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MEAN FIELD GAMES MASTER EQUATIONS: FROM DISCRETE TO

CONTINUOUS STATE SPACE

CHARLES BERTUCCI AND ALEKOS CECCHIN

Abstract. This paper studies the convergence of mean field games with finite state space to
mean field games with a continuous state space. We examine a space discretization of a diffu-
sive dynamics, which is reminiscent of the Markov chain approximation method in stochasctic
control, but also of finite difference numerical schemes. We are mainly interested in the con-
vergence of the solution of the associated master equations as the number of states tends to
infinity. We present two approaches, to treat the case without or with common noise, both
under monotonicity assumptions. The first one uses the system of characteristics of the master
equation, which is the MFG system, to establish a convergence rate for the master equations
without common noise and the associated optimal trajectories, both in case there is a smooth
solution to the limit master equation and in case there is not. The second approach relies on
the notion of monotone solutions introduced by [8, 9]. In the presence of common noise, we
show convergence of the master equations, with a convergence rate if the limit master equation
is smooth, otherwise by compactness arguments.

1. Introduction

This paper is interested in the convergence of value functions of mean field games (MFG for
short) in finite state space when the number of states tends to infinity. We show that if the
MFG in finite state space is a suitable discretization of a continuous MFG, the value, i.e. the
solution of the master equation, in finite state space converges toward the value of the MFG in
continuous state space when the number of states tends to infinity.

1.1. General introduction. MFG are differential games involving non-atomic players which
interact only through mean field terms. A general mathematical study of such games started
with [36, 39] and independently in [31]. We refer to the books [17, 14] for a more complete
presentation of the theory, and also to the lecture notes [15]. Several properties of those games
being understood by now, let us stress the two properties which are the most helpful to under-
stand the following. The first one is that Nash equilibria of the game can be characterized in
terms of a system of differential equations which may be stochastic or not, depending on the
nature of the game, and which are ordinary differential equations (ODE for short) if the state
space of the players is finite or partial differential equations (PDE for short) if the state space
of the players is continuous. Such a characterization of the Nash equilibria is called the MFG
system. The second main aspect of MFG is that an adversarial regime can be identified. In
this so-called monotone regime, there is always a unique Nash equilibrium in the MFG. This
property allows to define a concept of value in this situation. This value is the solution of a PDE
called the master equation, which is set on a finite dimensional space (the simplex in R

n) if the
state space of the players is finite and on an infinite dimensional space (the space of probability
measures) if the state space of the players is continuous. Notably, the MFG system represents
the system of characteristics of the master equation.
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MFG master equations have attracted quite a lot of attention in the last years. First in
the continuous state space, we mention the main contribution [14] for classical solutions (see
also [23, 27]) and [40, 28, 9, 16, 41, 20] for various definitions of weak solutions. In general,
to have classical solutions to the master equation, which is a PDE in the space of probability
measures, for arbitrary time horizon, the cost coefficients are requires to be differentiable with
respect to the measure argument and monotone (see however the recent preprint [41]), otherwise
weak solutions have to be considered, which are at least continuous in the measure argument
if monotonicity holds. In the finite state space, classical solutions are considered in [6, 22],
without common noise, and in [11, 5, 25] with various forms of common noise. Some definitions
of weak solution are given in [18, 19, 8].

1.2. Bibliographical comments. The first numerical schemes for mean field games were pro-
posed in [1, 2, 3], based on finite difference numerical methods for PDEs. Several other methods
have been studied: we mention [7, 4, 12, 10, 24] for an incomplete list, and the recent surveys
[37] and [38] (this latter for methods based on machine learning). The discretization we ana-
lyze in the paper has the advantage of being itself a mean field game, on a finite state space.
The convergence of finite state MFG toward ones with continuous state space has been studied
in [30], in the case of deterministic dynamics without idiosyncratic or common noise. Their
proof of convergence relies on probabilistic compactness arguments and on the probabilistic
representation of the MFG.

1.3. Main results of the paper. The discretization we study in the paper is the natural
one, both from a PDE or probabilistic perspective. At the PDE level, it is almost equal to the
finite difference approximation studied in [1]. We exploit also the probabilistic interpretation,
which turns out to be close to the scheme studied in [30] and is based on the Markov chain
approximation method for stochastic control problems introduced by Kushner [35]. As already
mentioned, such discretization has the advantage of being itself a MFG over a finite state
space, of the type first analyzed in [29]. One of the main differences with the aforementioned
work is that the time remains continuous in the dicretized model. We consider dynamics on
the one dimensional torus and with a non-degenerate idiosyncratic noise; we always assume
monotonicity of the cost coefficients and thus consider an arbitrary time horizon. We remark
that the focus on a one dimensional state space with periodic boundary condition is mainly
to simplify the already heavy notations. We leave to the interested reader the generalization
to a higher dimensional state space and indicate along the paper the arguments who do not
immediately extend to such a situation.

The main difference with the other works on numerical methods for MFGs is that our strategy
to show the convergence is based on the master equations of the discrete and continuos MFGs.
One of the main results is to provide a convergence rate for the approximation, which is a new
result for numerical methods for MFGs, to the best of our knowledge. The approach of this
paper is twofold. In a first time, we study MFG without common noise. We first establish that
given a classical solution of the limit master equation, a rather direct approach yields a rate of
convergence for both the value of the MFG (the master equation) and the optimal trajectories
(Thm. 3.3 and 3.4). We then present a less restrictive approach, without considering directly
the master equation, which uses just the system of characteristics (the MFG system) and the
monotonicity and which allows to prove a convergence rate for both the value of the MFG and
the trajectories at the equilibrium (Thm. 3.5). Notably, the convergence rate we obtain is
worse in case there is no smooth solution to the master equation. We remark also that the non-
degeneracy of the independent noise (in other words, the presence of the laplacian) is crucial
to obtain a convergence rate. Along the way, we show a convergence rate for a Markov chain
approximation of a diffusion, which we believe might be of independent interest and thus is
presented in the Appendix A (Prop. A.1).

In a second time, we study MFG with the type of common noise introduced in [11], in
the monotone regime, which basically produces common jumps of the whole population. We
prove first a compactness result on the discrete model, which allows to prove the convergence
of the value of the MFG, which is the master equation (Thm. 4.12). This part on MFG
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with common noise relies on an intrinsic study of the master equation through the concept
of monotone solutions introduced in [8, 9] and used in [16]. This concept enables us to work
with solution of the master equations which are merely continuous in the finite state space case
and only continuous with respect to the measure variable in the continuous state space limit.
The aforementioned convergence result can be seen as an illustration of the stability of these
monotone solutions. Finally, we show that if a classical solution of the limit problem exists,
then a rate of convergence for the value can be proved also in this case (Thm. 4.14)

1.4. Organization of the paper. The rest of the paper is organized as follows. In Section
2, we present first the continuous state MFG in §2.1 and then its discretization, which is the
finite state MFG, in §2.3, both from a probabilistic and PDE point of view, together with their
master equations. The standing Assumptions are stated in §2.2. Section 3 is devoted to the
study of convergence in the absence of common noise: the approach with a smooth solution
to the master equation is in §3.1, while the approach based on the MFG system is in §3.2.
Section 4 studies the convergence for MFGs with common noise: the compactness estimates is
presented in §4.4 and the convergence of monotone solutions is in §4.5, while the convergence
for smooth solutions is in §4.6; the other subsections contain auxiliary results and remarks on
monotone solutions. Finally, Appendix A contains the result about the convergence rate for a
Markov chain approximation of a diffusion.

1.5. Notation.

• 〈·, ·〉 stands for either the usual scalar product between two element of R
d or for the

extension of the L2 scalar product for functional spaces in duality, depending on the
context.

• The unit circle is denoted by T.
• The set of Borel measures on E is denoted by M(E) whereas P(E) stands for the set

of probability measures on E.
• The usual norms on the Hölder spaces Cn,γ(T) are denoted by ‖ · ‖n+γ .
• For a function U : P(T) → R, when it is defined we denote

δU

δm
(m,x) = lim

θ→0

U((1 − θ)m+ θδx) − U(m)

θ
. (1.1)

• For µ, ν ∈ P(E), with E a metric space, we denote by W1 the Monge-Kantorovich
distance between µ and ν.

• We fix a filtered probability space (Ω,F = (Ft)0≤t≤T ,P) satisfying the usual conditions,
large enough to contain all the processes we will introduce. All SDEs will have indeed
pathwise strong solutions. The law of a random variable is denoted by Law(ξ) = P◦ξ−1.

• D([0, T ],T) is the space of càdlàg functions endowed with the Skorokhod J1 topology.
Convergence of processes in law is meant as usual on this space.

2. The contionuous and discrete models

In this section we introduce first the model at interest in the limit of an infinite number of
states, without common noise, and then its space discretization. As already mentioned, we shall
focus on a one dimensional state space with periodic boundary condition.

2.1. The limit MFG model. We first consider the master equation of unknown U : [0, T ] ×
T × P(T) → R, in dimension 1 on the torus:

− ∂tU − σ∂xxU +H(x, ∂xU) −
〈
σ∂xxm+ ∂x(∂pH(·, ∂xU)m),

δU

δm
(t, x,m, ·)

〉
= f(m)(x)

U(T, x,m) = g(m)(x),
(2.1)

where σ > 0, H : T × R → R, f, g : P(T) → C(T) and T > 0 are the data of the problem. This
equation corresponds to the following MFG. The dynamics of a player is

dXt = α(t,Xt)dt+
√

2σdWt, (2.2)
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where α is its closed-loop control (assumed to be bounded) and (Wt)t≥0 is a Brownian motion
on (Ω,F,P). Given an anticipation (µt)t∈[0,T ] on the repartition of the players in the state space,
the expected cost of this player is given by

J(α, (µt)t≥0) = E

[∫ T

0
L(x, α(t,Xt)) + f(µt)(Xt)dt + g(µT )(XT )

]
, (2.3)

where L is a cost function such that its Legendre transform L∗ with respect to its second
argument is equal to the Hamiltonian H(x, p). We recall that a solution of the MFG (or Nash
equilibrium) is a couple (α, µ) such that J(α, µ) = infβ J(β, µ) and Law(Xt) = µt, where X is
the optimal process given by α. Nash equilibria of the MFG can be characterized through the
MFG system 




−∂tu− σ∂xxu+H(x, ∂xu) = f(µt)(x)

∂tµ− σ∂xxµ− ∂x(∂pH(x, ∂xu)µ) = 0

u(T, x) = g(µT )(x) µ0 = m0.

(2.4)

and the optimal control is α(t, x) = −∂pH(x, ∂xu(t, x)).

2.2. Assumptions. We state the assumptions which are in force throughout the paper. We
assume that the couplings f, g : M(T) → Cγ(T) are monotone, i.e.

∫

T

(f(x,m) − f(x, m̃))(m − m̃)(dx) ≥ 0 ∀m, m̃ ∈ M(T)
∫

T

(g(x,m) − g(x, m̃))(m − m̃)(dx) ≥ 0 ∀m, m̃ ∈ M(T),
(2.5)

and also that they are W1-Lipschitz continuous in m (uniformly in x), f is Lipschitz also in x
(uniformly in n) and g is (valued and) bounded in C2+γ(T), uniformly in m, for a γ ∈ (0, 1).

The Hamiltonian H(x, p) is C2, uniformly convex in p on all compact sets. The duration of
the game T > 0 is arbitrary long but fixed.

2.3. The discrete MFG model. We construct approximations on the previous model with
finite state and continuous time. The dynamics of the underlying Markov chain has the pecu-
liarity that it jumps either right or left, with the convention that at the boundary it jumps on
the other side. For any n, we consider then the n states Sn = {xn

1 , . . . , x
n
n} = {1/n, . . . , 1 = 0}

with mutual distance ∆xn = 1/n.
The discretization we study is the natural one, from a control or MFG perspective, see for

instance the seminal papers [1, 2] and [30].
Let us state first the probabilistic interpretation of the discrete model by means of controlled

Markov chains. We assume to control the jump rate on the right and on the left by means of
functions denoted αn

+, α
n
− : [0, T ] × Sn → [0,+∞); the Markov chain Xn then satisfies

P(Xn
t+∆t = xn

i+1|Xn
t = xn

i ) =

(
αn

+(t, xn
i )

∆xn
+

σ

∆x2
n

)
∆t+ o(∆t),

P(Xn
t+∆t = xn

i−1|Xn
t = xn

i ) =

(
αn

−(t, xn
i )

∆xn
+

σ

∆x2
n

)
∆t+ o(∆t),

(2.6)

with the convention that xn
n+1 = xn

1 = 1/n and xn
0 = xn

n = 1. Given anticipations (µn
t )t≥0 on

the repartition of players in Sn the cost is given by

Jn(αn
±, µ

n) = E

[∫ T

0
L(Xn

t , α
n
+(t,Xn

t )) + L(Xn
t ,−αn

−(t,Xn
t )) − L(Xn

t , 0) + f(µn
t )(Xn

t )dt + g(µn
T )(Xn

t )

]
.

(2.7)
A solution of the MFG is still a couple (αn

±, µ
n) such that αn

± is optimal for µn fixed and
µn

t = Law(Xn
t ), where Xn is the optimal process.

For a function u : Sn → R we denote the right and left first order n finite difference by

∆n
+u(x) =

u(x+ ∆xn) − u(x)

∆xn
∆n

−u(x) =
u(x− ∆xn) − u(x)

∆xn
, (2.8)
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and the second order finite difference

∆n
2u(x) =

u(x+ ∆xn) − 2u(x) + u(x− ∆xn)

∆x2
n

. (2.9)

We remark that if u : T → R is smooth, then limn→∞ ∆n
±u(x) = ±∂xu(x) and limn→∞ ∆n

2u(x) =

∂2
xu(x). The optimization provides the discrete HJB equation

− d

dt
un +H↑(x,∆n

+u
n(x)) +H↓(x,−∆n

−u
n(x)) − σ∆n

2u
n(x) = f(µn

t )(x), x ∈ Sn, (2.10)

where

H↑(x, p) := − inf
α≥0

{L(x, α) + αp}; H↓(x, p) := − inf
α≥0

{L(x,−α) − αp} + L(x, 0). (2.11)

The optimal controls are given in feedback form by

αn
+(t, x) = −∂pH↑(x,∆n

+u
n(x)), αn

−(t, x) = ∂pH↓(x,−∆n
−u

n(x)), x ∈ Sn. (2.12)

Let us remark that H↑ and H↓ are such that for (x, p) ∈ T × R

H↑(x, p) +H↓(x, p) = H(x, p)

−∂pH↑(x, p) − ∂pH↓(x, p) = −∂pH(x, p).
(2.13)

Moreover, L is smooth and uniformly convex in a on compact sets, but H↑ and H↓ are neither
uniformly convex nor C2; however, they are C1 and H↑, H↓, ∂pH↑, ∂pH↓ are still locally Lipschitz
in (x, p).

The generator of the dynamics of Xn associated to the optimal controls is given by

Lnϕ(x) =

(−∂pH↑(x,∆n
+u

n(x))

∆xn
+

σ

∆x2
n

)
[ϕ(x+ ∆xn) − ϕ(x)]

+

(
∂pH↓(x,−∆n

−u
n(x))

∆xn
+

σ

∆x2
n

)
[ϕ(x− ∆xn) − ϕ(x)]

= −∂pH↑(x,∆n
+u

n(x))∆n
+ϕ(x) + ∂pH↓(x,−∆n

−u
n(x))∆n

−ϕ(x) + σ∆n
2ϕ(x).

