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ABSTRACT

Motivated by recent developments of hydrodynamical quantum mechanical analogs [J. W. M. Bush, Annu. Rev. Fluid Mech. 47, 269–292
(2015)], we provide a relativistic model for a classical particle coupled to a scalar wave field through a holonomic constraint. In the presence
of an external Coulomb field, we define a regime where the particle is guided by the wave in a way similar to the old de Broglie phase-wave
proposal. Moreover, this dualistic mechanical analog of the quantum theory is reminiscent of the double-solution approach suggested by de
Broglie in 1927 and is able to reproduce the Bohr–Sommerfeld semiclassical quantization formula for an electron moving in an atom.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0067545

The old atomic model proposed by Bohr for a single electron
orbiting in a Coulombian potential constitutes a paradigmatic
example of paradoxical physics conflicting with classical intu-
itions. Here, modifying an old proposal made by de Broglie to
explain orbital quantization using a pilot-wave guiding the par-
ticle, we develop a realistic model to make sense of Bohr’s theory.
Our approach considers a classical particle nonlinearly coupled to
a scalar wave field through a holonomic constraint. In the pres-
ence of an external Coulomb field, we define a regime where the
particle is guided by the wave and reproduces the well-known
Bohr–Sommerfeld quantization rule for circular orbits.

I. INTRODUCTION

One of the most remarkable features of quantum mechanics
is the prediction of stable electronic motions in atoms. Nowadays,
and as every physics student knows, atomic orbitals are easily com-
puted by solving the stationary Schrödinger’s equation in a central
Coulomb potential.1 However, in the early times of the quantum
era, Bohr (following results by Planck, Einstein, Nicholson, and
Sommerfeld) already obtained a semiclassical model of an elec-
tron circular orbit in the hydrogen atom.2 The method of Bohr,
which was subsequently generalized by Sommerfeld to elliptical
and relativistic motions,4 starts with the quantization of the action

variable J =
∮

Pdq = 2πn~ (with P and q being two con-
jugate canonical variables, n ∈ N, and ~ being the reduced
Planck constant) calculated along a periodic motion. However,
despite the tremendous success and theoretical agreements in
reproducing spectrometry experiments with various atoms, the
Bohr–Sommerfeld model seated on an unclear basis mixing ele-
ments of classical mechanics with unjustified quantization rules. As
we know, progress in the physical understanding started when de
Broglie added a circulatory wave propagation going along with the
particle orbital motion7,8 (the idea to introduce oscillations of an
electric or mechanical medium to explain atomic spectra was origi-
nally proposed by Nicholson and Brillouin5,6). In this approach, the
momentum P of the particle is associated with the wave vector k of
the wave through the formula P = ~k and the quantization J = 2πn
becomes a stationary condition for the phase ϕ of the wave around
the closed orbit:1ϕ =

∮

kdq = 2πn. De Broglie was strongly moti-
vated by the analogy existing between Fermat’s principle in optics
and Maupertuis’s least-action theorem in classical mechanics (an
analogy already exploited by Hamilton and Jacobi). Generally, the
textbook historical explanations concerning de Broglie’s method
stop here and the mathematical development goes then with the
more precise Schrödinger equation propagating in the configura-
tion space and thereby abandoning the dualistic association of a
wave with a particle trajectory advocated by de Broglie. Following
the work of Born,9 the wave ultimately becomes probabilistic and
the motion of the particle in space–time completely disappears from
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the quantum formalism. Nevertheless, de Broglie did not agree with
these developments and tried to obtain a more physical and deter-
ministic interpretation of the wave mechanics in which particles and
waves move together in space–time. In particular, he and later Bohm
developed a “pilot-wave interpretation” of quantum mechanics,10–12

which is empirically equivalent to the standard quantum approach.
In the last few decades, interest in the pioneering mechanical

modeling of de Broglie resurrected with the development of new
fluid mechanical analogs of quantum mechanics by Couder and co-
workers (for reviews, see Refs. 13–16), in which a particle droplet
bouncing on a vibrating oil bath reproduces several paradigmatic
features of quantum mechanics such as the wave-particle duality
in double slit experiments,17 the quantum tunneling effect,18,19 and,
most importantly for us, stationary quantized states in external
potentials.20–23 These works are remarkable by their analogy with an
early proposal by de Broglie named “double solution”24,25 in which
a wave field u(t, x) propagating in the usual 4D space–time guides
a field singularity acting as a particle and synchronized with the u-
wave during its motion (see also Refs. 26 and 27 for recent quantum
hydrodynamical models similar to de Broglie’s proposal).

In a previous article,28 based on early proposals by Boudaoud
et al.,29,30 we developed a mechanical analog of the double solution
proposal by using the motion of a sliding bead, i.e., a “particle,” on
a vibrating string to model wave-particle duality. In this approach,
the transverse wave u(t, x) propagating along the x direction carries
the particle motion xp(t) along the same direction as the wave. A
phase matching condition between the sliding particle and the wave
is leading to a quantum-like guidance of the particle by the wave
in a way reminiscent of the so-called de Broglie–Bohm quantum
interpretation.12 This first model ideally reproduces some features
of the phase wave introduced by de Broglie in 19237,8 at least for the
simple case corresponding to the linear and uniform motion as it
was first considered by de Broglie.

In the present work, we extend the previous 1D model and
propose a more sophisticated approach with a complex wave field
u(t, x) ∈ C propagating in the three-dimensional space. The model
takes into account the presence of an external Coulomb field act-
ing on the charged particle with trajectory xp(t). This proposal is
built in a fully covariant and relativistic framework, which agrees
with the original methodology proposed by de Broglie.7,8 In turn,
this allows us to study the quantized circular motion of a rela-
tivistic particle in the Coulomb field and allows us to reproduce
the well-known Bohr–Sommerfeld quantization formula for this
Hydrogen-like atom. We stress that, like in de Broglie’s double
solution,24,25 our model reveals the fundamental role played by a
group and phase contributions in the u-wave. In turn, this decom-
position imposes strong constraints on the physical properties of the
particle, i.e., its orbital motion but also its mass and electric charge.

The layout of this work is as follows: in Sec. II, after a
short reminder concerning de Broglie’s original idea about phase
waves, we describe our relativistic model starting from a covariant
Lagrangian formulation. In Sec. III, we discuss the solution of our
systems of equations leading to an entangled dynamics between par-
ticle and wave (the particle being guided by the wave). We show
how to recover the Bohr–Sommerfeld quantization approach, i.e.,
at least for circular orbits, and subsequently discuss the constraints
and limitations of our model in Sec. IV.

II. THE RELATIVISTIC ATOM

A. The historical de Broglie’s derivation of the

Bohr–Sommerfeld quantization condition

In 1923–1924, Louis de Broglie proposed a model7 in order to
reproduce the circular uniform motion of an electron in an atom,
which in turn explained the famous Bohr quantization hypothesis,2

Lz = n~, (1)

with n ∈ N and Lz = mevere, the orbital angular momentum of the
electron for an orbit of radius re and velocity ve.

