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Abstract 42 

Satellite remote sensing from space is a powerful way to monitor the global dynamics of 43 

marine plankton. Previous research has focused on developing models to predict the size or 44 

taxonomic groups of phytoplankton. Here we present an approach to identify representative 45 

communities from a global plankton network that included both zooplankton and 46 

phytoplankton and using global satellite observations to predict their biogeography. Six 47 

representative plankton communities were identified from a global co-occurrence network 48 

inferred using a novel rDNA 18S V4 planetary-scale eukaryotic metabarcoding dataset. 49 

Machine learning techniques were then applied to train a model that predicted these 50 

representative communities from satellite data. The model showed an overall 67% accuracy 51 

in the prediction of the representative communities. The prediction based on 17 satellite-52 

derived parameters showed better performance than based only on temperature and/or the 53 

concentration of chlorophyll a. The trained model allowed to predict the global 54 

spatiotemporal distribution of communities over 19-years. Our model exhibited strong 55 

seasonal changes in the community compositions in the subarctic-subtropical boundary 56 

regions, which were consistent with previous field observations. This network-oriented 57 

approach can easily be extended to more comprehensive models including prokaryotes as 58 

well as viruses. 59 

 60 

Introduction 61 

Monitoring the global dynamics of marine plankton is essential to understand the function of 62 

marine microbial ecosystem and its interaction and evolution with climate change. It can also 63 

facilitate the discovery of new plankton species. However, it is impossible to obtain global 64 

plankton samples at high spatial and temporal density using research ships alone due to the 65 

extent of the ocean. Regular and global remote sensing using satellites can potentially be used 66 
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to solve this problem. Because plankton pigments absorb light, the spectrum of light reflected 67 

from the ocean surface that is observed by satellites (remote sensing reflectance) has a 68 

specific relationship with the plankton composition. Environmental parameters such as sea 69 

surface temperature (SST) are also related with the plankton composition [1]. 70 

 Several models for predicting plankton community satellite-derived data have been 71 

developed over the past decades [2, 3]. Most of them focused on phytoplankton because these 72 

species contain pigments, such as chlorophylls, carotenoids, and phycobilins, to capture light 73 

energy for photosynthesis [4]. The abundances of three size classes, micro-phytoplankton (> 74 

20 µm), nano-phytoplankton (2–20 µm) and pico-phytoplankton (0.2–2 µm), can be 75 

predicted with simple models only integrating the concentration of chlorophyll a ([Chl]), 76 

which is the core of the photosynthetic unit [5–7]. More advanced models have also been 77 

developed to predict size classes using remote sensing reflectance [8–11]. The abundance of 78 

taxonomic groups of phytoplankton is another target of predictive models. The abundance of 79 

diatoms, prymnesiophytes (haptophytes), green algae and Prochlorococcus can be predicted 80 

using [Chl] [5]. Another model named PhytoDOAS uses remote sensing reflectance data at 81 

high spectral resolution for predicting the abundance of coccolithophores, dinoflagellates, 82 

cyanobacteria, and diatoms [12, 13]. Some models have been developed to predict the 83 

dominant size or taxonomic groups rather than the abundance [14–16]. One of this type of 84 

models named PHYSAT can predict communities dominated by diatoms, haptophytes, 85 

Prochlorococcus and Synechococcus defined by pigment concentration ratio [14, 15]. 86 

Another model has been developed to predict the distribution of the biogeochemical 87 

provinces [17]. However, zooplankton abundances have remained difficult to predict from 88 

satellite-derived data as they do not perform photosynthesis and tend to be transparent [18]. 89 

Nevertheless, some copepods harbor the carotenoid astaxanthin and their swarms can be 90 

observed from space [19]. 91 
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 These previous methods present a limitation regarding the numbers of defined 92 

plankton groups, as most of them are based on empirical relationships between pigments and 93 

light absorption. Even though these methods allow to provide a synoptic view on the 94 

spatiotemporal extent of the main groups of phytoplankton, they are lacking taxonomic 95 

resolution and do not reproduce the complexity of a planktonic community. In order to tackle 96 

this point, here, we present a machine learning trained model for global satellite observations 97 

of the representative communities as captured by a global ocean plankton network. Its targets 98 

are mixed auto-, hetero- and mixotrophic protist communities delineated from rDNA 18S V4 99 

metabarcoding data at a high taxonomic resolution. Our approach is a network-oriented one, 100 

which was inspired by the Bayesian network model used to predict the metabarcoding-based 101 

bacterial composition in the English Channel [20]. There are two difficulties in predicting the 102 

species composition directly from satellite-derived data. The first difficulty is the substantial 103 

number of response variables as compared to predictor variables. There are hundreds of 104 

thousands of species represented in the metabarcoding dataset but only nine bands of visible 105 

light acquired by multispectral sensors are available as predictor variables. The second 106 

difficulty is the small number of samples. In this study, we used the largest available 107 

compilation of eukaryotic metabarcoding data, complemented with a novel sequence data 108 

from the Tara Oceans expeditions, but only a few hundred samples were available for 109 

analysis after appropriate filtration. By focusing on ecological networks, these two 110 

difficulties were alleviated by reducing the number of variables (dimensionality) in the 111 

metabarcoding data. Ecological networks tend to be structured, and are non-randomly 112 

assembled  [21]. Indeed, a previous study showed through an unsupervised approach for 113 

community delineation that the global plankton network is self-organized by marine biomes 114 