(2.14)

Hence the discrete Fokker-Planck equation associated to this generator is given by

d

dt
µn(t, x) − σ∆n

2µ
n(t, x) + ∆n

−(∂pH↑(x,∆n
+u

n(x))µn(t, x))

−∆n
+(∂pH↓(x,−∆n

−u
n(x))µn(t, x)) = 0, x ∈ Sn.

(2.15)

For a function U defined on P(Sn) we denote by ∂mj
U its derivative along the direction ej;

and denote equivalently ej = exj
and ∂mj

U = ∂mxj
U , because we view m ∈ P(Sn) as m =∑n

j=1mjδxj
. More precisely, we will consider only derivatives along directions (ej − ei), which

are tangent vectors to the simplex. The discrete master equation for Un : [0, T ] × Sn × P(Sn)
is then given by

− ∂tU
n(t, x,m) +H↑(x,∆n

+U
n(t, x,m)) +H↓(x,−∆n

−U
n(t, x,m)) − σ∆n

2U
n(t, x,m) − f(m)(x)

−
∑

y∈Sn

my

(−∂pH↑(y,∆n
+U

n(y,m))

∆xn
+

σ

∆x2
n

) (
∂my+∆xn

Un(x,m) − ∂myU
n(x,m)

)

−
∑

y∈Sn

my

(
∂pH↓(y,−∆n

−U
n(y,m))

∆xn
+

σ

∆x2
n

) (
∂my−∆xn

Un(x,m) − ∂myU
n(x,m)

)
= 0

(2.16)

The last two terms are equal to

−
∫

T

m(dy)
−∂pH↑(y,∆n

+U
n(y,m))

∆xn

(
∂my+∆xn

Un(x,m) − ∂myU
n(x,m)

)
(2.17)

−
∫

T

m(dy)
∂pH↓(y,−∆n

−U
n(y,m))

∆xn

(
∂my−∆xn

Un(x,m) − ∂myU
n(x,m)

)
(2.18)

−
∫

T

m(dy)
σ

∆x2
n

(
∂my+∆xn

Un(x,m) − 2∂myU
n(x,m) + ∂my−∆xn

Un(x,m)
)

(2.19)
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assuming that m =
∑n

j=1mjδxj
.

Remark 2.1. As an example, consider the simple case of quadratic Lagrangian: L(a) = a2

2 . In

this case, we have H↑(p) = 1
2p

2
−, H↓(p) = 1

2p
2
+, and thus αn

+ = (∆n
+u)−, αn

− = (−∆n
−u)+, where

p+ and p− denote the positive and negative part of p.

2.4. Heuristic derivation of the limit master equation. In this section, we give a formal
justification of the previous discretization. Ultimately, we want to show that

lim
n→∞

Un(t, xn,mn) = U(t, x,m), (2.20)

when |xn − x| + W1(mn,m) → 0. Let us assume this and show that, formally, the master
equation (2.16) converges indeed to (2.1). We first have

lim
n

∆n
±U

n(t, x,m) = ±∂xU(t, x,m), lim
n

∆n
2U

n(t, x,m) = ∂xxU(t, x,m) (2.21)

and thus the first terms in (2.16) converge to the corresponding one in (2.1).
We recall the definition of the measure derivative: for a function U : P(T) → R the first

derivative δU
δm(m; y) is defined by the limit

δU

δm
(m,x) = lim

θ→0

U((1 − θ)m+ θδx) − U(m)

θ
. (2.22)

Recalling that Un(t, x,m) ≈ U(t, x,
∑

j mjδxj
) we then have

∂my±∆xn
Un(x,m) − ∂myU

n(x,m) =

∫

T

δU

δm
(x,m; z)(δy±∆xn

− δy)(dz)

=
δU

δm
(x,m; y ± ∆xn) − δU

δm
(x,m; y)

(2.23)

and hence

lim
n

∂my±∆xn
Un(x,m) − ∂myU

n(x,m)

∆xn
= ±∂y

δU

δm
(x,m; y). (2.24)

Therefore the terms in (2.17)-(2.18) give

≈ −
∫

T

m(dy)

[
−∂pH↑(y, ∂xU

n(y,m))∂y
δU

δm
(x,m; y) − ∂pH↓(y, ∂xU

n(y,m))∂y
δU

δm
(x,m; y)

]

=

∫

T

m(dy)∂pH(y, ∂xU(y,m))∂y
δU

δm
(x,m; y) = −

〈
∂x(∂pH(·, ∂xU(·,m))m),

δU

δm
(x,m; ·)

〉
.

(2.25)

while the term in (2.19) yields

− σ

∫

T

m(dy)
δU
δm(x,m; y + ∆xn) − 2 δU

δm (x,m; y) + δU
δm(x,m; y − ∆xn)

∆xn
n

→ −σ
∫

T

m(dy)∂2
y

δU

δm
(x,m; y) = −σ

〈
∂xxm,

δU

δm
(x,m; ·)

〉
.

(2.26)

This provides the remaining terms in (2.1).
As far as convergence of the trajectories is concerned, we study it by means of the generators.

By (2.14) we have

Lnϕ(x) ≈ −∂pH↑(x, ∂xU(x, µt))∂xϕ(x) − ∂pH(x, ∂xU(x, µt))∂xϕ(x) + σ∂xxϕ(x)

= −∂pH(x, ∂xU(x, µt))∂xϕ(x) + σ∂xxϕ(x),

which is the generator of the limiting dynamics, yielding the convergence in distribution of the
optimal processes.
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3. Convergence results in the absence of a common noise

We prove convergence, with a convergence rate, of the discrete mater equation (2.16) to (2.1)
and then of the related optimal trajectories, first in case (2.1) admits a smooth solution and
then in case there is no such solution.

The monotonicity (2.5) of f and g implies that both (2.1) and (2.16) admit at most one
classical solution. It also implies the uniqueness of solutions of the systems of characteristics
such as (2.4) or the discrete system

− d

dt
un +H↑(x,∆n

+u
n(x)) +H↓(x,−∆n

−u
n(x)) − σ∆n

2u
n(x) = f(µn

t )(x), t ∈ (s, T ), x ∈ Sn,

d

dt
µn(t, x) − σ∆n

2µ
n(t, x) + ∆n

−(∂pH↑(x,∆n
+u

n(x))µn(t, x))

− ∆n
+(∂pH↓(x,−∆n

−u
n(x))µn(t, x)) = 0, t ∈ (s, T ), x ∈ Sn,

un(T, x) = g(µn
T )(x); µn(s) = mn,

(3.1)

Lemma 3.1. Let (un, µn) be a solution of (3.1) for given s ∈ [0, T ], µ̃n ∈ P(Sn), this solution
satisfies

sup
x∈Sn

|un(s, x)| ≤ (T − s)(‖f‖∞ + sup
x

| inf
α
L(x, α)|) + ‖g‖∞. (3.2)

If f and g are Lipschitz in x, uniformly in m, then there exists M > 0 such that for any
s ∈ [0, T ], µ̃n ∈ P(Sn), n ≥ 1 and x ∈ Sn

|∆n
±u

n(s, x)| ≤ M. (3.3)

Proof. Recall that un is the value function of an optimal control problem for the dynamics
(2.6) and cost (2.7) (given µn). The lower bound in (3.2) is then straightforward, while the
upper bound follows by choosing the feedback controls α+(x) which minimizes the function
a 7→ L(x, a) for a ≥ 0, and −α−(x) which minimizes a 7→ L(x, a) for a ≤ 0. In order to
prove (3.3), it is convenient to use stochastic open-loop controls for the control problem and
thus to consider a probabilistic representation of the dynamics of Xn. We now introduce the
representation analyzed in [21].

Let N be a Poisson random measure on [0, T ] × [0,∞)2 with intensity measure ν(dθ) on
[0,∞)2 given by

ν(E) = ℓ(E ∩ ([0,∞) × {0})) + ℓ(E ∩ ({0} × [0,∞))),

where ℓ is the Lebesgue measure on R. The measure ν is in fact the sum of the intersection
with the axes and has the property that

∫

[0,∞)2
ϕ(θ+, θ−)ν(dθ) =

∫ ∞

0
ϕ(θ+, 0)dθ+ +

∫ ∞

0
ϕ(0, θ−)dθ−.

Consider then the dynamics

dXn
t =

∫

[0,∞)2

(
∆xn1

(
0, σ

∆x2
n

+
αn

+
(t,Xn

t
)

2∆xn

](θ+) − ∆xn1
(

0, σ

∆x2
n

+
αn

−
(t,Xn

t
)

2∆xn

](θ−)

)
N (dθ, dt) (3.4)

for a control (αn
+(t, x), αn

−(t, x). We can show that the generator is given by (calling λ(α+, α−, θ)
the integrand above)
∫

[0,∞)2
[ϕ(x+ λ(α+(t, x), α−(t, x), θ)) − ϕ(x)] ν(dθ) = ∆n

+ϕ(x)α+(t, x)+∆n
−ϕ(x)α−(t, x)+σ∆n

2ϕ(x),

which ensures that Xn has the transition rates as in (2.6). The advantage in using the represen-
tation (3.4) is that it permits to use stochastic open-loop controls (for the strong formulation),
which are predictable stochastic processes (with respect to the filtration generated by the fixed
Poisson measure and the initial condition).
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Therefore we have (recall that (µn
t )t0≤t≤T is fixed)

un(t0, x) = inf
αn

E

[∫ T

t0

L(Xn
t , (α

n
+)t) + L(Xn

t ,−(αn
−)t) − L(Xn

t , 0) + f(Xn
t , µ

n
t )dt+ g(Xn

T , µ
n
T )

]
,

where Xn starts at Xn
t0

= x and uses the stochastic control (αn
+, α

n
−). As to (3.3), if (αn

+, α
n
−)t

is optimal for x (that is given by (2.12)) and we denote by Xn the process starting at x and by

X̃n the process starting at x+ ∆xn, both with the control (αn
+, α

n
−)t, then

u(t0, x+ ∆xn) − u(t0, x)

≤ E

[∫ T

t0

L(X̃n
t , (α

n
+)t) + L(X̃n

t ,−(αn
−)t) − L(X̃n

t , 0) + f(X̃n
t , µ

n
t )dt + g(X̃n

T , µ
n
T )

]

− E

[∫ T

t0

L(Xn
t , (α

n
+)t) + L(Xn

t ,−(αn
−)t) − L(Xn

t , 0) + f(Xn
t , µ

n
t )dt + g(Xn

T , µ
n
T )

]

≤ M sup
t0≤t≤T

E|X̃n
t −Xn

t |,

where we have used the regularity of L in its first variable. We conclude by noticing that
X̃n

t − Xn
t = ∆xn for any t, because all the other terms cancel. By changing the roles of x and

x+ ∆xn, we obtain the opposite inequality and hence (3.3) follows. �

Clearly this estimate translates directly to the solution of the master equation thanks to its
representation by the characteristics.

3.1. Classical solutions. We first prove convergence, with a convergence rate, in cases in
which (2.1) and (2.16) admit a classical solution. Results on the existence of such solutions
are given in [14, thm. 2.4.2] for the continuous master equation and in [6, 22] for the discrete
master equation, assuming regularity of f and g in the measure argument.

The first preliminary result states that a smooth solution of the continuous master equation,
computed on discrete measures, almost solves the discrete master equation.

Proposition 3.2. If U is the classical solution to (2.1) then V n(t, x,m) := U(t, x,
∑n

j=1mjδxj
)

solves

− ∂tV
n(x,m) +H↑(x,∆n

+V
n(x,m)) +H↓(x,−∆n

−V
n(x,m)) − σ∆n

2V
n(x,m) − f(x,m)

+
∑

y∈Sn

my
∂pH↑(u,∆n

+V
n(y,m))

∆xn

(
∂my+∆xn

V n(x,m) − ∂myV
n(x,m)

)

+
∑

y∈Sn

my
−∂pH↓(u,−∆n

−V
n(y,m))

∆xn

(
∂my−∆xn

V n(x,m) − ∂myV
n(x,m)

)

−
∑

y∈Sn

my
σ

∆x2
n

(
∂my+∆xn

V n(x,m) − 2∂myV
n(x,m) + ∂my−∆xn

V n(x,m)
)

= rn(t, x,m),

(3.5)

with |rn(t, x,m)| ≤ Cω( 1
n), where ω is a modulus of continuity of ∂xU , ∂xxU , δU

δm , ∂y
δU
δm(·, y)

and ∂yy
δU
δm (·, y).

Proof. The proof of this statement follows from the fact that assuming this regularity on U , all
the heuristics of section 2.4 are true with a modulus of convergence driven by ω. �

Theorem 3.3. Let U be a classical solution to (2.1) and Un be a classical solution to (2.16).
There exists a constant C (independent of n) such that, for V n defined as in the previous result,

|Un(t, x,m) − V n(t, x,m)| ≤ Cω

(
1

n

)
, ∀t ∈ [0, T ], x ∈ Sn,m ∈ P(Sn) (3.6)

E

∫ T

0
|∆n

+(Un − V n)(t,Xn
t ,Law(Xn

t ))|2 + |∆n
−(Un − V n)(t,Xn

t ,Law(Xn
t ))|2dt ≤ Cω2

(
1

n

)

(3.7)
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where Xn
t is the optimal process of the MFG (3.18)-(3.19).

Notably, in the proof below, we make no use of the monotonicity assumption, as we just use
the fact that the solutions to the master equations are classical. We also do not need uniform
in n estimates on Un, except for the one of Lemma 3.1, but we make use of the non-degeneracy
of the diffusion. The proof is inspired by the argument of [14, Thm. 2.2.1] for the convergence
of the N -player game, which is itself inspired by the stability argument for forward-backward
SDEs. Clearly, the best convergence rate in (3.6) is 1

n if the derivatives of U involved are
Lipschitz-continuous.

