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Abstract 34 

Microbial interactions underpin ocean ecosystem function, but they remain barely known. Multiple 35 

studies have analyzed microbial interactions using static association networks based on omics data, 36 

yet microbial interactions are dynamic and can change across spatiotemporal scales. Understanding 37 

the dynamics of microbial interactions is needed for a better comprehension of ocean ecosystems. 38 

Here, we explored associations between archaea, bacteria, and picoeukaryotes along the water 39 

column, from the surface to the deep ocean, across the northern subtropical to the southern 40 

temperate ocean and the Mediterranean Sea by defining sample-specific subnetworks, which 41 

allowed us to examine changes in microbial associations across space. We found that associations 42 

tend to change with depth as well as with geographical scale, with a few associations being global 43 

(i.e., present across regions within the same depth layer) and 11-36% being regional within specific 44 

water layers. The lowest fraction of global associations was found in the bathypelagic zone, while 45 

associations restricted to certain regions increased with depth. The majority of associations 46 

observed in surface waters disappeared with depth, suggesting that surface ocean associations are 47 

not transferred to the deep sea, despite microbial sinking. Altogether, our results suggest that 48 

microbial associations have highly heterogeneous distributions in the horizontal and vertical 49 

dimensions of the ocean and that such distributions do not mirror taxonomic distributions. Our work 50 

contributes to better understand the dynamics of microbial interactions in the global ocean, which 51 

is urgently needed in a context of global change.  52 
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INTRODUCTION 53 

Microorganisms play fundamental roles in ocean ecosystem functioning and global biogeochemical 54 

cycles (1–3). The main processes shaping microbial community composition are selection, 55 

dispersal, and drift (4). Selection exerted via environmental heterogeneity and biotic interactions is 56 

essential in structuring the ocean microbiome (5), leading to heterogeneities in community 57 

composition that can reflect those found in the ocean, normally related with temperature, light, 58 

pressure, nutrients, and salinity. Global-scale studies of the surface ocean reported strong 59 

associations between microbial community composition and temperature (5–8). Marked changes 60 

in microbial communities with depth have also been reported (9–14), reflecting the steep vertical 61 

gradients in light, temperature, nutrients and pressure. 62 

Prokaryotes (bacteria and archaea) and unicellular eukaryotes are fundamentally different 63 

in terms of ecological roles, functional versatility, and evolutionary history (15) and are connected 64 

through biogeochemical and food web interaction networks (16,17). Still, our knowledge about 65 

their ecological interactions remains limited, even though these interactions sustain marine food 66 

webs and contribute to nutrient recycling in the oceans (3,18). Microbial interactions are very 67 

difficult to resolve experimentally, mainly because most microorganisms are hard to cultivate 68 

(19,20) and synthetic laboratory communities are unlikely to mirror the complexity of wild 69 

communities. However, association networks inferred from omics data have the potential to unravel 70 

microbial interactions. 71 

Microbial association networks are normally based on abundance data, representing 72 

putative ecological interactions that need to be confirmed via laboratory experiments. Yet, 73 

association networks are one of the best available tools to start addressing the huge complexity of 74 

microbial interactions. Association networks can provide a general overview of the potential 75 

microbial interactions in the ocean aggregated over a given period of time (9,10,21–25) or through 76 

space (26–28). Previous work investigated marine microbial associations within and across depths. 77 
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For example, prokaryotic associations were investigated in the San Pedro Channel, off the coast of 78 

Los Angeles, California, covering the water column from the surface (5 m) to the seafloor (890 m) 79 

(9,10). Furthermore, a global survey from the TARA Oceans expedition investigated planktonic 80 

associations between a range of organismal size fractions in the epipelagic zone (26), from pole to 81 

pole (28). However, these studies did not include the bathypelagic realm below 1000 m depth, 82 

which represents the largest microbial habitat in the biosphere (29). 83 

Most studies so far have investigated microbial associations in the ocean using static 84 

networks determined from spatially distributed samples, which capture global, regional and local 85 

associations in a single network. Furthermore, given that global-ocean expeditions collect samples 86 

over several months, networks must include some temporal associations, yet disentangling them 87 

from spatial associations is challenging. Spatially widespread or global associations may be part of 88 

the core microbiome defined as the set of interacting microbes essential for the functioning of the 89 

ocean ecosystem (30). Core associations may be detected by constructing a single network from 90 

numerous locations and identifying the most significant and strongest associations (31). In turn, 91 

regional or local associations may reflect interactions occurring in specific locations due to taxa 92 

distributions resulting from abiotic or biotic environmental selection, or dispersal limitation. 93 

Regional networks could also contribute to determine associations that are stable (i.e., two partners 94 

always together) or variable (one partner able to interact with multiple partners across locations). 95 

The fraction of regional associations may be determined by excluding all samples belonging to one 96 

region, recomputing network inference with the reduced dataset, and examining which associations 97 

are missing (26). Alternatively, regional networks are computed considering samples belonging to 98 

the regions, allowing to determine both global and regional associations (32) by investigating which 99 

edges are common and which are unique. 100 

Regional networks, however, require a high number of samples per delineated zone and 101 

these may not be available due to logistic or budgetary limitations. Recent approaches circumvent 102 
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this limitation by deriving sample-specific subnetworks from a single static, i.e., all-sample 103 

network, which allows quantifying association recurrence over spatiotemporal scales (28,33). Here, 104 

we adjusted the approach to determine global and regional associations along vertical and 105 

horizontal pelagic ocean scales, which allowed us determining a biogeography of marine microbial 106 

associations. We analyzed associations between archaea, bacteria, and picoeukaryotes using a 107 

unique dataset including 397 samples covering the water column, from surface to deep waters, in 108 

the Mediterranean Sea (hereafter MS) and five ocean basins: North and South Atlantic Ocean, North 109 

and South Pacific Ocean, and Indian Ocean (hereafter NAO, SAO, NPO, SPO, and IO) (Figure 1). 110 

Our exploration of the variation of subnetworks across regions and depths allowed us to determine 111 

widespread associations as well as local associations that seem to be only present in specific 112 

locations or depths.  113 
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RESULTS 114 

Network architecture changed along the water column  115 

Microbial dispersal as well as vertical and horizontal environmental heterogeneity are expected to 116 

affect network topologies. Yet, we have a limited understanding on how much marine microbial 117 

networks change due to these processes, and analyzing the topology of subnetworks from specific 118 

ocean regions and depths is a first step to address this issue. We generated 397 sample-specific 119 

subnetworks and compared them across the regions and depth layers using eight network metrics 120 

(see Methods). We found that network metrics change along the water column (Supplementary 121 

Figure 1). As a general trend, subnetworks from deeper zones were more clustered (transitivity), 122 

had higher average path length, featured stronger associations (average positive association scores), 123 

and lower assortativity (based on degree) compared to those in surface waters. Most subnetworks 124 

from the Deep Chlorophyll Maximum (DCM) and bathypelagic zones had the highest edge density, 125 

i.e., highest node connectivity. In contrast, in the MS, the surface subnetworks had the highest node 126 

connectivity (Supplementary Figure 1). 127 

 128 

Only a few global associations 129 

We computed the spatial recurrence, i.e., prevalence, of each association as the fraction of 130 

subnetworks in which a given association was present across all 397 subnetworks (Figure 2A) and 131 

within each region-depth-layer combination (Figure 2B). The global ocean surface layer 132 

(contributing 40% of the samples) had more associations compared to the other depths (Figure 2B). 133 

