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Abstract
Reduced Basis Methods (RBMs) are frequently proposed to approximate parametric problem solutions. They

can be used to calculate solutions for a large number of parameter values (e.g. for parameter fitting) as well as to
approximate a solution for a new parameter value (e.g. real time approximation with a very high accuracy). They
intend to reduce the computational costs of High Fidelity (HF) codes. They necessitate well-chosen solutions,
called snapshots, that have been previously computed (e.g. offline) with a HF classical method, involving, for
instance a fine mesh (finite element or finite volume) and generally require a profound modification of the HF
code, in order for the online computation to be performed in short (or even real) time.
We will focus on the Non-Intrusive Reduced Basis (NIRB) two-grid method. Its main advantage is that it uses
the HF code exclusively as a ”black-box,” as opposed to other so-called intrusive methods that require code
modification. This is very convenient when the HF code is a commercial one that has been purchased, as is
frequently the case in the industry. The effectiveness of this method relies on its decomposition into two stages,
one offline (classical in most RBMs as presented above) and one online. The offline part is time-consuming
but it is only performed once. On the contrary, the specificity of this NIRB approach is that, during the online
part, it solves the parametric problem on a coarse mesh only and then improves its precision. As a result, it
is significantly less expensive than a HF evaluation. This method has been originally developed for elliptic
equations with finite elements and has since been extended to finite volume.
In this paper, we extend the NIRB two-grid method to parabolic equations. We recover optimal estimates in
L∞(0, T; H1(Ω)) using as a model problem, the heat equation. Then, we present numerical results on the heat
equation and on the Brusselator problem.

1 Introduction.

Let Ω be a bounded domain in Rd, with d ≤ 3 and a smooth enough boundary ∂Ω, and consider a parametric
problem P on Ω. Non-Intrusive Reduced Basis (NIRB) methods are an alternative to classical Reduced Basis
Methods (RBMs) for approximating the solutions of such problems where the parameter is denoted as µ, in a
given set G [8, 9] (see also different NIRB methods [5, 1, 11] from the two-grid method). From an engineering
point of view, they may be more practical to implement than intrusive RBMs, as they only require the execution of
the High-Fidelity (HF) code as a “black-box” solver. The NIRB methods, like most RBMs, rely on the assumption
that the manifold of all solutions S = {u(µ), µ ∈ G} has a small Kolmogorov width [19] (in what follows, uh(µ)
will refer to the HF solution for the parameter µ). Let us first recall the method for stationnary problem.

1.1 Reminders on the NIRB two-grid method for stationnary problems.

In the context of a finite element or finite volume HF solver, the two-grid method involves two partitioned meshes
(or ”grid”), one fine mesh Mh and one coarse MH , where the respective sizes h and H of the meshes are such
that h << H. The size h (respectively H) is defined as

h = max
K∈Mh

hK (respectively H = max
K∈MH

HK), (1)
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2Sorbonne Université and Université de Paris Cité, CNRS, Laboratoire Jacques-Louis Lions (LJLL), F-75005 Paris, France
3Institut Universitaire de France

1



where the diameter hK (or HK) of any element K in a mesh is equal to sup
x,y∈K
|x− y|, K ∈ Mh (or ∈ MH).

The fine mesh is used to construct the Reduced Basis (RB).
The reduced space XN

h := Span{uh(µi) | i = 1 , . . . N} is generated using N snapshots. The solution for a new
parameter is then roughly and quickly approximated using a coarse mesh. The latter, as well as the algorithm’s
offline-online decomposition, are critical components in reducing complexity. Below are the main steps of the
NIRB two-grid algorithm:

• “Offline stage”:

First, in this stage, the RB functions that belong to the reduced space denoted XN
h are prepared on the

fine mesh using a greedy procedure [4, 22] (an alternative is to use a Proper Orthogonal Decomposition
(POD) [2, 17]). The greedy procedure computes the modes by iteratively selecting some suitable parameters
µ1, . . . , µN ∈ G and computing the approximate solutions uh(µ1), . . . , uh(µN). This part is time-consuming,
but it is only performed once, as with other RBMs. After running a Gram-Schmidt orthonormalization
algorithm, we obtain N L2-orthonormalized basis functions, denoted (Φh

i )i=1,...,N . In order to improve the
accuracy of the online reconstruction (as detailed in section 4), we run the following eigenvalue problem:

Find Φh ∈ XN
h , and λ ∈ R such that:

∀v ∈ XN
h ,
∫

Ω
∇Φh · ∇v dx = λ

∫
Ω

Φh · v dx, (2)

and we obtain an increasing sequence of eigenvalues λi, as well as orthogonal eigenfunctions (Φh
i )i=1,··· ,N ,

orthonormalized in L2(Ω) and orthogonal in H1(Ω), and define a new basis of the space XN
h .

As written above, a coarse approximation for a new parameter µ ∈ G will be used during the online
stage. As we will see later, for any parameter µk, k = 1, . . . , N, the classical NIRB approximation differs
from the HF uh(µk) computed in the offline stage. Thus, as proposed in [7], we use a ”rectification post-
processing” and introduce a rectification matrix, denoted R to cover this for these particular choices of
µ = µk, k = 1, . . . , N, and improve NIRB accuracy for other instance of µ. In addition to the fine snapshots,
coarse snapshots are used in the construction of this matrix, which are generated using the same parameters
as for the fine snapshots. Then, we compute the vectors

Ri = (ATA + δIN)
−1ATBi, i = 1, · · · , N, (3)

where

∀i = 1, · · · , N, and ∀µk ∈ G,

Ak,i =
∫

Ω
uH(µk) ·Φh

i dx, (4)

Bk,i =
∫

Ω
uh(µk) ·Φh

i dx, (5)

where IN refers to the identity matrix and δ is a regularization term, as proposed in [8].

• “Online stage”:
Then, for a new parameter µ ∈ G for which we want to estimate the solution, a coarse approximation
of the solution, denoted uH(µ), is first computed ”online.” This coarse approximation is, of course, not
of sufficient precision, but it is calculated much faster than the HF one. The NIRB post-processing then
improves precision significantly by projecting uH(µ) on the RB in a very short runtime [8, 6, 13, 9]. The
classical NIRB approximation is given by

uN
Hh(µ) :=

N

∑
i=1

(uH(µ), Φh
i ) Φh

i . (6)

where (·, ·) denotes the L2-inner product. Now, to improve precision, we use the “rectification post-
treatment”, and the NIRB approximation reads

R[uN
Hh](µ) :=

N

∑
i,j=1

Rij (uH(µ), Φh
j ) Φh

i . (7)
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Note that, when the relaxation parameter δ is equal to 0 the rectification process allows to retrieve the fine
coefficients (given by (5)) from the coarse ones (given by (4)) for the parameters µ = µk, k = 1, . . . , N. In
other words, with δ = 0, we have

R[uN
Hh](µk) = uh(µk), k = 1, . . . , N.

1.2 Motivation and earlier works.

The two-grid method is simple to implement and can be used for a variety of PDEs and approximations. Fur-
thermore, because it is non-intrusive, it is suitable for a wide range of problems. To our knowledge, however,
this method has not yet been studied or implemented in the context of time-dependent problems [6, 8, 9, 23].
The two-grid method has been developed and analyzed for elliptic equations in the context of FEM (with Céa’s
and Aubin-Nitsche’s lemmas) in [7]. The energy-error estimate is then given by∥∥∥u(µ)− uN

Hh(µ)
∥∥∥

H1(Ω)
≤ ε(N) + C1h + C2(N)H2, (8)

where C1 and C2 are constants independent of h and H, and C2 depends on N only. The term ε(N) depends on
a proper choice of the RB space as a surrogate for the best approximation space associated to the Kolmogorov
N-width. It decreases when N increases and it is linked to the error between the fine solution and its projection
on XN

h , given by ∥∥∥∥∥uh(µ)−
N

∑
i=1

(uh(µ), Φh
i ) Φh

i

∥∥∥∥∥
H1(Ω)

. (9)

The second term in (8), C1 h, is a contribution obtained through Céa’s lemma for the RB elements and the second
one, C2(N) H2, through Aubin-Nitsche’s lemma for the coarse grid approximation of u(µ). Note that since
the constant C2 increases with N, a trade-off needs to be done between increasing N to obtain a more accurate
manifold, and keeping a constant C2 as low as possible.
The estimate (8) proves that in the parabolic context with FEM, if the coarse mesh size is chosen so that H2 = h,
we obtain the optimal H1 convergence rate. Furthermore, it has been numerically shown that for a large range
of H, the rectification post-treatment allows for the recovery of the fine solution’s accuracy.
This two-grid method has also been generalized and analyzed in the context of finite volume schemes such as
[13], in which a surrogate to Aubin-Nitsche’s is used.