To understand de Broglie’s insight, let us consider an electron
of mass me orbiting with constant velocity ve around a nucleus. De
Broglie’s idea, centered around the notion of wave-particle duality,
was first to match the relativistic rest energy of the electron mec

2

with an oscillatory energy ~ωe, i.e., a local “clock” so that the electron
undergoes an internal motion of the form

e−iωeτ = e−iω′
et, (2)

with ω′
e = ωe

√

1 − v2
e/c

2 being the frequency of the electron as seen
by an external observer in the laboratory reference frame (here, τ is
the proper time associated with the internal clock and t = τ

√

1− v2
e

c2

is

the relativistically dilated time interval in the laboratory frame where
the clock is moving at a constant speed v). Then, he introduced a
phase wave on the electron’s path,

e
−iω

(

t−x ve
c2

)

, (3)

with x = reϕ a coordinate along the circular orbit (ϕ is the azimuthal
angle in the plane of the orbit). In vacuum, this phase wave has a
velocity vϕ = c2/ve > ve, so that it will catch up with the electron
after a time δt,

vϕδt = L + veδt, (4)

with L the length of the orbit. We find that this time δt is

δt = L

vϕ − ve

= ve

c2

L

1 − v2
e

c2

. (5)

De Broglie introduced his famous “phase-harmony” condition
telling that the phase wave and the internal oscillation of the elec-
tron must be locked in phase in order to have a stable motion. On
top of that, these two phases must be multiples of 2π since we are on
a circular path and we have to impose a periodicity condition

ω′
eδt = mec

2

~

1
√

1 − v2
e

c2

ve

c2
L = 2πn. (6)

Now, given that L = 2πre and Pe = meve/
√

1 − v2
e/c

2, the relativis-
tic linear momentum, we finally get

2πPere =
∮

Pedx = 2πLz = nh. (7)

Thus, we get back Bohr’s quantization condition.
This derivation is sketchy since de Broglie originally assumed

no external potential acting on the particle. The model actually cor-
responds to the case of a particle constrained to move along a closed
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loop. In a more realistic case, the particle is moving along a circular
orbit in a central potential U(r). The phase/action velocity is given
by

vϕ = Ee

Pe

= c2

ve

Ee

Ee − U
, (8)

where

Pe = meve
√

1 − v2
e

c2

and Ee = mec
2

√

1 − v2
e

c2

+ U(r) (9)

are the particle linear momentum and total energy respectively. The
particle velocity is given by Hamilton’s equation

ve = ∂Ee

∂Pe

= c2 Pe

Ee − U
, (10)

which is subsequently identified with Rayleigh’s group velocity
vg = ∂ω

∂k
using the iconic quantum relations Pe = ~k and Ee = ~ω.

Moreover, the phase matching condition Eq. (4) still holds and
instead of Eqs. (6) and (7), we get

− Leδt = PeL =
∮

Pedx = 2πLz = nh, (11)

which again recovers Bohr’s quantization condition. In this for-
mula, Le = Peve − Ee = −me

√

1 − v2
e/c

2 − U is the Lagrangian of
the particle and −Le/~ plays the role of the clock frequency
ω′

e = ωe

√

1 − v2
e/c

2 used in the original de Broglie deduction.
This idea of a moving clock synchronized with a guiding wave

is the hallmark of de Broglie’s conception of quantum mechanics. If

we generally write Se(t) =
∫ t

(C)
dt′Le(t

′), the action integral along the

trajectory C followed by the particle the phase-harmony condition of
de Broglie reads

d

dt
Se = Le = ~

d

dt
ϕ, (12)

where ~
d
dt
ϕ := −~ω′

e(t) = −~ωe(t)
√

1 − v2
e/c

2 generally defines a
time dependent frequency ωe(t) along the path.

In the following years, after his Ph.D. thesis,8 de Broglie tried
to make sense of his phase-wave hypothesis. As the name suggests,
this generally superluminal wave is not strictly a physical object and
does not carry any energy but is rather a clever way to make sense
of quantum features such as wave-particle duality and quantization
conditions. His goal was to build a more realistic mechanical model
using a “physical” wave u(t, x) that one could interpret as being the
particle. He called “double solution” his new proposal24 in which a
wave field u carrying the particle energy coexisted with the more
conventional ψ-field used in quantum (wave) mechanics. In the
later sections of this paper, we propose a physical model for this
de Broglie wave using a complex scalar field u(t, x), which we can
decompose as a group wave carrying the energy (i.e., the particle),
and a phase wave, which is actually predating the ψ-wave solution
of Schrödinger’s equation.

B. A relativistic atomic model coupling a wave field

and a particle

In this section, we will derive the equations of motion of
our model using natural units (c = ~ = 1) for simplicity and rein-
troduce the physical constants when necessary. Furthermore, we
consider the Minkowski metric ηµ,ν with signature (1, −1, −1, −1)
in the following. We start with the relativistic action

I = −
∫ [

mp − 1

2
mpσ

(

|ż(τ )|2 −�2
p |z(τ )|2

)

]

dτ

+
∫

{

N (τ )[z(τ )− u(xp(τ ))]
∗

+ N
∗(τ )[z(τ )− u(xp(τ ))]

}

dτ

− e

∫

A(xp(τ ))ẋp(τ )dτ + T

∫

(Du)(Du)∗d4x. (13)

Let us specify what each of these terms represents. The first term

−
∫ [

mp − 1

2
mpσ

(

|ż(τ )|2 −�2
p |z(τ )|2

)

]

dτ (14)

[where dτ =
√

ηµ,νdxµdxν is a proper time interval along the par-

ticle trajectory x
µ
p := [t, xp] ∈ R

4 and where d
dτ

z(τ ) := ż(τ )] is a
modification of the relativistic action for a free particle of mass mp,
to which we added an internal oscillating degree of freedom z(τ ) ∈
C, with �p the typical pulsation of this harmonic oscillator. This

leads us to interpret mp − 1
2
mpσ

(

|ż(τ )|2 −�2
p |z(τ )|2

)

as a kind of

varying relativistic mass (with σ a mass correction coefficient). In
a previous paper,28 we used this coordinate z in a mechanical sense
to represent the transverse oscillations on a string. Here, however,
to account for the three-dimensional and relativistic nature of our
system, we take it as an internal degree of freedom (more on this
analogy is discussed below). This degree of freedom is interacting
with a field u(t, x) = u(x) ∈ C (with xµ := [t, x] ∈ R

4) by way of the
constraint written in the second integral

∫

{

N [z − u(xp)]
∗ + N

∗[z − u(xp)]
}

dτ , (15)

which involves two additional complex scalar fields N (τ ), N ∗(τ )
used to model a holonomic constraint for the particle. In the
model, we also include an external electromagnetic potential Aµ(x)
:= [V(x), A(x)], which will affect the particle with electric charge
e = −|e| < 0 according to the third integral −e

∫

A(xp)ẋpdτ .
Finally, we have the Lagrangian density for a scalar fields u, u∗,
where we replaced the partial derivatives ∂µ := [∂t, ∇] with covari-
ant derivatives Dµ = ∂µ + ie′Aµ(x) = [∂t + ie′V(x), ∇ − ie′A(x)],
again to take into account this external potential, and keep a covari-
ant and gauge invariant relativistic formulation. This corresponds to
the description of charged electric fluid described by two fields u, u∗.
We point out that for the sake of generality the electric charge e′ of
the charged fluid is not necessarily equal to e. Ultimately, its value
could even vanish. We will go back to this issue in Sec. III C.

We summarize the different fundamental variables and con-
stants of our model in Table I. In order to physically interpret our
model, it is probably useful to compare the present work with our
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TABLE I. Table summarizing the different parameters of the model.

Parameters Physical meaning
u(x) Fundamental field

Aµ(x) Electromagnetic 4-vector potential
z(τ ) Internal oscillator

N (τ )) Internal reaction force acting upon the particle
xµp (τ ) 4-vector position of the particle

T Tension of the field
�p Internal oscillator pulsation
mp Bare particle mass
σ Coupling constant
e Particle electric charge
e′ u-field electric charge

previous non-relativistic approach published in Ref. 28 for a 1D
string-like model. First, if we take a more mechanical analogy in 2D
instead of 3D, u(t, x, y) could be interpreted as the vibration of an
elastic membrane with tension T. The u-field could thus be seen as
the transverse motion along the z (vertical) direction of the mem-
brane and the point on the surface is labeled by 2D coordinates x, y.
This mechanical analogy makes sense for small transverse vibrations
(i.e., like in the 1D mechanical analog of Ref. 28). Here, our covariant
model works in a 4D space–time and the u-field is complex rather
than real but this generalization is not mandatory and only makes
the framework more elegant and symmetrical. The internal vibra-
tion z(τ ) is just if we follow this membrane analogy, the height at
which the particle is located on top of the surface, i.e., z(τ ) := zp(t).
This transverse motion should not be confused with the xµp (τ ) par-
ticle motion which in the 2D analogy is just the set t, xp(t), yp(t)
describing the in-plane motion of the particle. In 4D, it is more judi-
cious to call z(τ ) an internal motion acting in a different space (also
the proper time label τ helps to make the theory fully covariant). The
other variables have also a clear physical meaning in this analogy:
for instance, �p is a mechanical pulsation associated with a vertical
restoring force acting upon the particle. Taking the non-relativistic
limit of Eq. (14) and using z(τ ) := zp(t), we obtain

∫ [

−mp + 1

2
mpẋp(t)

2 + 1

2
mpσ(|żp(t)|2 −�2

p|zp(t)|2)
]

dt, (16)

which is indeed describing the motion of a harmonic oscillator.28

Moreover, the presence of the electric field acting on the particle
with charge e can easily be included in this mechanical analogy.
Finally, the charge e′ associated with the oscillating medium is more
difficult to physically interpret in the membrane analogy. Still, the
e′ charge together with the complex nature of the u-field allow us
to introduce gauge invariance and covariant derivative Dµ = ∂µ
+ ie′Aµ(x) in the formulation, which is fine in the context of a fun-
damental quantum theory. Moreover, the model developed here is
so robust that even the case e′ = 0 can be used to model a Bohr atom
as we will see in Sec. III C. In such a case the membrane mechanical
analogy is perfectly valid and could be used for developing a possible
experimental demonstrator.