Remarkably, 14,971 out of 18,234 (82.1%) surface ocean associations detected in the basins were 134 

absent in the MS. In turn, the number of surface associations was similar across the five ocean 135 

basins (Figure 2B). 136 

Highly prevalent associations present across all regions are candidates to represent putative 137 

core interactions in the global ocean, likely performing processes crucial for ecosystem function. 138 
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We defined global associations as those appearing in more than 70% of the subnetworks in each 139 

region. In addition, we resolved prevalent (≤70% and >50%) and low-frequency (≤50% and >20%) 140 

associations. The MS is a distinct region compared with the ocean basins. For instance, the 141 

bathypelagic is warmer (median temperature of 13.8°C) than the ocean basins’ bathypelagic zone 142 

(median temperature between 1.4°C in SPO and 4.4°C in NAO). Thus, we characterized 143 

associations for all six regions, and for the ocean basins only. We found slightly to moderately more 144 

global, prevalent, and low-frequency associations when not considering the MS (Table 1, 145 

Supplementary Figure 2). The fraction of global, prevalent, and low-frequency associations was 146 

highest in the DCM layer and lowest in the bathypelagic zone (Table 1). Specifically, while we 147 

found several (28-86 without MS, and 21-26 with MS) global associations in the epi- and 148 

mesopelagic zones, only few or none (9 without MS, and none with MS) global associations were 149 

identified in the bathypelagic zone. While the epipelagic global associations were dominated by 150 

Alphaproteobacteria, a majority of associations from deeper zones included Thaumarchaeota 151 

(Supplementary Figure 2). 152 

 153 

High-rank taxonomy of associations was consistent across regions 154 

Next, we considered the most prevalent associations within a specific region and depth, i.e., those 155 

found in over 70% of the subnetworks of one region and depth layer. Despite the few global 156 

associations determined before, here, we found that high-rank taxonomic patterns of associated taxa 157 

were consistent across the water column in different regions (Figure 3). The epipelagic layers 158 

(surface and DCM) and the two lower layers (meso- and bathypelagic zones) were more similar to 159 

each other, respectively (Figure 3). The fraction of associations including Alphaproteobacteria was 160 

moderate to high in all zones in contrast to Cyanobacteria appearing mainly, as expected, in the 161 

epipelagic zone (Figure 3, Supplementary Material 1). The fraction of associations including 162 

Dinoflagellata was moderate to high in the epipelagic zone and lower in the meso- and bathypelagic 163 
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zones (Figure 3, Supplementary Material 1). While Dinoflagellata associations dominated most 164 

epipelagic layers, fewer were found in the MS and SAO surface waters as well as in the DCM of 165 

the NAO (Figure 3, Supplementary Material 1). Thaumarchaeota associations were moderate to 166 

high especially in the mesopelagic (dominant in the MS), moderate in the bathypelagic, and low in 167 

the epipelagic zone (Figure 3, Supplementary Material 1). Associations including 168 

Gammaproteobacteria increased with depth, being higher in the meso- and bathypelagic than in the 169 

epipelagic, especially in the SAO, SPO, NPO and IO (Figure 3, Supplementary Material 1). 170 

 171 

The proportion of regional associations increased with depth 172 

We determined regional associations within each depth layer. Regional associations were defined 173 

as those detected in at least one sample-specific subnetwork from one region and being absent from 174 

all subnetworks of the other five regions. Results indicated an increasing proportion of regional 175 

associations with depth (Table 1, Figure 4A-B, Supplementary Figure 3). We found substantially 176 

more associations in the DCM and mesopelagic layers of the MS than in corresponding layers of 177 

the ocean basins. This may reflect the different characteristics of these layers in the MS vs. the 178 

ocean basins or the massive differences in spatial dimensions between the ocean basins and the MS. 179 

More surface and bathypelagic regional associations were found in the MS and NAO than in other 180 

regions (Table 1). Most regional associations had low prevalence, i.e., they were present in a few 181 

sample-specific subnetworks within the region (Figure 4C). We found 235 highly prevalent (>70%) 182 

regional associations among prokaryotes, 89 among eukaryotes and 24 between domains 183 

(Supplementary Material 2). 184 

 185 

Few associations were present throughout the water column  186 

Previous studies have found a substantial vertical connectivity in the ocean microbiota, with surface 187 

microorganisms having an impact in deep sea counterparts (11,34). Thus, here, we analyzed the 188 
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vertical connectivity of potential microbial interactions, aiming to determine what surface 189 

associations could be detected along the water column. Few associations were present throughout 190 

the water column within a region, including 327 among prokaryotes, 119 among eukaryotes, and 191 

13 between domains (Supplementary Material 3). In general, most associations from the meso- and 192 

bathypelagic did not appear in the upper layers except for the MS and NAO, where most and about 193 

half, respectively, of the bathypelagic associations already appeared in the mesopelagic (Figure 5). 194 

Specifically, 81.8 – 90.9% of the mesopelagic and 43.5-72.7% of the bathypelagic associations 195 

appeared for the first time in these layers when the five ocean basins were considered 196 

(Supplementary Table 1). In the MS, 71.2% of the mesopelagic and 22.4% of the bathypelagic 197 

associations appeared for the first time in these layers. We found that 69.7% of the associations 198 

appearing in the bathypelagic zone already appeared in the mesopelagic zone (Supplementary Table 199 

1). This points to specific microbial interactions occurring in the deep ocean that do not occur in 200 

upper layers. In addition, most surface associations disappeared with depth in the five ocean basins 201 

and MS (Figure 5), suggesting that most surface ocean interactions are not transferred to the deep 202 

sea, despite microbial sinking (11). In fact, most deep ocean ASVs already appeared in the upper 203 

layers (Supplementary Figure 4), in agreement with previous work that has shown that a large 204 

proportion of deep sea microbial taxa are also found in surface waters, and that their presence in 205 

the deep sea is related to sinking particles (11). 206 

 207 

Environmental gradients seem to shape microbial network topology  208 

Above we grouped the sample-specific subnetworks based on regions and depth layers. However, 209 

such predefined groupings may introduce a bias to our analysis. Thus, we grouped subnetworks 210 

based on similar topology (see Methods) and identified 36 clusters of 5 to 28 subnetworks 211 

(Supplementary Table 2). We found 13 (36.1%) clusters that were dominated by surface 212 

subnetworks: six clusters (100% surface subnetworks) from three to five ocean regions but not the 213 
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MS, and seven clusters including 55-86% surface networks from two to five ocean regions. In turn, 214 

11 clusters were dominated by other layers: two DCM (64-90%), five mesopelagic (62-83%) and 215 

four bathypelagic-dominated clusters (60-69%). Nine of these 11 clusters combined different 216 

regions except for one mesopelagic and one bathypelagic-dominated cluster representing 217 

exclusively the MS (Supplementary Table 2). Furthermore, we found 11 clusters containing 218 

exclusively or mainly MS subnetworks in contrast to only one cluster dominated by an ocean basin 219 

(NAO). 220 

Next, we built a more comprehensive representation of network similarities between 221 

subnetworks via a minimal spanning tree (MST, see Methods). The depth layers, ocean regions, 222 

location of clusters, and environmental factors were projected onto the MST (Figure 6). Most 223 

surface subnetworks were centrally located, while subnetworks from other depths appeared in 224 

different MST areas (Figure 6A). Most MS subnetworks were located in a specific branch of the 225 

MST, while the five ocean basins were mixed (Figure 6B), indicating homogeneity and connectivity 226 

within oceans but network-based differences between the oceans and the MS subnetworks. As 227 

expected, networks of the same cluster appear mostly connected in the MST (Figure 6C). Moreover, 228 

subnetworks in the MST tended to connect to subnetworks from the same depth layer or similar 229 

environmental conditions (Figure 6A, D). All in all, our results suggest a strong influence of 230 

environmental gradients, and to some extent geography, in shaping microbial network topology in 231 

the ocean (Figure 6A,B,D), as previously observed in epipelagic communities at the global scale 232 