1.3 Outline of the paper.

This article is about the application of NIRB to time-dependent problems and its numerical analysis in the context
of parabolic equations.
We will first define the NIRB approximation with and without the rectification post-treatment, as an extention
of (6) and (7). We will then prove theoretically that we can recover optimal error estimates in L∞(0, T; H1(Ω)).
The theorem 4.1 on the numerical analysis of the approach’s convergence provides our main result. Then we
will present numerical results 5 with and without the rectification post-processing. We will illustrate that this
post-treatment allows us to retrieve the fine accuracy in a parabolic context as well.

The remainder of this paper is structured as follows. The mathematical context is described in section 2.
The two-grids method is presented in section 3 in the context of parabolic equations. The proof of theorem 4.1
is covered in the section 4. Finally, the implementation is discussed in the last section 5, and the theoretical re-
sults are illustrated with numerical results on the NIRB method with and without the rectification post-treatment.

In the next sections, C will denote various positive constants independent of the size of the meshes h and
H and of the parameter µ, and C(µ) will denote constants independent of the sizes of the meshes h and H but
dependent of µ.

2 Mathematical Background.
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2.1 The continuous problem.

We will consider the following heat equation on the domain Ω with homogeneous Dirichlet conditions, which
takes the form


ut − µ∆u = f , in Ω×]0, T],
u(·, 0) = u0, in Ω, (10)
u(·, t) = 0, on ∂Ω×]0, T],

where f ∈ L2(Ω × [0, T]), while u0 ∈ H1
0(Ω) and 0 < µ ∈ G is the parameter. For any t > 0, the solution

u(·, t) ∈ H1
0(Ω), and ut(·, t) ∈ L2(Ω) stands for the derivative of u with respect to time.

We use the conventional notations for space-time dependent Sobolev spaces [20]

Lp(0, T; V) := {u(x, t) | ‖u‖Lp(0,T;V) :=
( ∫ T

0

∥∥u(·, t)
∥∥p

V dt
)1/p

< ∞}, 1 ≤ p < ∞,

L∞(0, T; V) := {u(x, t) | ‖u‖L∞(0,T;V) := ess sup
0≤t≤T

∥∥u(·, t)
∥∥

V < ∞},

where V is a real Banach space with norm‖·‖V . The variational form of (10) is given by:
Find u ∈ L2(0, T; H1

0(Ω)) with ut ∈ L2(0, T; H−1(Ω)) such that

(ut(t, ·), v) + a(u(t, ·), v; µ) = ( f (t, ·), v), ∀v ∈ H1
0(Ω) and t ∈ (0, T), (11)

u(·, 0) = u0, in Ω,

where a is given by

a(w, v; µ) =
∫

Ω
µ∇w(x) · ∇v(x) dx, ∀w, v ∈ H1

0(Ω). (12)

We remind that (11) is well posed (see [10] for the existence and the uniqueness of solutions to problem (11)) and
we refer to the notations of [10].

Remark 2.1. (On the stability). We intend to state estimates for the NIRB approximation for all time snapshots, that is re-
lated to maximum-norm in time with the either L2 norm or H1 norm in space, i.e. in L∞(0, T; L2(Ω)) and L∞(0, T; H1(Ω)),
which is stronger than with the usual stability study of the parabolic equation (10). Let us remind the classical (or less stan-
dard) stability results. We derive from (11) by using v = u

(ut, u) + µ‖∇u‖2 = |( f , u)|. (13)

From the Young and Poincaré inequalities, there exists C > 0 such that

|( f , u)| ≤ (
1

2µ

∥∥ f
∥∥2
) +

µ

2
‖∇u‖2 .

and since
(ut, u) =

1
2

d
dt
‖u‖2 ,

(13) yields
d
dt
‖u‖2 + µ‖∇u‖2 ≤ 1

µ

∥∥ f
∥∥2 ,

and integrating over (0, t) for all t ≤ T, we end up with

∥∥u(t)
∥∥2

+ µ
∫ t

0

∥∥∇u(s)
∥∥2 ds ≤ C(

∥∥∥u0
∥∥∥2

+
1
µ

∫ t

0

∥∥ f (s)
∥∥2 ds),

which gives

‖u‖2
L∞(0,T;L2(Ω)) + µ‖u‖2

L2(0,T;H1
0 (Ω)) ≤ C(

∥∥∥u0
∥∥∥2

L2(Ω)
+

1
µ

∥∥ f
∥∥2

L2(0,T;L2(Ω))).
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That establishes the first stability result.
For the L∞(0, T; H1(Ω)) stability, a classical result is∫ t

0

∥∥ut(s)
∥∥2 ds + µ

∥∥∇u(t)
∥∥2 ≤ µ

∥∥∥∇u0
∥∥∥2

+
∫ t

0

∥∥ f (s)
∥∥2 ds,

and this “a priori” estimate then leads to the second stability results

‖u‖2
L∞(0,T;H1

0 (Ω)) ≤
∥∥∥∇u0

∥∥∥2

L2(Ω)
+

1
µ

∥∥ f (s)
∥∥2

L2(0,T;L2(Ω)) .

2.2 The various discretizations.

As in previous work on the NIRB FEM applied to elliptic equations [7], we consider one fine spatial grid for
computing ”offline” snapshots associated with few parameter values and one coarse grid for the coarse solution,
with sizes denoted as h and H (with h << H) (1). These grids are used for the spacial discretizations of the
weak formulation of problem (10). We employed P1 finite elements to discretize in space, so let Vh and VH be
continuous piecewise linear finite element functions (on fine and coarse mesh, respectively) that vanish on the
boundary ∂Ω. We consider the projection operator P1

h on Vh (P1
H on VH is defined similarly) which is given by

(∇P1
h u,∇v) = (∇u,∇v), ∀v ∈ Vh, (14)

In the context of time-dependent problems, a time stepping method of finite difference type is used to get a
fully discrete approximation of the solution of (10). We consider two different time grids:

• One time grid, denoted F, is employed for the fine solution (for the snapshots construction). To avoid
making notations more cumbersome, we will consider a uniform time step ∆tF. The time levels can be
written tn = n ∆tF, where n ∈N∗.

• Another time grid, denoted G, is used for the coarse solution. By analogy with the fine grid, we consider a
uniform grid with time step ∆tG. Now, the time levels are written t̃m = m ∆tG, where m ∈N∗.

As in the previous analysis with elliptic equations, the NIRB algorithm is designed to recover the optimal esti-
mate in space. However, there is no such argument as the Aubin-Nitsche argument for time stepping methods, so
we must consider time discretizations that provide the same precision with larger time steps. Thus, we consider
a higher order time scheme for the coarse solution. We will use an Euler scheme (first order approximation) for
the fine solution and a Crank-Nicolson scheme (second order approximation) for the coarse solution with our
model problem.
Thus, we deal with two kind of notations for the discretized solutions:

• uh(x, t) and uH(x, t) that respectively denote the fine and coarse solutions of the spatially semi-discrete
solution, at time t ≥ 0.

• un
h(x) and um

H(x) that respectively denote the fine and coarse full-discretized solutions at time tn = n× ∆tF
and t̃m = m× ∆tG.