Now going back to our model, we can see that obtaining the
equations of motion is straightforward using the Euler–Lagrange

equations (the full derivation of which can be found in the
Appendix). We choose to consider cases where there is no longer
any interaction between the particle and the field, i.e.,

N (τ ) = 0, N ∗(τ ) = 0, (17)

as was motivated in Ref. 28. This regime, hereafter referred to as
transparency, strongly simplifies the dynamics. The goal here is to
find stable solutions for the motion of the particle and construct a
wave-particle duality model. We can ultimately turn back to inves-
tigating the chaotic regimes where the field and the particle start
interacting with each other, and as such consider dynamical cases
like, for example, atomic transitions and photon emissions: this will
be the subject of future works.

In this transparency regime, we get the following equations:
first, we obtain the condition

z(τ )− u(t, xp) = 0, (18)

which is very general in our theory (i.e., independent of the trans-
parency regime) and models the holonomic constraint that we
impose between the field and the particle. This constraint is cen-
tral in our theory since, as shown below, it allows us to recover the
phase-harmony condition introduced by de Broglie.

Moreover, for z(τ ), we have also the simple equation

ż(τ )+�2
pz(τ ) = 0, (19)

which gives us a relativistic harmonic motion of the form

z(τ ) = z0e
−i�pτ . (20)

Assuming Eqs. (18) and (20), we deduce the equation of motion for
the position of the particle

mp

(

1 + σ�2
p|z0|2

)

ẋpµ(τ ) = eFµν(xp(τ ))ẋ
ν
p(τ ), (21)

where Fµν = ∂µAν − ∂νAµ is the electromagnetic tensor. This
equation is completely analogous to Newton’s second principle,
where the Lorentz force accelerating the particle comes directly
from the applied external electromagnetic field [the standard
Lorentz force involved in Eq. (21) reads F = e(E + vp × B)], with
the introduction of an effective and constant mass term meff.

:= mp

(

1 + σ�2
p|z0|2

)

to account for the oscillatory motion z(τ ).

We mention that if we leave the transparency regime, this effective
mass is generally varying with time along the trajectory. Further-
more, in this general regime, we have an additional contribut-
ing force on the right-hand side of Eq. (21) reading N ∂µu∗(xp)

+ N ∗∂µu(xp). This force depends on the u-field gradient leading
to corrections on the classical-like equation of motion Eq. (21) (the
dynamics is derived in the Appendix).

We emphasize that in the transparency regime [where Eq. (21)
holds true], the dynamics is also derived from the effective action

Seff. =
∫

[−meff. − eA(xp(τ ))ẋp(τ )]dτ . (22)

Finally, for the u-field, we have a d’Alembert-like equation with
covariant derivatives

D2u(x) = 0. (23)
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It is interesting to note that if we leave the transparency regime
N = 0, Eq. (23) becomes

D2u(x) = − 1

T

∫

dτN (τ )δ4(x − xp),

= −Nt

T

√

1 − v2
p(t)δ

3(x − xp(t)), (24)

with Nt = N (τ (t)) and τ(t) =
∫ t

(C)
dt′
√

1 − v2
p(t

′) the proper time

at time t integrated along the path C followed by the particle.
Equation (24) includes a source term inducing the radiation of scalar
u-waves by the particle if N 6= 0. In the present problem, the trans-
parency regime actually decouples the field from the source leading
to the homogeneous Eq. (23) for u.

We also stress that Eq. (23) is very similar to the paradigmatic
Klein–Gordon equation

D2u(x)+ ω2
0u(x) = 0, (25)

where ω0 is the “Compton” frequency usually acting as a mass. For
the present work exploiting the continuous spectrum of the wave
equation the condition ω0 = 0 is the simplest choice (as shown in
Sec. III C). This makes sense since in our model, the frequency ω0

is not identified with the particle mass but rather characterizes the
u-field. Moreover, for generality, we mention that if we add in the
action I a term −T

∫

ω2
0uu∗d4x, we obtain the field equation

D2u(x)+ ω2
0u(x) = − 1

T

∫

dτN (τ )δ4(x − xp). (26)

III. SOLUTIONS OF THE EQUATIONS OF MOTION

A. The transparency regime and de Broglie’s wave

motion

As mentioned before, what we are looking for are configu-
rations where the particle and field evolve independently without
interaction but with the holonomic constraint imposing a local
phase matching between u and z. We know from a previous
work28 that such a transparency regime is possible when the total
field is expressed as the sum of two counter-propagating waves
u = u+ + u−, with each component having the right Doppler-
shifted frequency. For now, let us restrict ourselves to a uniform
and circular motion on the equatorial plane, i.e., where the veloc-
ity vp remains constant in amplitude, and the only spatial degree of
freedom is the azimuthal angle ϕ on a circle of radius rp. This devel-
opment will be further justified once we look at the full 3D case, and
consider the field u(t, r, θ ,ϕ) function of spherical coordinates r, θ ,
and ϕ in Sec. III C.

We write the waves u± along the orbit of radius rp as

u±(t, x) = 1

2
u0e

i(±k±rpϕ−ω±t), (27)

with the periodicity condition (i.e., continuity of the wave), which
imposes

k±=m±

rp

, m±∈N. (28)

This already provides quantization conditions for the wavevectors
k±.

We now consider the total field, i.e., the sum of u+ and u−, and
we get after some rearrangements

u(t, x) = u0e
i(krpϕ−ωt) cos

(

k++k−

2
rpϕ − ω+−ω−

2
t

)

, (29)

where

k = k+−k−

2
and ω = ω++ω−

2
. (30)

If we had a free field with two plane waves, we would have the dis-
persion relation k± = ω± as used in Ref. 28. However, we also want
to take into account the presence of the central potential from the
atom, so we make the following hypothesis:

k±=ω±+ε±, (31)

which transforms the term inside the cosine function of Eq. (29) into

(ω + ε)

[

rϕ − k − η

ω + ε
t

]

, ε = ε++ε−
2

, η = ε+−ε−
2

. (32)

The term in front of t is the group velocity vg of our total wave, and
following de Broglie’s atomic model, we identify it with the particle
velocity

vg := k − η

ω + ε
≡ vp := Pp − eAϕ

Ep − eV
, (33)

where Pp and Ep are the particle linear momentum and energy
respectively. Here, in the definition of the particle velocity vp, we
include contributions of the external field Aµ := [V, A]. In this
work, we only consider the scalar Coulomb field A0 := V(r) and
remove the magnetic vector potential A. We only stress that we can
introduce an azimuthal magnetic vector potential A = Aϕ(r)ϕ̂ to
describe the Zeeman effect for our “electron” motion in the atom
(this will be developed in a subsequent work). With this hypothesis,
we see that if we compute the wave field at the position x = xp(t) of
the particle at time t, we obtain

u(t, xp(t)) = u0e
i(kvp−ω)t, (34)

showing that the wave amplitude remains constant at the position
of the particle and that its phase is a linear function of t. More-
over, according to the original de Broglie hypothesis, we have Pp = k
and Ep = ω. Yet, as Eq. (34) suggests, it appears judicious to assume
more general relations,

Pp = bk and Ep = bω, (35)

where b is a dimensionless constant.
Furthermore, we impose η = 0 and Aϕ = 0 in Eq. (33) and,

therefore,

bε = bε±=−eV(rp), (36)

where V(rp) = −e
4πrp

= |e|
4πrp

is the external electric Coulomb poten-

tial acting upon the moving particle of charge e = −|e|. We will
justify the consistency of Eqs. (33) and (36) more rigorously once
we derive the dynamics of the particle in Sec. III B, but it is impor-
tant to note that we still work with a wave-particle duality in mind,
which is why Eqs. (33) and (36) are so crucial to our model.
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Moreover, being on a circular path, we have from Eq. (28)
quantization conditions that impose

Pp = bk = b
m+−m−

2rp

,

Ep = bω = b
m++m−

2rp

+ eV.