(28).  233 
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DISCUSSION 234 

We analyzed global and regional pelagic microbial associations across the oceans’ vertical and 235 

horizontal dimensions. We found a low number of global associations indicating a potentially small 236 

global core interactome within each depth layer across the six oceanic regions.  In contrast, within 237 

each region, we found less highly prevalent associations in the bathypelagic zone of the global 238 

ocean (pointing to a smaller regional core) than in the upper layers, except from the NPO, which 239 

had less highly prevalent associations in the meso- than in the bathypelagic. In turn, we found more 240 

regional associations in the bathypelagic than in upper layers. This may reflect the heterogeneity 241 

and isolation of deep ocean regions due to deep currents, water masses, or the topography of the 242 

seafloor that may prevent microbial dispersal. Moreover, the higher complexity of the deep ocean 243 

ecosystem may provide a higher number of ecological niches potentially resulting in more regional 244 

associations. Niche diversification may be associated to the quality and types (labile, recalcitrant, 245 

etc.) of organic matter reaching the deep ocean from the epipelagic zone (29), which is significantly 246 

different across oceanic regions (35). In an exploration of generalists versus specialist prokaryotic 247 

metagenome-assembled genomes (MAGs) in the arctic Ocean, most of the specialists were linked 248 

to mesopelagic samples indicating that their distribution was uneven across depth layers (36). This 249 

is in agreement with putatively more niches in the deep ocean than in upper ocean layers leading to 250 

more specialist taxa and subsequently more regional associations in deep ocean waters. 251 

Vertical connectivity in the ocean microbiome is partially modulated by surface 252 

productivity through sinking particles (11,34,37). An analysis of eight stations, distributed across 253 

the Atlantic, Pacific and Indian oceans (including 4 depths: Surface, DCM, meso- and 254 

bathypelagic), indicated that bathypelagic communities comprise both endemic taxa as well as 255 

surface-related taxa arriving via sinking particles (11). Another work (34) identified for both 256 

components (i.e. surface-related and deep-endemic) the dominating phylogenetic groups: while 257 

Thaumarchaeota, Deltaproteobacteria, OM190 (Planctomycetes) and Planctomycetacia 258 
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(Planctomycetes) dominated the endemic bathypelagic communities, Actinobacteria, 259 

Alphaproteobacteria, Gammaproteobacteria and Flavobacteriia (Bacteroidetes) dominated the 260 

surface-related taxa in the bathypelagic zone. We found association partners for each dominating 261 

phylogenetic group within each investigated type of association, i.e., highly prevalent, regional, 262 

global, prevalent, and low-frequency associations. While ASVs belonging to these taxonomic 263 

groups were present throughout the water column, specific associations were observed especially 264 

in the mesopelagic and bathypelagic zones, which suggests specific interactions between endemic 265 

deep-sea taxa, in agreement with the hypothesis indicating high niche partitioning and more 266 

specialist taxa in the deep ocean (38,39). This is in agreement with a recent study that found a 267 

remarkable taxonomic novelty in the deep ocean after analyzing 58 microbial metagenomes from 268 

a global deep-sea survey, unveiling ~68% archaeal and ~58% bacterial novel species (40). 269 

Little is known about the distribution of microbial interactions across the water column. 270 

Associations found along the entire water column could point to microbes interacting across all 271 

water layers or interacting microbes that sink together (41). We found that associations present 272 

across all layers were limited, pointing to a heterogeneous distribution of interactions in the water 273 

column. Given that we targeted the picoplankton, the associated taxa found in the entire water 274 

column may represent non-physical interactions occurring in all water layers, instead of interactions 275 

occurring in sinking particles (41). A fraction of the associations observed only in the deep ocean 276 

may correspond to microbial consortia degrading sinking particles, or taxa that might have detached 277 

from sinking particles, i.e., dual life-style taxa as observed in (42).  Altogether, our results suggest 278 

that most microbial interactions change across the water column, while a few are maintained. 279 

Furthermore, some microorganisms may change their interaction partners across the water column. 280 

Changes of microbial interactions with depth could also be linked to ecological successions in 281 

sinking particles (43), yet our spatial sampling precludes us from investigating this possibility.  282 
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In our study, mesopelagic subnetworks displayed the lowest network connectivity 283 

(determined via edge density) across most regions on average, and we found the strongest 284 

associations among both meso- and bathypelagic subnetworks. Moreover, we found the highest 285 

clustering (transitivity) in the meso- and bathypelagic zones (relatively colder waters) compared to 286 

the epipelagic zone (warmer waters). Similarly, a previous global-scale study (28) concentrating on 287 

the epipelagic zone and including polar waters, found higher edge density, association strength and 288 

clustering in polar waters compared to warmer waters. These results suggest that either 289 

microorganisms interact more in colder environments or that their recurrence is higher due to a 290 

higher environmental selection exerted by low temperatures. Alternatively, limited resources 291 

(primarily nutrients) in the surface versus the deep tropical and subtropical ocean may prevent the 292 

establishment of specific microbial interactions in surface waters. Furthermore, environmental 293 

stability in the deep sea may have led to high niche partitioning (38,39), which could have promoted 294 

the establishment of interactions in the meso- and bathypelagic. 295 

Through quantifying regional associations, our results indicated distinct associations in the 296 

MS, where most regional associations were observed compared to the ocean basins, as previously 297 

shown in an epipelagic network (26). The Mediterranean Sea is a hotspot of multicellular 298 

biodiversity and endemic species (44,45), and despite being less studied than animals and plants, 299 

there are also reports of putatively endemic microorganisms, such as specific SAR11 (46). Thus, 300 

part of the recovered associations could be reflecting endemic interactions derived from endemic 301 

as well as non-endemic taxa. Potentially endemic taxa should be investigated at the genome level, 302 

given that the 16S or 18S may not reflect fine-grained differences (47,48). Furthermore, we found 303 

a substantial number of regional associations in the NAO compared to other ocean basins, 304 

contrasting with the NAO having the lowest number of regional associations in a previous 305 

epipelagic network (26). Given that the previous studies used different samples, these results are 306 

not surprising. 307 
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To conclude, we have disentangled the spatial distribution of associations in the global 308 

ocean microbiome, from surface to bottom water layers, finding both global and regional microbial 309 

associations. Our analysis captured network topology changes across vertical (water column) and 310 

horizontal (different regions) pelagic zones of the ocean. Furthermore, our results indicate that 311 

associations have specific biogeographies that do not necessarily mirror taxonomic biogeographies.  312 
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METHODS 313 

Dataset 314 

Samples originated from two expeditions, Malaspina-2010 (49) and Hotmix (50). The former was 315 

onboard the R/V Hespérides and most ocean basins were sampled between December 2010 and 316 

July 2011. Malaspina samples included i) MalaSurf, surface samples (5,51), ii) MalaVP, vertical 317 

profiles (14), and iii) MalaDeep, deep-sea samples, (52–54). In the Hotmix expedition, sampling 318 

took place onboard the R/V Sarmiento de Gamboa between 27th April and 29th May 2014 and 319 

represented a quasi-synoptic transect across the MS and the adjacent North-East of the NAO. See 320 

details in Table 2. 321 

DNA extractions are indicated in the publications associated with each dataset (Table 2). 322 

The 16S and 18S rRNA genes were amplified and sequenced. PCR amplification and sequencing 323 

of MalaSurf, MalaVP (18S), and Hotmix (16S) are indicated in the publications associated with 324 

each dataset in Table 2. MalaVP (16S) and Hotmix (18S) were PCR-amplified and sequenced 325 

following the same approach as in (5). The DNA from MalaDeep samples was extracted as 326 

indicated in (52,53) and re-sequenced at Genoscope (France) with the primers indicated below. 327 

MalaSurf, MalaVP and Hotmix datasets were sequenced at RTL Genomics (Texas, USA). 328 

