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Predictive feedback control for inventory
systems subject to delays and constraints

Berna Bou Farraa, Rosa Abbou, and Jean Jacques Loiseau

Abstract— In this paper, we discuss the inventory reg-
ulation problem of a logistic system composed of a pro-
duction unit and inventory unit. The production system is
characterized by a constant lead time, and the storage unit
presents fixed losses due to perishable products. In this
study, the system is subject to finite production resources,
limited storage capacities, and the customer demands are
uncertain in a given range. We address a control strategy to
the input time delay system that is subject to positive and
saturation constraints and to bounded disturbances. We
apply a linear prediction feedback control strategy, in order
to stabilize the closed-loop system and to fulfill the system
constraints, so that necessary and sufficient conditions for
the existence of an admissible control law are formulated.

Index Terms— Constraints verification, input-delayed
system, inventory control, predictive feedback structure.

I. INTRODUCTION

The inventory regulation problem is a field of research
that explores the links between the control theory domain
and the production management domain. In this context, we
develop a control policy to manage the complex phenomena
of these dynamic systems, in order to provide stable inventory
regulation level and high customer demands satisfaction. Such
problems can be treated using different frameworks, in particu-
lar the analytic models associated to control theory approaches.
Simon [21] was the first to study the logistic system by a
servomechanism approach using Laplace Transform. Through
the years, different studies were based on differential equations
and feedback structures, to model and control the inventory
dynamics in production systems [9], [13] and [24].
In production systems, time delays are directly related to the
time required for the production and delivery process, and
are often the main cause of the system instability. In the
past years, several studies have been done introducing the
notions of Input-Output stability for convolution systems, as
well as the stability by state prediction for delayed systems,
as studied in [7], [22], [23] and [25]. Riddalls and its co-
authors in [20] were the first to take into account the delay
exactly in logistic systems control. A second specification
related to inventory systems concerns the perishable products,
that generates inventory losses and have significant effects on
products availability and customer service. Several works in
the literature, as [3], [5], [10] and [12], have modeled the
inventory items by decay processes.

Laboratory of Digital Science of Nantes, CNRS & Nantes University.
1 Rue de la Noë, 44321 Nantes, France.
{Berna.Boufarraa, Rosa.Abbou, Jean-Jacques.Loiseau}@ls2n.fr

Moreover, additional characteristics are considered in few
works of the literature. The first feature is the positivity of
the inventory level and the production order that are physical
quantities. The second feature is resumed by the capacities
limitation of the inventory storage and the production finite
resources. These characteristics are modeled by positive and
saturation constraints that should be taken into considera-
tion when controlling the production system. The constraints
verification methods are based on the bounds calculus for
Input-Output systems, which are derived in [16] from the
seminal results exposed in [8], and on the invariance principle
formulated for finite dimensional systems, see [4] and [5].
In the continuity of these works, we discuss in this paper
the inventory regulation problem for a class of input-delayed
system subject to positive and saturation constraints, a constant
lead time and a fixed loss factor. The contribution of this
work provides an inventory control approach using a predictive
feedback control structure. The resolution methodology we
have adopted in our work is part of the structural approach
initiated by Karcanias in [14]. This global approach consists of
separating the physical system sizing from the control system
design, so that both the existence and the feasibility of a
control structure are guaranteed, in conformity with the system
constraints and specifications. Indeed, our first contribution is
to present the Input-Output bounds calculus for the convolu-
tion system, in order to prove the controlled system stability
and the constraints verification. The second contribution is
to describe the necessary and sufficient conditions for the
existence and the implementation of a constrained control law,
in terms of a specified control parameterization.
The remainder of this paper is organized as follows. The
problem statement is described in Section II and some pre-
liminaries are briefly summarized. The prediction feedback
control structure is introduced in Section III, and the Input-
Output reachable bounds are determined in Section IV. The
main results concerning the implementation of an admissible
control law are formulated in Section V. Comparative analysis
and simulation examples are provided in Sections VI and VII
respectively, in order to analyze and verify the theoretical
results. The conclusion is drawn in Section VIII.

