixel values. In Fig. 10, histograms of colored images 'Lena’
and ’Goldhill” are illustrated. One can easily observe that the histograms of
the original plain images in the three color layers follow certain patterns over
the pixel values (0 to 255) but don’t satisfy the conclusion for uniform distri-
bution. In comparison, those of the ciphered images possess much uniformly
distributed pixel values in all color layers.
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Fig. 10 Histogram of plain and cypher colored images

The histograms of the grey images "Airfield’ and "Black’ are also given in
Fig. 11. Same observations can be made, which signifies that the pixel values
of the ciphered image satisfy the essential requirement of having a uniform
distribution.

The Chi-square test is also adopted here to test the uniformity of the
distribution of the cyphered pixel values. Different than the previous Chi-
square test discussed for FCPRNG performance analysis in section 5.1.1, the
number of classes N, here for equation (25) is equal to 256 since there are in
total 0 to 255, 256 possible pixel values; and E; = ImSize/N.. The critical
value x? for the test with a = 0.05 and degree of freedom 255 (N, — 1) can be
found equal to 293.2478. The experimental Chi-square values for several images
are given in Table.4. With all the experimental values smaller than 293.2478,
the cyphered images obtained after encryption are uniformly distributed.

5.2.2 Correlation analysis

The correlation between pixels is another feature which has to be tested to
evaluate the ability of the encryption scheme to resist statistical attacks, which
calculates the strength of correlation between adjacent pixels. A secure cryp-
tosystem should break the high correlation between the pixels of the plain
image. The correlation is calculated by the formula below,

gy = L [@ =) (4~ )
VM -2 (- 9)°

(26)

50 100 150 200 250
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Fig. 11 Histogram of plain and cypher colored images

In equation (26), N, is the number of pairs of adjacent pixels, which are
randomly selected for the analysis, x; and y; represent the pixel values in the
image, and 7,7 are the corresponding expected values.

For our analysis, 8000 different pairs of pixels have been chosen in the
direction of horizontal, vertical, and diagonal for several benchmark images.
For each image, the correlation coefficients for different color layers are evalu-
ated over 100 different cipher images. These cipher images have been obtained
through encrypting the images with one bit difference from the original image
in their pixel value of a random position.

The average correlation coefficients are tabulated in Table.3. In all cases,
the correlation coefficients in every color layer and each direction of the ci-
phered images have a value close to zero. This implies that the encryption
scheme is highly resistant to statistical-based attacks. We also illustrated the
correlation in the three directions for both plain and ciphered images of colored
image 'Pepper’ and the grey image 'Boat’ in Fig.12 and Fig.13, respectively.
One can easily observe that in the plain images, the correlation between pixels
is evident, while in the ciphered images, same as given by the coefficients, the
high correlation is broken.

5.2.3 Avalanche

As mentioned in the previous section, theoretically, a one-bit change in the
plaintext should lead to changes to 50% of the ciphertext for a well-designed
cipher scheme. To prove the sensitivity of our proposed encryption algorithm
in this sense, we calculate the Hamming distances(HD) between the pixels of
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Table 3 Correlation coefficient of several images in different directions

Plain Image

Cyphered Image

Image Size Direction Correlation coefficient Correlation coefficient
Red Green  Blue Red Green Blue
Horizontal — 0.9543  0.8845 0.9288 -0.0015 0.0006  -0.0007
Baboon  256%256*3  Vertical 0.9343 0.8561 0.9281 -0.0010 0.0011 -0.0031
Diagonal 0.9175 0.8125 0.8924 -0.0004 0.0001 -0.0018
Horizontal — 0.9753  0.9666 0.9337 -0.0004 0.0007  0.0005
Lena 512*512*%3  Vertical 0.9852  0.9803 0.9558  0.0026 -0.0002  0.0005
Diagonal 0.9653 0.9528 0.9177  0.0030 0.0023 0.0007
Horizontal ~— 0.9778  0.9819 0.9845  0.0022 0.0005 0.0006
Goldhill 512*512*3  Vertical 0.9763 0.9850 0.9864  0.0008 0.0009 0.0007
Diagonal 0.9604 0.9700 0.9733 -0.0007 0.0004 -0.0048
Horizontal 0.9399 -0.0005
Airfield 512*512 Vertical 0.9418 0.0011
Diagonal 0.9053 0.0009