Proof. Consider any initial time t0 ∈ [0, T ) and distribution µ0 = (µ0,y)y∈Sn ∈ P(Sn) such
that µ0,y 6= 0 for each y ∈ Sn, i.e. µ0 belongs to the interior of the simplex, and let
(Xn

t )t0≤t≤T the optimal process of the discrete MFG starting at (t0, µ0). Denote its law by(
µn

t = Law(Xn
t )

)
t0≤t≤T

. We denote W n = Un − V n, W n
t = Un

t − V n
t = (Un − V n)(t,Xn

t , µ
n
t )

and expand |Un − V n|2(t,Xn
t , µ

n
t ). For any t ∈ [t0, T ], Itô formula and then conditional expec-

tation with respect to the initial condition (denoted E0) give

E0|W n
T |2 − E0|W n

t |2 = E0

∫ T

t

[ (
|W n(Xn

s + ∆xn, µ
n
s )|2 − |W n

s |2
) (

σ

∆x2
n

− ∂pH↑(Xn
s ,∆

n
+U

n
s )

∆xn

)

+
(
|W n(Xn

s − ∆xn, µ
n
s )|2 − |W n

s |2
) (

σ

∆x2
n

+
∂pH↓(Xn

s ,−∆n
−U

n
s )

∆xn

)

+ 2W n
s (∂tU

n
s − ∂tV

n
s )

+ 2W n
s (DmUn −DmV n)(Xn

s , µ
n
s ) · d

dt
µn

s

]
ds

= E0

∫ T

t

[ (
|W n(Xn

s + ∆xn, µ
n
s ) −W n

s |2 + 2W n
s (W n(Xn

s + ∆xn, µ
n
s ) −W n

s )
) (

σ

∆x2
n

− ∂pH↑(Xn
s ,∆

n
+U

n
s )

∆xn

)

+
(
|W n(Xn

s − ∆xn, µ
n
s ) −W n

s |2 + 2W n
s (W n(Xn

s − ∆xn, µ
n
s ) −W n

s )
) (

σ

∆x2
n

+
∂pH↓(Xn

s ,−∆n
−U

n
s )

∆xn

)

+ 2W n
s

(
H↑(Xn

s ,∆
n
+U

n
s ) +H↓(Xn

s ,−∆n
−U

n
s ) −H↑(Xn

s ,∆
n
+V

n
s ) −H↓(Xn

s ,−∆n
−V

n
s ) − σ∆n

2U
n
s + σ∆n

2V
n

s

+
∑

y∈Sn

µn
s,y

∂pH↑(y,∆n
+U

n(y, µn
s ))

∆xn

(
∂my+∆xn

Un
s − ∂myU

n
s

)

−
∑

y∈Sn

µn
s,y

∂pH↑(y,∆n
+V

n(y, µn
s ))

∆xn

(
∂my+∆xn

V n
s − ∂myV

n
s

)

−
∑

y∈Sn

µn
s,y

∂pH↓(y,−∆n
−U

n(y, µn
s ))

∆xn

(
∂my−∆xn

Un
s − ∂myU

n
s

)

+
∑

y∈Sn

µn
s,y

∂pH↓(y,−∆n
−V

n(y, µn
s ))

∆xn

(
∂my−∆xn

V n
s − ∂myV

n
s

)

−
∑

y∈Sn

µn
s,y

σ

∆x2
n

(
∂my+∆xn

Un
s − 2∂myU

n
s + ∂my−∆xn

Un
s

)

+
∑

y∈Sn

µn
s,y

σ

∆x2
n

(
∂my+∆xn

V n
s − 2∂myV

n
s + ∂my−∆xn

V n
s

) )
+ rn

s

+ 2W n
s

(
−

∑

y∈Sn

µn
s,y

∂pH↑(y,∆n
+U

n(y, µn
s ))

∆xn

(
∂my+∆xn

Un
s − ∂myU

n
s

)

+
∑

y∈Sn

µn
s,y

∂pH↓(y,−∆n
−U

n(y, µn
s ))

∆xn

(
∂my−∆xn

Un
s − ∂myU

n
s

)
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+
∑

y∈Sn

µn
s,y

∂pH↑(y,∆n
+U

n(y, µn
s ))

∆xn

(
∂my+∆xn

V n
s − ∂myV

n
s

)

−
∑

y∈Sn

µn
s,y

∂pH↓(y,−∆n
−U

n(y, µn
s ))

∆xn

(
∂my−∆xn

V n
s − ∂myV

n
s

)

+
∑

y∈Sn

µn
s,y

σ

∆x2
n

(
∂my+∆xn

Un
s − 2∂myU

n
s + ∂my−∆xn

Un
s

)

−
∑

y∈Sn

µn
s,y

σ

∆x2
n

(
∂my+∆xn

V n
s − 2∂myV

n
s + ∂my−∆xn

V n
s

) )]
ds

= E0

∫ T

t

[
|∆n

+W
n
s |2(σ − ∆xn∂pH↑(Xn

s ,∆
n
+U

n
s )) + |∆n

−W
n
s |2(σ + ∆xn∂pH↓(Xn

s ,−∆n
−U

n
s ))

+ 2W n
s (σ∆n

2W
n
s − ∂pH↑(Xn

s ,∆
n
+U

n
s )∆n

+W
n
s + ∂pH↓(Xn

s ,−∆n
−U

n
s )∆n

−W
n
s )

+ 2W n
s

(
H↑(Xn

s ,∆
n
+U

n
s ) +H↓(Xn

s ,−∆n
−U

n
s ) −H↑(Xn

s ,∆
n
+V

n
s ) −H↓(Xn

s ,−∆n
−V

n
s ) − σ∆n

2W
n
s + rn

s

+
∑

y∈Sn

µn
s,y(∂pH↑(y,∆n

+U
n(y, µn

s )) − ∂pH↑(y,∆n
+V

n(y, µn
s )))

∂my+∆xn
V n

s − ∂myV
n

s

∆xn

−
∑

y∈Sn

µn
s,y(∂pH↓(y,−∆n

−U
n(y, µn

s )) − ∂pH↓(y,−∆n
−V

n(y, µn
s )))

∂my−∆xn
V n

s − ∂myV
n

s

∆xn

)]
ds

= E0

∫ T

t

[
|∆n

+W
n
s |2(σ − ∆xn∂pH↑(Xn

s ,∆
n
+U

n
s )) + |∆n

−W
n
s |2(σ + ∆xn∂pH↓(Xn

s ,−∆n
−U

n
s ))

+ 2W n
s

(
− ∂pH↑(Xn

s ,∆
n
+U

n
s )∆n

+W
n
s +H↑(Xn

s ,∆
n
+U

n
s ) −H↑(Xn

s ,∆
n
+V

n
s )

+ ∂pH↓(Xn
s ,−∆n

−U
n
s )∆n

−W
n
s +H↓(Xn

s ,−∆n
−U

n
s ) −H↓(Xn

s ,−∆n
−V

n
s ) + rn

s

+
∑

y∈Sn

µn
s,y(∂pH↑(y,∆n

+U
n(y, µn

s )) − ∂pH↑(y,∆n
+V

n(y, µn
s )))

∂my+∆xn
V n

s − ∂myV
n

s

∆xn

−
∑

y∈Sn

µn
s,y(∂pH↓(y,−∆n

−U
n(y, µn

s )) − ∂pH↓(y,−∆n
−V

n(y, µn
s )))

∂my−∆xn
V n

s − ∂myV
n

s

∆xn

)]
ds.

We recall that −∂pH↑(Xn
s ,∆

n
+U

n
s ) and ∂pH↓(Xn

s ,−∆n
∓U

n
s ) are the optimal transition rates and

thus they are non-negative. Since |∆n
±U

n
s | ≤ M and WT = 0, using the convexity inequality

AB ≤ εA2 + 1
4εB

2 and the bounds
∣∣∣∣∣
∂my±∆xn

V n
s − ∂myV

n
s

∆xn
∓DmU(Xn

s , µ
n
s )

∣∣∣∣∣ ≤ ω
( 1

n

)

and |DmU | ≤ C, as well as the fact that H↑ and H↓ and their derivatives are locally Lipschitz,
we obtain

E0|W n
t |2 + σE0

∫ T

t

(
|∆n

+W
n
s |2 + |∆n

−W
n
s |2

)
ds

≤ CE0

∫ T

t
|W n

s |
(

|∆n
+W

n
s | + |∆n

−W
n
s | +

∑

y∈Sn

µn
s,y|∂pH↑(y,∆n

+U
n(y, µn

s )) − ∂pH↑(y,∆nV n
+ (y, µn

s ))|

+
∑

y∈Sn

µn
s,y|∂pH↓(y,−∆n

−U
n(y, µn

s )) − ∂pH↓(y,−∆n
−V

n(y, µn
s ))| + |rn

s | + ω
( 1

n

))
ds

≤ CE0

∫ T

t
|W n

s |
(

|∆n
+W

n
s | + |∆n

−W
n
s | + ω

( 1

n

))
ds

≤ CE0

∫ T

t
|W n

s |2ds+
σ

2
E0

∫ T

t

(
|∆n

+W
n
s |2 + |∆n

−W
n
s |2

)
ds+ Cω2

( 1

n

)
.
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This gives

E0|W n
t |2 +

σ

2
E0

∫ T

t

(
|∆n

+W
n
s |2 + |∆n

−W
n
s |2

)
ds ≤ CE0

∫ T

t
|W n

s |2ds+ Cω2
( 1

n

)
(3.8)

and thus Gronwall’s inequality yields

sup
t∈[t0,T ]

E0|W n
t |2 ≤ Cω2

( 1

n

)
P − a.s. (3.9)

At t = t0, the above inequality gives

|Un(t0,X
n
t0
, µ0) − V n(t0,X

n
t0
, µ0)| ≤ Cω

( 1

n

)
P − a.s., (3.10)

which, since Law(Xt0) = µ0 is supported on the entire Sn, provides

|Un(t0, x, µ0) − V n(t0, x, µ0)| ≤ Cω
( 1

n

)
(3.11)

for any t0 ∈ [0, T ], x ∈ Sn and µ0 in the interior of P(Sn). Since Un and V n are continuous in
the measure argument, the above inequality holds for any µ ∈ P(Sn), which provides (3.6), but
only for n ≥ 4M ; changing the value of the constant, (3.6) holds for any n.

Finally, letting t0 = 0, applying (3.9) into (3.8) and taking the expectation, we obtain (3.7).
�

We now turn to the convergence of the trajectories at equilibrium. Consider an initial dis-
tribution (at time 0) m0 of the limit MFG, and a random variable ξ (with values in T) with
Law(ξ) = m0. For the discretization, let En

i = [xn
i − 1

2n , x
n
i − 1

2n) and

mn
0 =

n∑

i=1

m0(En
i )δxn

i
, ξn =

n∑

i=1

xn
i 1{ξ∈En

i
}. (3.12)

We have Law(ξn) = mn
0 and k

√
E|ξn − ξ|k ≤ 1

2n for any integer k ≥ 1.

Let Xn be the trajectory at equilibrium for the discrete MFG with initial condition ξn.
Hence the control of the players is given by αn

+(t, x) = −∂pH↑(x,∆n
+U

n(t, x,Law(Xn
t ))) (and

similarly for αn
−), where Un is the classical solution to (2.16). Let also X be the optimal

process for the limit MFG (2.4) with initial condition ξ. The associated control is thus given
by α(t, x) = −∂pH(x, ∂xU(t, x,Law(Xt))), where U is the classical solution of (2.1).

Theorem 3.4 (Convergence of trajectories). We have

sup
0≤t≤T

W1(Law(Xn
t ),Law(Xt)) ≤ Cω

(
1

n

)
+

C

n
1
3

(3.13)

and further

lim
n
Xn = X in law in D([0, T ],T). (3.14)

Proof. Let X
n

and X̃n be the processes starting at ξn, with dynamics given by (2.6), with con-
trols therein given by (αn

+(t, x), αn
−(t, x)) = (−∂pH↑(x,∆n

+U(t, x,Law(X
n
t ))), ∂pH↓(x,−∆n

−U(t, x,Law(X
n
t ))))

and (α̃n
+(t, x), α̃n

−(t, x)) = (−∂pH↑(x, ∂xU(t, x,Law(Xt))), ∂pH↓(x, ∂xU(t, x,Law(Xt)))) respec-
tively. The SDE representation (3.4), applying then (3.7), Jensen’s inequality and the Lipschitz
continuity of ∂xU in x and m (in W1) and recalling that W1(Law(X),Law(Y )) ≤ E|X − Y |,
give

E sup
0≤s≤t

|Xn
s −X

n
s | ≤ E

∫ t

0
|∂pH↑(Xn

s ,∆
n
+U

n(s,Xn
s ,Law(Xn

s ))) − ∂pH↑(X
n
s ,∆

n
+U(s,X

n
s ,Law(X

n
s )))|

+ |∂pH↓(Xn
s ,−∆n

−U
n(s,Xn

s ,Law(Xn
s ))) − ∂pH↓(X

n
s ,−∆n

−U(s,X
n
s ,Law(X

n
s )))|ds

≤ E

∫ t

0
|∂pH↑(Xn

s ,∆
n
+U

n(s,Xn
s ,Law(Xn

s ))) − ∂pH↑(Xn
s ,∆

n
+U(s,Xn

s ,Law(Xn
s )))|

+ |∂pH↓(Xn
s ,−∆n

−U
n(s,Xn

s ,Law(Xn
s ))) − ∂pH↓(Xn

s ,−∆n
−U(s,Xn

s ,Law(Xn
s )))|ds
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+ E

∫ t

0
|∂pH↑(Xn

s ,∆
n
+U(s,Xn

s ,Law(Xn
s ))) − ∂pH↑(X

n
s ,∆

n
+U(s,X

n
s ,Law(X

n
s )))|

+ |∂pH↓(Xn
s ,−∆n

−U(s,Xn
s ,Law(Xn

s ))) − ∂pH↓(X
n
s ,−∆n

−U(s,X
n
s ,Law(X

n
s )))|ds

≤ Cω

(
1

n

)
+ CE

∫ t

0
sup

0≤r≤s
|Xn

r −X
n
r |ds,

and therefore Gronwall’s lemma yields

E sup
0≤t≤T

|Xn
t −X

n
t | ≤ Cω

(
1

n

)
. (3.15)

Similarly, recalling that ||∆n
±U ∓ ∂xU ||∞ ≤ ω( 1

n), we have

E sup
0≤s≤t

|X̃n
s −X

n
s | ≤ E

∫ t

0
|∂pH↑(X̃n

s , ∂xU(s, X̃n
s ,Law(Xs))) − ∂pH↑(X

n
s ,∆

n
+U(s,X

n
s ,Law(X

n
s )))|

|∂pH↓(X̃n
s , ∂xU(s, X̃n

s ,Law(Xs))) − ∂pH↓(X
n
s ,−∆n

−U(s,X
n
s ,Law(X

n
s )))|ds

≤ Cω

(
1

n

)
+ CE

∫ t

0
|X̃n

s −X
n
s | +W1(Law(X̃n

s ),Law(X
n
s )) +W1(Law(X̃n

s ),Law(Xs))ds

≤ Cω

(
1

n

)
+ C sup

0≤t≤T
W1(Law(X̃n

t ),Law(Xt)) + CE

∫ t

0
sup

0≤r≤s
|X̃n

r −X
n
r |ds

and thus, applying Gronwall’s inequality, we get

E sup
0≤t≤T

|X̃n
t −X

n
t | ≤ Cω

(
1

n

)
+ C sup

0≤t≤T
W1(Law(X̃n

t ),Law(Xt)),

which, together with (3.15), implies

E sup
0≤t≤T

|X̃n
t −Xn

t | ≤ Cω

(
1

n

)
+ C sup

0≤t≤T
W1(Law(X̃n

t ),Law(Xt)). (3.16)

By Proposition A.1 in the appendix, we have then convergence in law of X̃n and the estimate

sup
0≤t≤T

W1(Law(X̃n
t ),Law(Xt)) ≤ C

n
1
3

, (3.17)

which, applied in (3.16) yield the claims. �

3.1.1. Another discretization. We recall that, if the cost coefficients are monotone and suffi-
ciently regular in the measure argument, then there exist a solution to the continuous master
equation (2.1); see [14, Thm. 2.4.2]. As a matter of fact, in that result, the Hamiltonian H is
also required to be smooth. Above, we assume that the discrete master equation (2.16) also
possesses a classical solution, in order to apply the chain rule. Such solution is shown to exists
in the literarure, assuming that the discrete Hamiltonian is smooth, in particular C2 in the
adjoint variable; see [6, 22] and also [25]. However, the Hamiltonians we consider in (2.11) is
not C2 in general –see remark 2.1– and thus the existence of a classical solution is not clear in
this case.