II. PROBLEM STATEMENT

A. Model description

In this study, we consider a logistic system composed of a
production unit and an inventory unit. The system is defined
by the following basic variables: the production order u(t),
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the inventory level y(t), and the consumer demand d(t).
As the demand d(t) varies continuously over the time, then
we consider that the inventory level y(t) and the production
orders u(t) evolve continuously throughout the time. Thus, the
dynamic of the inventory level is described by the following
first order differential input-delay system of the form:

ẏ(t) = −σy(t) + u(t− θ)− d(t) , for t ≥ θ, (1)

where u(t) = φ(t) for −θ ≤ t < 0. The function of the initial
conditions φ(t) corresponds to the initial production flow over
a past time horizon of the system, before the implementation
of the control law u(t) for 0 ≤ t ≤ θ. Using this function, we
define the initial work in progress, noted w, as follows:

w =

∫ θ

0

e−σ(θ−τ)φ(τ)dτ. (2)

The initial work in progress w includes all the final products
being produced at t = θ, that are ready to feed the inventory
level at the following moments.
The production order u(t) and the consumer demand d(t) are
homogeneous to flows in items per day. The inventory level
y(t) is a cumulative flow function of time t, taking values in
number of items. In terms of control, u(t) is the control input,
d(t) is an external perturbation, and y(t) is the output to be
controlled.
One remarks that the control is delayed, which comes from
the fact that the production of goods or services takes time
presented by θ. We consider that the delay θ is a positive
constant characteristic of the considered production system,
representing the estimated process time on the work stations
in industrial workshops. Moreover, it is important to remark
that the inventory level is naturally decreasing because of the
storage losses σy(t). Such systems are modeled in this study
by a fixed loss factor σ verifying 0 ≤ σ < 1, in order to
best consider perishable products having limited consumption
periods. Indeed, the lead time θ and the loss factor σ are
supposed to be known exactly in advance in order to model
deterministic characteristics in basic manufacturing processes.

B. Control methodology
The system (1) being given, the control objective consists

of calculating the production order u(t) on line, so that
the inventory level y(t) is well regulated and the consumer
demands d(t) are fully satisfied. The controller should also
meet the positive and saturation constraints on the system
variables. From a production management point of view, the
production unit u(t) and the inventory level y(t) are non-
negative quantities having limited production resources and
finite storage capacities. Mathematically, it comes down to
constraints on the system variables that are interpreted as
specifications to the control system. Indeed, the minimum
and the maximum production rates of the system are denoted
umin and umax respectively. The minimum and the maximum
inventory capacities are denoted ymin and ymax respectively.
We denote dmin and dmax respectively, the minimum and the
maximum demand rates. The controller should be designed
such that, for all t ≥ 0:

0 ≤ ymin < y(t) < ymax, (3)

0 ≤ umin < u(t) < umax, (4)

0 ≤ dmin < d(t) < dmax. (5)

The problem comes down to finding a new stabilizing
control strategy so that the input and output constraints
remain always checked, in the presence of an arbitrarily
bounded disturbance in the range defined by (5). In other
terms, the control methodology consists of determining the
necessary and sufficient conditions for the existence and the
implementation of an admissible control law u(t). Hence,
the admissible property of the proposed control structure is
formulated in the following definition.

Definition 1: A control law is said to be admissible for
the delayed system (1) if, for any initial condition y(0) ∈
[ymin, ymax], there exists an initial function φ(τ) for τ ∈
[0, θ[, such that system output constraint (3) and the control
input constraint (4) remain fulfilled at any instant t ≥ 0, and
this for any unknown disturbance d(t) verifying (5).

Before getting to the description of the control structure and
its analysis, we introduce in the next section some elementary
backgrounds for system stability and constraints verification.

C. About Input-Output bounds for convolution systems
We consider in our work an important family of causal

Input-Output systems, which belong to the set of convolution
kernels denoted by A, defined as follows:

h(t) =

{
ha(t) +

∑∞
i=0 hi.δ(t− ti) , for t ≥ 0,

0 , for t < 0.
(6)

An element of A of the form (6) is said to be non-negative
if ha(t) ≥ 0, for t ≥ 0, and hi ≥ 0, for i ∈ N. In addition,
the set A forms a commutative Banach algebra with a norm
verifying

||h||A = ||ha||L1
+

∞∑
i=0

|hi| < ∞. (7)

Such systems are known to belong to the class of Wiener
Algebra, as in [19], which covers finite dimensional systems
and infinite dimensional ones as well, such as time delayed
systems. Indeed, every system with kernel defined in the class
A is said to be Bounded Input Bounded Output BIBO-stable,
according to the following definition.

Definition 2: An Input-Output system of the form y(t) =
(h ∗u)(t) =

∫ t

0
h(t− τ)u(τ)dτ , is BIBO-stable if there exists

positive real numbers um and ym such as, any input verifying
|u(t)| ≤ um produces a system output |y(t)| ≤ ym, at any
time t ≥ 0.

Therefore, the following theorem establishes the exact
reachable bounds of the system output, when its input is
constrained and evolves in a closed interval.