We used the same amplification primers for all samples. For the 16S, we amplified the V4-329 

V5 hypervariable region using the primers 515F-Y and 926R (55). For the 18S, we amplified the 330 

V4 hypervariable region with the primers TAReukFWD1 and TAReukREV3 (56). See more details 331 

in (5). Amplicons were sequenced in Illumina MiSeq or HiSeq2500 platforms (2x250 or 2x300 bp 332 

reads). Operational Taxonomic Units were delineated as Amplicon Sequence Variants (ASVs) 333 

using DADA2 (57), running each dataset separately before merging the results. ASVs were 334 

assigned taxonomy using SILVA (58), v132, for prokaryotes, and PR2 (59), v4.11.1, for 335 

eukaryotes. ASVs corresponding to Plastids, Mitochondria, Metazoa, and Plantae, were removed. 336 

Only samples with at least 2000 reads were kept. The dataset contained MalaDeep replicates, which 337 
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were merged, and two filter size fractions: given the cell sizes of prokaryotes versus 338 

microeukaryotes, we used the smallest size-fraction (0.2-0.8 µm) for prokaryotes and the larger one 339 

(0.8-20 µm) for microbial eukaryotes. The other three datasets considered the 0.2-3 µm size 340 

fraction. Additionally, we required that samples had eukaryotic and prokaryotic data, resulting in 341 

397 samples for downstream analysis: 122 MalaSurf, 83 MalaVP, 13 MalaDeep, and 179 Hotmix 342 

(Table 2). We separated the samples into epipelagic, mesopelagic and bathypelagic zone (Figure 343 

1). Furthermore, we separated most epipelagic zone samples into surface layer and deep-344 

chlorophyll maximum (DCM) layer, but 18 MS and 4 NAO samples belonged to neither. We also 345 

considered environmental variables: Temperature (2 missing values = mv), salinity (2 mv), 346 

fluorescence (3 mv), and inorganic nutrients NO3
− (36 mv), PO4

3− (38 mv), and SiO2 (37 mv), which 347 

were measured as indicated elsewhere (5,14,60). In specific samples, missing data on nutrient 348 

concentrations were estimated from the World Ocean Database (61). 349 

 350 

Single static network 351 

We constructed the single static network in four steps. First, we prepared the data for network 352 

construction. We excluded rare microorganisms by keeping ASVs with a sequence abundance sum 353 

above 100 reads across all samples and appearing in at least 20 samples (>5% of the dataset). The 354 

latter condition removed larger eukaryotes only appearing in the 13 MalaDeep eukaryotic samples 355 

of the 0.8-20 µm size fraction. To control for data compositionality (62), we applied a centered-356 

log-ratio transformation separately to the prokaryotic and eukaryotic tables before merging them. 357 

Second, we inferred a (preliminary) network using FlashWeave (63), selecting the options 358 

“heterogeneous” and “sensitive”. FlashWeave was chosen as it can handle sparse datasets like ours, 359 

taking zeros into account and avoiding spurious correlations between ASVs that share many zeros. 360 

This initial network had 5457 nodes and 31,966 edges, 30,657 (95.9%) positive and 1309 (4.1%) 361 

negative. 362 
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Third, we aimed at removing environmentally-driven edges. FlashWeave can detect indirect 363 

edges and can also consider metadata such as environmental variables, but currently does not 364 

support missing data. Thus, we applied EnDED (64), combining the methods Interaction 365 

Information (with 0.05 significance threshold and 10,000 iterations) and Data Processing Inequality 366 

as done previously via artificially-inserted edges to connect all microbial nodes to the six 367 

environmental parameters (33). Although EnDED can handle missing environmental data when 368 

calculating intermediate values relating ASV and environmental factors, it would compute 369 

intermediate values for microbial edges using all samples. Thus, to avoid a possible bias and speed 370 

up the calculation process, we applied EnDED individually for each environmental factor, using 371 

only the samples containing values for the specific environmental factor. We detected and removed 372 

potential environmentally-driven edges due to nutrients (4.9% NO3
−, 4.2% PO4

3−, 2.0% SiO2), 373 

temperature (1.9%), salinity (0.2%), and Fluorescence (0.01%) (Supplementary Table 3). 374 

Fourth, we removed isolated nodes, i.e., nodes without any edge. The resulting network 375 

represented the single static network in our study. It contained 5448 nodes and 29,118 edges; 28,178 376 

(96.8%) positive and 940 (3.2%) negative. 377 

 378 

Sample-specific subnetwork 379 

We constructed 397 sample-specific subnetworks. Each subnetwork represented one sample and 380 

was derived from the single static network, i.e., a subnetwork contained nodes and edges present in 381 

the single static network but not vice versa. First, we required that an edge must be present in the 382 

single static network. Second, an edge can only be present within a subnetwork if both 383 

microorganisms associated with the edge have a sequence abundance above zero in the 384 

corresponding sample. Third, microorganisms associated need to appear together (intersection) in 385 

more than 20% of the samples, in which one or both appear (union) for a specific region and depth.  386 
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Formally, consider sample 𝑠𝑅𝐿 with 𝑅 being the marine region, and 𝐿 the sample’s depth layer. 387 

Let 𝑒 be an association between microorganisms 𝐴 and 𝐵. Then, association 𝑒 is present in the 388 

sample-specific subnetwork 𝑁𝑠, if 389 

i. 𝑒 is an association in the single static network, 390 

ii. the microorganisms 𝐴 and 𝐵 are present within sample 𝑠, i.e., the abundances are above 391 

zero within that particular sample, and 392 

iii. the association has a region and depth specific Jaccard index, 𝐽𝑅𝐿, above 20% (see below). 393 

In addition to these three conditions, a node is present in a sample-specific subnetwork when 394 

connected to at least one edge, i.e., we removed isolated nodes. 395 

Regarding the third condition, we determined 𝐽𝑅𝐿 for each association pair by computing 396 

within each region and depth layer, the fraction of samples two microorganisms appeared together 397 

(intersection) from the total samples at least one microorganism appears (union). Supplementary 398 

Table 4 shows the number of edges using different thresholds. Given the heterogeneity of the 399 

dataset within regions and depth layers, we decided to use a low threshold, keeping edges with a 400 

Jaccard index above 20% and removed edges below or equal to 20%. The third condition was robust 401 

(Supplementary Figure 5). We tested robustness by randomly drawing a subset of samples from 402 

each region and depth combination. The subset contained between 10% and 90% of the original 403 

samples. We rounded up decimal numbers to avoid zero sample subsets, e.g., 10% of 7 samples 404 

results in a subset of 1 sample. We excluded the DCM of the SPO because it contained only one 405 

sample. Next, we recomputed the Jaccard index for the random subset. Lastly, requiring J>20%, 406 

we evaluated robustness determining i) how many edges were kept in the random subsamples 407 

compared to all samples, and ii) how many edges were kept in the random subset that were also 408 

kept when all samples were used. We repeated the procedure for each region-depth combination 409 

1000 times. 410 

 411 
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Spatial recurrence 412 

To determine an association’s spatial recurrence, we calculated its prevalence as the fraction of 413 

subnetworks in which the association was present. We determined association prevalence across 414 

the 397 samples and each region-layer combination. We mapped the scores onto the single static 415 

network, visualized in Gephi (65) v.0.9.2, using the Fruchterman Reingold Layout (66) with a low 416 

gravity score of 0.5. We used the region-layer prevalence to determine global and regional 417 

associations. We considered an association to be global within a specific depth layer if its 418 

prevalence was above 70% in all regions. In turn, a regional association had an association 419 

prevalence above 0% within a particular region-layer (present, appearing in at least one 420 

subnetwork) and 0% within other regions of the same layer (absent, appearing in no subnetwork). 421 