[22]. We took advantage of this property of plankton networks to reduce dimensionality and 115 

convert the problem into a multiclass prediction. 116 
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 117 

Materials and Methods 118 

 119 

Satellite data 120 

Ocean color data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) 121 

on board the Aqua and the Terra satellites were used in this study. Level-3 data, mapped to a 122 

5� (ca. 9 km on the Equator) square monthly grid, were downloaded from the Ocean Color 123 

Web operated by NASA (https://oceancolor.gsfc.nasa.gov/). The data included 17 parameters 124 

consisting of remote sensing reflectance (Rrs(λ)) from 10 visible light wavelengths (412, 443, 125 

469, 488, 531, 547, 555, 645, 667, and 678 nm), six environmental parameters derived from 126 

Rrs ([Chl], diffuse attenuation coefficient for downwelling irradiance at 490 nm, particulate 127 

organic/inorganic carbon concentration, photosynthetically available radiation, and 128 

normalized fluorescence line height), and SST based on infrared measurements. The data 129 

were acquired from January 2003 to December 2021. To reduce the number of missing 130 

values, the data from both satellites were used. In case the values from both satellites were 131 

available for a grid, averaged values were used because they were well correlated (Fig. S1). 132 

 133 

Two-dimensional (2-D) projection of satellite-derived parameters 134 

To capture the range of all possible satellite-derived parameter values, a 2-D projection was 135 

performed by randomly selecting grid cells. Twenty thousand grid cells were randomly 136 

selected from all the 5� square grids. After removing grid cells on land or in coastal regions 137 

and those with missing data, 8,419 grid cells remained (Fig. S2). A sampling month was 138 

randomly selected from 120 months (January 2009 to December 2018) for each grid cell. The 139 

satellite-derived parameters for these randomly selected grid cells and months were 140 

standardized by subtracting the mean and scaling to unit variance. Finally, the 8,419 points 141 
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with the 17 parameters were projected onto a 2-D map by Uniform Manifold Approximation 142 

and Projection (UMAP) using the Python package umap-learn [23]. 143 

 144 

Metabarcoding data 145 

Amplicon sequence data (837 127 965 million reads) targeting 18S V4 regions from 1 011 146 

samples (1 191 datasets) collected through the Tara Oceans expeditions were generated and 147 

registered under the EMBL/EBI-ENA EukBank project. Raw sequencing data were 148 

downloaded from the EMBL/EBI-ENA EukBank umbrella project in their native format. 149 

When applicable, reads were merged and trimmed (vsearch [24], cutadapt [25]) to cover the 150 

18S V4 region, as defined by the primers TAReuk454FWD1 and TAReukREV3, resulting in 151 

347 327 830 unique sequences, representing 1 672 099 024 reads. After clustering (swarm 152 

[26], chimera detection (uchime [27]), quality-based filtering, and post-treatments based on 153 

occurrence patterns (swarm, lulu [28]; https://github.com/frederic-mahe/mumu), 154 

representative sequences were pairwise compared to the 18S rDNA database EukRibo [29], 155 

using a global pairwise alignment approach (usearch_global vsearch’s command), and 156 

taxonomically assigned to their best hit (https://github.com/frederic-mahe/stampa/). The 157 

filtered occurrence table contains 460 147 swarms (here after referred to as amplicon 158 

sequence variants (ASVs)), representing 1 403 019 176 reads, collected from 15 562 samples. 159 

 As for the usage of the EukBank occurrence table for the analysis, the raw number of 160 

reads was rarefied to 10 000 reads per sample. A total of 1 715 samples from the ocean 161 

surface (depth < 10 m) with spatiotemporal metadata were retained. These came from several 162 

ocean sampling projects such as Tara Oceans [1], Malaspina [30], and Australian 163 

Microbiome [31]. Occurrences in sequencing replicates from Tara Oceans were averaged. 164 

Samples from Tara Oceans were size fractioned into several classes (e.g. 0.8–5, 5-20, 20-180, 165 

and 180-2000 µm), but most samples from other projects were not size fractioned (0.2-3 µm 166 
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or > 0.2 µm). The samples from four size fractions mainly targeting piconano-plankton (0.2–167 