Theorem 1: Assume that h is a non-negative element of
the class A verifying (7), and let mu and Mu be two non-
negative real numbers. For any bounded input u(t) satisfying
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mu ≤ u(t) ≤ Mu, for t ≥ 0, the output of the system y(t)
expressed by y(t) = (h ∗ u)(t) is bounded for t ≥ 0, as
follows:∫ t

0

h(τ)dτ . mu ≤ y(t) ≤
∫ t

0

h(τ)dτ . Mu. (8)

Moreover, we obtain the following exact bounds when t tends
to infinity:

||h||A . mu ≤ y(t) ≤ ||h||A . Mu. (9)

Proof: We deduce the inequalities (8) from the con-
volution system y(t) = (h ∗ u)(t), and the positivity of
h and u. One further obtains (9) when t tends to infinity,
and one checks that the infimal and supremal bounds are
respectively defined by ||h(t)||A . mu = inf

mu≤u(t)≤Mu

{y(t)}

and ||h(t)||A . Mu = sup
mu≤u(t)≤Mu

{y(t)}, using a constant

control equal to mu and Mu respectively.

This characterization allows to monitor the system output
variation following the control input specification. These prop-
erties are deduced from those developed in [17] for constraints
verification in mutlivariable systems. They are powerful tools
for Input-Output reachable bounds identification and con-
straints meeting for delayed systems, as presented in the
sequel.

III. PREDICTIVE CONTROL STRUCTURE

Several studies have been done for delayed systems in-
troducing notions of BIBO stability as well as stabilization
by state prediction principles, making possible the synthesis
of stabilizing control laws for dynamic systems as logistic
systems. Indeed, we propose a control structure defined by
a linear predictive feedback, that stabilizes the input-delay
system (1) and compensates the delay effects on the system
dynamics, as follows:

u(t) = K(z0 − z(t)). (10)

The control parameter K is a static gain used to adjust the
production rate, and z0 is the reference value for the predicted
storage level. This type of linear control allows the regulation
of the inventory level y(t), where the production order u(t)
presents a continuous incoming flow of products. In addition,
the exact prediction z(t) of the future inventory level y(t) is
carried out over a time horizon from t to t+ θ, as expressed
in the following:

z(t) =


e−σθy(t) +

∫ t

t−θ
e−σ(t−τ)u(τ)dτ , for t ≥ θ,

e−σty(t) +
∫ t

0
e−σ(t−τ)u(τ)dτ

+
∫ θ

t
e−σ(t−τ)φ(τ)dτ , for 0 ≤ t ≤ θ.

(11)
Indeed, the prediction dynamics are determined by the follow-
ing equation:

ż(t) = −σz(t) + u(t)− e−σθd(t). (12)

The obtained equation is well known by the model reduction or
the Artstein’s reduction [2]. The state prediction structure was
first studied by [18] and used after by [15], [1] and [5]. The
basic idea of such a basic prediction principle is to anticipate
and fully compensate the system delay θ, by generating a
control law that directly uses the corresponding free-delay
system (12). In the frequency domain, the system output and
the control law are described respectively by (s + σ)ŷ(s) =
e−sθû(s)− d̂(s) and û(s) = Ĉ(s)(Kz0−Ke−σθŷ(s)), where
Ĉ(s) = 1

1+K( 1−e−(s+σ)θ

s+σ )
. Indeed, the control loop structure is

performed in Figure 1.

1
se−sθK Ĉ(s)

σ

e−σθ

+− +−
−z0 û(s) ŷ(s)
d̂(s)

Controller Delay Open-loop system

Fig. 1. Closed-loop system diagram

The characteristic equation of the closed loop system is equal
to the following determinant:

1

ĝ(s)
= s+σ+K = det

(
s+ σ −e−sθ

Ke−σθ (1 +K( 1−e−(s+σ)θ

s+σ )

)
.

We notice that the transfer ĝ(s) depends explicitly on the
control parameter K and the loss factor σ. In the time domain,
it corresponds to the Kernel g(t) = e−(σ+K)t, whose norm is
equal to ||g||A = 1

σ+K . Indeed, The closed-loop transfer ĝ(s)
is BIBO-stable for positive values of the control parameter K
and non negative values of the loss factor σ such that K ≥ −σ.
The predictor linear-feedback control law being defined by
(10)-(11) and illustrated in Figure 1, we move on to study
in the next section the dynamics of the closed-loop system.
The challenge is to determine the time evolution of the
control input u(t) and system output y(t) based on the bounds
identification, in order to check the system constraints on these
variable, (4) and (3), respectively.

IV. INPUT-OUTPUT REACHABLE BOUNDS

As explained previously, the proposed methodology
consists in calculating the input and the output reachable
bounds, and then deducing the conditions under which these
bounds would respect the affected system constraints (4)
and (3) respectively. In order to use the bounds computation
as introduced in Section II-C, we first describe the system
dynamics in an Input-Output representation. Indeed, the
temporal evolution of the control input u(t) and the system
output y(t) are described in the following proposition.