(37)

For convenience, we introduce in the following the notations:

n = b
m+−m−

2
, N = b

m++m−

2
, (38)

i.e.,

bm±=N ± n. (39)

Importantly, the first equality of Eq. (37) reads

2πrpPp =
∮

Ppdx = 2πn, (40)

with dx = rpdϕ, which is clearly reminiscent of the Bohr–Sommerfeld
quantization formula (7) as described by de Broglie.

Moreover, we now see the importance of the b constant in
Eq. (38). Indeed, if we select b = 1 as suggested by de Broglie,
we obtain n = 0, ±1/2, ±1, ±3/2, . . . ∈ Z/2, which introduces half-
integer numbers in addition to integers usually considered in the
Bohr–
Sommerfeld semi-classical quantum theory. This might give rise to
richer dynamics than those considered historically and one could,
for example, speculate that this is related to the existence of a half-
integer spin in quantum mechanics (this issue was already discussed
by Sommerfeld and Heisenberg in the old quantum theory3,4).
Moreover, observe that if we select the condition b = 2, we
recover exactly the Bohr–Sommerfeld theory. Therefore, we obtain
n = 0, ±1, ±2, . . . ∈ Z as it should be. As we will show in Sec. III B,
the choice of the b parameter is further constrained by the value
given to the electric charge e =

√
(4πα), i.e., as deduced from the

particle dynamics.

B. The quantized particle dynamics

We are now interested in solutions of Eq. (21) for circular
motions of the particle. First, the term mp(1 + σ�2

p |z0|2) is con-
stant for a given field and behaves as an effective mass meff.. We
also remove most of the components of the electromagnetic tensor
Fµν since we only have a static scalar potential A0(x) = V(x) = |e|

4πr
,

which gives us in the end

meff.ẋp = −e∇V(xp) = − α

r2
p

r̂p, (41)

where we introduced the Sommerfeld fine structure constant
α = e2

4π
. This equation also reads

d

dt

(

meff.γ vp

)

= −meff.γ
v2

p

rp

r̂p = − α

r2
p

r̂p (42)

or equivalently

γmeff.v
2
prp = α, (43)

with γ = 1/
√

1 − v2
p the Lorentz boost factor. Furthermore, in a

central potential, the orbital angular momentum is a constant of
motion and we have

J =
∮

Ppdx = 2πn, (44)

and given that Pp = ∇Seff. = γmeff.vp [with Seff. given by Eq. (22)],
this leads to

γmeff.vpr = n. (45)

Here, the angular orbital momentum n := Lz is a parameter that
characterizes the orbits, our hypothesis being that the orbits are
indeed quantized to recover the Bohr–Sommerfeld quantization rule
and, therefore, n is expected to be an integer. Without lack of gener-
ality, we will from now on consider n ≥ 0 assuming an anticlockwise
motion of the particle along the orbit. With this constraint, we have
naturally m+ ≥ m− ≥ 0 in Eq. (38).

In our model, this quantization condition must actually match
Eq. (40). Having this in mind, we will add an index n to all our orbital
quantities while also removing most of the p indices so as not to
clutter the equations. In the end, we can write the velocity as

vn = α

n
= n

N
, (46)

leading to the momentum

Pn = meff.

α

n
√

1 − α2

n2

. (47)

Similarly, we deduce the radius of the orbit

rn = n2a0

√

1 − α2

n2
, (48)

with a0 = 1/(meff.α) a typical distance, which is identified to an
“effective” Bohr radius. Finally, we obtain the energy of our atomic
system

En = −∂tSeff. = meff.
√

1 − α2

n2

− α

rn

= meff.

√

1 − α2

n2
. (49)

All the previous formulas require α < 1 for consistency. Of course,

in the nonrelativistic limit, Eq. (49) reduces to En ' meff. − meff.α
2

2n2

which is the famous Bohr quantization energy spectrum.
By combining Eqs. (47) and (49), we obtain

vn = Pn

En + α

rn

, (50)

which is identical to Eq. (33) and justifies our identification vg = vn

in Sec. III A. Alternatively, from Eq. (37), we get

Pn = bk = n

rn

,

En = bω = N − α

rn

.

(51)
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Inversely, we can express ω± as functions of physical parameters
associated with the particle

bω±= meff.
√

1 − α2

n2

(

1 ± α

n
− α2

n2

)

. (52)

Note, that from Eq. (52) and assuming ω± ≥ 0, we deduce the con-

straint α < (
√

5 − 1)/2 that is obviously satisfied with α ' 1/137.
All these results are particularly interesting since we recover

the known semi-classical formulas, with an added relativistic cor-
rection in the term

√

1 − α2/n2, the same correction that appears in
Sommerfeld’s extension of Bohr’s atomic model for circular orbits.

Before moving to the rigorous solutions for the u-field, we have
two more important equations of motion for the particle to derive.
Let us write the Lagrangian for the particle

Ln = −meff.

√

1 − α2

n2
+ α

rn

. (53)

Using a Legendre transform, this also reads

Lnt = (Pnvn − En)t = b(kvn − ω)t. (54)

In the end, if we inject the Lagrangian Ln into the u-field given by
Eq. (34) and use the constraint given by Eq. (18), we get de Broglie’s
phase-harmony condition

z0e
−i�p

√

1− α2

n2 t = u0e
i Lnt

b . (55)

This condition implies z0 = u0, which is linking the amplitude of the
internal vibration with the one of the wave. From Eq. (55), we also
deduce

b�p = meff.

(

1 − α2

n2 − α2

)

, (56)

which shows that in the present model, the effective mass is quan-
tized and depends on the quantum number n. More precisely, if we
consider the fundamental constants of the model�p and σ , Eq. (56)
equivalently reads

|z0|2 = 1

mpσ�2
p

(

b�p

1 − α2

n2−α2

− mp

)

, (57)

which fixes the amplitude |z0| and shows that its value is quan-
tized. In particular, if we consider the limit n → +∞, we obtain b�p

' meff. and |z0|2 ' 1

mpσ�
2
p

(

b�p − mp

)

.

One last interesting result can be obtained by combining
Eqs. (37) and (49) to extract a value for α. We quickly find that

α = n2

N
= b

2

(m+−m−)
2

m++m−
, (58)

or in other terms, that the electric charge e =
√

4πα is also quan-
tized. A different way for obtaining this result is to start with the
relativistic mechanical dispersion relation for a charged particle in a

TABLE II. Table giving the first quantum numbers m± as a function of the azimuthal

number n for α−1 = 137 and b= 1. It can easily be proven that half-integer values

n= 1/2, 3/2, . . . fail to give integer values form± and thus contradict Eq. (60). Observe

that m± grow rapidly with n.

n = 1
2

n = 1 n = 3
2

n = 2 n = 5
2

n = 10
m+ 34.75 138 309.75 550 858.75 13 710
m− 33.75 136 306.75 546 853.75 13 690

Coulomb potential

(

En + α

rn

)2

− P2
n = m2

eff.. (59)

After substitution of Eq. (37), we obtain N2 − n2 = m2
eff.r

2
n and

finally using the formula Eq. (48) for rn, we recover Eq. (58) (an
alternative way to deduce this relation is to apply the identity
vn = α/n = Pn/(En − eV) = n/N).

Remarkably, Eq. (58) is the only place where the quantum
number N = b m++m−

2
appears explicitly in the dynamics. This rela-

tion is particularly interesting since it reveals the presence of two
physical scales: the first one defined by n is associated with the quan-
tum motion of the particle in the Coulomb potential, i.e., low-energy
physics, and leads to the Bohr–Sommerfeld quantization. The sec-
ond scale N � n defines an electromagnetic scale associated with
the point-like particle: it is, therefore, characteristic of high-energy
physics.