3 µm, > 0.2 µm, 0.8–5 µm, and > 0.8 µm) were relatively similar in taxonomic composition 168 

(Fig. S3) and were used in this study to maximize the number of samples available for 169 

analysis. They were averaged inside each of the 653 bins that match one-by-one with the 5� 170 

square monthly satellite data grid. Although more than one sample from different size 171 

fractions, sampling locations and times were assigned to a single bin, samples in a same bin 172 

were more similar compared to samples from different bins (Fig. S4). Hereafter, we call these 173 

bins “samples”. 174 

 175 

Spatial resampling 176 

A total of 653 metabarcoding samples from previous processing were further filtered using 177 

the following procedure. Samples with missing satellite data values owing to bad weather or 178 

other reasons were removed. Samples from locations where the sea floor was shallower than 179 

200 m were classified as coastal samples and were removed following previous 180 

recommendations [32] using a global relief model [33]. Samples were thinned so that they 181 

were separated by a minimum of 200 km from each other, using the R package spThin [34]. 182 

This procedure resulted in 177 samples available for analysis (Fig. S5). 183 

 184 

Network inference 185 

ASVs were selected by their occurrence to reduce the number of ASVs to those similar to 186 

previous studies that analyzed network structures [35, 36]. Two hundreds and eight ASVs 187 

with a minimum occurrence larger than 0.2% (20 reads) in at least 10% of samples (18 188 

samples) were retained (Figs. S6). ASV read counts were centered log-ratio (clr) transformed 189 

[37]. An ecological network was inferred based on co-occurrence patterns using the Julia 190 

package FlashWeave [38] with the settings “heterogeneous=False”, “sensitive=True”, and 191 
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“alpha=0.05” as in previous studies [38, 39]. FlashWeave is a package for calculating partial 192 

Pearson’s correlation coefficient between ASV pairs using a recursive approach. The nodes 193 

in the obtained network were ASVs, and the edges were made based on correlations between 194 

ASV pairs. Only positive correlations (edges) were considered here. For network community 195 

detection in the network, Fast Greedy, Infomap, Label Propagation, Leading Eigenvector, 196 

Leiden, Louvain, Spinglass, and Walktrap algorithms were applied using the R package 197 

“igraph” (https://igraph.org/). To measure the structure of the detected community division, 198 

we used the modularity index Q as defined by the following equation: 199 

� � 1
2�� ��	
, �
 � ����

2� �
�,�

�	��, ��
 

where u, v are nodes (ASVs), �	
, �
 is an edge weight (partial correlation coefficient) 200 

between u and v, S is the sum of all edge weights, ku is a weighted degree of node u, Cu is a 201 

community to which node u belongs, and �	�, �
 is 1 if x=y and 0 otherwise [40]. 202 

 203 

Edge satisfaction 204 

We defined an “edge satisfaction index” to determine which community dominated each 205 

sample. If C is a community and i is a sample, then the edge satisfaction index of C and i is 206 

defined by 207 

���,� �� �	
, �
min���	

, ��	�
�
�,���

� �	
, �
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�  

where u, v are nodes, �	
, �
 is an edge weight between u and v, ��	

 is a weight of node u, 208 

which is the sigmoid transformation of the clr-transformed read count of ASV u in sample i. 209 

Briefly, this index measures the ratio of the number of edges between existing nodes in a 210 

given sample and the number of all the edges within a given community. The nodes and 211 

edges have a weight between 0 to 1 (because only positive correlations were considered). The 212 

edge satisfaction index is thus also between 0 to 1. 213 
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 214 

Machine learning and cross-validation 215 

Several machine learning algorithms were used to train predictive models of the 216 

representative community based on satellite-derived data. In addition to the satellite-derived 217 

parameters, spatial parameters (longitude and latitude) were also tested for their ability in the 218 

prediction. The sine and cosine of the longitude were used as independent parameters 219 

because it is circular (−180° and 180° are the same). K-nearest Neighbors, Naïve Bayes, 220 

Multilayer Perceptron, Random Forest, and Support Vector Machine (SVM) were applied 221 

using the Python package “scikit-learn” (https://scikit-learn.org/). In the training process for 222 

all the methods except Random Forest, the satellite-derived and spatial parameters were 223 

standardized by subtracting the mean and scaling to unit variance. The hyperparameters that 224 

were tuned with the grid search are shown in Table S1. Both leave-one-out cross-validation 225 

and buffered cross-validation [41] were used to measure the model accuracy. In the buffered 226 

cross-validation, a test sample is chosen like leave-one-out, but samples inside a buffer region 227 

among the test sample were excluded from training samples. The buffer was set to 2,000 km 228 

radius. In each fold of the training, hyperparameters were chosen with exhaustive search 229 

using the implementation of grid search in scikit-learn. The class prediction output of each 230 

method was used to measure accuracy, and output probabilities were used to calculate the 231 

receiver operating characteristic (ROC) curve. 232 

 233 

Time series prediction 234 

The predictive model was trained again with all 177 samples. A 5-fold grid search was used 235 

to choose hyperparameters. To reduce the computational cost, a grid cell at the center of each 236 