Hence we provide here, for completeness, another discretization of the MFG for which the
discrete hamiltonian is C2. Such discretization is possible only in presence of the Laplacian and
thus it is not the usual one considered in numerical analysis. For this reason we consider in the
paper only the discretization (2.6)-(2.7), but all the argumets could be easily adapted to the
following discrete model. Consider a single control αn : [0, T ] × Sn → R, the transition rates

P(Xn
t+∆t = xn

i±1|Xn
t = xn

i ) =

(
±αn(t, xn

i )

2∆xn
+

σ

∆x2
n

)
∆t+ o(∆t) (3.18)

and the cost

Jn(αn, µn) = E

[∫ T

0
L(Xn

t , α
n(t,Xn

t )) + f(µn
t )(Xn

t )dt + g(µn
T )(Xn

T )

]
. (3.19)
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Note that the rates are non-negative if

|α(t, x)| ≤ 2σ

∆xn
= 2σn, (3.20)

which should hold true for n large enough. This formulation provides a smooth Hamiltonian,
and is allowed because of the additional viscosity. Denoting

∆nu(x) =
u(x+ ∆xn) − u(x− ∆xn)

2∆xn
(3.21)

we derive the HJB equation

− ∂tu
n − σ∆n

2u
n(x) +H(x,∆nun(x)),= f(x, µn

t ) (3.22)

where H is the same Hamiltonian H of the continuous model, and the optimal control is

αn(t, x) = −∂pH(x,∆nun(t, x)). (3.23)

Therefore the discrete master equation becomes

− ∂tU
n(x,m) +H(x,∆nUn(x,m)) − σ∆n

2U
n(x,m) − f(x,m)

+
∑

y∈Sn

my
∂pH(y,∆nUn(y,m))

2∆xn

(
∂my+∆xn

Un(x,m) − ∂my−∆xn
Un(x,m)

)

−
∑

y∈Sn

my
σ

∆x2
n

(
∂my+∆xn

Un(x,m) − 2∂myU
n(x,m) + ∂my−∆xn

Un(x,m)
)

= 0.

(3.24)

and we can formally see the convergence of the above equation to (2.1) as in §2.4.

3.2. Convergence through the MFG system. Without assuming regularity on f and g
in the measure argument, thus without classical solutions to the master equation, convergence
results can still be established, namely by using the MFG system, which represents the charac-
teristic curves of the master equation.

Theorem 3.5. If γ ≥ 1
3 in the standing assumptions, then for any n

|Un(t, x,m) − U(t, x,m)| ≤ C

n
1
6

, ∀t ∈ [0, T ], x ∈ Sn,m ∈ P(Sn). (3.25)

Moreover, let Xn be the state process of players which plays optimally at the equilibrium in the
MFG (2.6)-(2.7), with initial distribution mn

0 at t = 0, let X be the state process of a player
which plays optimally at equilibrium in the limit MFG (2.2)-(2.3), with initial condition m0 at
t = 0. Then W1(mn

0 ,m0) ≤ C
n implies

sup
0≤t≤T

W1(Law(Xn
t ),Law(Xt)) ≤ C

n
1
6

(3.26)

and further
lim

n
Xn = X in law in D([0, T ],T). (3.27)

We remark that the result can be equivalently written in terms of the MFG systems (2.4)
and (2.10)-(2.15): denoting their unique solutions by (u,m) and (un,mn), we have

sup
0≤t≤T

sup
x∈Sn

|un(t, x) − u(t, x)| + sup
0≤t≤T

W1(mn
t ,mt) ≤ C

n
1
6

. (3.28)

The proof is inspired by the arguments of stability of the MFG system under monotonicity.
Without assuming that γ ≥ 1

3 , we immediately obtain, form the proof below, the convergence

rate min{γ
2 ,

1
6}.

Proof. Fix m0 and mn
0 such that W1(mn

0 ,m0) ≤ C
n and an initial time t0. We consider a solution

(u,m) of the MFG system (2.4) starting at (t0,m0), and denote by X the corresponding optimal
process given by (2.2) with α(t, x) = −∂pH(x, ∂xu(t, x)) therein.

Step 1. The assumption of the space regularity of f and g gives that u(t, ·) ∈ C2+γ(T)

in space, uniformly in time. Let X̂n be the Markov chain given by (2.6) with α+(t, x) =
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−∂pH↑(x, ∂xu(t, x)), α−(t, x) = ∂pH↓(x, ∂xu(t, x)), and X̃n be given by (2.6) with α̃+(t, x) =
−∂pH↑(x,∆n

+u(t, x)), α̃−(t, x) = ∂pH↓(x,−∆n
−u(t, x)). Since ∂xu is Lipschitz in T, we easily

derive

E

[
sup

t0≤t≤T
|X̃n − X̂n

t |
]

≤ C

n
. (3.29)

Proposition A.1 in the appendix gives the convergence in law of X̂n to X, in D([0, T ],T) and
the estimate

sup
0≤t≤T

W1(Law(X̂n
t ),Law(Xt)) ≤ C

n
1
3

. (3.30)

Thus (3.29) yields

lim
n
X̃n = X in law in D([0, T ],T) (3.31)

and

sup
0≤t≤T

W1(Law(X̃n
t ),Law(Xt)) ≤ C

n
1
3

. (3.32)

Since u(t, ·) ∈ C2+γ(T), with norm uniform in time, using (3.32), the Lipschitz-continuity of f
and g, and (2.4), we obtain

{
−∂tu+H↑(x,∆n

+u(x)) +H↓(x,−∆n
−u(x)) − σ∆n

2u(x) = f(x, µ̃n
t ) + rn(t, x), x ∈ Sn,

u(T, x) = g(x, µ̃n
t ) + rn(T, x),

(3.33)

with |rn(t, x)| ≤ C

n
1
3

, if γ ≥ 1
3 , whereas µ̃n

t = Law(X̃n
t ). Thus (u,m) almost solves the discrete

MFG system (3.1).
Step 2. Let (un, µn) be the solutions to the MFG (3.1) starting at (t0,m

n
0 ) and Xn the

associated state process. Denote the initial random distribution on the states by ξn. We stress
that this is the same initial condition as X̃n. Thanks to (3.33), u (restricted to Sn) can be seen
as the value function of a control problem with dynamics (2.6) and cost

J̃n(α, µ̃n) = E

[ ∫ T

0
L(Xn

t , α
n
+(t,Xn

t )) + L(Xn
t ,−αn

−(t,Xn
t )) − L(Xn

t , 0) + f(Xn
t , µ̃

n
t ) + rn(t,Xn

t )dt

+ g(Xn
T , µ̃

n
T ) + rn(T,Xn

T )

]
.

(3.34)

We first compute un on X̃n: denoting α̃n
+(t, x) = −∂pH↑(x,∆n

+u(t, x)), α̃n
−(t, x) = ∂pH↓(x,−∆n

−u(t, x))
and αn

+(t, x) = −∂pH↑(x,∆n
+u

n(t, x)), αn
−(t, x) = ∂pH↓(x,−∆n

−u
n(t, x)),

E[un(t0, ξ
n)] = E[un(T, X̃n

T )] + E

∫ T

t0

(−∂tu
n − σ∆n

2u
n − α̃n

+∆n
+u

n − α̃n
−∆n

−u
n)

(s, X̃n
s )ds

= E

[
g(X̃n

T , µ
n
T ) +

∫ T

t0

(−H↑(x,∆n
+u

n) −H↓(x,−∆n
−u

n) − α̃n
+∆n

+u
n − α̃n

−∆n
−u

n)
(s, X̃n

s ) + f(X̃n
s , µ

n
s )ds

]

≤ E

[
g(X̃n

T , µ
n
T ) +

∫ T

t0

( −H↑(x,∆n
+u

n) − L(x, α̃n
+) −H↓(x,−∆n

−u
n) − L(x,−α̃n

−) − α̃n
+∆n

+u
n − α̃n

−∆n
−u

n

+ L(x, α̃n
+) + L(x,−α̃n

−)
)
(s, X̃n

s ) + f(X̃n
s , µ

n
s )ds

]
,

which gives, using the uniform convexity of L (denoting |α− α̃|2 = |α+ − α̃+|2 + |α− − α̃−|2 ) 1

E

∫ T

t0

1

C
|αn − α̃n|2(s, X̃s)ds ≤ Jn(α̃n, µn) − E[un(t0, ξ

n)]. (3.35)

1Note that we compare the costs because the Lagrangian is uniformly convex, while the Hamiltonian in general
is not; see remark 2.1.
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We recall that

E[un(t0, ξ
n)] = Jn(αn, µn) = E

[
g(Xn

T , µ
n
T )+

∫ T

t0

(
L(x, αn

+) + L(x,−αn
−) − L(x, 0)

)
(s,Xn

s )+f(Xn
s , µ

n
s )ds

]
.

On the other hand, evaluating u on Xn, a similar argument yields

E

∫ T

t

1

C
|αn − α̃n|2(s,Xs)ds ≤ J̃n(αn, µ̃n) − E[u(t0, ξ

n)]. (3.36)

Summing (3.35) and (3.36), and then using the monotonicity assumption, we obtain (recalling

that Law(Xn
s ) = µs and Law(X̃n

s ) = µ̃n
s )

E

∫ T

t0

1

C
|αn − α̃n|2(s,Xn

s ) +
1

C
|αn − α̃n|2(s, X̃n

s )ds

≤ Jn(α̃n, µn) − Jn(αn, µn) + J̃n(αn, µ̃n) − J̃n(α̃n, µ̃n)

= E

[ ∫ T

t0

(
f(X̃n

s , µ
n
s ) − f(Xn

s , µ
n
s ) + f(Xn

s , µ̃
n
s ) − f(X̃n

s , µ̃
n
s ) + rn(s,Xn

s ) − rn(s, X̃n
s )

)
ds

+ g(X̃n
T , µ

n
T ) − g(Xn

T , µ
n
T ) + g(XT , µ̃

n
T ) − g(X̃n

T , µ̃
n
T ) + rn(T,Xn

T ) − rn(T, X̃T
s )

]

≤
∫ T

t0

ds

∫

T

(
f(x, µn

s ) − f(x, µ̃n
s

)
(µ̃n

s − µn
s )(dx) +

∫

T

(
g(x, µn

T ) − g(x, µ̃n
T

)
(µ̃n

T − µn
T )(dx) +

C

n
1
3

≤ C

n
1
3

,

which provides

E

∫ T

t0

|αn − α̃n|2(s,Xn
s ) + |αn − α̃n|2(s, X̃n

s )ds ≤ C

n
1
3

(3.37)

Step 3. We can now estimate the distance between Xn and X̃n. Since ∂xu is Lipschitz
continuous in x, so are ∆nu and α̃n

±, because ∂pH is locally Lipschitz in (x, p), and thus,
applying (3.37) and Jensen’s inequality, we obtain

E

[
sup

t0≤s≤t
|Xn

t − X̃n
t |

]
≤ E

∫ t

t0

|αn
+(s,Xn

s ) − α̃n
+(s, X̃n

s )| + |αn
−(s,Xn

s ) − α̃n
−(s, X̃n

s )|ds

≤ +CE

∫ t

t0

|Xn
s − X̃n

s |ds+ C

√
E

∫ T

t0

|αn − α̃n|2(s,Xn
s )ds

≤ C

n
1
6

+ C

∫ t

t0

E

[
sup

t0≤r≤s
|Xn

s − X̃n
s |

]
ds

and hence Gronwall’s lemma yields

E

[
sup

t0≤s≤T
|Xn

s − X̃n
s |

]
≤ C

n
1
6

. (3.38)

This estimate (if the processes start at 0), together with (3.32), provides (3.26), while with
(3.31) it proves (3.27).

Step 4. Finally, in order to estimate |un(t, x) − u(t, x)|, let Jn(t0, x, β, µ
n) be the cost (2.7)

where µn is fixed and the dynamics starts at (t0, x) with control β, and similarly J̃n(t0, x, β, µ̃
n)

for the cost in (3.34). Clearly un(t0, x) = infβ J
n(t0, x, β, µ

n) and u(t0, x) = infβ J̃
n(t0, x, β, µ̃

n),

the infimum being over open-loop controls. Let β̂ be an optimal control for Jn(t0, x, β, µ
n) with

corresponding process Xn,x, with Xn,x
t0

= x. We get, applying the W1-Lipschitz-continuity of f
and g and (3.38),

u(t0, x) − un(t0, x) ≤ J̃n(t0, x, β̂, µ̃
n) − Jn(t0, x, β̂, µ

n)

≤ C sup
t0≤s≤T

W1(µn
s , µ̃

n
s ) +

C

n
1
3
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≤ C

n
1
6

,

where we have also used the uniform bound on rn which appears in J̃ . By changing the roles
of µn and µ̃n we derive also the opposite inequality, thus

|un(t0, x) − u(t0, x)| ≤ C

n
1
6

, (3.39)

where C is independent of t0, x,m0.
Finally, to obtain (3.25), recall that un(t0, x) = Un(t0, x,m

n
0 ) and u(t0, x) = U(t0, x,m0).

Therefore (3.39) and the Lipschitz continuity of U in m provide (3.25). �

4. The case of common noise

We now turn to a case of MFG involving a common noise. As already mentioned the approach
here is quite different. Namely we make an extensive use the stability of monotone solutions
introduced in [8, 9]. We postpone recalling the definitions of monotone solutions and we now
present the master equations we are interested in.

The master equation in the continuous state space is

− ∂tU − σ∂xxU +H(x, ∂xU) +

∫

T

∂pH(x, ∂xU(t, y,m))DmU(t, x,m; y)m(dy)

− σ

∫

T

∂yD
mU(t, x,m; y)m(dy) + λ(U − A∗U(t, x,Am)) = f(x,m)

U(T, x,m) = g(x,m).

(4.1)

It is very similar to the one at interest in the previous section, except for the presence of terms
modeling common noise or common shocks. The common noise is here similar to the one
introduced in [11, 9]. At random times, of intensity λ > 0, all the players are affected by the
map A : P(T) → P(T), and A∗ is the adjoint of A. To fix ideas, mainly for the discretization,
we take A of the form

Am :=

∫

T

K(·, y)m(dy), (4.2)

where K : T2 → R is a smooth function which satisfies K ≥ 0,
∫
K(x, y)dx = 1.

