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Abstract: We address the question of whether a non-nomological (i.e.,
anomic) interpretation of the wavefunction is compatible with the quantum
formalism. After clarifying the distinction between ontic, epistemic, nomic
and anomic models we focus our attention on two famous no-go theorems
due to Pusey, Barrett, and Rudolph (PBR) on the one side and Hardy on the
other side which forbid the existence of anomic-epistemic models. Moreover,
we demonstrate that the so called restricted ontic indifference introduced by
Hardy induces new constraints. We show that after modifications the Hardy
theorem actually rules out all anomic models of the wavefunction assuming
only restricted ontic indifference and preparation independence.

Keywords: Ontic, epistemic, nomic, and anomic quantum models;
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1. Introduction

The nature of the wavefunction Ψ is the topic of strong debates and controversies
since its introduction in quantum physics in the 1920-30’s [1]. In the recent years the
debate became more technical and focused on the so called ψ−epistemic (here after
ψE) vs ψ−ontic (here after ψO) distinction (see Fig. 1). This terminology originally
introduced by Harrigan and Spekkens [2] has the following prerequisite: First, write
PMΨ (α) := |〈α|Ψ〉|2 the quantum probability (Born’s rule) for observing the outcome α,
i.e., associated with the state |α〉 during a measurement M , when the quantum system
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belonging to the Hilbert space H is prepared in the |Ψ〉 state. Assuming the existence
of underlying hidden-variables, or more generally ‘ontic states’, λ ∈ Λ we write with
J. S. Bell [3]:

PMΨ (α) =

∫
Λ
PMΨ (α|λ)PMΨ (λ)dλ (1)

where PΨ(α|λ) is the response, or indicator, function for the hidden-variable theory
considered, i.e., the probability to record the outcome α conditioned on the hidden variable
value λ. Similarly, PMΨ (λ) denotes the (density of) probability for the hidden-variables to be
in the state characterized by λ. These probabilities are fulfilling the obvious normalization
conditions:

∑
α PMΨ (α|λ) = 1 (where the sum is taken over the complete measurement

basis), and
∫

Λ PMΨ (λ)dλ = |〈Ψ|Ψ〉|2 = 1. Here we also assume the preparation
independence postulate (PIP):

PMΨ (λ) := PΨ(λ) (2)

According to [2], the theory is ψ0 iff for every pair of states |Ψ1〉, |Ψ2〉 ∈ H we have

PΨ1(λ)PΨ2(λ) = 0. (3)

Otherwise the theory will be said to be ψE . This terminology stresses the classical intuition
that for a ψ0 theory the hidden variables distributions associated with different quantum
states Ψi := Ψ1,Ψ2, ... must have disjoints supports ΛΨi (i.e., no overlap) in the Λ-space,
whereas an overlap should be generally allowed for a ψE theory.

In classical physics the density of probability P(q, p) in the phase space is an epistemic
property and we can always find two distributions such that P1(q, p)P2(q, p) 6= 0. The
question is thus to see if the same holds true in quantum mechanics, i.e., if Ψ is just a
label for the probability distributions (in that case we should have a ψE theory) or if Ψ

has a more fundamental meaning as intuited from interference phenomena (in that case we
should have a ψO theory).

In this article we consider two remarkable such attempts for clarifying this ψO, ψE

ambiguity: The Pussey-Barrett-Rudoph (PBR) theorem [4,5], and the Hardy ‘restricted
ontic-indifference’ (H-ROI) theorem [6] against ψE models [7]. The goal here is not to
review these important results but to clarify their impacts and limitations. Moreover, we
show that the H-ROI theorem is not just a variant of the PBR theorem but actually can be
modified into a stronger no-go result against the existence of many ‘natural’ ontological
models. Moreover, we believe that our analysis is important in the current philosophical
debate concerning the reality of the wave function (for a discussion of this issue see [12])
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2. Ontic, epistemic, Nomic, and Anomic theories