12 by 12 grids square was chosen. In other words, a grid cell was chosen per every 1° square 237 
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monthly grid cells because the original grid is 5� square. The trained model was applied to 238 

this 1° square grid data set for January 2003 to December 2021. 239 

 240 

Results 241 

 242 

2-D map of points with 17 satellite-derived parameters 243 

We generated a 2-D map of points with 17 satellite-derived parameters using UMAP to 244 

observe the parameter ranges (Fig. 1). More than eight thousand points were used to train 245 

UMAP. These points were randomly selected from all possible locations and times to 246 

document the shape of the “continents” in UMAP, which represent the possible range of 247 

values of the satellite parameters (Fig. S2). Points associated with the EukBank 248 

metabarcoding samples were scattered among most of the regions in the UMAP continents 249 

(excluding a region indicated by an arrow). This result indicates that the metabarcoding data 250 

covered a wide range of the parameter space and are suitable for being analyzed in terms of 251 

their relationship with satellite data, although the number of samples was not large. 252 

 253 

Network inference and community detection 254 

The ecological network based on ASV co-occurrence patterns was inferred using the 255 

FlashWeave algorithm. In the network, 560 positive edges (correlation coefficients > 0) 256 

between 208 ASVs were detected (Fig. 2A). We applied several community detection 257 

algorithms on the network. The communities detected by Leiden and Spinglass algorithms 258 

had the highest modularity index (0.55) (Fig. S7). In the following analysis, the communities 259 

detected by the Leiden algorithm [42] were used because it captured the macro structure 260 

better than the others (i.e., there were no small communities) (Fig. S7). Among the six 261 

detected communities, community 1 was well separated from the other five communities, 262 
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which formed one super community having highly aggregated community structure (Fig. 263 

2B). In the super community, communities 2 and 5 were strongly connected with 264 

communities 3 and 6, respectively (Fig. 2B). 265 

 The taxonomic breakdown of each community is shown in Table 1 and Fig. S8. The 266 

well-separated community 1 mainly consisted of Dinoflagellata (mainly Dinophyceae), but 267 

Dictyochophyceae (silicoflagellates) and Prymnesiophyceae (haptophytes) were also 268 

included. Other five communities had different characteristics in terms of taxonomy. 269 

Communities 5 and 6 were dominated by Dinoflagellata (mainly MALV-I and MALV-II), 270 

but communities 2 and 3 contained some Arthropoda. Community 4 consisted of half 271 

Dinoflagellata and half a variety of other taxa. See Data S1 for taxonomic annotation and 272 

assigned community for each ASVs. 273 

 274 

Representative community of samples 275 

The newly proposed edge satisfaction index was used to measure the completeness of the 276 

communities in each sample (see methods). Briefly, this index is one in case all edges within 277 

a given community exist, and it is zero in case no edges exist. Fig. 3A shows the edge 278 

satisfaction index of all the samples and communities. Notably, community 1 was an 279 

exclusively assigned community for some of the samples. The community with the highest 280 

edge satisfaction index was considered as the representative community of the sample. The 281 

geographic distribution of the representative communities is shown in Fig. 3B. Community 1 282 

was associated with high latitude regions, including the Arctic and the Southern Oceans. 283 

Communities 3 and 6 were mainly seen in tropical regions of the Pacific and the Indian 284 

Oceans, respectively. The other three communities were associated with mid-latitude regions. 285 

 In the 2-D map of satellite parameter space, samples formed clusters of representative 286 

communities (Fig. S9). For example, communities 1 and 5 dominated the bottom of the small 287 
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and large continents of the map, respectively. This distribution implies a relationship between 288 

the satellite parameters and the representative communities. 289 

 290 

Prediction performance 291 

We applied several machine learning algorithms to classify the representative communities 292 

based on satellite parameters. Among five machine learning methods we used, SVM 293 

achieved the highest prediction accuracy and micro-average area under the ROC curve 294 

(ROC-AUC) (Table S2). Using leave-one-out cross-validation, the accuracy and the ROC-295 

AUC of SVM were 0.67 and 0.90, respectively (Figs. 4A and 4B). Using buffered cross-296 

validation, which excluded neighbors of a test sample from training samples, the measures 297 

were reduced to 0.54 and 0.83, respectively (Figs. 4C and 4D). 298 

We compared the prediction performance when different sets of satellite-derived and 299 

spatial parameters were used (Table 2, Figs S10 and S11). For the prediction only using 300 

spatial parameters (latitude and sine/cosine of longitude), the ROC-AUC dropped from 0.91 301 

to 0.59 (close to 0.50, i.e., random prediction) when we changed the cross-validation method 302 

from leave-one-out to buffered. In contrast, there was a small decrease from 0.90 to 0.83 for 303 

the prediction with the satellite-derived parameters. This result indicates the advantage of 304 

using satellite-derived parameters to classify the representative communities when spatial 305 

biases are appropriately controlled. The prediction performance with only SST or [Chl] was 306 

not as good compared to the one with all satellite-derived parameters, but it was improved 307 

when SST and [Chl] were combined. Adding other five environmental parameters to SST and 308 