We further characterized associations that were neither global nor local. We considered an 422 

association to be prevalent within a specific depth layer if its prevalence was above 50% in all 423 

regions. Similarly, associations that appear in a specific depth layer in all regions over 20% are 424 

considered low-frequency. Thus, an association can be classified as i) global, ii) regional, iii) 425 

prevalent, iv) low-frequency, and v) “other”, i.e., associations that have not been classified into the 426 

previous categories. 427 

 428 

Network metrics 429 

We considered the number of nodes and edges and six other network metrics of which most were 430 

computed with functions of the igraph R-package (67). Edge density indicating connectivity is 431 

computed through the number of actual edges divided by the number of possible edges. The average 432 

path length is the average length of all shortest paths between nodes in a network. Transitivity, 433 

indicating how well a network is clustered, is the probability that the nodes’ neighbors are 434 

connected. Assortativity measures if similar nodes tend to be connected, i.e., assortativity (degree) 435 

is positive if high degree nodes tend to connect to other high degree nodes and negative otherwise. 436 
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Similarly, assortativity (Euk-Prok) is positive if eukaryotes tend to connect to other eukaryotes 437 

while prokaryotes tend to connect to other prokaryotes. Lastly, we computed the average positive 438 

association strength as the mean of all positive association scores provided by FlashWeave. 439 

 440 

Similar networks based on network topology 441 

The previous metrics (so-called global network metrics) disregard local structures’ complexity, and 442 

topological analyses should include local metrics (68), e.g., graphlets (69). Here, we determined 443 

network-dissimilarity between each pair of sample-specific subnetworks as proposed in (70), 444 

comparing network topology without considering specific ASVs. The network-dissimilarity is a 445 

distance measurement that is always positive: 0 if networks are identical and greater numbers 446 

indicate greater dissimilarity. 447 

Next, we constructed a Network Similarity Network (NSN), where each node is a 448 

subnetwork and each node connects with all other nodes, i.e., the NSN was a complete graph. We 449 

assigned the network-dissimilarity score as edge weight within the NSN. To simplify the NSN 450 

while preserving its main patterns, we determined the minimal spanning tree (MST) of the NSN. 451 

The MST had 397 nodes and 396 edges. The MST is a backbone, with no circular path, in which 452 

the edges are chosen so that the edge weights sum is minimal and all nodes are connected, i.e., a 453 

path exists between any two nodes. We determined the MST using the function mst in the igraph 454 

package in R (67,71). 455 

Using the network-dissimilarity (distance) matrix, we determined clusters of similar 456 

subnetworks using Python scripts. First, we reduced the matrix to ten dimension using umap (72) 457 

with the following parameter settings: n_neighbors=3, min_dist=0, n_components=10, 458 

random_state=123, and metric=’precomputed’. Second, we clustered the subnetworks (represented 459 

via ten dimensions) with hdbscan (73) setting the parameters to min_samples=3 and 460 

min_clusters=5. 461 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2022. ; https://doi.org/10.1101/2021.07.12.451729doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.12.451729
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 21 of 29 

 

Acknowledgements 462 

We thank all members of the Malaspina and Hotmix expeditions and the multiple projects funding 463 

these collaborative efforts. Sampling was carried out thanks to the Consolider-Ingenio programme 464 

(project Malaspina 2010 Expedition, ref. CSD2008–00077) and HOTMIX project (CTM2011-465 

30010/MAR), funded by the Spanish Ministry of Economy and Competitiveness Science and 466 

Innovation. Part of the analyses have been performed at the Marbits bioinformatics core at ICM-467 

CSIC (https://marbits.icm.csic.es). This project and IMD received funding from the European 468 

Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant 469 

agreement no. 675752 (ESR2, http://www.singek.eu) to RL. RL was supported by a Ramón y Cajal 470 

fellowship (RYC-2013-12554, MINECO, Spain). This work was also supported by the projects 471 

INTERACTOMICS (CTM2015-69936-P, MINECO, Spain), MicroEcoSystems (240904, RCN, 472 

Norway) and MINIME (PID2019-105775RB-I00, AEI, Spain) to RL. SC was supported by the 473 

CNRS MITI through the interdisciplinary program Modélisation du Vivant (GOBITMAP grant). 474 

SC, DE and SGA were funded by the H2020 project AtlantECO (award number 862923). We 475 

acknowledge funding of the Spanish government through the ‘Severo Ochoa Centre of Excellence’ 476 

accreditation (CEX2019-000928-S). 477 

 478 

Author’s contributions: 479 

The overall project was conceived and designed by RL. JMG, CMD, SGA, RM, JA were 480 

responsible for the sampling and acquisition of contextual data. CRG, JP and MS processed specific 481 

samples in the laboratory. RL processed the amplicon data generating the two ASV tables. They 482 

were the starting point of the present study, which is part of the overall project. IMD developed the 483 

conceptual approach and DE, SC, and RL contributed to its finalization. IMD performed the data 484 

analysis. ED, MS, CMD, SGA, RM, JMG, DE, SC, and RL contributed with interpretation of the 485 

results. IMD wrote the original draft. All authors contributed to manuscript revisions and approved 486 

the final version of the manuscript. 487 

 488 

Competing interests:  489 

The authors declare that they have no competing interests. 490 

 491 

Data availability and Reproducibility: 492 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2022. ; https://doi.org/10.1101/2021.07.12.451729doi: bioRxiv preprint 

https://marbits.icm.csic.es/
http://www.singek.eu/
https://doi.org/10.1101/2021.07.12.451729
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 22 of 29 

 

Sequence data is publicly available at the European Nucleotide Archive (see accession 493 

numbers in Table 2). The code for data analysis including commands to run FlashWeave and 494 

EnDED (environmentally-driven-edge-detection and computing Jaccard index) are publicly 495 

available: https://github.com/InaMariaDeutschmann/GlobalNetworkMalaspinaHotmix.  496 

 497 

REFERENCES 498 

1.  Falkowski PG, Fenchel T, Delong EF. The Microbial Engines That Drive Earth’s Biogeochemical Cycles. Vol. 499 

320, Science. American Association for the Advancement of Science; 2008. p. 1034–9.  500 

2.  DeLong EF. The microbial ocean from genomes to biomes. Vol. 459, Nature. 2009. p. 200–6.  501 

3.  Krabberød AK, Bjorbækmo MFM, Shalchian-Tabrizi K, Logares R. Exploring the oceanic microeukaryotic 502 

interactome with metaomics approaches. Aquatic Microbial Ecology. 2017;79(1):1–12.  503 

4.  Vellend M. The theory of ecological communities (MPB-57). Princeton University Press; 2020.  504 

5.  Logares R, Deutschmann IM, Junger PC, Giner CR, Krabberød AK, Schmidt TSB, et al. Disentangling the 505 

mechanisms shaping the surface ocean microbiota. Microbiome. 2020;8(1):55.  506 

6.  Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the 507 

global ocean microbiome. Science. 2015 May 22;348(6237):1261359.  508 

7.  Ibarbalz FM, Henry N, Brandão MC, Martini S, Busseni G, Byrne H, et al. Global Trends in Marine Plankton 509 

Diversity across Kingdoms of Life. Cell. 2019;179(5):1084-1097.e21.  510 

8.  Salazar G, Paoli L, Alberti A, Huerta-Cepas J, Ruscheweyh HJ, Cuenca M, et al. Gene Expression Changes 511 

and Community Turnover Differentially Shape the Global Ocean Metatranscriptome. Cell. 2019;179(5):1068-512 

1083.e21.  513 

9.  Cram JA, Xia LC, Needham DM, Sachdeva R, Sun F, Fuhrman JA. Cross-depth analysis of marine bacterial 514 

networks suggests downward propagation of temporal changes. The ISME Journal. 2015;9(12):2573–86.  515 