Proposition 1: The system (1) controlled by a linear pre-
dictive feedback of the form (10)-(11), has an Input-Output
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representation as follows:

u(t) = K σ
σ+K z0 + Ke−σθ(e−(σ+K) ∗ d)(t)

−K(y(0) + w − K
σ+K z0)e

−(σ+K)t , for t ≥ 0,

y(t) =


T1(t)y(0) − (T2 ∗ d)(t) + ϕ(t)
+K(T3 ∗ (z0 − e−σtw))(t) , for t ≥ θ,

e−σty(0) −
∫ t

0
e−σ(t−τ)d(τ)dτ

+
∫ t

0
e−σ(t−τ)φ(τ)dτ , for 0 ≤ t ≤ θ,

where the functions T1(t), T2(t), T3(t) and ϕ(t) are defined
as follows:

T1(t) =

{
e−σt , for t ∈ [0, θ],
e−σt − e−σ(t−θ) + e−(σ+K)(t−θ) , for t ≥ θ,

T2(t) =

{
e−σt , for t ∈ [0, θ],
e−σθe−(σ+K)(t−θ) , for t ≥ θ,

T3(t) =

{
0 , for t ∈ [0, θ],
e−(σ+K)(t−θ) , for t > θ,

ϕ(t) =

{
(e−σt ∗ φ)(t) =

∫ t

0
e−σ(t−τ)φ(τ)dτ , for t ∈ [0, θ],

w , for t ≥ θ.

Proof: The assertions of this theorem are obtained using
the Laplace transformation and its properties. Thus, the control
input and the system output dynamics defined respectively by
(10) and (1), are expressed based on the prediction dynamics
given by (12) with z(0) = y(0) + w, as follows:

û(s) = Kĝ(s)

(
s+ σ

s
z0 − (y(0) + w) + e−σθd̂(s)

)
,

ŷ(s) = T̂1(s)y(0) +KT̂3(s)(
z0
s

− w

s+ σ
) −T̂2(s)d̂(s) +ϕ̂(s),

where

T̂1(s) =

(
1 +

K(1− e−sθ)

s+ σ

)
ĝ(s),

T̂2(s) =

(
1 +

K(1− e−(s+σ)θ)

s+ σ

)
ĝ(s),

T̂3(s) = e−sθ ĝ(s),

ϕ̂(s) =
φ̂(s)

s+ σ
.

Finally, the system input and the system output are formulated
taking into consideration the functions T1(t), T2(t), T3(t) and
ϕ(t) introduced in Proposition 1 for 0 ≤ t ≤ θ and t ≥ θ.

Based on the input and output dynamics formulated in
Proposition 1, we define the exact reachable bounds of the
system variables u(t) and y(t), in the following Proposition.

Proposition 2: Given the system (1), controlled by a linear
predictive feedback of the form (10)-(11) and a disturbance
d(t) verifying (5), the exact reachable bounds of the control
input u(t) and the system output y(t) are defined by:

u(t) ∈ [u1(t), u2(t)], and y(t) ∈ [y1(t), y2(t)],

where

u1(t) =
Kσ

σ +K
z0 −K(y(0) + w − K

σ +K
z0)e

−(σ+K)t

+
K

σ +K
e−σθdmin(1− e−(σ+K)t) , for t ≥ 0,

u2(t) =
Kσ

σ +K
z0 −K(y(0) + w − K

σ +K
z0)e

−(σ+K)t

+
K

σ +K
e−σθdmax(1− e−(σ+K)t) , for t ≥ 0,

y1(t) =



(e−σt − e−σ(t−θ))y(0) + w − 1−e−σθ

σ dmax

+ 1
K+σ (Kz0 −Ke−σtw − e−σθdmax)

+ (y(0)− K
K+σ z0 +

K
K+σ e

−σtw

− e−σθ

K+σdmax)e
−(σ+K)(t−θ) , for t ≥ θ,

e−σty(0) +
∫ t

0
e−σ(t−τ)φ(τ)dτ

− 1−e−σt

σ dmax , for 0 ≤ t ≤ θ,

y2(t) =



(e−σt − e−σ(t−θ))y(0) + w − 1−e−σθ

σ dmin

+ 1
K+σ (Kz0 −Ke−σtw − e−σθdmin)

+ (y(0)− K
K+σ z0 +

K
K+σ e

−σtw

− e−σθ

K+σdmin)e
−(σ+K)(t−θ) , for t ≥ θ,

e−σty(0) +
∫ t

0
e−σ(t−τ)φ(τ)dτ

− 1−e−σt

σ dmin , for 0 ≤ t ≤ θ.