[Chl] further improved the performance but it was still slightly worse than that with all 309 

satellite-derived parameters (including SST, environmental parameters and Rrs). 310 

 311 

Time series prediction 312 
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A full SVM model of community prediction was trained with all 177 samples. A 5-fold grid 313 

search selected the linear kernel and the L2 penalty parameter C=1.0 for the full model. The 314 

SST was the most important parameter in the full model, followed by photosynthetically 315 

available radiation, and several channels of Rrs (Fig. S12). The chosen threshold of the 316 

probabilistic output of SVM was 0.28, which gave the highest F1 score in cross-validation 317 

(Fig. S13). 318 

 We applied the full SVM model to predict a 19-year time series, from January 2003 to 319 

December 2021, of community distributions (Movie S1). The global community distributions 320 

in each season of year 2021 are shown in Fig. 5. Communities 1 and 5 are located at high- 321 

and mid-latitudes, respectively. Communities 3 and 6 are tropical. Community 2 fills the gap 322 

between communities 5 and 3. Community 4 shows the pattern related to warm currents. It is 323 

related to the region of the extensions of the Kuroshio and Gulf Stream in the late autumn and 324 

early winter of the northern hemisphere (November–January) and that of the Brazil, Agulhas, 325 

and East Australian Currents in the late autumn and early winter of the southern hemisphere 326 

(May–July). 327 

 328 

Discussion 329 

Here, representative plankton community networks inferred from rDNA 18S V4 global 330 

metabarcoding data from EukBank were successfully predicted from satellite data using a 331 

machine learning approach. The outputs of this model are the plankton communities in a way 332 

similar to the taxonomic group output of the PHYSAT model [15] rather than a quantitative 333 

abundance output like the PhytoDOAS model [12, 13]. Our method has two advantages over 334 

these latter models. First, the representative community output from our method included all 335 

the taxonomic range of microbial eukaryotes from phytoplankton and zooplankton to 336 

heterotrophic protists. There have been some attempts to capture zooplankton abundance 337 
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from satellite data [19, 43], but it is still difficult to capture a global view over the wide 338 

taxonomic range. Our network approach can be extended to prokaryotes and viruses (as they 339 

are strongly associated with eukaryotic communities [44, 45]), which are also difficult to 340 

observe from satellites due to their small size and lack of optical properties. 341 

Second, the output of our model was directly connected with the ASVs inferred from 342 

the metabarcoding data. An ASV is a unit with a high taxonomic resolution that is 343 

operationally treated as a “species”; thus, the representative communities integrate high 344 

taxonomic resolution information. For example, dinoflagellates were treated as one group in 345 

the PhytoDOAS model [12], whereas they were represented by 136 ASVs that were 346 

classified into one of the six different communities in this study (Table 1, Fig. S8 and Data 347 

S1). Although the high taxonomic resolution of metabarcoding data is fascinating, handling 348 

their limited number of samples and high dimensionality lead several limitations. We used 349 

only four size fractions mainly targeting piconano-plankton (0.2–3 µm, > 0.2 µm, 0.8–5 µm, 350 

and > 0.8 µm) to maximize the number of samples available for analysis. By this procedure, 351 

taxonomies only observed in larger size fractions (e.g. diatoms) were not included in the 352 

network (Fig. S3A). We choose the criteria of ASV selection and the resolution of 353 

community detection (e.g. resolution parameter of Leiden algorithm) to reduce the high 354 

dimensionality of the metabarcoding data. This choice of parameters naturally reduced the 355 

precision and true diversity of detected communities. A benchmarking test of community 356 

detection will overcome this limitation in the future. 357 

 Our results indicated that the performance of the prediction based on SST and [Chl] 358 

was relatively high (Table 2, Figs. S10 and S11). This is not unexpected as SST and [Chl] 359 

correlate with microbial community structure in the ocean [1]. We also showed that the 360 

prediction performance with all 17 satellite-derived parameters (including SST, 361 

environmental parameters and Rrs) was higher than with only on SST and/or [Chl] (Table 2, 362 
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Figs. S10 and S11). This result suggested the advantage of using additional environmental 363 

parameters and Rrs to predict communities, but the improvement of the performance was not 364 

large. Hyperspectral Rrs from future global satellite missions such as PACE [46] will likely 365 

improve prediction performance. 366 

 We used 177 samples (after an appropriate filtration), which was relatively small for 367 

applying a machine learning approach. This may explain why the linear SVM was the best 368 

predicting algorithm for our problem. More complex and nonlinear algorithms such as 369 