At the discrete state level, we are hence interested in the following master equation

− ∂tU
n(x,m) +H↑(x,∆n

+U
n(x,m)) +H↓(x,−∆n

−U
n(x,m)) − σ∆n

2U
n(x,m) − f(m)(x)

+
∑

y∈Sn

my

(
∂pH↑(y, (∆n

+U
n(y,m))

∆xn
+

σ

∆x2
n

) (
∂my+∆xn

Un(x,m) − ∂myU
n(x,m)

)

−
∑

y∈Sn

my

(
∂pH↓(y,−∆n

−U
n(y,m))

∆xn
+

σ

∆x2
n

) (
∂my−∆xn

Un(x,m) − ∂myU
n(x,m)

)

+ λ(U −A∗
nU(t, Anm)) = 0

U(T, x,m) = g(m)(x)

(4.3)

where An is the discretization of A given by

(Anm)i =
1

n

∑

j

Ki,jmj, (4.4)

where (Ki,j)1≤i,j≤n is a suitable discretization of K such that for all 1 ≤ j ≤ n,
∑

iKi,j = n.
To lighten the notation of the following, we also introduce the operators Fn, Gn : P(Sn) × R

n

defined by

(Gn(m, p))i = f(xi,m) −H↑(x,∆n
+p(xi)) −H↓(x,−∆n

−p(xi)) + σ∆n
2p(xi)

(Fn(m, p))i = −
n∑

j=1

∂pi
(Gn(m, p))jmj,

(4.5)
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where p ∈ R
n is interpreted as a real function Sn → R. Using these notations, (4.3) can be

written

− ∂tU(t, ·,m) + (Fn(m,U) · ∇m)U + λ(U −A∗
nU(t, Anm)) = Gn(m,U). (4.6)

4.1. Monotone solutions of master equations. The following is a brief reminder on mono-
tone solutions. We refer to [8, 9] for details on this concept. We start with the definitions.

Definition 4.1. A continuous function U , C2 in space, is a monotone solution of (4.1) if for
any measure ν ∈ M(T) C2 function ϕ of the space variable and C1 function ψ of the time
variable, for any (t∗,m∗) ∈ [0, T )×P(T) point of strict minimum of (t,m) → 〈U(t,m)−ϕ,m−
ν〉 − ψ(t), the following holds

− dψ(t∗)

dt
+ 〈−σ∂xxU +H(x, ∂xU) + λ(U − A∗U(Am∗)),m∗ − ν〉 ≥ 〈f(m∗),m∗ − ν〉

− 〈U − ϕ, ∂x(∂pH(·, ∂xU)m∗)〉 − σ〈∂xx(U − ϕ),m∗〉.
(4.7)

The same type of definition holds at the discrete level and it is given in this situation by

Definition 4.2. For n > 0, a continuous function U is a monotone solution of (4.3) if for any
ν ∈ M(Sn), a ∈ R

n, C1 function of the time ψ, and (t∗,m∗) ∈ [0, T ) × P(Sn) point of strict
minimum of (t,m) → 〈U(t,m) − ϕ,m − ν〉 − ψ(t), the following holds

−dψ(t∗)

dt
+ λ〈U −A∗

nU(Anm∗),m∗ − ν〉 ≥ 〈Gn(m∗, U(t∗,m∗)),m∗ − ν〉
+ 〈Fn(m∗, U(t∗,m∗)), U(t∗,m∗) − a〉.

(4.8)

The previous concept of solution possesses several properties. First we can mention that
under the standing assumptions on the monotonicity of f and g, there is at most one monotone
solution of either (4.1) or (4.3). Those solutions also enjoy several stability properties, in some
sense, this part is an illustration of this fact. We continue this section with results of existence
of such solutions.

Proposition 4.3. Assume that g is monotone, f is strictly monotone and that they satisfy for
α, β ∈ (0, 1],

sup
m

‖f(·,m)‖1+α + sup
m,ν

‖f(·,m) − f(·, ν)‖1+α

W1(m, ν)β
< ∞,

sup
m

‖g(·,m)‖2+α + sup
m,ν

‖g(·,m) − g(·, ν)‖2+α

W1(m, ν)β
< ∞.

(4.9)

Assume that K is a smooth function. Then there exists a unique monotone solution to both
(4.1) and (4.3).

Proof. For the continuous state space, a similar result can be found in [9] and for the discrete
case, a similar result is in [8]. In both cases, the only difference lies in the fact that the Hamilton-
ian can have a quadratic growth. We leave to the reader these immediate generalizations. �

Remark that the definition of monotone solution requires some regularity with respect to the
space variable in the continuous case whereas, obviously, no such assumption is needed in the
finite state case. An important consequence of this fact is that, stated as it is, some uniform
continuity of the spatial derivatives with respect to the measure variable are needed. If such
results on the first order derivatives of the solutions are fairly easy to obtain, they require slight
additional assumptions for second order derivatives. Even if the setting of Proposition 4.3 is
sufficient to obtain such result, we mention here this difficulty for two reasons. The first one
is to explain why this questions shall pop out in the study of the convergence of the master
equations, namely because we are going to use this property for the limit equation. Secondly
because we believe that this point is of some importance and we shall explain how it can be
dealt with in another manner later on in this part. We end this section with the following.

Proposition 4.4. Under the assumption of Proposition 4.3, the unique monotone solution U
of (4.1) is such that ∇xU and ∆xU are continuous on [0, T ] × P(T).

The proof of this statement is in [9].
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4.2. A discrete parabolic estimate. In this section we present estimates on the semi discrete
heat equation, that is discretized in space but not in time. These estimates, in the flavor of
parabolic regularity, is at the same time, fundamental to obtain compactness on the sequence
(Un)n≥0 of solutions of (4.3) , quite technical to establish, and not particularly interesting
in itself since much more involved results are already well-known in the continuous setting.
However, because we could not find sufficiently similar results in the literature, we take some
time to explain the proof of such a result.

Our aim is to establish regularity results on the ODE

u̇(t) = Λu+ f(t),

u(0) = g,
(4.10)

where Λ is defined by

Λ = n2




−2 1 . . . . . . 1
1 −2 1 . . . . . .
0 1 −2 1 . . .
. . . . . . . . . . . . . . .
1 . . . . . . 1 −2




Clearly Λ is a space discretization of the Laplacian operator. We prove the following.

Theorem 4.5. Assume that g is the evaluation of a smooth function on Sn. If f is uniformly
bounded by a constant C, then, the solution u of (4.10) satisfies

|nα−1Λui(t)| ≤ C, (4.11)

for a constant C independent of n and any α ∈ (0, 1
2 ).

If f satisfies for constants C ≥ 0 and α ∈ (1
2 , 1],

nα |fi(t) − fi+1(t)| ≤ C, (4.12)

then, the solution u of (4.10) satisfies that Λu is bounded by a constant independent of n.

Remark 4.6. The inequality (4.11) is a sort of α-Hölder estimate on the discrete spatial gra-
dient of u and the inequality (4.12) is a sort of α-Hölder estimate on f .

Proof. Let f̃ : R → R be the function which is 1-periodic, and the linear interpolation of f on
[0, 1] with f̃( i

n) = fi. Let us note (ck)k∈Z the Fourier exponents of f̃ . Because f̃ is continuous,
we deduce that it is the sum of its Fourier series, hence

fj =
∑

k∈Z

cke
2ikπj

n , (4.13)

Let us define Qkj = n− 1
2 e

2iπkj

n and λk = 2(1 − cos(2kπ
n )). The vector Qk is an eigenvector of Λ

associated to the eigenvalue λk. Then, u is given by

u(t) = etΛg +

∫ t

0
e(t−s)Λf(s)ds. (4.14)

From which we deduce that

(Λu(t))l = (ΛetΛg)l −
∫ t

0

∑

k,j

QklQkjλke
−λk(t−s)fj(s)ds

= (ΛetΛg)l −
∫ t

0

n∑

k,j=1

QklQkjλke
−λk(t−s)

∑

p∈Z

cp(s)e
2iπjp

n ds

= (ΛetΛg)l −
∫ t

0

n∑

k=1

e
2iklπ

n λke
−λk(t−s)

∑

j∈Z

cnj−k(s)ds

(4.15)

We can now observe that estimates on Λu can be obtained by using decay assumptions on the

Fourier coefficients of f̃ . Unlike for classical regularity (Ck for k ∈ N), Hölder regularity does
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not immediately translates into a decay of the Fourier coefficients but rather on their cumulative
sum. Namely, if f̃ ∈ Cα for α ∈ (0, 1), the following holds

∑

|k|∈[2m,2m+1]

|ck(t)| ≤ C2m( 1
2

−α), (4.16)

see for instance the first chapter of [33]. In particular, the series is summable if α > 1
2 , which

gives the second part of the result. The first part is obtained by remarking that since f̃ is,
uniformly in n, in L∞, the sequence (ck(t))k∈Z is, uniformly in t and n, bounded in ℓ2. Thus
multiplying both sides of the last equation by nα−1, we deduce the required result. �

4.3. An estimate on the solution of the master equation without common noise. We
use the previous estimate to derive an estimate on the solution of (2.16), that is (4.3) in the
case A = 0. We use the 1-Wasserstein distance W1 on P(T) and recall that Un is evaluated on
measures of the form m =

∑n
j=1mjδ j

n

.

Theorem 4.7. If f and g satisfy the assumption of Proposition 4.3 with β = 1, then there
exists a constant C independent of n such that

|Un(t, x,m) − Un(t̃, x̃, m̃)| ≤ C

(
4
√

|t− t̃| + |x− x̃| +
√
W1(m, m̃)

)
(4.17)

for any t, t̃ ∈ [0, T ], x, x̃ ∈ Sn, m =
∑n

j=1mjδxj
, m̃ =

∑n
j=1 m̃jδxj

∈ P(Sn). Moreover, the
discrete gradient of ∆n

+ also satisfies the same estimate.

Proof. Step 1. The uniform Lipschitz continuity in space x can be proven exactly as in Lemma
3.1.

Step 2. To prove the estimate in m, fix the initial time t and consider the two solutions
of the associated MFG system (3.1) (u, µ) and (ũ, µ̃) with µt = m, µ̃t = m̃. (Let us omit n

in the notation.) Recall that Un(t, x,m) = u(t, x) and Un(t, x, m̃) = ũ(t, x). Let ξ and ξ̃ be
two random variables (the initial conditions) which attain the minimum in the 1-Wasserstein

distance, i. e. Law(ξ) = m, Law(ξ̃) = m̃ and

E|ξ − ξ̃| = W1(m, m̃). (4.18)

Consider the optimal feedback control for (u,m): α(s, x) = (α+, α−) =
(−∂pH↑(x,∆n

+u
n(s, x))

,∂pH↓(x,−(∆n
−u

n(s, x))
)
, and similarly let α̃ be the optimal feedback for ũ, m̃. Let Xξ be the

state process driven by the control α, with Xξ
t = ξ, and X̃ ξ̃ be the process driven by the control

α̃ with X̃ ξ̃
t = ξ̃. For µ fixed and a control β (open-loop or feedback), denote by J(t, ξ, β, µ) the

cost in (2.7) starting at t, ξ, and similarly J(t, ξ̃, β, µ̃).

We compute u on X̃ : we have

E[u(t, ξ̃)] = E[u(T, X̃T )] + E

∫ T

t

(−∂tu− σ∆n
2u− α̃+∆n

+u− α̃−∆n
−u

)
(s, X̃s)ds

= E

[
g(X̃T , µT ) +

∫ T

t

(−H↑(x,∆n
+u) −H↓(x,−∆n

−u) − α̃+∆n
+u− α̃−∆n

−u
)

(s, X̃s) + f(X̃s, µs)ds.

A similar computation as in the proof of Theorem 3.5 yields

E

∫ T

t

1

C
|α− α̃|2(s, X̃s)ds ≤ J(t, ξ̃, α̃, µ) − E[u(t, ξ̃)]. (4.19)

Similarly, we get

E

∫ T

t

1

C
|α− α̃|2(s,Xs)ds ≤ J(t, ξ, α, µ̃) − E[ũ(t, ξ)], (4.20)

and we have

E[u(t, ξ)] = J(t, ξ, α, µ)

E[ũ(t, ξ̃)] = J(t, ξ̃, α̃, µ̃).
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Summing (4.19) and (4.20), adding and subtracting E[u(t, ξ)] and E[ũ(t, ξ̃)] and then using the

monotonicity assumption, we obtain (recalling that Law(Xs) = µs and Law(X̃s) = µ̃s)

E

∫ T

t

1

C
|α− α̃|2(s,Xs) +

1

C
|α− α̃|2(s, X̃s)ds

≤ E[u(t, ξ) − u(t, ξ̃) + ũ(t, ξ̃) − ũ(t, ξ)]

+ J(t, ξ̃, α̃, µ) − J(t, ξ, α, µ) + J(t, ξ̃, α̃, µ) + J(t, ξ, α, µ̃) − J(t, ξ̃, α̃, µ̃)

=

∫

T

(u− ũ)(0, x)d(m − m̃)(x) + E

[ ∫ T

t

(
f(X̃s, µs) − f(Xs, µs) + f(Xs, µ̃s) − f(X̃s, µ̃s)

)
ds

+ g(X̃T , µT ) − g(XT , µT ) + g(XT , µ̃T ) − g(X̃T , µ̃T )

]

=

∫

T

(u− ũ)(0, x)d(m − m̃)(x)

+

∫ T

t
ds

∫

T

(
f(x, µs) − f(x, µ̃s

)
(µ̃s − µs)(dx) +

∫

T

(
g(x, µT ) − g(x, µ̃T

)
(µ̃T − µT )(dx)

≤
∫

T

(u− ũ)(0, x)d(m − m̃)(x)

We now bound the r.h.s using the Lipschitz continuity of u and ũ to obtain :

E

∫ T

t
|α− α̃|2(s,Xs) + |α− α̃|2(s, X̃s)ds ≤ CW1(m, m̃) (4.21)

Step 3. We now use a Lipschitz property on the discrete gradient of u, or ũ (see Step 6
below):

|∆n
±u(x) − ∆n

±u(x̃)| ≤ C|x− x̃|. (4.22)

If this is true, then applying (4.21) and Jensen’s inequality, we obtain

E|Xξ
s − X̃ ξ̃

s | ≤ E|ξ − ξ̃| + E

∫ s

t
|α+(r,Xr) − α̃+(r, X̃r)| + |α−(r,Xr) − α̃−(r, X̃r)|dr

≤ E|ξ − ξ̃| + CE

∫ s

t
|Xr − X̃r|dr + C

√

E

∫ T

t
|α− α̃|2(r,Xr)ds

≤ C(E|ξ − ξ̃| +
√
W1(m, m̃) + C

∫ s

t
E|Xr − X̃r|dr

and thus Gronwall’s lemma yields

sup
t≤s≤T

E|X̃ ξ̃
s −Xξ

s | ≤ C
√
W1(m, m̃). (4.23)

Step 4. We bound the value functions, classicaly using the characteristics, by

|Un(t, x,m) − Un(t, x, m̃)| = |u(t, x) − ũ(t, x)| ≤ C sup
t≤s≤T

W1(µs, µ̃s)

≤ C sup
t≤s≤T

E|X̃ ξ̃
s −Xξ

s | ≤ C(E|ξ − ξ̃|) 1
2 = C

√
W1(m, m̃).

Step 5. To prove the estimate in time, let t̃ > t and consider the HJB equation (2.10)
starting at t. For µn fixed, un represents the value function corresponding to the cost (2.7) and
we have

un(t, x) = Un(t, x,m), un(t̃, x) = Un(t̃, x, µn
t̃
),

where µn
s is the Law of the process starting at (t,m) with control given by ∆nu. Hence the

dynamic programmin principle gives

un(t, x) = E

[∫ t̃

t
L(Xn

s ,∆
n
+u

n(s,Xn
s )) + L(Xn

s ,−∆n
−u

n(s,Xn
s )) + f(Xn

s , µ
n
s )ds+ un(t̃, Xn

t̃
)

]
,



MEAN FIELD GAMES MASTER EQUATIONS: FROM DISCRETE TO CONTINUOUS STATE SPACE 21

where X is now the same process as before but conditioned with Xt = x. Since un is uniformly
Lipschitz in space, ∆n

+u
n and ∆n

−u
n are uniformly bounded and we have

|un(t, x) − un(t̃, x)| ≤ |un(t, x) − Eun(t̃, Xn
t̃

)| + |Eun(t̃, Xn
t̃

) − un(t̃, x)|
≤ C(t̃− t) + CE|Xn

t̃
− x|.