Proof: We apply the bounds calculation as introduced
in Theorem 1, in order to formulate the bounds reached by
the control input u(t) and the system output y(t) defined in
Proposition 1. First, the variable u(t) is expressed as a sum of
the function K σ

σ+K z0 − K(y(0) + w − K
K+σ z0)g(t) and the

convolution function Ke−σθ(g ∗ d)(t). Since the disturbance
d(t) verifies (5), the convolution term is bounded as follows:

dmin

∫ t

0

g(t− τ)dτ ≤ (g ∗ d)(t) ≤ dmax

∫ t

0

g(t− τ)dτ.

the input bounds are then formulated having g(t) = e−(σ+K)t.
Similarly for y(t), the bounds of the convolution function
−(T2 ∗ d)(t) are determined for d(t) verifying (5), by

−dmax

∫ t

0

T2(t−τ)dτ ≤ (T2∗d)(t) ≤ −dmin

∫ t

0

T2(t−τ)dτ,

(13)
with

∫ t

0
T2(t − τ)dτ = 1−e−σt

σ for t ∈ [0, θ],
and by T2(t) = 1−e−σθ

σ + e−σθ
(

1−e−(σ+K)(t−θ)

σ+K

)
for t ≥ θ. Moreover, the term K(T3 ∗ (z0 −
e−σtw))(t) is defined by K (T3 ∗ (z0 − e−σtw)) (t) =
K(z0 − e−σtw)

∫ t

θ
e−(σ+K)(τ−θ)dτ = K(z0 −

e−σtw)( 1−e−(σ+K)(t−θ)

σ+K ). Finally, the output bounds are
obtained by replacing the temporal domain functions T1(t)
and ϕ(t) by their expressions defined in Proposition 1 for
t ≥ θ, which completes the demonstration.

These input and output reachable bounds are time-dependent
functions that tend asymptotically to finite values. This latter
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confirms the BIBO-stability of the controlled system as men-
tioned in Theorem 1. Moreover, the output reachable bounds
are presented by two distinct intervals, the initialization phase
for t ∈ [0, θ] and the steady state for t ≥ θ where the control
parameters K and z0 are implemented. Indeed, we study in the
following section the system constraints verification, in order
to determine the necessary and sufficient conditions for the
existence of an admissible control law.

V. IMPLEMENTATION OF THE CONTROL LAW

The implementation of the predictive control law is divided
into two parts. The first one concerns the admissibility of the
control law (10)-(11) with respect to the system constraints
verification. While the second axis is based on the choice
of the control parameters K and z0, for which the existence
of such an admissible control law is guaranteed. These two
concepts are developed in the following two sections.

A. Admissible conditions of the control law
To determine the necessary and sufficient admissible

conditions, we formulate in the following theorem the
conditions for which the input and output exact reachable
bounds expressed in Proposition 2 belong to the intervals
defined by the constraints (4) and (3), respectively.

Theorem 2: Given the system of the form (1) with admis-
sible initial conditions and a disturbance d(t) verifying (5),
then the control law (10)-(11) allows to check the system
constraints (3) and (4), if and only if the following conditions
are satisfied:

umin ≤ K

K + σ
(σz0 + e−σθdmin), (14)

K

K + σ
(σz0 + e−σθdmax) ≤ umax, (15)

ymin +
1− e−σθ

σ
dmax +

e−σθ

K + σ
dmax ≤ K

K + σ
z0, (16)

K

K + σ
z0 ≤ ymax +

1− e−σθ

σ
dmin +

e−σθ

K + σ
dmin. (17)

Proof: The constraints (4) and (3) are verified if the
intervals [u1(t), u2(t)] and [y1(t), y2(t)] given by Proposition
2 are included in the intervals [umin, umax] and [ymin, ymax]
respectively. We first identify the exact reachable bounds for
u(t) and y(t) when t tends to infinity, using the bounds char-
acterization for exponential functions. Indeed, we notice that
the interval [ K

K+σ (σz0 + e−σθdmin),
K

K+σ (σz0 + e−σθdmax)]
is included in the interval [umin, umax] only if the conditions
(14) and (15) are verified.
Similarly for y(t), the interval [ 1

K+σ (Kz0−e−σθdmax)+w−
1−e−σθ

σ dmax,
1

K+σ (Kz0 − e−σθdmin) + w − 1−e−σθ

σ dmin] is
included in the interval [ymin, ymax], if the conditions (16)
and (17) are checked. This shows the sufficiency of these
conditions. Their necessity comes from the fact that the bounds
expressed in Proposition 2 are exact and reachable for both the
control input u(t) and the system output y(t).

In the obtained results, we have effectively considered that the
control parameters are fixed in advance. In this direction, we
will study in the following section the co-design methodology
of the controlled system, in order to identify the best control
law parameterization in addition to the constraints verification.