Multilayer Perceptron, Random Forest, and kernel SVM overfitted the training dataset during 370 

full model training (Fig. S14). Although it is not easy to increase the number of samples 371 

because of cost, labor, and weather limitations for sampling cruises, the current number, 372 

1,715 (and only 177 after binning and thinning) out of 10,772 samples contained in the 373 

metabarcoding dataset is quite limited. Thus, plankton samples from the ocean surface should 374 

be strategically collected in the future. The 2-D map of satellite-derived parameters for the 375 

ocean (Fig. 1) can provide guidance for such strategical guided sampling. If there is a one-to-376 

one connection between the satellite data and the microbial community assemblies, regions 377 

without EukBank samples in the map will relate to communities that have yet to be observed 378 

and will be an important target for future sampling. A region on the map indicated by an 379 

arrow is an example of this kind of unexplored region (Fig. 1). We found that this region is 380 

mainly consisted of points associated with high latitudinal regions of the southern hemisphere 381 

and the North Pacific Ocean (Fig. S15). 382 

 The time series prediction of communities using the trained model revealed the 383 

spatiotemporal distribution of each community (Fig. 5 and Video S1). Generally, community 384 

distributions had a rough correspondence with Longhurst biomes [47] (Fig. S16). Community 385 

1 corresponded with the “polar” biome, community 5 corresponded with the “westerlies” 386 

biome, and communities 3 and 6 corresponded with the “trades” biome. The same 387 
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distribution can be seen in the representative community of each sample used to train the 388 

model (Fig. 3B). Considering the latitudinal self-organization previously observed and 389 

described in plankton community networks [22], this correspondence showed that the newly 390 

proposed edge satisfaction index could appropriately capture the representative communities. 391 

Community 4 had a seasonal spatiotemporal distribution possibly related to the extensions of 392 

the western boundary currents (Fig. 5 and Video S1). A previous study showed that seasonal 393 

changes in environmental variables (phosphate, nitrate, silicate, and dissolved inorganic 394 

carbon) were the highest in the extension of the Kuroshio among other regions in the Pacific 395 

basin [48]. Furthermore, clear seasonal variations in the abundance of cyanobacterial 396 

diazotrophs were observed in the same region [49]. Community 4 connected the two well-397 

connected pairs (communities 2 and 3, 5 and 6) of the super community in the network (Fig. 398 

2B) and had relatively high taxonomic diversity (Table 1 and Fig. S8). In a simulation of 399 

emergent phytoplankton in the ocean, areas downstream of the western boundary currents 400 

showed high species diversity [50]. The target of our model is the global spatiotemporal 401 

distribution of communities, while our network-based approach will be applicable to satellite 402 

observations of local ecosystems (e.g., Hawaii and Bermuda).  403 

 In this study, we inferred the ecological network of ASVs using a global 404 

metabarcoding dataset and identified six distinct communities. We applied SVM to train the 405 

predictive model of these communities based on satellite data and obtained an accuracy of 406 

67%. The spatiotemporal distribution of these communities was shown by applying the 407 

model to 19 years of global satellite data. Our model was able to predict communities that 408 

included phytoplankton, zooplankton, and heterotrophic protists. The network-oriented 409 

approach used in this study can be easily extended to identify the distribution of prokaryotes 410 

and viruses. Given the ability of the model to predict the spatiotemporal dynamics of 411 

plankton communities from space, our combined network-based and machine learning 412 
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approach provides a particularly useful tool to monitor and survey the impact of 413 

environmental and climate change on plankton communities at both local and global scale. 414 

 415 

Data Availability Statement 416 

Newly sequenced Tara Oceans 18S V4 data have been deposited to EMBL/EBI-ENA: 417 

PRJEB6610 (Tara Oceans), PRJEB9737 (TARA Oceans Polar Circle). 418 

 419 
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Table 1. Taxonomic breakdown of plankton communities. 
Taxogroup 1a Taxogroup 2a 1 2 3 4 5 6 Total 
Dinoflagellata Dinophyceae 16 16 3 3 6  44 
 MALV-I 4 1 6 7 19 6 43 
 MALV-II 5 1  6 15 11 38 
 MALV-III 2  4  1  7 
 MALV-V     1 3 4 
Metazoa Arthropoda 1 10 3    14 
 Cnidaria  3     3 
 Urochordata   1    1 
Ochrophyta Dictyochophyceae 2   1  1 4 
 Pelagophyceae 1      1 
 MOCH-2    1   1 
 Diatomeae   1    1 
Chlorophyta Mamiellophyceae 1   3   4 
 Chloropicophyceae   2    2 
Prymnesiophyceae  Prymnesiophyceae 3 1  1   5 
Radiolaria Acantharea  2     2 
 RAD-B-clade   1 1   2 
 Spumellaria      1 1 
MAST-01 MAST-01 1   2  2 5 
Picozoa Picozoa 2   1 2  5 
Sagenista MAST-04    2  2 4 
 MAST-07      1 1 
Cryptomonadales Cryptomonadales 2   1   3 
Opalozoa Nanomonadea    1  1 2 
 Bicosoecida     1  1 
core-kathablepharids core-kathablepharids 1  1    2 
Ciliophora Spirotrichea 1      1 
Centroplasthelida Centroplasthelida     1  1 
Unclassified Unclassified 1  1 2 2  6 