the cipher images encrypted from the plain images with only one-bit change
through equation (24). The mean HD over 100 cyphered images with one-bit
difference in a random pixel for several tested images are in Table.4. It can be
seen that all the HD values are close to 50%.

5.2.4 Information entropy

For image encryption scheme evaluation, the Global Shannon Entropy (GSE)
can be employed to evaluate the randomness of the image pixel value. The
calculation takes the entire image into account and is formulated as,

Q-1

1
H(C) = ; Pro(c;) x loga 5— @) (27)
where Q is equal to the pixel value classes(256) and Pro(c;) stands for the
number of occurrences of the pixel value ¢; in the range of 0 to 255.

For a robust encryption algorithm, the ideal value of GSE for a cipher
image with the 8-bit grey level is equal to 8. The mean entropy of the ciphered
images for the benchmark images is given in Table.4. The results indicate that
the proposed encryption scheme gives rise to randomly distributed image pixel
values.

5.2.5 NPCR and UACI results

The sensitivity to the changes of the image is one general requirement for
the image encryption scheme to resist differential attacks. Two commonly
used indicators are the Number of Pixels Change Rate (NPCR) and Unified
Average Changing Intensity (UACI). The former assesses the change rate of
the number of pixels in two cipher images, whereas the latter, UACI, measures
the average intensity of the differences between the plain and cipher images.
The calculations of these two indicators are given below,
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My My Ms

NPCR = —— o S* 5° 5% D, ] x 100%

My x My x Ms u=1v=1w=1 (28)
D] = 0, if C1 [u,v,w] = Cs [u, v, w]
T, i Oy [u, v, w] # Oy [u, v, w]

1 M; My Mg
_ - 1
UACI M X M x Mo T DY D10 - Co x 100% - (29)

u=1lv=1w=1

In equation (28) and (29), C1, C5 represent two ciphered images encrypted
from one plain image with only one-bit difference in a random pixel; M x M5 x
M3 is the size of the image; (u, v, w) stands for the coordinate of the pixel (u-th
row, v-th column and w-th color plan). Table.4 gives out the average results
of NPCR and UACI for several benchmark color images. For each image,
we generate 100 images with a one-bit change in a random pixel position.
Knowing that the optimal values for NPCR under o« = 0.05 and UACI are
equal to 99.6094% and 33.4635%, the results prove that the cryptosystem is
sensitive to the changes of plain image, which indicates the high resistance to
differential cryptanalysis and has good diffusion.

Table 4 Statistical and performance analysis

Image Size Mean Mean Mean Mean Mean
NPCR UACI  x2, HD(%) Entropy

Baboon  256*256*3 33.4780  99.610 259.3507  50.0141 7.9991

Lena 512*512*3  33.4606 99.6105  255.8031 50.0139 7.9998

Goldhill  512*512*%3  33.4590 99.6094 254.6217  49.9879 7.9998
Pepper 512*512*3  33.4606  99.6083  256.0509  49.9981 7.9998
Airfield  512*%512*%1 33.4611 99.6078 252.9924  49.9889 7.9993
Boat 512*%512*1  33.4632  99.6091 255.0193  50.0007 7.9994
Black 512%512*%1  33.4579  99.6080  252.2983  49.9986 7.9993
White 512*512*%1  33.4493  99.6090 251.9953  50.0097 7.9993