It is easy to see that if N = 137 and n = 1, we already obtain
α = 1/137, which is close to the experimental value of the fine
structure constant. Since α is a fundamental constant, Eq. (58) can
actually be used to further constrain the possibilities for the value of
n and N and, therefore, for the values taken by m±. More precisely,
by using Eqs. (39) and (58), we deduce

bm±=n2

α
± n. (60)

This stringent condition requiring m± ∈ N is in general impossible
to fulfill rigorously for arbitrary α and b. Moreover, observe that
for α−1 ∈ N and b = 1, it works for any n ∈ N. Furthermore, in the
same conditions, Eq. (60) does not hold true for half-integer quan-
tum numbers n = 1/2, 3/2, . . . ∈ N

2
. Therefore, with b = 1, Eq. (60)

actually defines a selection rule imposing integer quantum numbers
n over half integers (see Table II for some numerical values of m±).

Of course, we experimentally know that α−1 is not an integer.
Writing α−1 = 137 + ξ , we have ξ ' 3.5999 × 10−2. It can be easily
checked that with this value of α, we still fulfill Eq. (60) by slightly
modifying the value of b ' 1. More precisely, writing Eq. (60) as

m±=bñ2

α
± ñ, (61)

with ñ = m+−m−
2

∈ N, we see that the condition for b/α to be an

integer q reads b = q

137+ξ ' q

137
(1 − ξ

137
). If we take q = 137 we

get b ' 1 − ξ

137
' 1–3 × 10−4. This value is indeed very close from

b = 1 and, therefore, in this model n = bñ must be an integer up
to a fluctuation δn/ñ = ξ

137
in order to satisfy Eq. (61). This defines
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a small deviation with respect to the Bohr and Sommerfeld quan-
tization postulate and therefore shows the limitation of our model.
Finally, we point out that the case b ' 1 is only the simpler choice.
However, similar conclusions concerning Eq. (61) are obtained if we
consider the integers q = b/α = 2, 3, . . .. In particular, if 1/α ∈ N

and b ∈ N, we again obtain a selection rule forcing the use of integer
values for n.

C. Solutions for the u-field

In order to solve the wave equation for u in a central potential,
we first write it as u = u+ + u− with the two eigenmodes

u±(t, x) = φ±(x)e
−iω±t, (62)

solutions of Eq. (23). The wave equation for an eigenstate reads

[

(

ω±+β
r

)2

+ ∇2]φ±(x) = 0, (63)

where we defined the modified fine structure constant β = ξ e2

4π

= ξα taking into account the fact that the charge e′ = ξe associ-
ated with the u-field is not necessarily identical to e (i.e., ξ 6= 1). In
spherical coordinates r, θ ,ϕ, we seek separable eigenmodes having
the general form

φ±(x) = A±Rl±(r)Yl± ,±m±(θ ,ϕ), (64)

where Yl,m(θ ,ϕ) is a spherical harmonic function with integer quan-
tum number l, m (i.e., |m| ≤ l),

Yl,m(θ ,ϕ) := Pm
l (cos θ)eimϕ , (65)

with Pm
l (cos θ) an associated Legendre polynomial (the irrelevant

normalization constant has been here absorbed in the A± con-
stant). For the present problem, the radial function Rl±(r) follows
the equation
[

1

r2
∂r(r

2∂r)− l±(l±+1)− β2

r2
+ 2βω±

r
+ ω2

±

]

Rl±(r) = 0. (66)

Using the substitution

l±(l±+1)− β2 = l′±(l
′
± + 1), (67)

we get

l′± = −1

2
+

√

(

l±+1

2

2

− β

)2

(68)

(which reduces to l± if β = 0) and Eq. (66) becomes
[

1

r2
∂r(r

2∂r)− l′±(l
′
± + 1)

r2
+ 2βω±

r
+ ω2

±

]

Rl′±(r) = 0. (69)

The solution for the radial function reads

Rl′±(r) = eiω±rrl′±M(l′± + 1 − iβ , 2l′± + 2, −2iω±r), (70)

where M(a, b, z) := 1F1(a, b, z) is the Kummer confluent hypergeo-

metric function, which is a regular solution of z d2M
dz2 + (b − z) dM

dz
−

a = 0.

FIG. 1. Parametric representation of the u-wave along the particle trajec-
tory in the x − y equatorial plane. The particle trajectory for n = 1, 2, 3 are
the dashed (gray color) circles with constant radius rn given by Eq. (48).
The u-waves for n = 1, 2, 3 are represented (i.e., blue curves) as the para-
metric curves [xn(ϕ) = Rn(ϕ) cosϕ, yn(ϕ) = Rn(ϕ) sinϕ] with Rn(ϕ) = rn
+1<[u(t = 0, r = rn, , θ = π

2
,ϕ)] and where1 is a constant used for graphi-

cal convenience. For comparison, the de Broglie phase guiding wave at the given
time t = 0 are similarly shown (i.e., red curves) as parametric curves with radius
Rn(ϕ) = rn +1z0 cos (nϕ), where z0 is here chosen real [see Eq. (76)]. In this
figure, we imposed b = 1, α = β = 1/3, andω0 = 0 and we used the maximal
values of the quantum numbers l± = m± (see also Figs. 2–5).

The asymptotic solution for large values of r is

Rl′±(r) ≈ Cl′±

sin(ω±r − π

2
l′± + δl′±)

ω±r
, (71)

with δl′± = β ln(2ω±r)+ ηl′± , ηl′± = arg(0(l′± + 1 − iβ)) and Cl′ a

normalization constant reading

Cl′± = e
iη

l′± e−βπ/2

(2ω±)
l′±

0(2l′± + 2)

0(l′± + 1 − iβ)
. (72)

Having obtained the eigensolutions for our wave equation, we
return to the case of the transparency regime. As we explained, we
need a superposition of two counter-propagating modes u± in order
to reproduce the total field of Eq. (29). Since our two modes can be
written as

u±(t, r) = A±Rl′±(r)P
±m±
l± (cos θ)ei(±m±ϕ−ω±t), (73)

with A± being two normalization constants and m± ≥ 0. We have

P
−m−
l− (cos θ) = (−1)m− (l−−m−)!

(l−+m−)!
P

m−
l− (cos θ). We also have Pm

l (0)

= (−1)
l+m

2 (l+m−1)!!
(l−m)!!

if l + m is even and Pm
l (0) = 0 if l + m is odd.

It follows for a specific orbit in the equatorial plane (with radius rn
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FIG. 2. Intensity map of the u-field in the x − y equatorial plane for the quantum
number n = 1 (ground state). The arbitrary normalized field intensity is defined as
In(x, y) = |u(t = 0, r , θ = π

2
,ϕ)|2 with [x = r cosϕ, y = r sinϕ]. The param-

eters and conditions for calculating the field are the same as for Fig. 1. The black
circle represents the particle trajectory and the spatial dimensions are normalized
to the Bohr radius value a0.

and a polar angle θ = π/2) that in order to recover Eq. (29), we must
impose

A±Rl′±(rn)P
±m±
l± (0) = u0

2
. (74)

These two constants A±, which are defined for the specific radius rn,
will also give us the link between the amplitudes of the field u and
the oscillatory motion z of the particle through the constraint

z0 = u0. (75)

Having done that and using Eq. (51), the final field on the particle’s
orbit is

u
(

t, rn,
π

2
,ϕ
)

= z0e
i
(

n
b
ϕ− N−α

brn
t
)

× cos

[

N

b

(

rnϕ − n

N
t
)

]

, (76)

which recovers Eq. (29).
Some comments must be done concerning the u-field solutions

obtained so far.
First, observe that the form of the equation for the u-modes

was not very constraining. Indeed, the value of the charge e′ is not
specified. In particular, one can consider the chargeless fluid e′ = 0
and the solution Rl(r) now reads

Rl±(r) = eiω±rrl±M(l±+1, 2l±+2, −2iω±r)

= 1

(2ω±)
l±

(2l±+1)!

l±!
jl±(ω±r), (77)

FIG. 3. Same as for Fig. 2 but with the quantum number n = 2.

where jl(x) = (−x)l( 1
x

d
dx
)

l
( sin x

x
) are well-known spherical Bessel

functions. For large value of r, we have

Rl±(r) ' 1

(2ω±)
l±

(2l±+1)!

l±!

sin(ω±r − π

2
l)

ω±r
, (78)

which agrees with Eq. (71) with l′± = l± and ηl± = δl± = 0.