 Total 43 34 23 32 48 28 208 
a: Taxonomic level in the EukRibo. 
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Table 2. Comparison of prediction performance using different sets of satellite-
derived and spatial parameters. 
Support vector machine were used in all the parameter sets. 
Parameter set Leave-one-out cross-

validation 
Buffered cross-validation 

 Accuracy ROC-AUCa Accuracy ROC-AUCa 
All satellite-derived parameters 0.67 0.90 0.54 0.83 
Latitude, Longitudeb 0.68 0.91 0.29 0.59 
SST 0.40 0.79 0.28 0.72 
[Chl] 0.43 0.72 0.23 0.62 
SST, [Chl] 0.52 0.86 0.47 0.82 
SST, Environmental 
parameters 

0.58 0.88 0.50 0.83 

a: Micro-average area under the ROC curve. 
b: Sine and cosine of longitude were used as parameters. 
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Table S1. Machine learning methods and their hyperparameters. 
Method Scikit-learn 

implementation 
Hyperparameters 

K-nearest 
Neighbors 
 

sklearn.neighbors.KN
eighborsClassifier 

Number of neighbors (1, 2, …, 9) 

Naïve Bayes 
(Gaussian) 
 

sklearn.naive_bayes.
GaussianNB 

Smoothing papameter (10-4, 10-3, …, 103) 

Multilayer 
Perceptron (one 
hidden layer) 
 

sklearn.neural_networ
k.MLPClassifier 

Activation function (identity, logistic, tanh, 
ReLU), Hidden layer size (10, 20, 30, 40), L2 
penalty parameter (10-6, 10-5, …, 103) 

Random Forest 
 
 

sklearn.ensemble.Ran
domForestClassifier 

Number of trees (10, 100, 1000, 10000) 
 

Support Vector 
Machine 

sklearn.svm.SVC Kernel (linear, RBF), Coefficient of RBF kernel 
(10-4, 10-3, …, 103), L2 penalty parameter (10-4, 
10-3, …, 103) 
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Table S2. Comparison of machine learning methods. 
All the satellite-derived parameters were used in the validations. 
Method Leave-one-out cross-validation Buffered cross-validation 
 Accuracy ROC-AUCa Accuracy ROC-AUCa 
K-nearest Neighbors 0.56 0.86 0.47 0.76 
Naïve Bayes 0.55 0.85 0.50 0.81 
Multilayer Perceptron 0.60 0.88 0.54 0.82 
Random Forest 0.63 0.89 0.50 0.81 
Support Vector Machine 0.67 0.90 0.54 0.83 
a: Micro-average area under the ROC curve. 
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Figure 1. Metabarcoding samples used for prediction model training.
Points associated with metabarcoding samples projected on the 2-D map of the  
satellite-derived parameter space (black points). Grey points are randomly 
selected grid cells used for learning the map. Red arrow indicates the region 
without metabarcoding samples.
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A B

Figure 2. Plankton network inferred using metabarcoding data.
A A force-directed representation of the network. Nodes (plankton ASVs) are colored by belonging 
community. B A graph representing community connection of same network. Width of edges are 
proportion to the number of inter-community edges. 
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Figure 3. Representative community of samples.
A A heatmap of edge satisfaction index. The left most column shows representative community of 
each sample. B Geographic distribution of representative communities.
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A B

C D

Figure 4. Performance of support vector machine on community prediction based on 
satellite-derived parameters.
Performance of SVM using all the satellite-derived parameters. A-B The confusion matrix (A) and 
the ROC curve (B) in the condition of leave-one-out cross-validation. C-D The confusion matrix (C) 
and the ROC curve (D) in the condition of buffered cross-validation.
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A B