B. Parameterization of the admissible control law
The conditions formulated in Theorem 2 are expressed in

terms of different parameters classified into three categories,
the intrinsic parameters θ and σ, the control parameters K and
z0, and the parameters ymin, ymax, umin, umax, dmin and
dmax related to the system constraints. Indeed, we respond
to the problem of existence and parameterization of the
controlled system in the following theorem, by formulating
the conditions that are independent of the control parameters.

Theorem 3: Given the system (1) with admissible initial
conditions, there exists a linear predictive control law of
the form (10)-(11) for which the system is BIBO-stable and
the constraints (3) and (4) are fulfilled, for any disturbance
d(t) ∈ [dmin, dmax], if and only if the following conditions
are satisfied for t ≥ θ:

umin ≤ σymax + dmin, (18)

σymin + dmax ≤ umax, (19)

and

ymin +
1− e−σθ

σ
dmax < ymax +

1− e−σθ

σ
dmin. (20)

Moreover, if these conditions are true, an admissible control
law is then implemented by choosing the reference level
z0 verifying the conditions (14), (15), (16) and (17), and a
positive static gain K verifying the following condition:

K ≥ dmax − dmin − σ(ymax − ymin)

ymax − ymin − 1−e−σθ

σ (dmax − dmin)
. (21)

In addition, if the following inequality is true,

e−σθ(dmax − dmin) > umax − umin, (22)

then, the static gain K is bounded by a lower bound defined
in (21) and an upper bound defined for σ ̸= 0 as follows:

K ≤ σ(umax − umin)

e−σθ(dmax − dmin)− (umax − umin)
. (23)

Proof: The results of this theorem are derived from
the admissibility conditions of defined in Theorem 2 and
expressed in terms of the control parameters K and z0.
Therefore, the proof is divided into two parts. The first one
is the procedure of elimination of reference value z0, while
the second part is dedicated for the elimination and the choice
of the static gain K. First, the conditions (14), (15), (16) and
(17) depend on z0, and are reformulated as follows:

K + σ

Kσ
umin − e−σθ

σ
dmin ≤ z0 ≤ K + σ

Kσ
umax − e−σθ

σ
dmax,

K + σ

K
ymin + (

1− e−σθ

σ

K + σ

K
+

e−σθ

K
)dmax ≤ z0,

z0 ≤ K + σ

K
ymax + (

1− e−σθ

σ

K + σ

K
+

e−σθ

K
)dmin.
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The reference value z0 being isolated, it can be eliminated
assuming that K > 0 and σ > 0 that are the closed loop
stability conditions. Hence, an equivalent set of conditions
that are independent of z0 is generated. Indeed, we obtain the
conditions (18) and (19), and the two following inequalities:

Ke−σθ(dmax − dmin) ≤ (K + σ)(umax − umin), (24)

((1−e−σθ)+
σe−σθ

K + σ
)(dmax−dmin) ≤ σ(ymax−ymin). (25)

Then, we move on to the elimination procedure of the static
gain K from the conditions (24) and (25). The condition (25)
is reformulated by e−σθ(dmax − dmin) ≤ (K + σ)(ymax −
ymin − 1−e−σθ

σ (dmax − dmin)). Hence, the condition (20) is
deduced form this latter assuming that dmax > dmin.
In addition, the choice of the static gain K is linked to the
conditions (24) and (25). On one hand, the condition (25) is
defined for a choice of K satisfying the inequality (21). On
the other hand, if the inequality (22) is satisfied, the choice of
the static gain is therefore limited by a maximum bound for
σ ̸= 0, as defined by the condition (23). As consequence, the
bounds (21) and (23) resume the interval of variation of the
control parameters K, which completes the proof.

We have determined the necessary and sufficient conditions for
the existence of an admissible linear predictor feedback (10)-
(11). These inequalities occur during the logistic system sizing.
Knowing the system parameters, which are the specifications
umin, umax, ymin, ymax, dmin and dmax, the lead time θ and
the loss factor σ, the co-designer can test first the existence
of an admissible control law, by testing the validity of the
conditions (18), (19) and (20). If they are valid, an admissible
control law is then implemented based on the parameterization
of the control parameters K and z0, as formulated by the
conditions (14), (15), (16), (17), (21) and (23). On the contrary,
if the conditions are not satisfied, the designer of the control
system is certain of not being able to control the inventory
system using the proposed linear predictive feedback. This
result occurs during the conception of the control system, and
after ensuring the admissibility of the control law, as initiated
by Karcanias in [14].

C. Study of the initialization phase

In this section, we complete the obtained results concerning
the implementation of an admissible control law for t ≥ θ,
by the study of the initialization phase for the system (1), in
terms of the initial system output y(0) and the initial work
in progress w. Indeed, based on the Input-Output bounds
formulated in Proposition 2 for 0 ≤ t ≤ θ, we characterize the
set of initial admissible conditions in the following theorem.