Remark 2.2. To simplify the notations, we consider that both time grids end at time T here,

T = NT ∆tF = MT ∆tG.

The semi-discrete form of the variational problem (11) writes for the fine mesh (similarly for the coarse mesh):
Find uh(t) = uh(·, t) ∈ Vh for t ∈ [0, T] such that
(∂tuh(t), vh) + a(uh(t), vh; µ) = ( f (t), vh), ∀vh ∈ Vh and t ∈]0, T], (15)
uh(·, 0) = u0

h = P1
h (u

0).

The full discrete form of the variational problem (11) for the fine mesh with implicit Euler scheme writes:
Find un

h ∈ Vh for n = 0, . . . , NT such that

(∂un
h , vh) + a(un

h , vh; µ) = ( f (tn), vh), ∀vh ∈ Vh and n = 1, . . . , NT , (16)

uh(·, 0) = u0
h,
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where the time derivative in the variational form of the problem (15) has been replaced by a backward difference

quotient, ∂un
h =

un
h−un−1

h
∆tF

.

For the coarse mesh With Crank-Nicolson scheme, and with the notation ∂um
H =

um
H−um−1

H
∆tG

, it becomes:
Find um

H ∈ VH for m = 0, . . . , MT , such that

(∂um
H , vH) + a( um

H+um−1
H

2 , vH ; µ) = ( f (t̃m− 1
2 ), vH), ∀vH ∈ VH and m = 1, . . . MT ,

uH(·, 0) = u0
H , (17)

where t̃m− 1
2 = t̃m+t̃m−1

2 .
Let us recall a few results from [24], on the FEM classical estimates and on both finite difference schemes

used. These results will be useful for the proof of Theorem 4.1.

The following estimates are well known to hold with a FEM semi-discretization in space:

Theorem 2.3 (Corollary of Theorem 1.2 [24]). Let Ω be a convex polyhedron. Let u ∈W1,1(0, T; H2(Ω)) be the solution
of (10) with u0 ∈ H2(Ω) and uh be the semidiscretized variational form (15). Then

∀t ≥ 0,
∥∥u(t)− uh(t)

∥∥
L2(Ω) ≤ Ch2

[∥∥∥u0
∥∥∥

H2(Ω)
+
∫ t

0
‖ut‖H2(Ω) ds

]
. (18)

Once fully discretized on a fine mesh with the backward Euler Galerkin method, the estimate (18) is replaced
by the estimate above.

Theorem 2.4 (Corollary of Theorem 1.5 [24]). Let Ω be a convex polyhedron. Let u ∈W1,1(0, T; H2(Ω))∩W2,1(0, T; L2(Ω))

be the solution of (10) with u0 ∈ H2(Ω), let un
h be the solution of (16). If

∥∥∥u0
h − u0

∥∥∥
L2(Ω)

≤ Ch2
∥∥∥u0

∥∥∥
H2(Ω)

, we have

∀n = 0, . . . , NT ,
∥∥u(tn)− un

h
∥∥

L2(Ω) ≤ Ch2
[∥∥∥u0

∥∥∥
H2(Ω)

+
∫ tn

0
‖ut‖H2(Ω) ds

]
+ C ∆tF

∫ tn

0
‖utt‖L2(Ω) ds. (19)

On the energy error estimate, the following theorems hold.

Theorem 2.5 (Corollary of Theorem 1.4 [24]). Let Ω be a convex polyhedron. Let u ∈ H1(0, T; H1(Ω))∩ L2(0, T; H2(Ω))
be the solution of (10) with u0 ∈ H2(Ω) and uh be the semidiscretized variational form (15). We have

∀t ≥ 0,
∥∥∇u(t)−∇uh(t)

∥∥
L2(Ω) ≤ C(µ)h

[∥∥∥u0
∥∥∥

H2(Ω)
+
∥∥u(t)

∥∥
H2(Ω) + (

∫ t

0
‖ut‖2

H1(Ω) ds)1/2
]

. (20)

The estimate (20) with the full discretization leads to the following theorem.

Theorem 2.6. Let Ω be a convex polyhedron. Let u ∈ H2(0, T; H1(Ω)) ∩ H1(0, T; H2(Ω)) be the solution of (10) with
u0 ∈ H2(Ω), let un

h be the fully-discretized solution of the variational form (15). We have

∀n = 0, . . . NT ,
∥∥∇un

h −∇u(tn)
∥∥

L2(Ω) ≤C(µ)h
[∥∥∥u0

∥∥∥
H2(Ω)

+ (
∫ tn

0
‖ut‖2

H2(Ω) ds)1/2
]

+ C(µ) ∆tF(
∫ tn

0
‖∇utt‖2

L2(Ω) ds)1/2. (21)

Proof. In [24], these estimates are proven on the solution of the heat equation without a varying diffusion coef-
ficient. These precised estimates can be obtained by following the same steps as in [24]. Let us detail e. g. the
proof on the H1 estimate of Theorem 2.6. We first decompose the error with two components θ and ρ such that

∀n = 1, . . . NT , en :=
√

µ(∇un
h −∇u(tn)) =

√
µ((∇un

h −∇P1
h u(tn)) + (∇P1

h u(tn)−∇u(tn))),
=
√

µ(∇θn +∇ρn). (22)

• For the estimate on ρn, a classical FEM estimate [24, 3] is∥∥∥P1
h v− v

∥∥∥
L2(Ω)

+ h
∥∥∥∇(P1

h v− v)
∥∥∥

L2(Ω)
≤ Ch2‖v‖H2(Ω) , ∀v ∈ H2 ∩ H1

0 ,
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which leads to ∥∥∇ρn∥∥
L2(Ω) ≤ Ch

∥∥u(tn)
∥∥

H2(Ω) , ∀n = 0, . . . NT ,

and it leads to , ∥∥∇ρn∥∥
L2(Ω) ≤ Ch

[∥∥∥u0
∥∥∥

H2(Ω)
+
∫ tn

0
‖ut‖H2(Ω) ds

]
. (23)

• For the estimate on θ, let us consider v ∈ Vh. Since the operators P1
h and ∂ commute, we may write

(∂θn, v) + µ(∇θn,∇v) = (∂un
h , v)− (P1

h ∂u(tn), v) + µ(∇un
h ,∇v)− µ(∇P1

h u(tn),∇v).

The weak formulations (11) and (16) (fully-discretized solution with the Euler scheme) imply

(∂θn, v) + µ(∇θn,∇v) = ( f , v)− (P1
h ∂u(tn), v)− µ(∇P1

h u(tn),∇v),

= ( f , v)− (P1
h ∂u(tn), v)− µ(∇u(tn),∇v), by definition of P1

h ,

= (ut(tn), v)− (P1
h ∂u(tn), v).

Then, with the triangle inequality, it yields

(∂θn, v) + µ(∇θn,∇v) = −((P1
h − I)∂u(tn), v)− ((∂u(tn)− ut(tn)), v)

:= −(wn
1 + wn

2 , v) = −(wn, v). (24)

Instead of replacing v by θn as in the L2 estimate, here we replace v by ∂θn, thus the equation (24) takes the
form

(∂θn, ∂θn) + µ(∇θn, ∂∇θn) = −(wn, ∂θn).

Therefore, by definition of ∂ for the Backward Euler discretization,

(∂θn, ∂θn) + µ
‖∇θn‖2

L2(Ω)

∆tF
− µ

(∇θn,∇θn−1)

∆tF︸ ︷︷ ︸
Ta

= −(wn, ∂θn).