5.2.6 Key space

The secret keys of our proposed cryptosystem are composed of the follow-
ing variables, 2 fractional orders for the Chen and Lu system(S. and f;);
one set of control parameters and initial conditions for each of the fractional
3D systems((ac, be, ¢.) and X;(0) for Chen, and (a;,b;, ¢;) and X5(0) for Lu
system); one initial condition for the FGDHL map(X,4(0)); 4 sets of parame-
ters and intial conditions for the skew tent maps, and one variable ¢r for the
numbers of generated numbers which have been cut off. The ranges of these
variable for the FCPRNG are given in the Table.5. With all of these given pa-
rameters, the encryption scheme has 24 different components in its secret keys.
Since the default precision of the calculation is 10~'® for MATLAB, which we
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Table 5 Keys and their ranges

Keys Ranges Keys Ranges Keys Ranges Keys Ranges
x11(0)  [15,15]  x12(0) [15,15] x13(0)  [0,30]  x21(0) [15,15]
Xzz(O) [—15,15] X23(0) [0730] XStl(O) (071) P1 (0,1)
Xst2(0) (0,1) P2 (0,1) Xst3(0) (0,1) P3 (0,1)
Xsta(0) (0,1) pa (0,1) Fg(0)  (003)  f. [0.75,1]

B [0.75,1] ac [35,40] bc [1.5,3.5] Cc [23,28]

aj [35,40] b; (3,8] cy [20,25] tr [1000,1500]

use, the key space of the encryption scheme can be calculated and is equal
to 4.27 % 103°8, which is much larger than the required key space 2'2® for a
secure cryptosystem [46]. In terms of the key space, our proposed FCPRNG
outperforms the generator discussed in [47] and [48], which use adaptive Za-
slavasky map and Chirikov map with key space of 22'2 and 2'%9, respectively.
The acquired key space is also greater than almost all the encryption schemes
in [49].

5.2.7 Key sensitivity tests

To resist the brute force attack, a cryptosystem must have a sufficiently large
keyspace and be highly sensitive to changes in the secret key. 50 different sets
of secret keys with only a one-bit difference for each of the 24 different keys
components are employed to encrypt the images to evaluate the sensitivity
of our proposed encryption scheme to the changes of secret keys. The mean
NPCR, UACI, and avalanche(HD) results for each secret key component are
given for the colored image ”Baboon” in Table.6. It can be observed that the
NPCR, UACI, and Hamming distance results for tested color images are all
close to their optimal value 99.6094%, 33.4635%, and 50, respectively. This
shows that a slight change to the secret key of the cryptosystem will impact
the encryption of the image, which confirms the cryptosystem’s resistance to
brute force attack.

5.2.8 Time consumption

All the simulations have been conducted in MATLAB R2018b on a computer of
Intel(R) Core(TM) i7-6700 CPU in Windows 10 professional, 64-bit operating
system with 3.40GHz processor, 32 GB RAM. The computational time of the
proposed encryption scheme for several images with different sizes is given in
Table.7.

Since the encryption time of an image cryptosystem is influenced by many
factors, it is highly unlikely to get the explicit comparison results directly
comparing the running time in different environments. Therefore, we also
adopted the Encryption Throughput(ET) and Number of needed Cycles per
Byte(NCpB) to evaluate the encryption speed of the proposed cryptosystem.
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Table 6 Key sensitivity analysis of different keys for image Baboon
Secret Key UACI NPCR HD Secret Key UACI NPCR HD
x11(0) 33.4703  99.6105 49.9997 x12(0) 33.4765  99.6096  50.0053
x13(0) 33.4550 99.6113  49.9957 x21(0) 33.4535  99.6120  49.9975
x22(0) 33.4766  99.6087  50.0037 x23(0) 33.4635 99.6127  50.0006
Xstq(0) 33.4656  99.6083  49.9912 p1 33.4772  99.6110  49.9918
Xst2(0) 33.4498  99.6086 50.0016  p2 33.4742  99.6138 50.0041
Xstz(0) 33.4533  99.6106  50.0006 ps3 33.4470  99.6081  49.9915
Xst4(0) 33.4520 99.6093  50.0059 pa 33.4533  99.6088  49.9988
Fg(0) 33.4620 99.6139  49.9927 . 33.4641  99.6072  49.9928
B 33.4709  99.6074  49.9979 ac 33.4637  99.6111  49.9952
be 33.4715 99.6075  49.9988  c¢ 33.4693  99.6106  50.0047
a; 33.4740  99.6086  49.9997 b 33.4657  99.6108  50.0010
c 33.4751 99.6111  49.9983 tr 33.4626  99.6094  49.9944

The calculation formula for ET and NCpB are given in equation (30) and (31)
respectively, and the results are given in Table.7.