We bound the latter term by using the SDE representation (3.4):

E|Xn
t̃

− x|2 ≤ CE

∣∣∣∣∣

∫ t̃

t
λ(∆n

±u
n(s,Xn

s ), θ)ν(dθ)ds

∣∣∣∣∣

2

+ CE

∣∣∣∣∣

∫ t̃

t
λ(∆n

±u
n(s,Xn

s ), θ)(N (dθ, ds − ν(dθ)ds)

∣∣∣∣∣

2

≤ CE

∣∣∣∣∣

∫ t̃

t
∆xn

∂pH↑(Xn
s ,∆

n
+u

n(s,Xn
s )) + ∂pH↓(Xn

s ,−∆n
−u

n(s,Xn
s ))

∆xn
ds

∣∣∣∣∣

2

+ CE

∫ t̃

t

∣∣λ(∆n
±u

n(s,Xn
s ), θ)

∣∣2 ν(dθ)ds

≤ C(t̃− t)2 + CE

∫ t̃

t
∆x2

n

(
1

∆x2
n

+ (∆n
+u

n(s,Xn
s ))− +

1

∆x2
n

+ (∆n
−u

n(s,Xn
s ))−

)
ds

≤ C(t̃− t)2 + C(t̃− t)

and therefore E|Xn
t̃

− x| ≤ C
√
t̃− t, which yields

|un(t, x) − un(t̃, x)| ≤ C

√
t̃− t.

Similarly we get

W1(µn
t̃
,m) ≤ C

√
t̃− t

and hence, applying the Hölder continuity in m,

|Un(t̃, x,m) − Un(t, x,m)| ≤ |Un(t̃, x, µn
t̃
) − Un(t̃, x,m) + |un(t̃, x) − un(t, x)|

≤ C
√
W1(µn

t̃
,m) + C

√
t̃− t

≤ C(t̃− t)
1
4 .

Step 6. The fact that the discrete gradient satisfies the same estimate simply follows from
remarking that the two previous steps can be made for the discrete gradient exactly in the same
way. This comes from using the estimate (4.23) on representation formulae for the discrete
gradient of Un.

Step 7. It remains to prove (4.22). This estimate follows from successive uses of Theorem
4.5 on the discrete HJB equation in the characteristics. Indeed, as we already established the
uniform Lipschitz estimate in Lemma 3.1, we deduce a α-Hölder type estimate on the spatial
gradient of u, for α ∈ (0, 1

2 ). Using this new information, we use once again this argument
to obtain a higher order regularity on u, and then once more to finally obtain the required
boundedness of the discrete Laplacian (uniformly in n of course). �

Remark 4.8. The previous result is the only part of this paper in which the dimension 1 plays
a particular role. Indeed, even if it is extremely likely that the estimate proved in Theorem 4.5
can be generalized to other dimension, it is not proved here. The recent preprint [26] has been
brought to our attention and seems to be a possible answer to this question, and thus could allow
to extend this study to higher dimensions.

4.4. Compactness results for master equations with common noise. In this section, we
explain how the previous estimate can be used to gain compactness on the sequence (Un)n≥0

of solutions of (4.3).

Proposition 4.9. Under the assumptions of Proposition 4.3, there exists a continuous function
V : [0, T ] × T × P(T) such that, extracting a subsequence if necessary

lim
n→∞

sup{|Un(t, x,m) − V (t, x,m)|, (t, x,m) ∈ [0, T ] × Sn × P(Sn)} = 0. (4.24)
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Moreover, V is uniformly C2+α in x for some α ∈ (0, 1), ∂xV is continuous on [0, T ]×T×P(T)
and

lim
n→∞

sup{|∆n
±U

n(t, x,m) ∓ ∂xV (t, x,m)|, (t, x,m) ∈ [0, T ] × Sn × P(Sn)} = 0. (4.25)

Proof. This statement is purely a compactness one. It relies on proving an a priori estimate on
the solutions of (4.3) and then using a version of Ascoli-Arzela Theorem. Following the technique
of the proof of Proposition 1.3 in [9] (that we do not reproduce here for the sake of clarity), we
know that there exists C > 0, such that for all n > 0, (t, x,m) ∈ [0, T ] × Sn × P(Sn), ξ ∈ R

n,

ξ ·DmU
n(t, x,m) · ξ ≤ C〈ξ, ξ〉. (4.26)

This yields a, uniform in n, Lipschitz estimate on U(t) seen as an operator from P(Sn) to R
n

when R
n is equipped with the ℓ2 norm and P(Sn) is equipped with the distance2 d̃(m,m′) =√

n−1
∑

i(mi −m′
i)

2. From the properties of the operators A and (An)n>0, we deduce that

m → λA∗
nU(t, ·, Anm) is uniformly Lipschitz continuous from P(Sn) to R

n when P(Sn) is
equipped with the Wasserstein distance and Rn with the ℓ∞ norm. Then, passing this term to
the right hand side of the equation, we deduce using Theorem 4.7 that its conclusion is still
satisfied here.

The rest of the proof is now classical. Let us define U
n

by

∀(t, x,m) ∈ [0, T ] × T × P(T),

U
n
(t, x,m) = inf

{
Un(t, y, µ) + C|x− y| + C

√
W1(m,µ), (y, µ) ∈ Sn × P(Sn)

}
,

(4.27)

where C is a constant given by the use of Theorem 4.7. The sequence (U
n
)n>0 satisfies the

assumptions of Ascoli-Arzela Theorem which concludes the proof of the first part of the state-
ment. The additional regularity of V is simply obtained by remarking that Un possesses all
this regularity, at the discretized level, uniformly in n and in all the variables. Remark that
the uniform C2,α estimate can be proved last, by using a representation through characteristics
and Theorem 4.5. �

4.5. Convergence of the discretized problem. We now state in which sense any function
V given by Proposition 4.9 is indeed the unique monotone solution of (4.1).

Let us first remark that in the formulation of monotone solutions of (4.1), one only needs the
Laplacian of V to make sense against the test measure ν. Indeed the term 〈∆U,m∗〉 appears
on the two sides of the inequality. Hence, if V is not sufficiently regular in x, one can still test
its Laplacian against a measure with a regular density. This remark leads us to the following.

Lemma 4.10. Let V be any function given by the Proposition 4.9. For any measure ν ∈
M(T) ∩W 2,∞(T), C2 function ϕ of the space variable and C1 function ψ of the time variable,
for any (t∗,m∗) ∈ [0, T )× P(T) point of strict minimum of (t,m) → 〈V (t,m)−ϕ,m−ν〉−ψ(t)
the following holds

− dψ(t∗)

dt
+ 〈H(x,∇xV ) + λ(V − A∗V (Am∗)),m∗ − ν〉 ≥ 〈f(m∗),m∗ − ν〉

− 〈V − ϕ, ∂x(∂pH(·, ∂xV )m∗)〉 + σ〈∂xxϕ,m∗〉 − σ〈∂xxV (t∗,m∗), ν〉.
(4.28)

Proof. Consider t0, ν, ϕ, ψ, t∗,m∗ as in the statement. For any n > 0, consider νn and ϕn suitable
discretizations of ν and ϕ. Thanks to Stegall’s Lemma [44, 42], for any n > 0, there exists δn ∈
R, an ∈ R

n as small as we want, such that (t,m) → 〈Un(t,m)−ϕn,m−νn〉−ψ(t)+δnt+〈an,m〉
has a strict minimum at (tn,mn) on [0, t0] × P(Sn). Because Un is a monotone solution of (4.3)
we obtain that

−dψ(tn)

dt
− δn + λ〈Un(mn) −A∗

nU(Anmn),mn − ν〉 ≥ 〈Gn(mn, U(tn,mn)),mn − νn〉
+ 〈Fn(m∗, U(t∗,m∗)), U(t∗,m∗) − ϕn − an〉.

(4.29)

2This distance can be interpreted as an L
2(T) distance.
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Passing to the limit n → ∞ in the previous inequality yields the required result.
�

On the other hand, defining PM = {m ∈ P(T), ‖m‖2,∞ ≤ M}, the unique monotone solution
U of (4.1) satisfies

Lemma 4.11. Fix C > 0. There exists a function ω : R+ → R+ such that w(M) → 0 when
M → ∞ and for any measure ν ∈ M(T), C2,α function ϕ of the space variable and C1 function
ψ of the time variable, both bounded by C, for any (t∗,m∗) ∈ [0, T )×PM point of strict minimum
of (t,m) → 〈U(t,m) − ϕ,m − ν〉 − ψ(t) on [0, T ) × PM , the following holds

− dψ(t∗)

dt
+ 〈H(x, ∂xU) + λ(U − A∗U(Am∗)),m∗ − ν〉 ≥ 〈f(m∗),m∗ − ν〉

− 〈U − ϕ, ∂x(∂pH(x, ∂xU)m∗)〉 + σ〈∂xxϕ,m∗〉 − σ〈∂xxU(t∗,m∗), ν〉 − ω(M).
(4.30)

In other words, U is almost a solution of (4.1) on PM , uniformly in M .

Proof. Assume that it is not the case. Reasoning by contradiction, there exists κ > 0 and a
sequence (ϕM , ψM , tM ,mM , νM ) such that ‖ψM ‖1 + ‖ϕM ‖2+α ≤ 2C, (tM ,mM ) point of strict
minimum of (t,m) → 〈U(t,m) − ϕM ,m− νM 〉 − ψM (t) on [0, T ) × PM .

− dψM (t∗)

dt
+ 〈H(x, ∂xU) + λ(U − A∗U(AmM )),mM − νM 〉 ≤ 〈f(mM ),mM − νM 〉

− 〈U − ϕ, ∂x(∂pH(x, ∂xU)mM )〉 + σ〈∂xxϕM ,mM 〉 − σ〈∂xxU(tM ,mM ), νM 〉 − κ.
(4.31)

Extract a subsequence if necessary and consider the limit point (ϕ∗, ψ∗, ν∗) of the sequence
(ϕM , ψM , νM )M≥0. Using once again Stegall’s Lemma, for any ε > 0, there exists δ ∈ (−ε, ε),
ϕ̃ such that ‖ϕ̃‖2+α ≤ ε and (t,m) → 〈U(t,m) − (ϕ∗ + ϕ̃),m − ν∗〉 − (ψ∗(t) + δt) has a strict
minimum on [0, t0] × P(T) at (t∗,m∗). Because U is a monotone solution of (4.1)

− dψ∗(t∗)

dt
+ δ + 〈H(x, ∂xU) + λ(U − A∗U(Am∗)),m∗ − ν∗〉 ≥ 〈f(m∗),m∗ − ν∗〉

− 〈U − ϕ∗ − ϕ̃, ∂x(∂pH(x, ∂xU)m∗)〉 + σ〈∂xx(ϕ∗ + ϕ̃),m∗〉 − σ〈∂xxU(t∗,m∗), ν∗〉.
(4.32)

Consider now that M and ε are fixed. Take ε′ > 0, ϕ and δ smaller than ε and consider now
a strict minimum (t,m) of (t,m) → 〈U(t,m) − (ϕM + ϕ̃ + ϕ),m − νM 〉 − (ψM (t) + (δ + δ)t).
Given that M is large enough, if ε and ε′ are sufficiently small, then (t,m) is sufficiently close
to (tM ,mM ). The uniformity in M large enough comes from the uniform continuity of U
and its derivatives and from the convergence of the sequence (ϕM , ψM , νM )M≥0. On the other
hand, from the same argument, given that M is large enough, (t,m) is sufficiently close to
(t∗,m∗). Using once again the uniform continuity of U and its derivatives, and the convergence
of (ϕM , ψM , νM )M≥0, we obtain a contradiction by comparing (4.31) and (4.32).

�

Theorem 4.12. Any function V given by Proposition 4.9 is equal to the unique monotone
solution of (4.1).

Proof. Denote by U the unique monotone solution of (4.1) and by V a function given by
Proposition 4.9. Assume that

inf
t∈[0,T ],m,m′∈P(Sn)

〈U(t,m) − V (t,m′),m −m′〉 < 0. (4.33)

Hence, using the uniform continuity of U and V , there exists κ > 0, such that for any M large
enough, and any γ > 0

inf
t,s∈[0,T ]2,m∈PM ,m′∈P(T)

〈U(t,m) − V (s,m′),m −m′〉 + γ(t − s)2 ≤ −κ, (4.34)

where PM = {m ∈ P(T), ‖m‖2,∞ ≤ M}, which is a compact set. Hence, thanks to Stegall’s
Lemma, for ε > 0 sufficiently small there exists δ, δ′ ∈ ((4T )−1κ, (2T )−1κ), ϕ,ϕ′ ∈ C2 such that
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‖ϕ‖2 + ‖ϕ′‖2 ≤ ε and

(t, s,m,m′) → 〈U(t,m) −V (s,m′),m−m′〉 + γ(t− s)2 + 〈ϕ,m〉 + 〈ϕ′,m′〉 + δ(T − t) + δ′(T − s)
(4.35)

has a strict minimum on [0, T ]2 × PM × P(T) at (t∗, s∗,m∗,m
′
∗) which is less than −κ

2 . Assume
first that t∗, s∗ > 0. Using Lemma 4.10 at this point, we obtain that

− δ′ − 2γ(s∗ − t∗) + 〈H(x, ∂xV ) + λ(V (s∗,m
′
∗) − A∗V (s∗,Am′

∗)),m′
∗ −m∗〉 ≥ 〈f(m′

∗),m′
∗ −m∗〉

− 〈V (s∗,m
′
∗) − U(t∗,m∗) + ϕ′, ∂x(∂pH(x, ∂xV ))m′

∗)〉 + σ〈∂xx(U(t∗,m∗) − ϕ′),m′
∗〉 − σ〈∂xxV (s∗,m

′
∗),m∗〉.