Young’s inequality yields

(∇θn,∇θn−1) ≤ 1
2

∥∥∇θn∥∥2
L2(Ω) +

1
2

∥∥∥∇θn−1
∥∥∥2

L2(Ω)
,

therefore

∥∥∥∂θn
∥∥∥2

L2(Ω)
+ µ
‖∇θn‖2

L2(Ω)

2∆tF
− µ

∥∥∥∇θn−1
∥∥∥2

L2(Ω)

2∆tF
≤ Ta ≤

1
2

∥∥wn∥∥2
L2(Ω) +

1
2

∥∥∥∂θn
∥∥∥2

L2(Ω)
,

and it results in ∥∥∥∂θn
∥∥∥2

L2(Ω)
+ µ
‖∇θn‖2

L2(Ω)

∆tF
≤ µ

∥∥∥∇θn−1
∥∥∥2

L2(Ω)

∆tF
+
∥∥wn∥∥2

L2(Ω) .

Since
∥∥∥∂θn

∥∥∥2

L2(Ω)
≥ 0, it follows that

∀n = 1, . . . , NT ,
∥∥∇θn∥∥2

L2(Ω) ≤
∥∥∥∇θn−1

∥∥∥2

L2(Ω)
+

∆tF
µ

∥∥wn∥∥2
L2(Ω) ,

and we recursively obtain

∀n = 1, . . . , NT ,
∥∥∇θn∥∥2

L2(Ω) ≤
∥∥∥∇θ0

∥∥∥2

L2(Ω)
+

∆tF
µ

n

∑
j=1

∥∥∥wj
∥∥∥2

L2(Ω)
.
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By definition of θ (and P1
h ),∥∥∥∇θ0

∥∥∥
L2(Ω)

=
∥∥∥∇u0

h −∇P1
h (u

0)
∥∥∥

L2(Ω)
≤
∥∥∥∇u0

h −∇u(t0)
∥∥∥

L2(Ω)
+
∥∥∥∇u0 −∇P1

h (u
0)
∥∥∥

L2(Ω)

≤
∥∥∥∇u0

h −∇u0
∥∥∥

L2(Ω)
+ Ch

∥∥∥u0
∥∥∥

H2(Ω)
.

It remains to estimate the L2 norm of the wj, defined by (24).

– Let us first consider the construction for w1

wj
1 = (P1

h − I)∂u(tj)

=
1

∆tF
(P1

h − I)
∫ tj

tj−1
ut ds,

=
1

∆tF

∫ tj

tj−1
(P1

h − I)ut ds, since P1
h and the time integral commute.

Thus, from Hölder’s inequality,

∆tF
µ

n

∑
j=1

∥∥∥wj
1

∥∥∥2

L2(Ω)
≤ ∆tF

µ

n

∑
j=1

∫
Ω

[ 1
∆t2

F

∫ tj

tj−1
((P1

h − I)ut)
2 ds ∆tF

]
≤ 1

µ

n

∑
j=1

∫ tj

tj−1

∥∥∥(P1
h − I)ut

∥∥∥2

L2(Ω)
ds,

≤ C
µ

h4
n

∑
j=1

∫ tj

tj−1
‖ut‖2

H2(Ω) , by the definition of ,P1
h

≤ C
µ

h4
∫ tn

0
‖ut‖2

H2(Ω) ds. (25)

– To estimate the L2 norm of the w2, we write

wj
2 =

1
∆tF

(u(tj)− u(tj−1))− ut(tj),

= − 1
∆tF

∫ tj

tj−1
(s− tj−1)utt(s) ds,

such that we end up with

∆tF
µ

n

∑
j=1

∥∥∥wj
2

∥∥∥2

L2(Ω)
≤ 1

µ

n

∑
j=1

∥∥∥∥∥
∫ tj

tj−1
(s− tj−1)utt(s) ds

∥∥∥∥∥
2

L2(Ω)

≤
∆t2

F
µ

∫ tn

0
‖utt‖2

L2(Ω) ds.

Combining the estimates on ρ and θ concludes the proof.

Finally, using the Crank-Nicolson scheme, we can recover the estimate in H2 and ∆t2
G in the L2 norm

Theorem 2.7 (Corollary of Theorem 1.6 [24]). Let Ω be a convex polyhedron. Let u ∈ H2(0, T; H2(Ω))∩H3(0, T; L2(Ω))
be the solution of (10) with u0 ∈ H2(Ω). Let um

H be the solution given by (17), associated to Crank-Nicolson discretization

on the time and spatial coarse grids. Let
∥∥∥u0

H − u0
∥∥∥

L2(Ω)
≤ CH2

∥∥∥u0
∥∥∥

H2(Ω)
, then

∀m = 0, . . . , MT ,
∥∥∥u(t̃m)− um

H

∥∥∥
L2(Ω)

≤ C H2
[∥∥∥u0

∥∥∥
H2(Ω)

+
∫ t̃m

0
‖ut‖H2(Ω) ds

]
+ C ∆t2

G

[
(
∫ t̃m

0
‖uttt ds‖2

L2(Ω))
1/2 + (

∫ t̃m

0
‖∆utt‖2

L2(Ω) ds)1/2
]
. (26)
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Now, let ũH
n be the quadratic interpolation in time of the coarse solution at time tn ∈ Im = [t̃m−1, t̃m] defined

on [t̃m−2, t̃m] from the values um−2
H , um−1

H , and um
H , for all m = 2, . . . , MT . To this purpose, we define the parabola

on [t̃m−2, t̃m] with the values um−2
H , um−1

H , um
H :

For m ≥ 2, ∀n ∈ Im = [t̃m−1, t̃m],

ũH
n(µ) =

um−2
H (µ)

(t̃m − t̃m−2)(t̃m−2 − t̃m−1)

[
− (tn)2 + (t̃m−1 + t̃m)tn − tm−1tm

]
+

um−1
H (µ)

(t̃m−2 − t̃m−1)(t̃m−1 − t̃m)

[
− (tn)2 + (t̃m + t̃m−2)tn − tmtm−2

]
+

um
H(µ)

(t̃m−1 − t̃m)(t̃m − t̃m−2)

[
− (tn)2 + (t̃m−2 + t̃m−1)tn − tm−2tm−1

]
. (27)

For tn ∈ I1 = [t̃0, t̃1], we use the same parabola defined by the values u0
H , u1

H , u2
H as the one used over [t̃1, t̃2].

Note that we choose this interpolation in order to keep an approximation of order 2 in time ∆tG (it works also
with other quadratic interpolations). With this interpolated approximation, we have the following result.

Corollary 2.8 (of Theorem 2.7). Under the assumptions of Theorem 2.7, let ũH
n be the quadratic interpolation in time of

the coarse solution, defined above, then

∀n = 0, . . . , NT ,
∥∥∥u(t̃n)− ũH

n
∥∥∥

L2(Ω)
≤ C(µ)H2

[∥∥∥u0
∥∥∥

H2(Ω)
+
∫ t̃m

0
‖ut‖H2(Ω) ds

]
+ C(µ)∆t2

G[(
∫ t̃m

0
‖uttt ds‖2

L2(Ω))
1/2 + (

∫ t̃m

0
‖∆utt‖2

L2(Ω) ds)1/2]. (28)

Let us proceed with the NIRB algorithm description in the context of parabolic equations.

3 The Non-Intrusive Reduced Basis method (NIRB) in the context of parabolic
equations.

3.1 Main steps.

This section describes the main steps of the two-grids method algorithm in the context of parabolic equations,
and especially, how to define the RB using a POD-Greedy algorithm [15, 14, 18]. Indeed, for evolution PDE’s, a
single solution associated with a parameter µ ∈ G is made up of a sequence of potentially hundreds of snapshots
over time (each snapshot being an HF finite element approximation in space at a time tn, n = 0, . . . , NT). As a
result, each greedy step in the greedy algorithm is combined with a temporal compression step performed by a
POD. Let us go over the different steps of our offline-online decomposition. The first three points are completed
offline, while the remaining points are executed online.

• “Offline step”

1. From the training parameters (µi)i∈{1,...,train}, we compute fine snapshots {un
h(µi)}i∈{1,...N} with the

HF solver (solving problem (16)). We define Gtrain = ∪
i∈{1,...,train}

µi.