C D

Figure 5. Spatiotemporal distribution of communities predicted from satellite-derived parameters.
Representative community distribution in February (A), May (B), August (C), and November (D) of year 2021 
predicted from satellite-derived parameters. When multiple communities were predicted to be representative in 
the same point, community with the highest probability is show in pale color. Grey point means no community 
was predicted to be representative.
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Figure S1. Comparison of satellite-derived parameters acquired by the Aqua and 
the Terra satellite.
Pearson’s correlation coefficient was shown for each parameter pairs.
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Figure S2. Location of satellite-derived parameter samples used for leaning UMAP.
Dark grey points are location of grid cells used to learn a map with UMAP. Sampling month 
was also randomly selected for each grid cell.
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Figure S3. Comparison of size fractions in the South Pacific Subtropical Gyre.
Taxonomically difference of size fractions was checked among samples from the South 
Pacific Subtropical Gyre, which contains samples from all major size fractions. A Mean
taxonomic composition of each size fraction. Taxonomic level is “taxogroup 2” in the 
EukRibo. B Comparison of taxonomic distance of intra- and inter-size-fraction samples. 
Brey-Curtis distance was calculated based on ASV read count. 

A B
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Figure S4. Comparison of intra- and inter-bin sample distance.
Brey-Curtis distance was calculated based on ASV read count. Intra-bin 
sample distance is small enough compared to inter-bin sample distance in 
the most cases.
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Figure S5. Spatial resampling of metabarcoding data.
A Geographic location of 653 metabarcoding samples (bins) before spatial 
resampling. B 177 samples retained and used for the analysis.
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Figure S6. Number of ASVs retained with changing occurrence cutoff.
Blue curve shows the number of ASVs retained with given cutoff used for 
selection. Orange line is the chosen cutoff (20 reads).
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Figure S7. For each algorithm, modularity index and size of the communities.
Modularity index of the community division by each algorithm and size of detected communities by it.
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Dinoflagellata

Metazoa
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Figure S8. Taxonomic breakdown of plankton communities shown in circle charts.
Taxonomic level is “taxogroup 2” in the EukRibo. 
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Figure S9. Representative community distribution in the satellite-derived  
parameter space.
Metabarcoding samples projected on the 2-D map of the satellite-derived 
parameter space colored by representative community. Grey points are randomly 
selected grid cells used for learning the map.
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Satellite-derived parameters (Acc = 0.67, AUC = 0.90)

SST, Environmental parameters (Acc = 0.58, AUC = 0.88)

Figure S10. Comparison of prediction performance using different sets of satellite-
derived and spatial parameters (leave-one-out cross-validation).

Latitude, Longitude (Acc = 0.68, AUC = 0.91)

SST (Acc = 0.40, AUC = 0.79) [Chl] (Acc = 0.43, AUC = 0.72)

SST, [Chl] (Acc = 0.52, AUC = 0.86)
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Satellite-derived parameters (Acc = 0.54, AUC = 0.83)

Figure S11. Comparison of prediction performance using different sets of satellite-
derived and spatial parameters (buffered cross-validation).

Latitude, Longitude (Acc = 0.29, AUC = 0.59)

SST (Acc = 0.28, AUC = 0.72) [Chl] (Acc = 0.23, AUC = 0.62) 

SST, [Chl] (Acc = 0.47, AUC = 0.82) SST, Environmental parameters (Acc = 0.50, AUC = 0.83)

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2022. ; https://doi.org/10.1101/2022.09.23.508961doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.23.508961
http://creativecommons.org/licenses/by/4.0/


Figure S12. Permutation importance of each parameter in the full SVM 
model.
Blue bars show mean of parameter importance over 5 times repeats. Error bars 
show standard deviation over repeats. CHL: chlorophyll a concentration, KD490: 
diffuse attenuation coefficient for downwelling irradiance at 490 nm, PIC/POC: 
particulate organic/inorganic carbon concentration, PAR: photosynthetically 
available radiation, FLH:  normalized fluorescence line height, SST: sea surface 
temperature, RRS: remote sensing reflectance 
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Figure S13. Precision, recall, and F1 score of SVM on community prediction 
based on satellite-devired parameters.
A The precision-recall curve in the condition of leave-one-out cross-validation same as 
Figure 4B. B F1 score versus threshold of probabilistic output of SVM. Orange line 
shows the threshold making highest F1 score.
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K-nearest Neighbors Naïve Bayes Random Forest 

Multilayer Perceptron Support Vector Machine

Figure S14. Grid search results in the training with all samples.
Orange and blue lines show training and test accuracy, respectively. Gray dashed lines show the parameter 
with the best test accuracy. Ten L2 penalty parameters (10-6, 10-5, …, 103; from left to right) were tested for 
each setting of Multilayer Perceptron and eight (10-4, 10-3, …, 103) were tested for Support Vector Machine.
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Figure S15. Location of samples in an unexplored region of the satellite-derived 
parameter space.
A 2-D map of the satellite-derived parameter space. An unexplored region is shown in 
orange. B Geographic location of samples in the unexplored region of the parameter 
space (orange points).
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Figure S16. Map of Longhurst biome.
Black points are metabarcoding samples. The shape file of the Longhurst biomes was 
downloaded from Marine Regions (https://www.marineregions.org).
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