Theorem 4: Given the system (1) subject to a disturbance
d(t) verifying (5), the constraints (3) and (4) are checked for
0 ≤ t ≤ θ, if and only if the following inequalities hold true:

z0 −
umax

K
≤ y(0) + w ≤ z0 −

umin

K
, (26)

ymin+
1−e−σθ

σ
dmax ≤ e−σθy(0)+w ≤ ymax+

1−e−σθ

σ
dmin.

(27)

Proof: The constraints (3) and (4) are fulfilled if the
intervals given in Proposition 2 verify the following inclu-
sions: [u1(t), u2(t)] ⊂ [umin, umax] and [y1(t), y2(t)] ⊂
[ymin, ymax]. Thus, the condition (26) is checked if
lim
t→0

u1(t) ≥ umin and lim
t→0

u2(t) ≤ umax with u1(t) < u2(t)

for t ≥ 0. Similarly, the condition (27) is formulated for t ≥ θ
based on y1(t) ≥ ymin and y2(t) ≤ ymax, with y1(t) < y2(t)
for t ≥ θ. This shows the sufficiency of the stated conditions.
The necessity comes from the fact that the bounds expressed
in Proposition 2 are exact and reachable for u(t) and y(t).

Based on the conditions of Theorem 4, we notice that the
initial values are modulated according to the predetermined
choice of the static gain K and the reference level z0 of
the control law. If the initial conditions are checked, then we
can choose the control parameters K and z0 as described in
Theorem 3. Indeed, the predictive control approach is efficient
in both the initialization and the steady states. We end by a
compared analysis with published works form the literature.

VI. COMPARATIVE ANALYSIS AND DISCUSSION

The above study concerning the control of inventory systems
is compared to recent frameworks, in the following remarks.

Remark 1: The authors in [12] have applied a linear feed-
back based on a Smith predictor principle to study the inven-
tory regulation problem. Indeed, the Smith predictor based
controller is a successful method for dead-time compensa-
tion, but the closed-loop system stability is not necessarily
guaranteed. In this direction, an enhanced linear control law
was developed in [11], in order to establish smooth and non-
oscillatory system responses. In this study, the control strategy
is improved using the stabilization by a state prediction
principle, where the closed-loop system stability is guaranteed.

Remark 2: Furthermore, we study in this paper a general
class of logistic systems with a positive loss factor contrary to
[1] and [16] where σ = 0 is considered. Moreover, the model
description is completed in this paper where both positive and
saturation constraints are considered, contrary to [16] where
only saturation constraints are modeled.

Remark 3: In [5], an affine control law was developed in
order to solve the inventory regulation problem (1). It is
defined by the same linear predictive feedback (10)-(11), and
checks the additional specifications:

u(t) =

{
u1 , for z(t) = zmin,
u2 , for z(t) = zmax.

(28)

The control values u1, u2, zmin, and zmax are chosen such that
the hypotheses u1, u2 ∈ [umin, umax] and z(t) ∈ [zmin, zmax]
are verified, and the control parameters are defined as follows:

K =
u1 − u2

zmax − zmin
, and z0 =

u1zmax − u2zmin

u1 − u2
. (29)
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The control parameterization defined by (29) represents one
choice of the general set of admissible control solutions using
the linear predictive feedback (10)-(11). These results are
completed in our paper, by a global parameterization of the
proposed control law. Indeed, the choice of the static gain K
and the reference value z0 as defined by (29) for the affine
control law, verifies the general implementation of the linear
control law as described in Theorems 2 and 3.

Remark 4: In general, the control law parameterization can
allow the best choice of the control parameters, in order to
optimize certain cost criteria. In particular, the robustness
property is one of the most important characteristics for
the control system conception and for the logistic system
management, where delays are known with uncertainties. In
this case, an approximation of the prediction based controller
is incorporated, based on a delay estimation θ0 of the real
uncertain input-delay θ, as follows:

z0(t) = e−σθ0y(t) +

∫ t

t−θ0

e−σ(t−τ)u(τ)dτ, for t ≥ θ0. (30)

The variable z0(t) does not constitute an exact prediction as
expressed in (11), but an approximation of the future inventory
level, due to the delay error of estimation. Moreover, the sys-
tem dynamics are defined by the following delayed differential
equation, that depends on the two non commensurable delays
contrary to the free-delay system (12):

ż(t) = −σz(t)+u(t)−e−σθ0d(t)+e−σθ0(u(t−θ)−u(t−θ0)).
(31)

Compared to Figure 1, the controller structure is illustrated in
Figure 2, where Ĉ0(s) =

1

1+K( 1−e−(s+σ)θ0
s+σ )

.