2. We generate the RB functions (time-independent) (Φh
i )i=1,...,N through a POD-Greedy algorithm from

the above snapshots, as presented in algorithm 1 below (or a full Greedy algorithm 2).
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Algorithm 1 POD-Greedy algorithm
Input: Nmax, {un

h(µ1), · · · , un
h(µNtrain) with µi ∈ Gtrain, n = 0, . . . , NT}.

Output: Reduced basis {Φh
1, · · · , Φh

N}, N ≤ Nmax.

Choose µ1 = arg max
µ∈Gtrain

∥∥∥un
h(µ)

∥∥∥
l∞(0,...,NT ; L2(Ω))

,

Then produce the modes {Φh
1, · · · , Φh

N1
} through a POD on {un

h(µ1), n = 0, . . . , NT}.
Set G1 = µ1 and X1

h = span{Φh
1, · · · , Φh

N1
}.

while
N
∑

k=2
Nk < Nmax do

Choose µk = arg max
µ∈Gtrain\Gk−1

∥∥∥un
h (µ)−Pk−1(un

h (µ))
∥∥∥

l∞(0,...,NT ;L2(Ω))

‖un
h (µ)‖l∞(0,...,NT ;L2(Ω))

, with Pk−1(un
h(µ)) :=

Nk−1

∑
i=1

(un
h(µ), Φh

i )L2 Φh
i .

Then produce the modes {Φh
Nk−1+1, . . . , Φh

Nk
} through a POD on {un

h(µk)− Pk−1(un
h(µ)), n = 0, . . . , NT}.

Set Gk = Gk−1 ∪ µk and Xk
h = Xk−1

h ⊕ span{Φh
k−1, · · · , Φh

Nk
}.

end while

Remark 3.1. In the following standard greedy algorithm, a tolerance treshold is used instead of a priori given
number of basis functions.

Algorithm 2 Greedy algorithm
Input: tol, {un

h(µ1), · · · , un
h(µNtrain) with µi ∈ Gtrain, n = 0, . . . , NT}.

Output: Reduced basis {Φh
1, · · · , Φh

N}

Choose µ1, n1 = arg max
µ∈Gtrain , n∈{0,...,NT}

∥∥∥un
h(µ)

∥∥∥
L2(Ω)

,

Set Φh
1 =

u
n1
h (µ1)∥∥∥u

n1
h (µ1)

∥∥∥
L2

Set G1 = {µ1, n1} and X1
h = span{Φh

1}.
for k = 2 to N do:

µk, nk = arg max
(µ, n)∈(Gtrain×{0,...,NT})\Gk−1

∥∥∥un
h(µ)− Pk−1(un

h(µ))
∥∥∥

L2
, with Pk−1 defined as in POD-Greedy algo-

rithm.

Compute Φ̃h
k = unk

h (µk)−
k−1
∑

i=1
(un

h(µk), Φh
i )L2(Ω)Φ

h
i and set Φh

k =
Φ̃h

k∥∥∥∥Φ̃h
k

∥∥∥∥
L2(Ω)

Set Gk = Gk−1 ∪ {µk} and Xk
h = Xk−1

h ⊕ span{Φh
k}

Stop when
∥∥∥un

h(µ)− Pk−1(un
h(µ))

∥∥∥
L2
≤ tol, ∀µ ∈ Gtrain, ∀n = 0, . . . , NT .

end for

Note that the greedy algorithm is generally less expensive (thanks to a-posteriori error estimates for station-
nary problems). Yet, for time dependent problems, the POD-greedy is more reasonable when the snapshots are
computed for all time steps.

Remark 3.2. The term ∥∥∥un
h(µ)− Pk−1(un

h(µ))
∥∥∥

L2(Ω)
(29)

can be calculated either with a set of training snapshots as presented in 2 or evaluated with an a-posteriori
estimate. Since at each step k, all sets added in the basis are in the orthogonal complement of Xk−1

h , it yields
an L2 orthogonal basis without further processing. In practice, the algorithm is halted with a stopping criterion
such as an error threshold or a maximum number of basis functions to generate.
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Then, we solve the following eigenvalue problem:
Find Φh ∈ XN

h , and λ ∈ R such that:

∀v ∈ XN
h ,
∫

Ω
∇Φh · ∇v dx = λ

∫
Ω

Φh · v dx, (30)

where XN
h = Span{Φh

1, . . . , Φh
N}. We get an increasing sequence of eigenvalues λi, and orthogonal

eigenfunctions (Φh
i )i=1,··· ,N , which do not depend on time, orthonormalized in L2(Ω) and orthogo-

nalized in H1(Ω). Note that with Gram-Schmidt procedure, we only obtain an L2-orthonormalized
RB.

3. For the rectification post-treatment, we generate the equivalent coarse snapshots and the rectifica-
tion matrix with algorithm 3. The coarse snapshots, which have the same parameters as for the HF
snapshots, are quadratically interpolated in time (27). We ressort to the following algorithm.

Algorithm 3 Offline rectification post-treatment
Input:{un

h(µ1) · · · un
h(µNtrain), with µi ∈ Gtrain, n = 0, . . . , NT} and with the same parameter

{um
H(µ1), · · · , um

H(µNtrain), with µi ∈ Gtrain ⊂ G, m = 0, . . . , MT}
RB {Φh

i }i=1,...,N .
Output:Rectification matrix Rn

i,j, 1 ≤ i, j ≤ N, n = 0, . . . , NT .

Realize the quadratic interpolation of the coarse snapshots in time, denoted ũH
n, n = 0, . . . , NT with (27).

for n = 0, . . . , NT do
Calculate the fine and coarse coefficients
∀i = 1, · · · , N, and ∀µk ∈ Gtrain, An

k,i =
∫

Ω ũH
n(µk) ·Φh

i dx, and Bn
k,i =

∫
Ω un

h(µk) ·Φh
i dx,

For i = 1, · · · , N, set Rn
i = ((An)TAn + δIN)

−1(An)TBn
i .

end for

Remark 3.3. Every time step has its own rectification matrix. Indeed, in our experiments, the results obtained
with a global rectification matrix were less accurate. Because we have several time steps for each parameter in
Gtrain, Ntrain ≤ N in our context. Hence, ∀n ∈ {1, . . . , NT}, An ∈ RNtrain×N is a rectangular “flat” matrix,
and (An)TAn is not invertible and requires the parameter δ for the inversion. In previous studies, the parameter
δ was used only as a regularization parameter.
We also remark that with the rectification post-treatment, the standard greedy algorithm 2 may leads to more
accurate approximations. It comes from the fact that the coefficients of the matrix are directly derived from the
snapshots in that case.

• “Online step”

4. Now for the online part, we solve the problem (10) on the coarse mesh TH for a new parameter µ ∈ G
at each time step m = 0, . . . , MT .

5. We quadratically interpolate in time the coarse solution on the fine time grid with (27).

6. Then, we linearly interpolate ũH
n(µ) on the fine mesh in order to compute the L2-inner product with

the basis functions. The approximation used in the two-grid method is

For n = 0, . . . , NT , uN,n
Hh (µ) :=

N

∑
i=1

(ũH
n(µ), Φh

i ) Φh
i , (31)

and with the rectification post-treatment step [8, 13], it becomes

Rn[uN
Hh](µ) :=

N

∑
i=1

Rn
ij (ũH

n(µ), Φh
j ) Φh

i , (32)

where Rn is the rectification matrix at time tn (see algorithm 3).

In the next section, we prove the optimal error in L∞(0, T; H1(Ω)).
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4 NIRB error estimate with parabolic equations

Main result Our main result is the following theorem.