10.  Parada AE, Fuhrman JA. Marine archaeal dynamics and interactions with the microbial community over 5 516 

years from surface to seafloor. The ISME Journal. 2017;11(11):2510–25.  517 

11.  Mestre M, Ruiz-González C, Logares R, Duarte CM, Gasol JM, Sala MM. Sinking particles promote vertical 518 

connectivity in the ocean microbiome. Proc Natl Acad Sci USA. 2018 Jul 17;115(29):E6799.  519 

12.  Peoples LM, Donaldson S, Osuntokun O, Xia Q, Nelson A, Blanton J, et al. Vertically distinct microbial 520 

communities in the Mariana and Kermadec trenches. PLOS ONE. 2018;13(4):1–21.  521 

13.  Xu Z, Wang M, Wu W, Li Y, Liu Q, Han Y, et al. Vertical Distribution of Microbial Eukaryotes From Surface 522 

to the Hadal Zone of the Mariana Trench. Frontiers in Microbiology. 2018;9:2023.  523 

14.  Giner CR, Pernice MC, Balagué V, Duarte CM, Gasol JM, Logares R, et al. Marked changes in diversity and 524 

relative activity of picoeukaryotes with depth in the world ocean. The ISME Journal. 2020 Feb 1;14(2):437–49.  525 

15.  Massana R, Logares R. Eukaryotic versus prokaryotic marine picoplankton ecology. Environmental 526 

Microbiology. 2013;15(5):1254–61.  527 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2022. ; https://doi.org/10.1101/2021.07.12.451729doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.12.451729
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 23 of 29 

 

16.  Layeghifard M, Hwang DM, Guttman DS. Disentangling Interactions in the Microbiome: A Network 528 

Perspective. Vol. 25, Trends in Microbiology. 2017. p. 217–28.  529 

17.  Seymour JR, Amin SA, Raina JB, Stocker R. Zooming in on the phycosphere: the ecological interface for 530 

phytoplankton–bacteria relationships. Nature Microbiology. 2017;2(7):17065.  531 

18.  Bjorbækmo MFM, Evenstad A, Røsæg LL, Krabberød AK, Logares R. The planktonic protist interactome: 532 

where do we stand after a century of research? The ISME Journal [Internet]. 2019; Available from: 533 

https://doi.org/10.1038/s41396-019-0542-5 534 

19.  Baldauf SL. An overview of the phylogeny and diversity of eukaryotes. Journal of Systematics and Evolution. 535 

2008;46(3):263.  536 

20.  Lewis WH, Tahon G, Geesink P, Sousa DZ, Ettema TJG. Innovations to culturing the uncultured microbial 537 

majority. Nature Reviews Microbiology [Internet]. 2020 Oct 22; Available from: 538 

https://doi.org/10.1038/s41579-020-00458-8 539 

21.  Steele JA, Countway PD, Xia L, Vigil PD, Beman JM, Kim DY, et al. Marine bacterial, archaeal and protistan 540 

association networks reveal ecological linkages. The ISME Journal. 2011;5(9):1414–25.  541 

22.  Chow CET, Sachdeva R, Cram JA, Steele JA, Needham DM, Patel A, et al. Temporal variability and 542 

coherence of euphotic zone bacterial communities over a decade in the Southern California Bight. The ISME 543 

Journal. 2013;7(12):2259–73.  544 

23.  Chow CET, Kim DY, Sachdeva R, Caron DA, Fuhrman JA. Top-down controls on bacterial community 545 

structure: microbial network analysis of bacteria, T4-like viruses and protists. The ISME Journal. 546 

2014;8(4):816–29.  547 

24.  Needham DM, Sachdeva R, Fuhrman JA. Ecological dynamics and co-occurrence among marine 548 

phytoplankton, bacteria and myoviruses shows microdiversity matters. The ISME Journal. 2017;11(7):1614–549 

29.  550 

25.  Krabberød AK, Deutschmann IM, Bjorbækmo MFM, Balagué V, Giner CR, Ferrera I, et al. Long-term patterns 551 

of an interconnected core marine microbiota. Environmental Microbiome. 2022 May 7;17(1):22.  552 

26.  Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, et al. Determinants of community structure 553 

in the global plankton interactome. Science. 2015;348(6237):1262073.  554 

27.  Milici M, Deng ZL, Tomasch J, Decelle J, Wos-Oxley ML, Wang H, et al. Co-occurrence Analysis of 555 

Microbial Taxa in the Atlantic Ocean Reveals High Connectivity in the Free-Living Bacterioplankton. 556 

Frontiers in Microbiology. 2016;7:649.  557 

28.  Chaffron S, Delage E, Budinich M, Vintache D, Henry N, Nef C, et al. Environmental vulnerability of the 558 

global ocean epipelagic plankton community interactome. Sci Adv. 2021 Aug;7(35).  559 

29.  Arístegui J, Gasol JM, Duarte CM, Herndld GJ. Microbial oceanography of the dark ocean’s pelagic realm. 560 

Limnology and Oceanography. 2009;54(5):1501–29.  561 

30.  Shade A, Handelsman J. Beyond the Venn diagram: the hunt for a core microbiome. Environmental 562 

Microbiology. 2012;14(1):4–12.  563 

31.  Coutinho FH, Meirelles PM, Moreira APB, Paranhos RP, Dutilh BE, Thompson FL. Niche distribution and 564 

influence of environmental parameters in marine microbial communities: a systematic review. PeerJ. 2015 565 

Jun;3:e1008.  566 

32.  Mandakovic D, Rojas C, Maldonado J, Latorre M, Travisany D, Delage E, et al. Structure and co-occurrence 567 

patterns in microbial communities under acute environmental stress reveal ecological factors fostering 568 

resilience. Scientific Reports. 2018;8(1):5875.  569 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2022. ; https://doi.org/10.1101/2021.07.12.451729doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.12.451729
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 24 of 29 

 

33.  Deutschmann IM, Krabberød AK, Latorre F, Delage E, Marrasé C, Balagué V, et al. Disentangling temporal 570 

associations in marine microbial networks. bioRxiv. 2022 Jan 1;2021.07.13.452187.  571 

34.  Ruiz-González C, Mestre M, Estrada M, Sebastián M, Salazar G, Agustí S, et al. Major imprint of surface 572 

plankton on deep ocean prokaryotic structure and activity. Molecular Ecology. 2020;29(10):1820–38.  573 

35.  Hansell DA, Carlson CA. Deep-ocean gradients in the concentration of dissolved organic carbon. Nature. 1998 574 

Sep 1;395(6699):263–6.  575 

36.  Royo-Llonch M, Sánchez P, Ruiz-González C, Salazar G, Pedrós-Alió C, Sebastián M, et al. Compendium of 576 

530 metagenome-assembled bacterial and archaeal genomes from the polar Arctic Ocean. Nature 577 

Microbiology. 2021 Dec 1;6(12):1561–74.  578 

37.  Boeuf D, Edwards BR, Eppley JM, Hu SK, Poff KE, Romano AE, et al. Biological composition and microbial 579 

dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc Natl 580 

Acad Sci USA. 2019 Jun 11;116(24):11824.  581 

38.  McClain CR, Schlacher TA. On some hypotheses of diversity of animal life at great depths on the sea floor. 582 

Marine Ecology. 2015 Dec 1;36(4):849–72.  583 

39.  R. Hessler R, L. Sanders H. Faunal diversity in the deep-sea. Deep Sea Research and Oceanographic Abstracts. 584 

1967 Feb 1;14(1):65–78.  585 

40.  Acinas SG, Sánchez P, Salazar G, Cornejo-Castillo FM, Sebastián M, Logares R, et al. Deep ocean 586 

metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. 587 

Communications Biology. 2021 May 21;4(1):604.  588 

41.  Bochdansky AB, Clouse MA, Herndl GJ. Eukaryotic microbes, principally fungi and labyrinthulomycetes, 589 

dominate biomass on bathypelagic marine snow. ISME J. 2017 Feb;11(2):362–73.  590 