1
se−sθK Ĉ0(s)

σ

e−σθ0

+− +−
−z0 û(s) ŷ(s)
d̂(s)

Controller Delay Open-loop system

Fig. 2. Closed-loop system diagram with uncertain input-delay

The characteristic quasi-polynomial of the closed loop system
depends explicitly on the control parameter K and the delays
θ and θ0, as expressed in the following:

1

ĝ0(s)
= s+ σ +K −Ke−σθ0(e−sθ0 − e−sθ).

Indeed, necessary and sufficient conditions were provided in
the recent work [6], in order to guarantee the system stability
considering the approximation of the predictor-based control.
We notice that this latter is related to this paper since the
closed loop spectrum 1

ĝ0(s)
is reduced to 1

ĝ(s) = s + σ +K,
when the delay is known exactly without uncertainty for
θ = θ0. However, stability alone is not a sufficient goal for
inventory systems which are subject to significant constraints.

In this direction, we develop in this paper, in addition to the
stability conditions, the conditions for which the closed-loop
system would meet the system constraints and specifications
as formulated in Theorems 3 and 4. These results would be
extended when the input-delay θ is known with uncertainty in
order to complete the robust study initiated in [6].
These remarks concerning the system constraints verification,
the inventory loss factor consideration and the production
delay uncertainty are illustrated in the simulation examples.

VII. SIMULATION EXAMPLE

We use the Simulink-Matlab environment to construct a
simulation model of the inventory controlled system. The
system constraints are mentioned in Table I. In addition, the
demand signal is given in Figure 4 reflecting the semi-annual
trend and the seasonal changes over a half-year margin. Thus,
the system responses are illustrated in Figures 3 and 4 for
different cases: (i) the real time delay is well defined with
θ = θ0 = 5 and the loss factor is varying so that σ = 0,
σ = 0.07 and σ = 0.2, (ii) the real time delay is expressed
with an uncertainty such that θ = 6 and θ0 = 5.

TABLE I
SYSTEM PARAMETERS AND CONSTRAINTS

u(t) [item/day] y(t) [item] d(t) [item/day]
umin umax θ ymin ymax dmin dmax

4 20 5 0 70 5 15

Based on Figure 3, we notice that the inventory level y(t)
does not present any overflow of ymax = 70, nor a storage
failure for y(t) < 0. In addition, when the customer demand
is saturated for d(t) = 15, the inventory level is decreasing to
ymin = 0. This latter reduces the storage losses for σ = 0.07,
and minimizes the storage costs when σ = 0. However, when
the storage losses increase, for σ = 0.2, a non-negligible
security storage level is provided in order to avoid any storage
lack and to deliver the final products to the customers on
time. Then, when there is a demand shutdown, the controlled
structure makes it possible to replenish the storage level in
order to reach the inventory reference.
Moreover, the production order u(t) as illustrated in Figure
4 follows linearly and closely the seasonal changes in the
customer demand when σ = 0. In practice when the inventory
losses are considered, for σ = 0.07 and σ = 0.2, the control
input provides higher production levels and lower production
dynamics in order to anticipate the storage losses. Then, the
initial production work in progress is predefined for each case,
so that the storage dynamics provide a high service level
for t ≤ θ before the implementation of the control law. In
addition, the system stability and the constraints verification
are guaranteed for a static gain adjusted to K = 0.75 verifying
the conditions of Theorems 3 and 4, and an inventory reference
z0 modulated based on the conditions of Theorem 2.
As introduced in Remark 4, we consider in the last case that
the delay is subject to uncertainties such that the delay θ = 6
becomes different from its estimation θ0 = 5. We notice that
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the system behavior presents some fluctuations, that never lead
to negative responses. In this case, the control approach is
implemented based on an approximation of the predictor-based
controller, and the control parameters K and z0 are modulated
verifying the robust stability conditions developed in [6].

0 20 40 60 80 100 120 140 160 180

0

10

20

30

40

50

60

70

80

t[day]

y
(t
)[
it
e
m
]

 

 

σ = 0.2
σ = 0.07
σ = 0
θ0 6= θ, σ = 0.07
ymin
ymax

Fig. 3. System output dynamics with various specifications
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Fig. 4. Control input dynamics for rectangular disturbance

VIII. CONCLUSION

The paper deals with the inventory regulation problem of
a production system subject to a constant lead time and
a fixed loss factor, based on a predictive feedback control
structure. Since the input-delay system is subject to positive
and saturation constraints, then the Input-Output reachable
bounds are identified, and the Input-Output system stability
and the constraints verification are guaranteed. Indeed, the
necessary and sufficient conditions for the existence of an

admissible control law have been formulated in terms of the
system specifications and the control law parameterization.
These results are compared to recent works modeling the
system constraints and input-delay uncertainty in particular.
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