Theorem 4.1. (NIRB error estimate for parabolic equations.) Let us consider the problem 10 with its exact solution
u(x, t; µ), and the full discretized solution un

h(x; µ) to the problem 16. Let (Φh
i )i=1,...,N be the L2-orthonormalized and

H1-orthogonalized RB generated with the POD-greedy algorithm 1 or 2 from the fine solutions of (16).
Let us consider the NIRB approximation, defined by (31). Then, the following estimate holds

∀n = 0, . . . , NT ,
∥∥∥u(tn)(µ)− uN,n

Hh (µ)
∥∥∥

H1(Ω)
≤ ε(N) + C1(µ)h + C2(N)H2 + C3(µ)∆tF + C4(N)∆t2

G, (33)

where C1, C2, C3 and C4 are constants independent of h and H, ∆tF and ∆tG. The term ε depends on the Kolmogorov
N-width and measures the error given by (9).

If H is such as H2 ∼ h, ∆t2
G ∼ ∆tF, and ε(N) is small enough, with C2(N) and C4(N) not too large, it

results in an error estimate in O(h + ∆tF). Theorem 4.1 then states that we recover optimal error estimates in
L∞(0, T; H1(Ω)).

Remark 4.2. This theorem can be generalized to Pk FEM space, with k > 1.

With the L2 norm, we obtain the following theorem.

Theorem 4.3. With the same assumptions as in the theorem 4.1, with the L2 orthonormalized RB, the following estimate
holds

∀n = 0, . . . ,
∆tF
T

,
∥∥∥u(tn)(µ)− uN,n

Hh (µ)
∥∥∥

L2(Ω)
≤ ε′(N) + C′1(H2 + ∆t2

G) + C′2(h
2 + ∆tF), (34)

where C′1 and C′2 are constants independent of h, H and N, and ε′ depends on the Kolmogorov N-width, and corresponds to
the L2 error between the fine solution and its projection on the reduced space.

Remark 4.4. Note that now C′2 does not depend on N, unlike C2 or C4 above.

We now go on with the proof of Theorem 4.1.

Proof. The NIRB approximation at time step n = 0, . . . , NT , for a new parameter µ ∈ G is defined by (31). Thus,
the triangle inequality gives∥∥∥u(t)(µ)− uN,n

Hh (µ)
∥∥∥

H1(Ω)
≤
∥∥u(t)(µ)− un

h(µ)
∥∥

H1(Ω) +
∥∥∥un

h(µ)− uN,n
hh (µ)

∥∥∥
H1(Ω)

+
∥∥∥uN,n

hh (µ)− uN,n
Hh (µ)

∥∥∥
H1(Ω)

=: T1 + T2 + T3, (35)

where uN,n
hh (µ) =

N
∑

i=1
(un

h(µ), Φh
i ) Φh

i .

• The first term T1 may be estimated using the inequality (21), such that∥∥u(tn)(µ)− un
h(µ)

∥∥
H1(Ω) ≤ C(µ) (h + ∆tF). (36)

• We denote by Sh = {un
h(µ, t), µ ∈ G, n = 0, . . . NT} the set of all the solutions. For our model problem,

this manifold has a low complexity. It means that for an accuracy ε = ε(N) related to the Kolmogorov
N-width of the manifold Sh, for any µ ∈ G, and any n ∈ 0, . . . , NT , T2 is bounded by ε which depends on
the Kolmogorov N-width.

T2 =

∥∥∥∥∥un
h(µ)−

N

∑
i=1

(un
h(µ), Φh

i ) Φh
i

∥∥∥∥∥
H1(Ω)

≤ ε(N). (37)

• The third term T3 depends on the method used to create the RB.
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1. Let us first consider the greedy approach with a Gram-Schmidt procedure and an eigenvalue problem
(30), which yields to an orthogonalization in L2 and in H1. Therefore,

∥∥∥uN,n
hh − uN,n

Hh

∥∥∥2

H1(Ω)
=

N

∑
i=1
|(un

h(µ)− ũH
n(µ), Φh

i )|2
∥∥∥Φh

i

∥∥∥2

H1(Ω)
, (38)

where ũH
n(µ) is the quadratic interpolation of the coarse snapshots on time tn, ∀n = 0, . . . , NT , defined

by (27). From the RB orthonormalization in L2, the equation (30) yields∥∥∥Φh
i

∥∥∥2

H1
:=
∥∥∥∇Φh

i

∥∥∥2

L2(Ω)
= λi

∥∥∥Φh
i

∥∥∥2

L2(Ω)
= λi ≤ max

i=1,··· ,N
λi = λN , (39)

such that the equation (38) yields∥∥∥uN,n
hh − uN,n

Hh

∥∥∥2

H1(Ω)
≤ CλN

∥∥un
h(µ)− ũH

n(µ)
∥∥2

L2(Ω) . (40)

Now by definition of ũH
n(µ) and by corollary 28 and Theorem 2.4, for tn ∈ Im,∥∥un

h(µ)− ũH
n(µ)

∥∥
L2 ≤ C(H2 + ∆t2

G + h + ∆tF), (41)

and we end up for equation (40) with∥∥∥uN,n
hh − uN,n

Hh

∥∥∥
H1(Ω)

≤ C
√

λN(H2 + ∆t2
G + h + ∆tF), (42)

where C does not depend on N. Combining these estimates (36), (37) and (42), we obtain the estimate
(33).

2. Now we consider only an L2-orthonormalized basis, which we will denote (Ψh,i)i=1,...,N (obtained by
a Gram-Schmidt algorithm or with the Greedy-POD algorithm 1). The functions (Ψh,i)i=1,...,N and

(Φh
i )i=1,...,N are both generators of XN

h . Thus, there exists (γi)i=1,...,N ∈ RN such that Ψh,i =
N
∑

j=1
γi

jΦ
h
i .

By the H1-orthogonality of the (Φh
i )j=1,...,N , it follows

∥∥Ψh,i
∥∥2

H1 =
N

∑
j=1
|γi

j|2
∥∥∥Φh

i

∥∥∥2

H1
,

≤ λN

N

∑
j=1
|γi

j|2
∥∥∥Φh

i

∥∥∥2

L2(Ω)
by equation (30),

= λN
∥∥Ψh,i

∥∥2
L2(Ω) by the L2-orthogonality of the (Ψn

h,i)i=1,...,N . (43)

From the estimate (43) and the L2-orthonormalization of the RB,∥∥∥uN,n
hh (µ)− uN,n

Hh (µ)
∥∥∥

H1
≤

N

∑
i=1
|(un

h(µ)− ũH
n(µ), Ψn

h,i)|
∥∥Ψh,i

∥∥
H1 ,

≤ C
√

λN

N

∑
i=1
|(un

h(µ)− ũH
n(µ), Ψh,i)|. (44)

From Cauchy-Schwarz inequality, inequality (44) leads to

∥∥∥uN,n
hh (µ)− uN,n

Hh (µ)
∥∥∥

H1
≤ C

√
λN
√

N

√√√√ N

∑
i=1
|(un

h(µ)− ũH
n(µ), Ψh,i)|2,

≤ C
√

λN
√

N
∥∥un

h(µ)− ũH
n(µ)

∥∥
L2(Ω) ,

and we end up with ∥∥∥uN,n
hh (µ)− uN,n

Hh (µ)
∥∥∥

H1
≤ C
√

N
√

λN(H2 + ∆t2
G + h + ∆tF), (45)

which leads to estimate (33) using the inequalities (36), (37), and (45), and concludes the proof.
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Remark 4.5. Note that, from the proof of Theorem 4.1, the estimate of the method implemented with an only L2 orthonor-
malized basis set has an additional

√
N factor (where N is the number of modes) compared to the one obtained from the L2

and H1 orthogonalized basis set. Thus, the NIRB approximation is stabilized with the H1 orthogonality, compared with a
RB only orthogonalized in L2. This difference may be numerically observed on more complex numerical results which require
more modes [12].

L2 estimate. We proceed with the proof of theorem 4.3.