(4.36)
On the other hand, Lemma 4.11 yields

−δ − 2γ(t∗ − s∗)+〈H(x, ∂xU) + λ(U(t∗,m∗) − A∗U(t∗,Am∗)),m∗ −m′
∗〉 ≥ 〈f(m∗),m∗ −m′

∗〉
− 〈U(t∗,m∗) − V (s∗,m

′
∗) + ϕ, ∂x(∂pH(x, ∂xU)m∗)〉

+ σ〈∂xx(V (s∗,m
′
∗) − ϕ),m∗〉 − σ〈∂xxU(t∗,m∗),m′

∗〉 − ω(M).
(4.37)

Combining the two relations, using the convexity of H and the monotonicity of f yield

−δ − δ′ + λ(〈U(t∗,m∗) − V (s∗,m
′
∗),m∗ −m′

∗〉 − 〈U(t∗,Am∗) − V (s∗,Am′
∗),Am∗ − Am′

∗〉)
≥ −ω(M) − 〈ϕ′, ∂x(∂pH(x, ∂xV )m′

∗)〉 − σ〈∂xxϕ
′,m′

∗〉 − 〈ϕ, ∂x(∂pH(x, ∂xU)m∗)〉 − σ〈∂xxϕ,m∗〉.
(4.38)

Hence, if ε is chosen small enough, we obtain that

− κ

2T
≥ −ω(M), (4.39)

which is a contradiction if M is large enough.
Consider now the case t∗ = 0 (the case s∗ = 0 is similar). In this situation, using the

continuity of U and V , taking γ sufficiently large immediately contradicts (4.34). Hence (4.34)
is false and

inf
t∈[0,T ],m,m′∈P(Sn)

〈U(t,m) − V (t,m′),m −m′〉 ≥ 0. (4.40)

From this we deduce, as in [9] for instance, that ∇xU = ∇xV . Once this is established, to
obtain the equality between U and V follows exactly as in [9] from the strict monotonicity of
f , using Lemmata 4.10 and 4.11 instead of the usual definition of monotone solutions. Hence
we do not detail this argument here. �

4.6. Rate of convergence to a classical solution. In this section we establish a rate for the
convergence of (Un)n≥0 toward U when U is a classical solution of 4.1. To simplify the following
discussion we assume that the master equations are set on M2(T), the set of positive measures
of mass at most 2 on T. We assume that f and g are indeed defined and monotone on M2(T).
We also assume that f and g satisfy the requirements of Proposition 4.3 where by extension,

d1(µ, ν) = inf
ϕ

〈ϕ, µ − ν〉, (4.41)

where the supremum is taken over 1-Lipschitz functions ϕ such that ϕ(0) = 0.
We thus assume that there exists U , a classical solution of (4.1) on [0, T ] × T × M2(T). By

extension we consider the master equation in finite state space (4.3) on [0, T ] × Sn × M2(Sn).
The associated concepts of monotone solution on M2(T) or M2(Sn) are exactly the same as

before except for replacing P by M2 in the Definitions 4.1 and 4.2.
We proceed as in the case without common noise and consider V n defined by V n(t, x,m) =

U(t, x,m) on [0, T ] × Sn × M2(Sn). As in the case without common noise, the following holds.

Proposition 4.13. The function V n satisfies

− ∂tV
n(t, ·,m) + (Fn(m,V n) · ∇m)V n + λ(V n −A∗

nV
n(t, Anm)) = Gn(m,V n) + rn. (4.42)

with |rn(t, x,m)| ≤ Cω( 1
n), where ω is a modulus of continuity of ∂xU , ∂2

xU , DmU , ∂yD
mU(·, y).

In particular, it is a monotone solution of this equation.
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We can now state the result about the convergence rate for classical solutions. The proof is
different from the one employed in 3.3 because a system of characteristics is not available for this
kind of common noise. Instead, the argument we use is inspired from the proof of uniqueness of
classical solutions in the monotone regime presented in [39]. Clearly, this argument applies also
to the case without common noise, but gives a worse convergence rate with respect to (3.6).

Theorem 4.14. There exists C > 0 such that

sup
t∈[0,T ],m∈P(Sn)

‖Un(t, ·,m) − V n(t, ·,m)‖∞ ≤ C

(
ω

(
1

n

)) 1
3

. (4.43)

Proof. Define W by W (t,m,m′) = 〈Un(t,m) − V n(t,m′),m−m′〉 and κ by

− κ = inf
t∈[0,T ],m,m′∈M2(Sn)

W (t,m,m′). (4.44)

Using the fact that Un is a monotone solution of (4.3) and V n a monotone solution of (4.42),
we arrive at

− κ

2T
≥ − inf

t,m,m′∈M2(Sn)
〈rn(t,m),m −m′〉 ≥ −Cω

(
1

n

)
. (4.45)

Take t ∈ [0, T ],m ∈ M2(Sn) and z ∈ M2(Sn). From the previous estimate we obtain for any
h ∈ (0, 1)

〈V n(t, (1 − h)m + hz) − Un(t,m), h(z −m)〉 ≥ −Cω
(

1

n

)
. (4.46)

Thus,

h〈V n(t,m)−Un(t,m), z−m〉+〈V n(t, (1−h)m+hz)−V n(t,m), h(z−m)〉 ≥ −Cω
(

1

n

)
. (4.47)

Using the Lipschitz regularity of U (hence of V n)

〈V n(t,m) − Un(t,m), z −m〉 ≥ −C

h
ω

(
1

n

)
− Ch. (4.48)

It follows that

inf
z∈M2(Sn)

〈V n(t,m) − Un(t,m), z −m〉 ≥ −C
√
ω

(
1

n

)
. (4.49)

Arguing similarly for Un and using the uniform Hölder estimate established, we arrive at

inf
z∈M2(Sn)

〈V n(t,m) − Un(t,m),m − z〉 ≥ −C

h
ω

(
1

n

)
− C

√
h. (4.50)

Hence we deduce, using the previous estimate, that

sup
z,m∈M2(Sn)

|〈V n(t,m) − Un(t,m), z −m〉| ≤ C

(
ω

(
1

n

)) 1
3

(4.51)

Now take m,m′ ∈ P(T). From the previous estimate we obtain by choosing z = m+m′

∣∣〈V n(t,m) − Un(t,m),m′〉
∣∣ ≤ C

(
ω

(
1

n

)) 1
3

, (4.52)

from which we obtain the desired result. �
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4.7. Another approach to convergence: mollification. We present here, without many
details, another method to prove the convergence of the discrete master equation to the contin-
uous one, with common noise and without assuming that there exists a classical solution of the
limit equation. This approach is by means of mollification of the cost functionals. Indeed, an
immediate variation of the mollification procedure on the torus introduced in [20] turns out to
preserve monotonicity. We only present the main lines of this approach as we believe this idea
can be of interest for the reader. We do not provide proofs since other arguments have been
given above.

Consider then the function f(x,m) (and the same for g(x,m)) and assume as usual that it
is monotone, smooth in x and continuous but not regular in m. Let fn,δ(m,x) be the usual
mollification by convolution in m, for n fixed, in the finite dimensional simplex P(Sn). Clearly,
limδ→0 f

n,δ = f , for n fixed, and preserves the monotonicity. Let also f ε be (an immediate
variation of) the mollification introduced in [20] on P(T), which preserves monotonicity and
converges to f , as ε → 0. Assume that the Hamiltonian is smooth. Then discrete and continuous
master equations related to the coefficients fn,δ and f ε, respectively, admit classical solutions,
which we denote by Un,δ and U ε; the solutions with cost function f are as usual denoted by Un

and U . Moreover, we have that

lim
δ→0

sup
t∈[0,T ],x∈Sn,m∈P(Sn)

|Un,δ(t, x,m) − Un(t, x,m)| = 0,

lim
ε→0

sup
t∈[0,T ],x∈T,m∈P(T )

|U ε(t, x,m) − U(t, x,m)| = 0,

the first line being, of course, not uniform in n a priori.
Moreover, the use of Theorem 4.14 gives an estimate of the form

‖Un,δ − U ε‖∞ ≤ C(ε, δ, n),

with C such that
lim
ε→0

lim
n→∞

lim
δ→0

C(ε, δ, n) = 0.

Hence, using Un,δ and U ε as intermediates to bound the difference between Un and U , passing
to the limit in the order of the previous equation, this method leads to

lim
n→∞

sup
t∈[0,T ],x∈Sn,m∈P(Sn)

|Un(t, x,m) − U(t, x,m)| = 0. (4.53)

4.8. A weaker notion of monotone solution. We conclude this part on the common noise
by indicating another definition of monotone solution which could have been used here and that
we believe to have an interest in itself. This concept allows to deal with monotone solution of
(4.1) which are C1,α for α ∈ (0, 1) with respect to the space variable x. This allows to avoid
the assumption on the uniform continuity of the space Laplacian of the solution with respect
to the measure. The following is very much in the flavor of the work done in [16] in which this
method is introduced to deal with first order MFG.

The definition at interest here is

Definition 4.15. A continuous function U , uniformly C1,α in space, is a monotone solution of
(4.1) if there exists a constant C > 0 such that for any ε > 0, ν ∈ M(T) ∩W 1,∞, C1,α function
ϕ of the space variable and C1 function ψ of the time variable, for any (t∗,m∗) ∈ [0, T ) × P(T)
point of strict minimum of (t,m) → 〈U(t,m) −ϕ,m− ν〉 −ψ(t) + ε‖m‖1,∞, the following holds

− dψ(t∗)

dt
+ 〈−σ∂xxU +H(x, ∂xU) + λ(U − A∗U(Am∗)),m∗ − ν〉 ≥ 〈f(m∗),m∗ − ν〉

− 〈U − ϕ, ∂x(∂pH(x, ∂xU)m∗)〉 − σ〈∂xx(U − ϕ),m∗〉 − Cε.
(4.54)

The main idea of this definition is to use the fact that, independently of the strategies of the
players, the evolution of the underlying repartition of players is continuous in a space of regular
repartition of players. The constant C in the previous is directly related to this smoothness.

In some sense, the penalization term in ε in the minimization of the function constrains the
minima to be in W 1,∞, and this penalization only has a cost Cε because of the smoothness



MEAN FIELD GAMES MASTER EQUATIONS: FROM DISCRETE TO CONTINUOUS STATE SPACE 27

of the evolution of the repartition of players. To derive this formulation, consider a classical
solution U of (4.1). To lighten notation, we do not come back on the interpretation of the time
derivative or of the common noise. Hence, we take λ = 0 and consider t ≥ 0 and a point m∗ of
minimum of m → 〈U(t,m) − ϕ,m− ν〉 + ε‖m‖∞. Denote by (ms)s≥0 the solution of

∂sm− σ∂xxm− ∂x(m∂pH(x, ∂xU(t, x,ms))) = 0 in (0,∞) × T (4.55)

with initial condition m0 = m∗. By definition of m∗, for any s ≥ 0 :

〈U(t,m∗) − ϕ,m∗ − ν〉 + ε‖m∗‖∞ ≤ 〈U(t,ms) − ϕ,ms − ν〉 + ε‖ms‖∞. (4.56)

Hence using the fact that U is a classical solution of (4.1), we deduce by dividing the previous
inequality by s and letting s → 0 that

〈−∂tU,m∗ − ν〉 + 〈−σ∂xxU+H(x, ∂xU),m∗ − ν〉 ≥ 〈f(m∗),m∗ − ν〉 − 〈U − ϕ, ∂x(∂pH(x, ∂xU)m∗)〉
− σ〈∂xx(U − ϕ),m∗〉 + ε lim inf

s→0
s−1(‖m∗‖1,∞ − ‖ms‖1,∞).

(4.57)
However, since U is C1,α in x, uniformly in t and m, there exists C > 0 such that, for any m∗

lim inf
s→0

s−1(‖m∗‖1,∞ − ‖ms‖1,∞) ≥ −C. (4.58)

This last inequality is a consequence of propagation of ‖ · ‖1,∞ norms by the Fokker-Planck
equation

∂tm− σ∆m+ div(bm) = 0 in (0,∞) × T
d, (4.59)

for a vector field b in L∞((0,∞), C0,α). The proof is trivial in dimension 1 as one can simply
integrate the Fokker-Planck equation and use standard parabolic estimates in Hölder norms.
In dimension d ≥ 1 the proof of such a regularity is more involved but it remains true. As this
question is far from the main topic of this article we do not detail such a proof here.

As a consequence of the previous remark, results of existence and uniqueness of such monotone
solutions can be established quite easily following [9, 16].

Appendix A. Convergence rate for a diffusion approximation

We state here a general result about the approximation of a diffusion (on the torus) with a
continuous time Markov chain, which is used several times in the paper and we believe might
be of independent interest. The main result is to establish a rate for the convergence of the
laws in the Wasserstein distance. Although the approximation of diffusions by Markov chains is
certainly not a novelty, we have not been able to find a similar result in the literature. We rely
on an estimate of the the distance between the generators and the semigroups of the processes,
which is inspired by the methods of [34], and then on a relation among distances on the space
of probability measures.

Proposition A.1. Let α ∈ Cγ/2,γ([0, T ] ×T), for a γ ∈ (0, 1), and let Y satisfy (2.2) with such
α and Y0 ∼ m0. Let also Yn, for any n, satisfy (2.6) with rates α± therein given by α+ = ψ+(α)
and α− = ψ−(α) with ψ± : R → R Lipschitz and such that ψ+(α) − ψ−(α) = α. Suppose also
that Y n

0 ∼ mn
0 , with W1(mn

0 ,m0) ≤ 1
n . Then

lim
n
Y n = Y in law in D([0, T ],T). (A.1)

and

sup
0≤t≤T

W1(Law(Y n
t ),Law(Yt)) ≤ C

n
γ

2+γ

. (A.2)

If in addition α ∈ Cγ/2,1+γ([0, T ] × T) then

sup
0≤t≤T

W1(Law(Y n
t ),Law(Yt)) ≤ C

n
1
3

. (A.3)
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For the application of this result in Section 3, the controls are to be thought as α =
−∂pH(∂xu), α+ = −∂pH↑(∂xu), α− = ∂pH↓(∂xu). We note that in the case of quadratic
Hamiltonian α+ and α− are simply the positive and negative part of α. In particular, the
additional assumption α ∈ Cγ/2,1+γ([0, T ] × T) always holds under our standing assumptions.

Proof. We employ the convergence of the generators: denote by Ln and L the generators of Yn

and Y , respectively. For a function ϕ ∈ C2+γ(T), with γ ∈ (0, 1], we have

|Ln
t ϕ(x) − Ltϕ(x)|

=

∣∣∣∣
(
α+(t, x)

∆xn
+

σ

∆x2
n

)
[ϕ(x+ ∆xn) − ϕ(x)] +

(
α−(t, x)

∆xn
+

σ

∆x2
n

)
[ϕ(x− ∆xn) − ϕ(x)]

− α(t, x)∂xϕ(x) − σ∂xxϕ(x)

∣∣∣∣

=
∣∣∣α+(t, x)∆n

+ϕ(x) + α−(t, x)∆n
−ϕ(x) + σ∆n

2ϕ(x) − α(t, x)∂xϕ(x) − σ∂xxϕ(x)
∣∣∣

≤ |α+(t, x)|
∣∣∣∆n

+ϕ(x) − ∂xϕ(x)
∣∣∣ + |α−(t, x)|

∣∣∣∆n
−ϕ(x) + ∂xϕ(x)

∣∣∣ + σ
∣∣∣∆n

2ϕ(x) − ∂xxϕ(x)
∣∣∣

≤ C
(
1 + ||α(t, ·)||∞

) ||∂xxϕ||∞
n

+ σ
||∂xxϕ||γ

nγ
,

that is

sup
0≤t≤T

||Ln
t ϕ− Ltϕ||∞ ≤ C

nγ
(1 + ||α(·, ·)||∞)||∂xxϕ||γ . (A.4)

Convergence of the generators then provides (A.1) (applying [32, Thm. 19.25]), since C2+γ(T)
is an invariant core of the limiting generator in C(T), because of Schauder’s estimates.

To prove (A.2), let Sn and S be the semigroups corresponding to Ln and L:

Sn
t,sϕ(x) = E[ϕ(Xn

s )|Xn
t = x], St,sϕ(x) = E[ϕ(Xs)|Xt = x].