42.  Sebastián M, Sánchez P, Salazar G, Álvarez-Salgado XA, Reche I, Morán XAG, et al. The quality of dissolved 591 

organic matter shapes the biogeography of the active bathypelagic microbiome. bioRxiv. 2021 Jan 592 

1;2021.05.14.444136.  593 

43.  Pelve EA, Fontanez KM, DeLong EF. Bacterial Succession on Sinking Particles in the Ocean’s Interior. 594 

Frontiers in Microbiology [Internet]. 2017;8. Available from: 595 

https://www.frontiersin.org/articles/10.3389/fmicb.2017.02269 596 

44.  Coll M, Piroddi C, Steenbeek J, Kaschner K, Ben Rais Lasram F, Aguzzi J, et al. The biodiversity of the 597 

Mediterranean Sea: estimates, patterns, and threats. PLoS One. 2010 Aug 2;5(8):e11842.  598 

45.  Danovaro R, Company JB, Corinaldesi C, D’Onghia G, Galil B, Gambi C, et al. Deep-sea biodiversity in the 599 

Mediterranean Sea: the known, the unknown, and the unknowable. PLoS One. 2010 Aug 2;5(8):e11832.  600 

46.  Haro-Moreno JM, Rodriguez-Valera F, Rosselli R, Martinez-Hernandez F, Roda-Garcia JJ, Gomez ML, et al. 601 

Ecogenomics of the SAR11 clade. Environ Microbiol. 2020 May;22(5):1748–63.  602 

47.  Logares R, Rengefors K, Kremp A, Shalchian-Tabrizi K, Boltovskoy A, Tengs T, et al. Phenotypically 603 

different microalgal morphospecies with identical ribosomal DNA: a case of rapid adaptive evolution? Microb 604 

Ecol. 2007 May;53(4):549–61.  605 

48.  Větrovský T, Baldrian P. The Variability of the 16S rRNA Gene in Bacterial Genomes and Its Consequences 606 

for Bacterial Community Analyses. PLOS ONE. 2013 Feb 27;8(2):e57923.  607 

49.  Duarte CM. Seafaring in the 21St Century: The Malaspina 2010 Circumnavigation Expedition. Limnology and 608 

Oceanography Bulletin. 2015 Feb 1;24(1):11–4.  609 

50.  Martínez-Pérez AM, Osterholz H, Nieto-Cid M, Álvarez M, Dittmar T, Álvarez-Salgado XA. Molecular 610 

composition of dissolved organic matter in the Mediterranean Sea. Limnology and Oceanography. 2017 Nov 611 

1;62(6):2699–712.  612 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2022. ; https://doi.org/10.1101/2021.07.12.451729doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.12.451729
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 25 of 29 

 

51.  Ruiz-González C, Logares R, Sebastián M, Mestre M, Rodríguez-Martínez R, Galí M, et al. Higher 613 

contribution of globally rare bacterial taxa reflects environmental transitions across the surface ocean. 614 

Molecular Ecology. 2019 Apr 1;28(8):1930–45.  615 

52.  Pernice MC, Giner CR, Logares R, Perera-Bel J, Acinas SG, Duarte CM, et al. Large variability of 616 

bathypelagic microbial eukaryotic communities across the world’s oceans. The ISME Journal. 2016 Apr 617 

1;10(4):945–58.  618 

53.  Salazar G, Cornejo-Castillo FM, Benítez-Barrios V, Fraile-Nuez E, Álvarez-Salgado XA, Duarte CM, et al. 619 

Global diversity and biogeography of deep-sea pelagic prokaryotes. The ISME Journal. 2016 Mar 1;10(3):596–620 

608.  621 

54.  Sanz-Sáez I. Contribution of marine heterotrophic cultured bacteria to microbial diversity and mercury 622 

detoxification. 2021; Available from: http://hdl.handle.net/10261/233620 623 

55.  Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine 624 

microbiomes with mock communities, time series and global field samples. Environmental Microbiology. 2016 625 

May 1;18(5):1403–14.  626 

56.  Stoeck T, Bass D, Nebel M, Christen R, Jones MDM, Breiner HW, et al. Multiple marker parallel tag 627 

environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. 628 

Molecular Ecology. 2010 Mar 1;19(s1):21–31.  629 

57.  Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample 630 

inference from Illumina amplicon data. Nature Methods. 2016;13(7):581–3.  631 

58.  Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database 632 

project: improved data processing and web-based tools. Nucleic Acids Research. 2012;41(D1):D590–6.  633 

59.  Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database 634 

(PR$^2$): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic 635 

Acids Research. 2012;41(D1):D597–604.  636 

60.  Sebastián M, Ortega-Retuerta E, Gómez-Consarnau L, Zamanillo M, Álvarez M, Arístegui J, et al. 637 

Environmental and physical barriers drive the basin-wide spatial structuring of Mediterranean Sea and adjacent 638 

Eastern Atlantic Ocean prokaryotic communities. Submitted. 2021;  639 

61.  Boyer TP, Antonov JI, Baranova OK, Garcia HE, Johnson DR, Mishonov AV, et al. World ocean database 640 

2013. National Oceanographic Data Center (U.S.) OCL, editor. 2013; Available from: 641 

https://repository.library.noaa.gov/view/noaa/1291 642 

62.  Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome Datasets Are Compositional: And 643 

This Is Not Optional. Frontiers in Microbiology. 2017;8:2224.  644 

63.  Tackmann J, Rodrigues JFM, von Mering C. Rapid Inference of Direct Interactions in Large-Scale Ecological 645 

Networks from Heterogeneous Microbial Sequencing Data. Cell Systems. 2019;9(3):286-296.e8.  646 

64.  Deutschmann IM, Lima-Mendez G, Krabberød AK, Raes J, Vallina SM, Faust K, et al. Disentangling 647 

environmental effects in microbial association networks. Microbiome. 2021 Nov 26;9(1):232.  648 

65.  Bastian M, Heymann S, Jacomy M. Gephi: An Open Source Software for Exploring and Manipulating 649 

Networks. ICWSM [Internet]. 2009 Mar 19 [cited 2021 Mar 30];3(1). Available from: 650 

https://ojs.aaai.org/index.php/ICWSM/article/view/13937 651 

66.  Fruchterman TMJ, Reingold EM. Graph drawing by force-directed placement. Software: Practice and 652 

Experience. 1991 Nov 1;21(11):1129–64.  653 

67.  Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal. 2006;Complex 654 

Systems:1695.  655 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2022. ; https://doi.org/10.1101/2021.07.12.451729doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.12.451729
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 26 of 29 

 

68.  Espejo R, Mestre G, Postigo F, Lumbreras S, Ramos A, Huang T, et al. Exploiting graphlet decomposition to 656 

explain the structure of complex networks: the GHuST framework. Scientific Reports. 2020;10(1):12884.  657 

69.  Pržulj N, Corneil DG, Jurisica I. Modeling interactome: scale-free or geometric? Bioinformatics. 658 

2004;20(18):3508–15.  659 

70.  Yaveroǧlu ÖN, Malod-Dognin N, Davis D, Levnajic Z, Janjic V, Karapandza R, et al. Revealing the Hidden 660 

Language of Complex Networks. Scientific Reports. 2014;4(1):4547.  661 

71.  Prim RC. Shortest connection networks and some generalizations. The Bell System Technical Journal. 1957 662 

Nov;36(6):1389–401.  663 

72.  McInnes L, Healy J, Saul N, Grossberger L. UMAP: Uniform Manifold Approximation and Projection. The 664 

Journal of Open Source Software. 2018;3(29):861.  665 

73.  McInnes L, Healy J, Astels S. hdbscan: Hierarchical density based clustering. The Journal of Open Source 666 

Software. 2017;2(11):205.  667 

  668 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2022. ; https://doi.org/10.1101/2021.07.12.451729doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.12.451729
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 27 of 29 