Proof. In analogy with the H1 estimate, we have

∀n = 0, . . . , NT ,
∥∥∥u(tn)(µ)− uN,n

Hh (µ)
∥∥∥

L2
≤
∥∥u(tn)(µ)− un

h(µ)
∥∥

L2 +
∥∥∥un

h(µ)− uN,n
hh (µ)

∥∥∥
L2
+
∥∥∥uN,n

hh (µ)− uN,n
Hh (µ)

∥∥∥
L2

=: T1 + T2 + T3. (46)

• For the first term T1, it follows theorem 2.4 that

T1 ≤ C(h2 + ∆tF). (47)

• As with the H1 estimate, T2 can be estimated with the Kolmogorov N-width, and thus, for an accuracy
ε′ = ε′(N) ≤ ε(N) (where ε(N) bounds the H1 error)

T2 ≤ ε′. (48)

• For the last term T3, by L2-orthonormality,

∥∥∥uN,n
hh (µ)− uN,n

Hh (µ)
∥∥∥2

L2(Ω)
=

N

∑
i=1
|(un

h(µ)− un
H(µ), Ψn

h,i)|
2
∥∥∥Ψn

h,i

∥∥∥2

L2(Ω)
,

≤ C
∥∥un

h(µ)− un
H(µ)

∥∥2
L2(Ω) . (49)

Note that, the dependence in N is removed in the previous inequality. By theorem 26 and triangle inequality,
it leads to ∥∥∥uN,n

hh (µ)− uN,n
Hh (µ)

∥∥∥2

L2(Ω)
≤ C (H2 + ∆t2

G + h + ∆tF). (50)

Combining (46) with (47), (48), (50) concludes the proof.

5 Numerical results.

In this section, we have applied the NIRB algorithm on several numerical tests. For each case, we compare the
plain NIRB errors (without the rectification post-treatment) with the rectified NIRB errors given by algorithm 3:

• first, on the heat equation (10) with ∆tG ' H ' 2 h ' 2 ∆tF. Note that in some situations, because of the
constants C2 and C4 in the estimate of theorem 4.1, the best size for the coarse mesh may not be ∆t1/2

F .

• then, on the heat equation with ∆t2
G ' H '

√
h ' ∆tF.

• finally, we also tested our problem on a more complex problem, which is the Brusselator equations.

We have implemented both schemes (Euler and RK2) using FreeFem++ (version 4.9) [16] to compute the fine and
coarse snapshots, and the solutions have been stored in VTK format (with u0 = 0). Then we have applied the
plain NIRB and the NIRB rectified algorithm with python, in order to highlight the non-intrusive side of this
method (as in [12]). After saving the NIRB approximations with Paraview module on Python, the errors have
been computed with FreeFem++.
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5.1 The heat equation with ∆tG ' H ' 2 h ' 2 ∆tF.

We have taken the parameter set G = [0.5, 9.5].
Not that for µ = 1, we can calculate an analytical solution, which is given by

u(t, x; 1) = 10tx2(1− x)2y2(1− y)2, (51)

for a right-hand side function

f (t, x) = 10[x2(x− 1)2y2(y− 1)2 − 2t((6x2 − 6x + 1)(y2(y− 1)2) + (6y2 − 6y + 1)(x2(x− 1)2))], (52)

where x = (x, y).
We have retrieved several snapshots on t = [1, 2] (note that the coarse time grid must belong to the interval

of the fine one), and tried our algorithms on several size of meshes, always with ∆tF ' h and ∆tG ' H (both
schemes are stables).

• We have first taken 18 parameters in G for the RB construction such that µi = 0.5i, i = 1, . . . , 19, i 6= 2,
and the true solution (51), with µ = 1. In what follows Figure 1 and Figure 2, we present the errors of the
FEM solutions and compare them to the ones obtained with the NIRB algorithms ((with POD-Greedy) to
observe the convergence rate.

We recall that the rectification post-processing step is done for each time step. Thus, the NIRB with rectifi-
cation is given by

Rn[uN
Hh](µ) =

N

∑
i,j=1

Rn
ij αH

j (µ, tn) Φh
i (x), n ≥ 0, (53)

where the rectification matrix R may be seen as a familly of 2nd-order tensors indexed by n.

The relative errors have been computed in the maximum-norm in time. The H1
0 NIRB error is defined as∥∥∥u(1)− uN

Hh(1)
∥∥∥

l∞(0,...,NT ;H1
0 (Ω))∥∥u(1)

∥∥
l∞(0,...,NT ;H1

0 (Ω))

, (54)

and with the rectification post-treatment we have∥∥∥u(1)− R[uN
Hh(1)]

∥∥∥
l∞(0,...,NT ;H1

0 (Ω))∥∥u(1)
∥∥

l∞(0,...,NT ;H1
0 (Ω))

, (55)

where R[uN
Hh] is defined by (53), and these relative errors are compared to the FEM ones defined as∥∥u(1)− uh(1)

∥∥
l∞(0,...,NT ;H1

0 (Ω))∥∥u(1)
∥∥

l∞(0,...NT ;H1
0 (Ω))

and

∥∥u(1)− uH(1)
∥∥

l∞(0,...,NT ;H1
0 (Ω))∥∥u(1)

∥∥
l∞(0,...,NT ;H1

0 (Ω))

. (56)

We also plot the L2 errors in Figure 2. We can see that the NIRB L2 relative error without rectification is
very close to the coarse L2 relative error, thus, in the L2 norm, no improvement is provided by the NIRB
algorithm, however with the rectification post-treatment, the error reaches the fine accuracy.

• Then, we have taken 19 parameters in G for the RB construction such that µi = 0.5i, i = 1, . . . , 19 and have
applied the “leave-one-out” strategy. In order to evaluate the NIRB algorithm with respect to the parame-
ters, table 1 presents the maximum H1

0 -error of the NIRB rectified approximation over the parameters. The
error is given by

max
µ∈Gtrain

∥∥∥uh(µ)− R[uN
Hh](µ)

∥∥∥
l∞(0,...NT ;H1

0 (Ω))∥∥uh(µ)
∥∥

l∞(0,...,NT ;H1
0 (Ω))

. (57)

and the maximum in our training parameters is retrieved for µ = 9.
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Figure 1: ∆tG ' H ' 2 h ' 2 ∆tF. Convergence rate for µ = 1 (as a new parameter): FEM H1
0 relative errors

(56) for several sizes of mesh (left) compared to the NIRB method with (N = 3) and without the rectification
post-treatment (N = 3) (right) (55)

Figure 2: ∆tG ' H ' 2 h ' 2 ∆tF. Convergence rate for µ = 1 (as a new parameter): FEM L2 relative errors for
several sizes of mesh (left) compared to NIRB with (N = 3) and without the rectification post-treatment (N = 3)
(right)

Table 1: Maximum H1
0 error over the parameters [µ = 9] (57) (compared to the true NIRB projection and to the

FEM coarse projection) with N = 20 with h = 0.01

NIRB rectified error max
µ∈Gtrain

‖uh(µ)−uN
hh(µ)‖l∞ (0,...,NT ;H1

0 (Ω))

‖uh(µ)‖l∞ (0,...,NT ;H1
0 (Ω))

max
µ∈Gtrain

‖uh(µ)−uH (µ)‖l∞ (0,...,NT ;H1
0 (Ω))

‖uh(µ)‖l∞ (0,...,NT ;H1
0 (Ω))

4.84× 10−5 2.31× 10−10 1.42× 10−1

16



Table 2: FEM runtimes

FEM high fidelity solver FEM coarse solution
00:03 00:02

Table 3: NIRB runtimes (N = 10)

NIRB Offline classical rectified NIRB online
1:45 00:02

5.1.1 Time execution (min,sec)

We present the FEM and NIRB runtimes in 2 and 3.

5.2 The heat equation with H2 ' h ' ∆t2
G ' ∆tF

As previously, in Figure 3 we display the convergence rate of the fine approximations (left) and of the NIRB ap-
proximations (with and without rectification). For all meshes, we choose µ = 1 and as expected, we observe that
both NIRB errors converge in O(h + ∆tF), and we retrieved the fine accuracy with the rectified approximation.