The PBR theorem (see [13,14] for reviews) shows that assuming an additional
preparation independence postulate for product states (PIP-PS) ontological models must
be ψO, i.e., ψE theories conflict with quantum mechanics. For non orthogonal states [15]
〈Ψ1|Ψ2〉 6= 0 the result is derived by assuming product states like |Ψn〉(A) ⊗ |Ψm〉(B) ∈
H(A) ⊗H(B) (where n,m = 1 or 2 and A,B label two copies of the same Hilbert space).
The PIP-PS reads PΨn⊗Ψm(λ(A), λ(B)) = PΨn(λ(A))PΨm(λ(B)) (here we introduced a
Cartesian product hidden-variables space Λ(A) × Λ(B)). In [4] measurement protocols
involving antidistinguishable product states [13] are proposed in order to justify Eq. 3 for
every pairs of states inH.

Several comments must be done concerning the PBR theorem. First, observe that the
derivation also assumes

PMΨ (α|λ) = PM (α|λ). (4)

This rather innocuous axiom Eq. 4 was implicit in [4] (this was already pointed out in
[16–19] and independently in [20,21]). Moreover, it plays a fundamental role since it
implies ψ−independence at the law level, or in other words that Ψ is not involved in the
dynamics of λ: It is a ψ−anomic theory (here after ψA). We stress that the well-known de
Broglie-Bohm (dBB) hidden-variables theory [22,23], which is empirically equivalent to
standard quantum mechanics, violates conditions given by Eq. 4, i.e., ψA [19]. Therefore,
such a theory is said to be ‘nomological’ [23] or ψ−nomic (here after ψN ).

Now, what the PBR no-go theorem really says is that:
PBR theorem– Assuming PIP-PS there is no ψEA theory.
In other words: A ψA theory can not be ψE and must therefore be ψO (see Fig. 1).

The theorem says nothing about ψN models (i.e., about the existence of ψON and ψEN
models) and therefore the derivation [4] can not run for these cases (e.g., the dBB
theory is ψEN discussed in Appendix A). We believe that the unfortunate choice of not
clearly distinguishing between dynamics and statistics in the terminology of Harrigan
and Spekkens was responsible for many confusions surrounding the PBR theorem [24].
Furthermore, the distinction between ψO and ψN removes terminological ambiguities [29]
and clarify the role of Eq. 4.

A second comment concerns the fact that it is always possible to extend the
hidden-variables space Λ to include a supplementary variable τΨ ∈ Γ isomorphic to the
wavefunction |Ψ〉: For example in SU(2) a spinor on the unit sphere is characterized
by angles ϑ, ϕ on the Bloch sphere. A more general methods is given in [18,30,31].
The new ontic space Λ × Γ allowed Harrigan and Spekkens to distinguish between
Ψ−complete models where only Γ is considered and Ψ−supplemented models involving
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Λ× Γ. Moreover, Eq. 1 can be rewritten

PMΨ (α) =

∫
Λ×Γ

PM (α|µ)P̃Ψ(µ)dµ (5)

where by definition µ := (λ, τΦ), and P(α|µ) := PΦ(α|λ) (with τΦ ↔ |Φ〉 and |Φ〉 ∈ H).
The density of probability P̃Ψ(µ) is by definition [32]

P̃Ψ(µ) := PΨ(λ)δ(τΦ − τΨ). (6)

Moreover, from Eqs. 5 and 6 we now have a ψOA theory. Such a model trivially
satisfies the PBR theorem since P̃Ψ1(µ)P̃Ψ2(µ) = 0 ∀µ ∈ Λ × Γ and for every pairs
|Ψ1〉, |Ψ2〉 ∈ H. Therefore, by adding an hidden variable τΦ to λ we can always transform
any ψON or ψEN model into a ψOA theory (see Fig. 1). We emphasize that even if this new
models are mathematically and empirically equivalent to their parents they are however
not ontologically equivalent since the new ontic space is now Λ× Γ.