Ima’gesize (Byte)
ET = 30
Encryptiontime(second) (30)
CPUspeed(Hertz)
NCpB = 31
P ET(Byte/second) (31)

Compared to the encryption schemes given in the table, the computational
time is relatively more significant than the other cryptosystems illustrated in
[50] and [51]. The generation of the FCPRNG outputs partly contributes to
the greater time consumption, which the pie chart in Fig.14 explains. The pie
chart displays the time consumption percentage of each scheme component
for the encryption of grey images 'Lena’ with size 512*512. It can be observed
that the encryption process only takes a quarter of the whole cryptosystem
running time. In the meantime, around three-fourths of the time (23.7615s out
of 31.8463s) is spent on the generation of the pseudo-random numbers using
the proposed FCPRNG.

Nevertheless, the merits of the proposed cryptosystem are significant. It
is logical to remark that high security gained from more complex schemes of-
ten requires longer computational time, and there is a trade-off between the
two with respect to the envisaged applications. Therefore, our proposed cryp-
tosystem can be used for security transmission whenever time consumption is
not prioritized. In addition, it can be used for secure storage of information
such as medical files in hospitals, personal data (such as fingerprints), business
documents and is suitable for the use of the home office.

5.2.9 Comparative analysis

In this part, we compared the performances of our proposed cryptosystem
with other image encryption algorithms tested on benchmark images in terms
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Table 7 Time consumption for several images

Image Size Encryption time(s) ET(MBps) NCpB
Baboon 256*256%3  22.2238 0.008 384322.7
Airfield 512*%512*¥1  33.4181 0.008 433431.7
Lena 512*%512*3  160.3160 0.005 693010.14
LenaGrey 512*¥512*%1  31.8463 0.008 415411.29
LenaGrey Ref([50]) 512*512*%1 - 0.035 95367.43
LenaGrey Ref([51]) 512*512%1 - 0.045 77385.32

Cryptosystem time consumption
2.290%

5.830%1 3669,
3.265%

12.635%

[ DNA encoding

[ DNA complementary
[C"IDNA decoding
12D cat map
[JLogistic map diffusion

74.612%

Fig. 14 Percentage of time consumption during each process

of their diffusion and confusion performances. Different works encrypting same
benchmark grey and colored images 'Boat’ and ’Lena’ have been compared.
Among them, three have employed DNA-based encryption schemes([29], [36]
and [53]). The other three ([4], [52] and [54]) introduced the cryptosystems im-
plementing chaotic systems with different encryption schemes and structures.

The features(well-recognized by the cryptography community) examined
for the comparison of the confusion property are the hamming distance, the
entropy test, and the correlation coefficients. The diffusion property(against
the chosen-plaintext attack) which requires the cryptosystem be highly sensi-
tive to even one bit change in the plain image or in the secret key is analysed
through NPRC and UACI.