We also plot the L2 errors in Figure 4.
Finally, in order to evaluate the NIRB algorithm with respect to the parameters, table 4 presents the maximum

H1
0 -error of the NIRB rectified approximation over the parameters. The error is given by (57), and the maximum

in our training parameters is retrieved for µ = 9.

Table 4: Maximum H1
0 error over the parameters [µ = 9] (57) (compared to the true NIRB projection and to the

FEM coarse projection) with N = 20 with h = 0.01

NIRB rectified error max
µ∈Gtrain

‖uh(µ)−uN
hh(µ)‖l∞ (0,...,NT ;H1

0 (Ω))

‖uh(µ)‖l∞ (0,...,NT ;H1
0 (Ω))

max
µ∈Gtrain

‖uh(µ)−uH (µ)‖l∞ (0,...,NT ;H1
0 (Ω))

‖uh(µ)‖l∞ (0,...,NT ;H1
0 (Ω))

4.21× 10−3 1.40× 10−9 7.80× 10−1

We observe that the errors without the rectification post-treatment increases with N due to the role of the
constants C2 and C4 in the estimate of theorem 4.1, whereas with the post-treatment they remain stable. This is
illustrated by Figure 5 where the H1

0 errors are displayed for µ = 1 and different number of modes N.
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Figure 3: H2 ' h ' ∆t2
G ' ∆tF, Convergence rate for µ = 1 (as a new parameter): FEM relative H1

0 errors for
several sizes of mesh (left) compared to NIRB with (N=3) and without the rectification post-treatment (N = 3)
(right)

Figure 4: H2 ' h ' ∆t2
G ' ∆tF, Convergence rate for µ = 1 (as a new parameter): FEM L2 relative errors for

several sizes of mesh (left) compared to NIRB with (N = 3) and without the rectification post-treatment (N = 3)
(right)
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Figure 5: For h = 0.01: H = 2h (left) , H = h2 (right) µ = 1, NIRB relative H1
0 errors and rectified NIRB (+

rectification post-treatment) H1
0 compared to FEM errors with different modes N

Remark 5.1. We may also consider NIRB aproximations of (16) under the form

uN,n
Hh (x; µ) =

N

∑
i=1

αH
i (µ, tn) Φn

h,i(x), n ≥ 0, (58)

with (Φn
h,i)i=1,...,N time-dependent basis functions. This time, the greedy algorithm 2 is executed for each time step and thus,

this method is less efficient (in term of storage) since we have to store N times the number of time steps of the reduced basis.
With this decomposition, we obtained the following results (see Figure 6).

5.2.1 Time execution (min,sec)

We present the FEM and NIRB runtimes in 5 and 6.

Table 5: FEM runtimes

FEM high fidelity solver FEM coarse solution
00:03 00:01

Table 6: NIRB runtimes (N = 10)

NIRB Offline classical rectified NIRB online
1:32 00:02

5.2.2 Comments on the results

• On the first tests, with ∆tG ' H ' 2 h ' 2 ∆tF, we observe that the NIRB

– with and without the rectification post-treatment converge in O(h + ∆tF), as expected from the esti-
mates of Theorem 4.1 for the plain NIRB (see Figure 1).

19



Figure 6: For h = 0.01: H = 2h (left) , H = h2 (right) µ = 1, NIRB relative H1
0 errors and rectified NIRB (+ rec-

tification post-treatment) H1
0 compared to FEM errors with different modes N using the other NIRB decomposition

(58)

– gives the same accuracy as with the HF solutions in the H1
0 norm in both cases.

– yields an optimal L2 error estimate for the NIRB with the rectification post-treatment, in O(h2 + ∆tF),
whereas the error for the plain NIRB is not enhanced by the NIRB algorithm (compared to the coarse
FEM approximation), as predicted by Theorem 4.3 (see Figure 2).

The rough mesh size is finer than
√

h. In that case, the plain NIRB algorithm is sufficient to retrieve the
optimal H1 accuracy.

• Then, on the heat equation with ∆t2
G ' H '

√
h ' ∆tF, we remark that

– with both algorithms, the error converge in O(h + ∆tF) (see Figure 3).

– The plain NIRB method allows us to reduce the H1
0 error compared to the coarse FEM approximation.

Yet, the fine accuracy is recovered only while adding the rectification post-treatment.

– We retrieved the rates of convergence expected from theorem 4.3 in O(h2 + ∆tF), yet only the NIRB
with the rectification post-treatment yields the same errors as the HF ones (see Figure 4).

5.3 The parameterized Brusselator equations

The Brusselator problem [21] involves chemical reactions. It is a more complex test from a simulation point of
view. The chemical concentrations in this problem are controlled by parameters throughout the reaction process,
making it an interesting application of a NIRB method. Let us introduce the Brusselator problem in a spatial
domain Ω = [0, 1]2. The nonlinear system of this two-dimensional reaction-diffusion problem writes

∂tu1 = a + u1u2
2 − (b + 1)u1 + α∆u1, in Ω×]0, T]

∂tu2 = bu1 − u1 u2
2 + α∆u2, in Ω×]0, T],

u1(x, 0) = u0(x) = 2 + 0.25y, in Ω
u2(x, 0) = v0(x) = 1 + 0.8x, in Ω,
∂nu1 = 0, ∂Ω,
∂nu2 = 0, ∂Ω.
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Figure 7: Test with l∞(0, . . . , NT ; H1(Ω)) relative errors with a new parameter (a, b, α) = (3, 2, 0.008), t0 = 0,
T = 5, Ω = [0, 1]× [0, 1] (NIRB + rectification post-treatment compared to coarse FEM error)

We now have to deal with a nonlinearity as well as two unknowns. Our parameter, denoted µ = (a, b, α), belongs
to [2, 4]× [1, 4]× [0.001, 0.05]. We have taken an ending time T = 5. These parameters are standard. We note
that, for b ≤ 1 + a2, the solutions are stable, and for α small enough, they converge to (ul , vl) = (a, b

a ).
We use an Euler implicit scheme for fine solutions with the Newton algorithm to deal with nonlinearity and an
explicit 2nd order Runge-Kutta scheme (RK2) for the coarse mesh. Indeed, the solutions blow up with an explicit
Euler scheme, whereas it remain stable for our parameters with an order 2 scheme (as RK2).

Thus we took a = 2, 2.5, 4 , b = 1, 3, 4 and α = 0.001, 0.005, 0.01, 0.05, and tested our NIRB algorithm with
the rectification post-treatment on the new parameter (a, b, α) = (3, 2, 0.008) with h = 0.02 = ∆tF ' H2 = ∆t2

G
(∆TG = H = 0.1). The relative H1

0 errors of the NIRB approximation with rectification post-treatment (55) and
of the FEM fine approximation (56)) are displayed in Figure 7. Here, we do not know the exact solutions but we
observe a gain of accuracy of factor 20 with 30 modes on the relative H1

0 error with the NIRB solutions compared
to the coarse FEM one.

In Figure 8 follows the NIRB rectified solution for N = 10 modes at time T = 5 for the two variables u1 and
u2. The approximation is close to (a, b

a ) = (3, 2/3) as expected.

5.3.1 Time execution (min,sec)

Finally, the computational costs are well saved during the online part of the algorithm as it is highlited with
this example. Indeed, since there is a nonlinearity, the system must be solved with several iterations for each
time step, and thus is quite expensive for a HF approximation. We recall that with an explicit Euler scheme, the
solution blows up whereas for a explicit RK2 scheme (without iteration), the solution converges to the expected
values (a, b

a ).
We present the FEM and NIRB runtimes in 7 and 8.

Table 7: FEM runtimes (min:sec)

FEM high fidelity solver FEM coarse solution
4:52 00:02
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(a) u1 (b) u2

Figure 8: NIRB approximations (u1 (left) and u2 (right)) for T = 5 with N = 10 modes (close to (a, b
a ) = (3, 2/3))

(note the small scale that is used)

Table 8: NIRB runtimes (N = 10, h:min:sec)

NIRB Offline classical rectified NIRB online
1:53:00 00:04:00
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