 

FIGURES AND TABLES 669 

 670 

Figure 1: Sampling scheme. Location, number, and depth range of samples from the epipelagic 671 

zone including surface and DCM layers, the mesopelagic zone, and the bathypelagic zone from the 672 

global tropical and subtropical ocean, and the Mediterranean Sea. 673 

 674 

Figure 2: Spatial recurrence. (A) Association prevalence showing the fraction of subnetworks in 675 

which an association appeared considering all depth layers across the global tropical and subtropical 676 

ocean and the Mediterranean Sea. Associations that occurred more often (black) appeared in the 677 

middle of the single static network visualization. Most edges had a low prevalence (blue) <20%. 678 

(B) The sample-specific subnetworks of the four depth layers (rows): surface (SRF), DCM, 679 

mesopelagic (MES), and bathypelagic (BAT), in the five oceanic basins and the Mediterranean Sea 680 

(columns). The histograms show the association prevalence within each depth layer and region 681 

(excluding absent associations, i.e., 0% prevalence). The number of samples appears in the upper 682 

left corner, the number of edges with a prevalence >0% in the upper right corner, and the depth 683 

range in the lower right corner (in m below surface). Note that the prevalence goes up to 100% in 684 

(B) vs. 66.5% in (A). 685 

 686 

Figure 3: Highly prevalent associations for each region and depth layer. If an association 687 

appears in more than 70% of the subnetworks it is classified as highly prevalent. Rows indicate the 688 

four depth layers: surface (SRF), DCM, mesopelagic (MES), and bathypelagic (BAT). The number 689 

of samples appears in the upper left corner, the number of edges in the upper right corner, and the 690 

depth range in the lower right corner (in m below surface). 691 

 692 

Figure 4: Classification of associations. We classified association into global (>70% prevalence, 693 

not considering the MS), prevalent (≤70% and >50%, not considering the MS), low-frequency 694 

(≤50%  and >20%, not considering the MS), regional, and other. Regional associations are assigned 695 

to one of six ocean regions (five ocean basins and the Mediterranean Sea). The number (A) and 696 

fraction (B) of each type of association are shown for each depth layer: surface (SRF) and DCM 697 

(epipelagic), mesopelagic (MES) and bathypelagic (BAT). Color indicates the type of 698 

classification. The associations have been classified into the five types based on their prevalence in 699 

each region. The prevalence of associations is shown in (C). For instance, global associations have 700 

a prevalence above 70% in each region (not considering the MS). Regional associations are present 701 
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in one region (indicated with yellow with mainly low prevalence >0%) and absent in all other 702 

regions (0% prevalence not shown in graph). 703 

 704 

Figure 5: Microbial associations across depth layers. For each region and taxonomic domain, 705 

we color associations based on when they first appeared: surface (S, yellow), DCM (D, orange), 706 

mesopelagic (M, red), and bathypelagic (B, black). The SRF bar contains the associations that 707 

appeared in the surface. If they also appeared in the DCM, they are listed on the left box of the 708 

DCM bar. However, if they were not found in the DCM layer, i.e., they were absent, they appear 709 

on the right transparent box of the bar. That is, absent ASVs are grouped in the transparent box at 710 

the end of the DCM, MES, and BAT bars. Columns show associations between archaea (Arc), 711 

bacteria (Bac), and eukaryotes (Euk). 712 

 713 

Figure 6: Minimal Spanning Tree. Each subnetwork is a node in the MST and represents a 714 

sample. Nodes are colored according to (A) the sample’s depth layer, (B) the sample’s ocean region, 715 

(C) the subnetworks cluster, and (D) selected environmental factors. In (C), the barplots indicate 716 

the different layers within each cluster colored as in (A). 717 

 718 

Table 1: Number of classified associations per depth layer. The sum of classified associations (including Other) is the number 719 
of present associations. Absent associations appear in other layers but in no subnetwork of a given layer. Global, prevalent, and 720 

low-frequency associations have been computed with and without considering the MS. The proportion of regional associations 721 
increased with depth (gray row). 722 

Depth layer Epipelagic (Surface) Epipelagic (DCM) Mesopelagic Bathypelagic 

Global 26 (0.14%) 23 (0.31%) 21 (0.20%) - 

Prevalent 22 (0.12%) 47 (0.64%) 10 (0.10%) 7 (0.07%) 

Low-frequency 105 (0.58%) 160 (2.17%) 212 (2.05%) 51 (0.51%) 

Global (no MS) 86 (0.47%) 52 (0.70%) 28 (0.27%) 9 (0.09%) 

Prevalent (no MS) 207 (1.14%) 76 (1.03%) 27 (0.26%) 28 (0.28%) 

Low-frequency (no MS) 1361 (7.46%) 219  (2.97%) 342 (3.30%) 489 (4.84%) 

Regional 2014 (11.05%) 2290 (31.03%) 3420 (33.00%) 3669 (36.33%) 

MS 596 (3.27%) 1295 (17.55%) 2254 (21.75%) 1217 (12.05%) 

NAO 577 (3.16%) 306 (4.15%) 422 (4.07%) 1522 (15.07%) 

SAO 162 (0.89%) 304 (4.12%) 301 (2.90%) 143 (1.42%) 

SPO 152 (0.83%) 105 (1.42%) 40 (0.39%) 109 (1.08%) 

NPO 298 (1.63%) 133 (1.80%) 204 (1.97%) 516 (5.11%) 

IO 229 (1.26%) 147 (1.99%) 199 (1.92%) 162 (1.60%) 

Other* 16067 (88.12%) 4860 (65.85%) 6701 (64.66%) 6372 (63.10%) 

Other (no MS)* 14566 (79.88%) 4743 (64.27%) 6547 (62.17%) 55904 (58.46%) 

Present 18234 (100%) 7380 (100%) 10364 (100%) 10099 (100%) 

Absent 10884 21738 18754 19019 

*The number of unclassified (Other) associations is computed from present, regional, global, prevalent, and low-frequency associations. The last 723 
three classifications have been done with and without the MS, and subsequently the number of unclassified (other) associations varies. 724 
  725 
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Table 2: Used datasets. We required that each sample had to provide data for both eukaryotes and prokaryotes, which resulted 726 
in 397 samples. This condition allowed only 13 MalaDeep samples. 16S and 18S refer to sequenced samples. 727 

Dataset Samples 
used for 
analysis 

Stations Depth 
range 

(m) 

Water 
samples 

Size 
Fraction 

(µm) 

16S 18S Reference ENA accession 
number 

Malaspina 
 

       (5,51)      

MalaSurf 122 120 3 122 0.2-3 122 124 (5,51) PRJEB23913 [18S 
rRNA genes], 

PRJEB25224 [16S 
rRNA genes] 

 
MalaVP 83 13 3-4000 91 0.2-3 91 83 (14) & This 

study 
PRJEB23771 [18S 

rRNA genes], 
PRJEB45015 [16S 

rRNA genes] 
 

MalaDeep 
(Prok*) 

13 30 ~4000 60 0.2-0.8 41 - (54) PRJEB45011 

MalaDeep 
(Euk*) 

13 27 2400-
4000 

27 0.8-20 - 82 This study PRJEB45014 

Hotmix 179 29 3-4539 188 0.2-3 188 179 (60) PRJEB44683 
[18S rRNA genes], 
PRJEB44474 [16S 

rRNA genes] 

*Prok - prokaryotes; Euk - eukaryotes 728 
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