The results with respect to benchmark images, namely grey and colored
'Lena’, and 'Boat’, respectively, are given in Table.8 and Table.9. It can be no-
ticed that our proposed cryptosystem achieves similar satisfactory encryption
performance with respect to all the above-listed works regarding the evaluated
metrics for both diffusion and confusion properties. To further analyze these
characteristics, we also marked the values which are closest to the ideal values
in bold cases in the comparison tables. For the confusion property, our pro-
posed algorithm possesses closer HD and most of the correlation coefficients for
the grey ’Lena’ image. For benchmark 'Boat’ image, our proposed cryptosys-
tem outperforms the other works in Table.8 for all the given metrics. For the
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Table 8 Comparison on confusion property

Correlation coefficient

Image Cryptosystem  HD(%)  Entropy Horizontal Vertical Diagonal
Proposed 49.9977 7.9993 0.0013 -0.00008 0.0011
LenaGrey Ref[52 - 7.9977 0.0015 -0.00011 -0.0022
512*512 Ref[29 - 7.9994 0.0032 0.0016 0.0023
Ref[4] 50.0079 7.9993 0.0018 0.0001 0.0017
Proposed 50.0007 7.9994 -0.00005 -0.00004 -0.00009
Boat Ref[4] 49.9978 7.9993 0.00047 0.00252 0.00124
512%512 Ref[29 - 7.9994 0.0003 0.0034 0.0011
Ref[53 - 7.9965 0.0024 0.0007 0.0040
Table 9 Comparison on diffusion property
Plaintext sensitivity Key sensitivity
Image Cryptosystem NPRC(%) UACI(%) NPCR(%) UACI(%)
Proposed 99.6107 33.4471 99.6093 33.4483
LenaGrey Ref[4] 99.6080 33.4925 99.6100 33.4763
512*%512 Ref[52] 99.6184 33.5793 - -
Ref[53] 99.6066 33.4977 - -
Proposed 99.6105 33.4606 99.6095 33.4544
Ref[4] 99.6097 33.4573 99.6062 33.4672
R 99.6093 33.4678 99.6089 33.4589
LenaRGB Ref[54] G 99.6099 33.4577 99.6089 33.4598
512%512*3 B 99.6090 33.4608 99.6085 33.4624
R 99.60 33.56 - -
Ref[36] G 99.60 33.45 - -
B 99.61 33.49 - -

diffusion property, we compared the plaintext and key sensitivity employing
NPRC and UACI results for grey and colored 'Lena’ images. As announced
in section 5.2.5, the optimal values for NPRC and UACI are 99.6094% and
33.4635%, respectively. Our proposed scheme achieved better performances
concerning the grey ’Lena’ image encryption. As for the colored ’Lena’ im-
age, the superiority of our proposed cryptosystem is not significant, but it
still possesses the advantage of acquiring greater keyspaces with similar secure
encryption performance.

6 Conclusion

In this paper, we proposed a novel cryptosystem for image encryption based
on a fractional chaotic pseudo-random generator(FCPRNG) and a block ci-
pher. The 3D fractional chaotic systems Chen and Lu have been calculated on
two different non-uniform grids whose grid spaces have been determined by
the outputs of two distinct skew tent maps to enhance randomness for better
security. The outputs of the FCPRNG are then used as the keystream for the
encryption scheme. The CBC mode has been adopted for the block cipher.
The confusion process of the encryption algorithm is based on permutation
performing dynamic DNA encoding and decoding and 2D cat map. After that,
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a discrete logistic map is employed to accomplish the diffusion process. The
proposed cryptosystem has been tested through various statistical and ran-
domness tests for security. The analysis shows that the encryption scheme can
resist attacks such as chosen-plaintext attacks and brute force attacks.

To the best of our knowledge, except for our research, no precedented work
has been done on the design of the PRNG based on the fractional chaotic
systems, let alone the crytosytsem based on FCPRNG. The computational
time of the proposed cryptosystem is relatively longer compared to encryption
schemes based on classical chaotic systems, which is partly contributed by rel-
atively greater time consumption of the calculation of 3D fractional chaotic
systems. However, the trade-off is the much greater keyspace with 24 indepen-
dent components in its secret keys, making the cryptosystem very unlikely to
be broken. Therefore, the proposed cryptosystem can be successfully imple-
mented whenever security plays a key role and overwhelms the other issues.
The cryptosystem can also be adopted for applications for safe data storage,
such as the storage for medical folders in hospitals, documents processed in
the home office which are more and more frequent nowadays, etc.
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