FIG. 4. Same as for Fig. 2 but with the quantum number n = 3.
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FIG. 5. Intensity map of the u-field in the x − z transverse plane for the quan-
tum number n = 1 (ground state). The parameters are the same as for the other
figures. The two black dots are the intersection of the circular orbit of radius r1.

Alternatively, and as briefly alluded to in Sec. II B, instead of
Eq. (23) for the u-field, one could consider the continuous spectrum
of the Klein–Gordon equation. This leads to the wave equation

[

(

ω±+β
r

)2

+ ∇2

]

φ±(x) = ω2
0φ±(x). (79)

For ω± ≥ ω0, we obtain a solution like Eq. (73) but where the radial
function now reads

Rl′±(r) = eiω̃±rrl′±M(l′± + 1 − iβ̃±, 2l′± + 2, −2iω̃±r), (80)

with ω̃± =
√

ω2
± − ω2

0 and β̃± = βω±/ω̃±. This constitutes the most
general form of our wave field associated with a continuous spec-
trum for ω±. Remark, that one could also consider the discrete
spectrum for ω± ≤ ω0. However, discrete eigenmodes for the wave
equation appear too restrictive for the present model. In particular,
it becomes in general impossible to find a simple “phase-harmony”
condition between the energy spectrum En of the particle and the
wave spectrum ω = ω++ω−

2
unless for very particular and contrived

cases. Therefore, we avoided the use of discrete eigenmodes.
Another related comment about the u-modes concerns the

Legendre associated polynomials P
±m±
l± (cos θ) that are involved in

Eq. (73). Indeed, the mathematical structure of the wave does not
constrain very much the choice of the l± values despite the fact
that we must have m± ≤ l±. This once again shows that many
solutions for the u-fields are compatible with the present atomic
model. Perhaps the most natural or intuitive choice in the con-
text of the Bohr–Sommerfeld theory would be to impose l+ = m+
and l− = −m− leading to P

m+
m+(cos θ) = (−1)m+(2m+ − 1)!! sinm+ θ

and P
−m−
m− (cos θ) = (2m−−1)!!

(2m−)!
sinm− θ . Indeed, with this choice, the

u-wave is strongly confined in the equatorial plane θ = π/2 con-
taining the orbit for l± � 1. We actually believe or hope that in the
high quantum number limit, the equatorial plane acts as a dynami-
cal attractor for the particle trajectory in the non-transparent regime
N 6= 0. In other words, due to the force −N ∗

∇u + cc. acting upon
the particle, the strong field gradient in the spatial region θ ' π/2 is
expected to attract the particle in the equatorial plane. Further work
on stability is necessary to confirm or not this hypothesis. To illus-
trate the complete dynamics, we first show in Fig. 1 at the given
time t = 0 a parametric representation of the propagative u-field
along the particle trajectory for the three first energy levels n = 1, 2,
and 3. We compare the total field (blue curves) with the phase field
(red curves) used in the paradigmatic de Broglie atomic model. In
particular, we see that the total field involves fast oscillations with
shorter wavelengths that are associated with the group wave, i.e.,
envelope wave, propagation [see Eq. (76)]. This situation is remi-
niscent of the analysis already obtained in our previous article for a
1D string mechanical analog.28 Furthermore, the longer wavelength
modulations in the u-field (red curves) are associated with the faster-
than-light phase wave of de Broglie in full agreement with the 1D
string model.28 For the illustrations, we used the particular condi-
tions b = 1, α = β = 1/3, and ω0 = 0 leading to the easy observa-
tion of the field modulations. Furthermore, we used the maximal
values of the quantum numbers l± = m±. As explained, this choice
is motivated by the semiclassical approximation which in quantum
mechanics is described by the Brillouin–Wentzel–Kramers (BWK)
theory working for high quantum numbers. Graphically, the u-field
intensity is actually strongly confined near the particle trajectory as
shown in Figs. 2–4 in the x − y equatorial plane for n = 1, 2, and 3,
respectively. The same effect occurs in the x − z plane as shown in
Fig. 5 for the case n = 1 with a doughnut shape for the intensity pro-
file. This analysis shows that already for small quantum numbers,
the u-field is strongly confined near the Bohr–Sommerfeld trajec-
tory. This feature is of course an interesting specificity of our model.
More studies are needed to further understand the implications of
these results for discussing more complicated atomic motions.

IV. PERSPECTIVES AND CONCLUSIONS

The model proposed in this article is directly motivated by
the first “phase-harmony” wave mechanics proposed by de Broglie
between 1923 and 1925.7,8 Both models are dualistic in nature cou-
pling a point-like particle to an extended guiding wave. The key idea
of the phase-harmony hypothesis is the synchronization between the
local clock associated with the particle and the wave field computed
at the position of the particle. In our model, this condition is summa-
rized by the holonomic constraint Eq. (18) z(τ ) = u(xp(τ )) locking
the phase and amplitude of the u-wave with those of the internal
clock oscillation z(τ ).

We emphasize that for de Broglie in his early work, the physi-
cal meaning of the phase wave was not very clear. The specificity of
our model is the introduction of a u-field having a physical content
like the classical electromagnetic field or the gravitational metric in
general relativity. This is clearly reminiscent of the double-solution
program developed by de Broglie.24,25 More precisely, in the double
solution of de Broglie, one postulates the existence of a physical u-
field guiding the particle considered as a localized “accident” in the
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wave (i.e., a singularity31). Our model is more specific than the one
proposed by de Broglie. First, there is indeed a phase wave com-
ing from the sum of two counterpropagating modes u± in Eq. (29).
However, we have also a group wave [the cosine term in Eq. (29)]
and both are essential for guiding the particle. Indeed, the sub-
luminal group wave guides the particle since the constancy of its
amplitude during the particle motion allows us to fulfill one part
of the holonomic constraint: |z(τ )| = |u(xp(τ ))|. The superluminal
phase wave also guides the particle since it fixes the phase-harmony
condition: arg [z(τ )] = arg [u(xp(τ ))], and it allows us to fix the
dynamics of the particle in order to recover the Bohr–Sommerfeld
quantization formula

∮

Pndx = 2πn. This separation of the u-wave
into a phase and group contributions is thus fundamental in our
approach since it explains why we must consider two quantum
numbers n and N � n [see Eq. (38)] instead of only one quantum
number n in the old de Broglie theory.7,8

Remarkably, our “entangled” wave/particle dynamics, with
these two quantum numbers, leads to strong constraints on the par-
ticle properties like the effective “dressed” mass meff. [i.e., Eq. (56)],
the internal oscillator amplitude |z0| [i.e., Eq. (57)], which depends
on the number n, and the electric charge e =

√
(4πα), which

depends on both n and N through the fine structure constant α = n2

N

[see Eq. (58)]. As we showed in Sec. III B the constraint imposed
on the particle charge e allows us to define a selection rule for the
quantum number n in the regime b = 1. With this choice we get
an interesting relation [i.e., Eq. (61)] prohibiting half-integer quan-
tum numbers n = 1/2, 3/2, . . . in the Bohr–Sommerfeld formula
∮

Pndx = 2πn. Moreover, we stress once more that the value of the
b constant used in our model is not imposed by the theory itself but
must be better seen as an initial or boundary condition for the whole
coupled system particle-wave.

We also stress that the present theory requires us to find
two eigensolutions u±(t, x) = φ±(x)e

−iω±t obeying a Klein–Gordon
wave equation D2u(x)+ ω2

0u±(x) = 0, i.e., Eq. (79), where
Dµ = ∂µ + ie′Aµ depends on a field charge e′ = ξe that is in gen-
eral different from the particle charge e. The theory is, however, not
constraining very much the choice of the parameters ω0 and e′ in
Eq. (79). Our main requirement is to be able to find a combination
ω = ω++ω−

2
such that we can recover the Bohr–Sommerfeld quanti-

zation spectrum En through the equality En = bω. Moreover, since
we are considering the continuous spectrum ω± ≥ ω0, we get from
the definition En ≥ bω0 and thus with Eq. (49),

En = meff.