We recall the usual properties

Sn
t,sSn

s,r = Sn
t,r

d

dt
Sn

t,s = Sn
t,sLn

s ,
d

ds
Sn

t,s = −Ln
t Sn

t,s

and similarly for S and L. Thus, following Kolokoltsov [34], we can write

Sn
t,sϕ− St,sϕ = Sn

t,rSr,s|r=s
r=tϕ =

∫ s

t

d

dr
Sn

t,rSr,sϕdr =

∫ s

t
Sn

t,r(Ln
r − Lr)Sr,sϕdr. (A.5)

Thanks to Feynman-Kac formula, the function us(t, x) := St,sϕ(x) solves the parabolic backward
PDE {

∂tu+ σ∂xxu+ α(t, x)∂xu = 0,

u(s, x) = ϕ(x).

Hence Schauder’s estimates, for γ ∈ (0, 1), give

sup
0≤t≤s≤T

||St,sϕ||2+γ ≤ C||ϕ||2+γ (A.6)

for a constant C depending on ||α||γ/2,γ and T . Moreover, if in addition α ∈ Cγ/2,1+γ([0, T ]×T)

and ϕ ∈ C2+1([0, T ] × T), then we have

sup
0≤t≤s≤T

||St,sϕ||2+1 ≤ C||ϕ||2+1, (A.7)

where C depends on ||α||γ/2,1+γ and T .
From the above estimates and using (A.4), (A.5), and the fact that the transition operator

Sn is a contraction, we obtain, for any 0 ≤ t < s ≤ T ,

||Sn
t,sϕ− St,sϕ||∞ ≤ (s− t) sup

t≤r≤s
||Sn

t,r(Ln
r − Lr)Sr,sϕ||∞ ≤ T sup

t≤r≤s
||(Ln

r − Lr)Sr,sϕ||∞
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≤ C

nγ
sup

t≤r≤s
||Sr,sϕ||2+γ ≤ C

nγ
||ϕ||2+γ ,

whereas, here and below, we fix γ ∈ (0, 1) if α ∈ Cγ/2,γ([0, T ] × T), and γ = 1 if α ∈
Cγ/2,1+γ([0, T ] × T). Therefore, for any 0 ≤ t ≤ s ≤ T ,

||Sn
t,sϕ− St,sϕ||∞ ≤ C

nγ
||ϕ||2+γ . (A.8)

We now show that the above estimate, together with the estimate on the initial condition, imply

|E[ϕ(Y n
t )] − E[ϕ(Yt)]| ≤ C

nγ
||ϕ||2+γ , (A.9)

uniformly in t, that is
∣∣∣∣
∫

T

ϕd(Law(Y n
t ) − Law(Yt))

∣∣∣∣ ≤ C

nγ
||ϕ||2+γ . (A.10)

Indeed,

E[ϕ(Y n
t )] − E[ϕ(Yt)] =

∫

T

Sn
0,tϕ(x)mn

0 (dx) −
∫

T

S0,tϕ(x)m0(dx)

=

∫

T

(
Sn

0,t − S0,t
)
ϕ(x)mn

0 (dx) +

∫

T

S0,tϕ(x)(mn
0 −m0)(dx)

and, estimating the first term by (A.8) and the second term by W1(mn
0 ,m0) ≤ 1

n and again by
parabolic estimates, we get

|E[ϕ(Y n
t )] − E[ϕ(Yt)]| ≤ C

nγ
||ϕ||2+γ + ||∂x(S0,tϕ(x))||∞W1(mn

0 ,m0)

≤ C

nγ
||ϕ||2+γ +

C

n
||ϕ||2+γ .

Finally, the estimates (A.2) and (A.3), are provided by an estimate of the distance in (A.10)
(for functions in C2+γ) in terms of powers of the Wasserstein distance, which we detail below;
see (A.11). �

To complete the above proof, let us give some more details on particular distances on the
space of probability measures. We denote by ζr, for r ≥ 1, the Zolotarev metric of order r,
which is defined by

ζr(µ, ν) = sup

{∫

T

ϕd(µ − ν) : ϕ ∈ Fr

}
,

where Fr is the set of ϕ ∈ Cl(T) with ϕ(0) = ϕ′(0) = · · · = ϕl(0) = 0, l in the integer such that
l < r ≤ l + 1, and |ϕl(x) − ϕl(y)| ≤ |x − y|r−l. We note that ζ1 = W1. In [43], it is proved in
dimension one, for any r ≥ 1, the relation

Wr ≤ crζ
1
r
r , (A.11)

where Wr is the r-Wasserstein distance and cr is a constant depending just on r. For r = k
integer, the weaker result

W1 ≤ ckζ
1
k

k (A.12)

is shown to be true in any dimension; see [45, 46] and the more recent [13]. We also remark
that the results (A.11) and (A.12) hold on the whole space R or R

d.
Since we are considering functions on the torus, the set F2+γ , for γ ∈ (0, 1] is contained in

the set of ϕ ∈ C2+γ with ϕ, ϕ′ and ϕ′′ bounded by 1 and with γ-Hölder seminorm bounded by
1, i.e. such that ||ϕ||2+γ ≤ 1. Thus (A.10) implies

ζ2+γ(Law(Y n
t ),Law(Yt)) ≤ C

nγ
,

which yields (A.2) and (A.3) by means of (A.11).



30 CHARLES BERTUCCI AND ALEKOS CECCHIN

References

[1] Achdou, Y., and Capuzzo-Dolcetta, I. (2010). Mean field games: numerical methods. SIAM Journal on
Numerical Analysis, 48(3), 1136-1162.

[2] Achdou, Y., Camilli, F., and Capuzzo-Dolcetta, I. (2012). Mean field games: numerical methods for the
planning problem. SIAM Journal on Control and Optimization, 50(1), 77-109.

[3] Achdou, Y., Camilli, F., and Capuzzo-Dolcetta, I. (2013). Mean field games: convergence of a finite difference
method. SIAM Journal on Numerical Analysis, 51(5), 2585-2612.

[4] Almulla, N., Ferreira, R., and Gomes, D. (2017). Two numerical approaches to stationary mean-field games.
Dynamic Games and Applications, 7(4), 657-682.

[5] Bayraktar, E., Cecchin, A., Cohen, A., and Delarue, F. (2021). Finite state mean field games with Wright–
Fisher common noise. Journal de Mathématiques Pures et Appliquées, 147, 98-162.

[6] E. Bayraktar and A. Cohen (2018). Analysis of a finite state many player game using its master equation.
SIAM Journal on Control and Optimization, 56(5):3538-3568.

[7] Benamou, J. D., and Carlier, G. (2015). Augmented Lagrangian methods for transport optimization, mean
field games and degenerate elliptic equations. Journal of Optimization Theory and Applications, 167(1), 1-26.

[8] Bertucci, C. (2021). Monotone solutions for mean field games master equations: finite state space and optimal
stopping. Journal de l’École polytechnique–Mathématiques, 8, 1099-1132.

[9] Bertucci, C. (2021). Monotone solutions for mean field games master equations: continuous state space and
common noise. arXiv preprint arXiv:2107.09531.

[10] Bertucci, C. (2020). A remark on Uzawa’s algorithm and an application to mean field games systems. ESAIM:
Mathematical Modelling and Numerical Analysis, 54(3), 1053-1071.

[11] Bertucci, C., Lasry, J. M., and Lions, P. L. (2019). Some remarks on mean field games. Communications in
Partial Differential Equations, 44(3), 205-227.

[12] Briceno-Arias, L. M., Kalise, D., and Silva, F. J. (2018). Proximal methods for stationary mean field games
with local couplings. SIAM Journal on Control and Optimization, 56(2), 801-836.

[13] Bogachev, V.I., Doledenok, A. N., and Shaposhnikov, S. V. (2017). Weighted Zolotarev Metrics and the
Kantorovich Metric. Doklady Mathematics, 95(2), 113-117.

[14] Cardaliaguet, P., Delarue, F., Lasry, J. M., and Lions, P. L. (2019). The master equation and the convergence
problem in mean field games. Annals of Mathematics Studies, Princeton University Press.

[15] Cardaliaguet, P., and Porretta, A. (2021). An introduction to mean field game theory. In Mean Field Games,
chapter 1, Cetraro, Italy 2019, Cardaliaguet, P., Porretta, A. (Eds.), LNM 2281, 1-148, Springer.

[16] Cardaliaguet, P., and Souganidis, P. (2021). Weak solutions of the master equation for mean field games
with no idiosyncratic noise. arXiv preprint arXiv:2109.14911.

[17] Carmona, R., and Delarue, F. (2018). Probabilistic Theory of Mean Field Games with Applications I-II.
Springer Nature.

[18] Cecchin, A., Dai Pra, P., Fischer, M., and Pelino, G. (2019). On the convergence problem in mean field
games: a two state model without uniqueness. SIAM Journal on Control and Optimization, 57(4), 2443-2466.

[19] Cecchin, A., and Delarue, F. (2021). Selection by vanishing common noise for potential finite state mean
field games. Communications in Partial Differential Equations, 47 (1), 89-168, 2022.

[20] Cecchin, A. and Delarue, F. (2022) Weak solutions to the master equation of potential mean field games.
arXiv preprint arXiv:2204.04315.

[21] Cecchin, A., and Fischer, A. (2020). Probabilistic approach to finite state mean field games. Appl. Math.
Optim, 81(2), 253–300.

[22] Cecchin, A., and Pelino, G. (2019). Convergence, fluctuations and large deviations for finite state mean field
games via the master equation. Stochastic Processes and their Applications, 129(11), 4510-4555.

[23] Chassagneux, J.-F., Crisan, D., Delarue, F (2022). A probabilistic approach to classical solutions of the
master equation for large population equilibria. To appear in Memoirs of the AMS.

[24] Chassagneux, J.-F., Crisan, D., Delarue, F. (2019). Numerical method for FBSDEs of McKean–Vlasov type.
The Annals of Applied Probability, 29(3), 1640-1684.

[25] F. Delarue (2021). Master equation for finite state mean field games with additive common noise. In Mean
Field Games, chapter 3, Cetraro, Italy 2019, Cardaliaguet, P., Porretta, A. (Eds.), LNM 2281, 203-248,
Springer.

[26] Funaki, T. and Sethuraman, S. (2021). Schauder estimate for quasilinear discrete PDEs of parabolic type.
arXiv preprint arXiv:2112.13973.

[27] Gangbo, W., Mészáros, A. R., Mou, C., and Zhang, J. (2021). Mean field games master equations with
non-separable hamiltonians and displacement monotonicity. arXiv preprint arXiv:2101.12362.

[28] Gangbo, W., and Mészáros, A. R. (2020). Global well-posedness of Master equations for deterministic
displacement convex potential mean field games. arXiv preprint arXiv:2004.01660.

[29] Gomes, D.A., Mohr, J., Souza, R.R (2013). Continuous time finite state mean field games. Appl.Math.Optim.
68(1), 99–143.

[30] Hadikhanloo, S., and Silva, F. J. (2019). Finite mean field games: fictitious play and convergence to a first
order continuous mean field game. Journal de Mathématiques Pures et Appliquées, 132, 369-397.

http://arxiv.org/abs/2107.09531
http://arxiv.org/abs/2109.14911
http://arxiv.org/abs/2204.04315
http://arxiv.org/abs/2112.13973
http://arxiv.org/abs/2101.12362
http://arxiv.org/abs/2004.01660


MEAN FIELD GAMES MASTER EQUATIONS: FROM DISCRETE TO CONTINUOUS STATE SPACE 31

[31] Huang, M., Malhamé, R. P., and Caines, P. E. (2006). Large population stochastic dynamic games: closed-
loop McKean-Vlasov systems and the Nash certainty equivalence principle. Communications in Information
and Systems, 6(3), 221-252.

[32] Kallenberg, O. (2001). Foundations of Modern Probability, 2nd edn., Springer, Berlin.
[33] Katznelson, Y. (2004). An introduction to harmonic analysis. Cambridge University Press.
[34] Kolokoltsov, V. N. (2010). Nonlinear Markov processes and kinetic equations. Cambridge Tracts in Mathe-

matics, 182. Cambridge University Press.
[35] Kushner, H. J., and Dupuis, P. (2001). Numerical Methods for Stochastic Control Problems in Continuous

Time, volume 24 of Applications of Mathematics. Springer, New York, 2nd edition.
[36] Lasry, J. M., and Lions, P. L. (2007). Mean field games. Japanese journal of mathematics, 2(1), 229-260.
[37] Laurière, M. (2021). Numerical Methods for Mean Field Games and Mean Field Type Control. arXiv preprint

arXiv:2106.06231.
[38] Laurière, M., Perrin, S., Geist, M., Pietquin, O. (2022). Learning Mean Field Games: A Survey. arXiv

preprint arXiv:2205.12944.
[39] Lions, P. L. (2007). Cours au college de france. Available at www.college-de-france.fr
[40] Mou, C., and Zhang, J. (2019). Wellposedness of second order master equations for mean field games with

nonsmooth data. arXiv preprint arXiv:1903.09907.
[41] Mou, C., and Zhang, J. (2022). Mean Field Game Master Equations with Anti-monotonicity Conditions.

arXiv preprint arXiv:2201.10762.
[42] Phelps, R. R. (2009). Convex functions, monotone operators and differentiability (Vol. 1364). Springer.
[43] Rio, E. (1998). Distaces minimales et distances idéales. C. R. Acad. Sci. Paris, 326 (1), 1127-1130.
[44] Stegall, C. (1978). Optimization of functions on certain subsets of Banach spaces. Mathematische Annalen,

236(2), 171-176.
[45] Zolotarev, V. M. (1979). Properties and relations of certain types of metrics. (Russian) Studies in mathe-

matical statistics, 3. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 87, 18–35.
[46] Zolotarev, V. M. (1983). Probability metrics. (Russian) Teor. Veroyatnost. i Primenen. 28 (2), 264–287.

(C. Bertucci)
Centre de Mathématiques Appliquées, CNRS, UMR 7641, École Polytechnique
Route de Saclay, 91128 Palaiseau Cedex, France
Email address: charles.bertucci@polytechnique.edu

(A. Cecchin)
Dipartimento di Matematica “Tullio Levi-Civita”, Università di Padova
Via Trieste 63, 35121 Padova, Italy
Email address: alekos.cecchin@unipd.it

http://arxiv.org/abs/2106.06231
http://arxiv.org/abs/2205.12944
http://arxiv.org/abs/1903.09907
http://arxiv.org/abs/2201.10762

	1. Introduction
	1.1. General introduction
	1.2. Bibliographical comments
	1.3. Main results of the paper
	1.4. Organization of the paper
	1.5. Notation

	2. The contionuous and discrete models
	2.1. The limit MFG model
	2.2. Assumptions
	2.3. The discrete MFG model
	2.4. Heuristic derivation of the limit master equation

	3. Convergence results in the absence of a common noise
	3.1. Classical solutions
	3.2. Convergence through the MFG system

	4. The case of common noise
	4.1. Monotone solutions of master equations
	4.2. A discrete parabolic estimate
	4.3. An estimate on the solution of the master equation without common noise
	4.4. Compactness results for master equations with common noise
	4.5. Convergence of the discretized problem
	4.6. Rate of convergence to a classical solution
	4.7. Another approach to convergence: mollification
	4.8. A weaker notion of monotone solution

	Appendix A. Convergence rate for a diffusion approximation
	References