√

1 − α2

n2
≥ meff.

√

1 − α2 ≥ bω0. (81)

It is thus always possible to find a particle mass mp in the effective
mass mp(1 + σ�2

p |z0|2) in order to fulfill this condition. This is the
case in particular if ω0 = 0, which is also the simpler choice.

It is interesting to watch the problem of the form of the u-wave
equation from a different perspective. Indeed, let us write the field
u± in polar coordinates

u±(t, r) = f±(t, r)e
i8±(t,r) (82)

(with f± and 8± real), which lets us separate the Klein–Gordon
equation (25) into two parts,

∂µ
[

f2±(∂µ8±+e′Aµ)
]

= 0 (83)

and

(∂8±+e′A)
2 = ω2

0 + �f±

f±
. (84)

The second equation is reminiscent of the quantum version of
the Hamilton–Jacobi equation introduced by de Broglie in his
double solution and pilot-wave mechanics.10,24,25 The term Q±
= �f±

f±
is called quantum potential and characterizes the differ-

ence between the quantum equation (84) and the classical equation
(∂8± + e′A)2 = ω2

0 or in other words the difference between wave
mechanics and the Eikonal equation of geometrical optics.

In the present case, with ω± = −∂t8± and k± = ± 1
r sin θ

∂φ8±
= m±

r sin θ
, we obtain

(ω±+β
r
)

2

− k2
± = ω2

0 + Q±. (85)

Moreover, from Eq. (31), we have along the particle orbit r = rn, θ
= π/2 the condition k± = ω± + α

brn
= m±

rn
, and by comparing with

Eq. (85), we obtain

Q±(t, rn,φ, θ = π/2) =
(

m±

rn

)2

−
(

m±+β − α

b

rn

)2

− ω2
0 . (86)

Remarkably, if we impose ω0 = 0 and bβ = α (i.e., be′ = e), we

obtain rigorously Q±(t, rn,φ, θ = π/2) = �f±
f±

= −∇
2 f±
f±

= 0 along

the particle trajectory. In other words, the quantum Hamil-
ton–Jacobi equation (84) reduces to the classical one along the orbit.
We believe this is another motivation for the case be′ = e, and
ω0 = 0. Together with the condition b = 1, this implies the wave
equation

(∂ + ieA)2u(x) = 0, (87)

where e′ = e.
The last point that we want to briefly comment concern-

ing our model is about causality. Indeed, in order to work our
model involves two waves u± specially tuned in order to repro-
duce the phase matching condition of de Broglie and thereby the
Bohr–Sommerfeld quantization formula. Moreover, this specific
field u = u+ + u− is in some sense conspiratorial or better “superde-
terministic.” This issue about superdeterminism has recently been
the subject of many interesting discussions in the context of Bell
inequality and quantum nonlocality.32,33 It is, therefore, not unrea-
sonable to further study this possibility in order to develop a more
sophisticated quantum model using a u-field. This idea will be
developed in a subsequent work in preparation.

To summarize our work, we developed a model for a u-wave
[i.e., solution of Eq. (87)] guiding a particle. The guiding dynam-
ics is reminiscent of the old phase wave introduced by de Broglie
in order to justify the Bohr–Sommerfeld quantization condition
∮

Pndx = 2πn. More precisely, our model leads to a physical jus-
tification of this guidance condition by introducing a holonomic
constraint u(x(τ )) = z(τ ) between the wave and an internal degree
of freedom z(τ ) of the particle. In turn, the u-wave factorizes into
a phase and group wave guiding the particle. In particular, if b = 1,
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the phase wave

9(t, x) ∼ ei(Pnx−En)t = eiSn(t,x) (88)

is similar to the semiclassical solution of the Klein–Gordon equation

(∂ + ieA)29(x) = −m2
eff.9(x), (89)

where the effective particle mass meff. is included. If b 6= 1, the cor-
respondence is not direct between the phase wave reading generally
9(t, x) ∼ eiSn(t,x)/b and the de Broglie/Schrödinger wave since we

have now (∂ + ieA)29(x) = − m2
eff.

b2 9(x), which involves a kind of
effective Planck constant b. Moreover, even in this case, it is possi-
ble to recover quantum mechanics if we now define the quantum
de Broglie/Schrödinger wave as 9quantum(t, x) := 9b(t, x) ∼ eiSn(t,x),
which satisfies Eq. (89).

More generally, the duality between u(x) solution of Eq. (87)
and 9(x) solution of Eq. (89) is clearly reminiscent of de Broglie’s
double solution.24,25 In the end, the particle dynamics we obtain is
identical to the one predicted by the de Broglie–Bohm pilot-wave
theory applied to the Klein–Gordon equation10–12,24 in the semiclas-
sical regime. This pilot-wave theory predicts that the velocity of the
particle guided by the9-wave solution of Eq. (89) is given by

vp(t) = −∇S(t, xp(t))− eA(t, xp(t))

∂tS(t, xp(t))+ eV(t, xp(t))
, (90)

where S(t, xp(t)) is the phase of 9(t, xp(t)) computed at the posi-
tion xp(t) of the particle at time t. In order to recover our model
with the pilot-wave theory, we must put A = 0 and −eV = α/r and
we consider only a semiclassical solution of Eq. (89) leading to the
Bohr–Sommerfeld formula

∮

Pndx = 2πn, where Eq. (90) reduces
to Eq. (50).

Moreover, contrary to usual quantum mechanics (and also a
pilot-wave theory), our model for the u-wave is valid for any inte-
ger quantum numbers n = 1, 2, . . . and not only for large integers
n � 1 required in the BWK semiclassical approximation of Eq. (89).
This shows the limitation of our mechanical analogy of quantum
mechanics.

A different interesting feature of our model is the quantization
of the constant α−1, which is required in order to satisfy the set of
coupled equations. This property is remarkable since it shows that
coupling a guiding wave to a particle in order to reproduce quantum
mechanics can lead to strong constraints on the physical parameters.
This is to be expected since the u-wave needs interferences and a
resonance condition in order to reproduce Bohr’s quantization for-
mula. This feature was ignored in the original phase-wave model
of de Broglie where a mechanical description like the one proposed
in Sec. II B was missing. Here, we have two quantum numbers m±
rather than one as it was in the first proposal of de Broglie. This is
due to the fact that we need two waves to reproduce the guidance
formula of de Broglie. In the end, this constraint on α has strong
physical consequences. If a model like ours has to be taken seriously,
it apparently implies a strong fine-tuning on the parameters used,
which might be related to the freedom we have regarding parame-
ter b in our model. We do not have here an explanation for this fact
but it suggests a cosmological explanation perhaps related to some
(weak) anthropic principle.

At the same time, the model for the u-wave demonstrates that
it is in principle possible to reproduce some important features of
quantum mechanics with a classical and deterministic analogy. Fur-
thermore, unlike in the conventional Copenhagen interpretation
where the very notion of an orbit is ill defined, here the particle path
is deterministic and continuous in the four-dimensional space–time.
We believe this result to be in the direct continuation of early
works by de Broglie24,25 and more recent ones on hydrodynamic
mechanical analogs by Couder and Bush.13–15,17

In this context, our theory offers some interesting potentialities
in order to develop a realistic mechanical demonstrator for the Bohr
atomic model. As we explained in Sec. II B, our model is a direct gen-
eralization of our previous article,28 where a 1D model is used for a
transverse wave propagating along an elastic string and guiding a
particle. In Sec. II B, we pointed out that a 2D mechanical analog
using a vibrating membrane coupled to a particle could constitute
a realistic demonstrator of our model. We believe that other physi-
cal analogies could be developed along this direction. For example,
we could imagine a hydrodynamic analog with a particle coupled to
acoustic waves propagating in a spherical or torroidal tank. Opti-
cal traps and tweezers using laser beams are also good candidates.
Optical vortices with well-defined angular orbital momenta can be
nowadays easily generated (e.g., Refs. 35 and 36) at least in 2D. Since
our model can easily be developed in 2D space, this suggests interest-
ing experimental developments. In particular, optical traps in liquids
have the potentiality, i.e., coupled to small Brownian particles in
water, to create stabilized circular orbital motions of particles ful-
filling the Bohr–Sommerfeld quantum condition. We believe that
all these interesting issues deserve further analysis.

To conclude, it is interesting to go back to de Broglie’s double
solution research program: in the 1950s, de Broglie returned to his
double solution after 25 years. In his new version of the theory,25 he
wrote the u-field as

u(x) = u0(x)+ v(x), (91)

where u0(x)was a strongly singular wave associated with the particle
and v(x) a base wave guiding the point-like singularity and solution
of a linear wave equation such as the Klein–Gordon or Schrödinger
equation. For de Broglie, this base wave is proportional to the usual
quantum 9-wave of quantum mechanics: v(x) = C9(x) (with C a
constant). Our model shows strong similarities with this idea since
our u-field indeed guides the particle (acting as a kind of singularity).
Moreover, our dynamics is satisfying the action–reaction principle
since there is a coupling between the wave and the particle such
that if the transparency regime N = 0 is not satisfied a new u-field
solution of Eq. (26), i.e., D2u(x) = − 1

T

∫

dτN (τ )δ4(x − xp) will be
emitted by the particle and this in turn will modify the motion of
the point-like singularity. In the transparency regime considered in
this article, the wave and the particle peacefully ignore each other
in order to satisfy a guidance condition, which is reminiscent of
the pilot-wave interpretation (at least in the semi-classical regime).
We believe that the knowledge of the source field emitted if N 6= 0
could play a role in order to describe optical transitions between the
different energy levels of the atom. This requires including radiation
damping due to electromagnetic self-interaction of the moving elec-
tron and clearly opens interesting possibilities for future extensions
of the present model.
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APPENDIX: DERIVATION OF THE EQUATIONS OF

MOTION

We first introduce an affine parameter λ along the particle

trajectory such that
√

(x′)2dλ = dτ [in the following, f′ denotes a
derivative d

dλ
f(λ)] and write the action (13) of the whole system,

I = −
∫

[

mp − mpσ

2

(

|z′(λ)|2

(x′)2
−�2

p |z(λ)|2
)]

√

(x′)2dλ

+
∫

{

N (λ)[z(λ)− u(xp(λ))]
∗

+ N
∗(λ)[z(λ)− u(xp(λ))]

}

√

(x′)2dλ

− e

∫

A(xp(λ))x
′
p(λ)dλ+ T

∫

(Du)(Du)∗d4x. (A1)

In order to write the Euler–Lagrange equations for the “particle”
variables y(λ) := [z(λ), z∗(λ), N (λ), N ∗(λ), and x(λ)] we write the
previous action integral as I =

∫

dλL (y, y′)+ T
∫

(Du)(Du)∗d4x,
where the four volume integral T

∫

(Du)(Du)∗d4x is actually irrel-
evant since it is independent of y and y′. The Lagrangian function
L (y, y′) reads

L (y, y′) = −
[

mp − mpσ

2

(

|z′(λ)|2

(x′)2
−�2

p |z(λ)|2
)]

√

(x′)2

+
{

N (λ)[z(λ)− u(xp(λ))]
∗

+ N
∗(λ)[z(λ)− u(xp(λ))]

}

√

(x′)2

− eA(xp(λ))x
′
p(λ). (A2)

This allows us to write Euler–Lagrange equations d
dλ

∂L
∂y′ = ∂L

∂y
:

(1) For N , we obtain

∂L

∂N ∗ =
√

(x′)2(z(λ)− u(xp(λ))) = 0, (A3)

which leads to the holonic condition z(λ)− u(xp(λ) = 0 (a similar
equation is obtained for the complex conjugate variables).

(2) For z, we have

∂L

∂z∗ =
[

−mpσ

2
�2

pz(λ)+ N (λ)
]

√

(x′)2, (A4)

∂L

∂z′∗ = mpσ

2

z′(λ)
√

(x′)2
, (A5)

mpσ

2

[

d

dλ

(

z′(λ)
√

(x′)2

)

+�2
pz(λ)

√

(x′)2

]

= N (λ)

√

(x′)2. (A6)

In particular, if we choose λ = τ where τ is the proper time, we have
√

(x′)2 = 1 and we obtain

mp

σ

2

(

d2

dτ 2
z(τ )+�2

pz(τ )

)

= N (τ ). (A7)

Again, we stress that similar equations are easily obtained for the
complex conjugate variables z∗ and N∗.

(3) Similarly, for xp (which is the only real valued variable in
the dynamics), we get

∂L

∂xµ
= −(N ∂µu∗ + N

∗∂µu)

√

(x′)2 − e∂µAνx
′ν , (A8)

∂L

∂x′µ = −mp

(

1 + σ

2

(

|z′(λ)|2

(x′)2
+�2

p |z(λ)|2
))

x′
µ

√

(x′)2

−
(

eAµ + N
∗(z − u)+ N (z∗ − u∗)

) x′
µ

√

(x′)2
. (A9)

Moreover after introducing the holonomic conditions z(λ)
= u(x(λ)), z∗(λ) = u∗(x(λ)), we deduce that

mp
√

(x′)2
d

dλ

((

1 + σ

2

(

|z′(λ)|2

(x′)2
+�2

p |z(λ)|2
))

x′
µ

√

(x′)2

)

= N
∗∂µu + N ∂µu∗ + eFµν

x′ν
√

(x′)2
. (A10)

In particular, if λ = τ , we obtain

mp

d

dτ

((

1 + σ

2

(

∣

∣

∣

∣

d

dτ
z(τ )

∣

∣

∣

∣

2

+�2
p |z(τ )|2

))

d

dτ
xµ(τ )

)

= N
∗∂µu + N ∂µu∗ + eFµν

d

dτ
xν . (A11)

(4) For the field variables u(x) and u(x)∗, we rewrite the
action integral as I =

∫

d4xL(u, ∂u, u∗, ∂u∗, x)+ · · · , where the dots
are irrelevant terms independent of u, ∂u, u∗, ∂u∗ variables, and
L(u, ∂u, u∗, ∂u∗, x) is the Lagrangian density

L(u, ∂u, u∗, ∂u∗, x) = T(Du)(Du)∗

+
∫

(C)

(

N (λ)[z(λ)− u(xp(λ))]
∗

+ N
∗(λ)[z(λ)− u(xp(λ))]

)

√

(x′)2δ4(x − xp(λ))dλ, (A12)

where an integral along the trajectory C of the particle has been
included for convenience (it represents an explicit x dependence in
L). We deduce

1

T

∂L

∂u∗ = −
∫

(C)

dλN (λ)

√

(x′)2δ4(x − xp(λ))

− ieAµ(∂
µ + ieAµ)u (A13)

and
1

T

∂L

∂∂µu∗ = (∂µ + ieAµ)u, (A14)
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1

T
∂µ

∂L

∂∂µu∗ = ∂µ∂
µu + ie∂µ(A

µu), (A15)

which leads to the Euler–Lagrange equation

0 = ∂µ
∂L

∂∂µu∗ − ∂L

∂u∗

= T[∂µ∂
µu + ie∂µ(A

µu)+ ieAµ(∂
µ + ieAµ)u]

+
∫

(C)

dλN (λ)

√

(x′)2δ4(x − xp(λ)) (A16)

and in the end, we get

DµDµu = −
∫

(C)

dλ
N (λ)

T

√

(x′)2δ4(x − xp(λ)). (A17)

The line integral along C can be written in a simpler form if λ = τ

and we obtain

DµDµu = −
∫

(C)

dτ
N (τ )

T
δ4(x − xp(τ )). (A18)

Alternatively, we can use λ = t′ where t′ is a laboratory time for the
particle and we then obtain

DµDµu(t, x) = −
∫

(C)

dt′
N (t′)

T

√

1 − v2(t′)δ(t − t′)

× δ3(x − xp(t
′)) = −N (t)

T

√

1 − v2(t)δ3(x − xp(t)).

(A19)

We stress that we can directly introduce a covariant form of
the Euler–Lagrange equations and get the same wave equation, by
taking Du and D∗u∗ as our independent variables instead of ∂u and
∂u∗.34
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