This shed some new lights on a old debate surrounding the dBB theory [23,25,33]:
Should the wavefunction be part of the ontology or should it better be considered as a
nomological feature guiding the particles? We now see that these two approaches are

Figure 1. Classification of the different ontological models assuming the PIP
(see text). ψON and ΨE

N models can be transformed (see arrows) into models of
the ψOA class (blue ellipse domain). Models satisfying PIP-PS (red boxes) and
ROI (green boxes) are also represented. Dark orange regions are prohibited
by no-go theorems: ψEA models assuming PIP-PS are excluded by the PBR
theorem [4], whereas the ROI domain in the ΨA regions are excluded by the
H-ROI (II) theorem derived in this work. Note, that the models prohibited by
the original H-ROI theorem [6] are inside the ROI subdomain of the ψEA class.

mathematically and empirically equivalent, i.e., both agreeing precisely with the statistical



International Journal of Quantum Foundations 8 (2022) 20

predictions of quantum mechanics. The primitive ontology of particles in the Λ space
associated with a ψEN dBB ontology can be transformed into a new ψOA theory in the Λ×Γ

space where the wavefunction has now also an ontological nature. Therefore, at the end
we have two different ontologies.

3. Restricted ontic theories and anomicity

Having recapped this, it is clear that the PBR theorem must be supplemented by others
assumptions in order to lead to physical conclusions on ψA and ψN theories. We believe
that the goal can be partially reached using a modification of the original H-ROI theorem.

The motivations for the H-ROI theorem [6] is tied to the ψEN dBB particle ontology.
Indeed, in the dBB theory the wavefunction in the configuration space transfers information
from the environment to the particles and this in turn explains phenomena such as
interferences and quantum-correlations. In the case of single-particle Mach-Zehnder
interferences the particle after the first beam-splitterBS0 follows necessarily one path (e.g.,
in arm |0〉). However, an ‘empty wave’ [22,34] must be included in the second arm (with
state |1〉) in order to give phase-information to the particle which in turn determines its
subsequent motion when crossing the second beam-splitter BS1. Obviously, it seems very
difficult to obtain this result without invoking a ψN theory. The motivation of H-ROI is
thus to justify this physical intuition by considering a ψA ‘particle-like’ model. In such a
ψA ontology for localized hidden-variables we must invoke a form of locality: Restricted
ontic indifference (ROI) [6] expressing that any quantum operation made on the state |0〉
and leaving it unchanged, doesn’t impact the underlying hidden-variables λ ∈ Λ0 in the
ontic support of |0〉 (otherwise the model would be ψN ). We stress that Hardy [6] also
defined ontic indifference for all states but in the present work we will limit our analysis to
ROI leading to a restricted no-go result.

We here consider the ‘half’ Mach-Zehnder sketched in dark blue in Fig. 1. After a first
beam-splitter BS0 (shown in light blue in the dashed box of Fig. 1) a single electron beam
has been prepared in the superposition

|Ψ+〉 = a|0〉+ b|1〉 (7)

where |0〉, |1〉 are the two modes located in different arms, and a, b ∈ R+ are normalized
real positive amplitude coefficients (a2 + b2 = 1, b ≥ a, the phases are absorbed into the
definition of |0〉, |1〉). In beam 1 we add a wave-plate inducing a phase delay χ: |1〉 →
eiχ|1〉. We thus obtain:

|Ψ+〉 →
χ
a|0〉+ eiχb|1〉. (8)
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Figure 2. Principle of the interferometric proof for the H-ROI theorem [6].
BSi (i = 0, 1, 2) denote beam-splitters, and paths/gates are labeled as
indicated in the figure (see main text). A phase-shifter (χ) is introduced in
path 1. The sketch also includes (light blue color region in the dashed box)
the preparation stage (with a movable beam-blocker) which is used to modify
the original proof given in [6].

In particular, if χ = π we get the state

|Ψ+〉 →
χ=π
|Ψ−〉 = a|0〉 − b|1〉 (9)

with 〈Ψ+|Ψ−〉 = a2 − b2. A beam-splitter (BS1) is subsequently added in beam 1 (see
Fig. 1) and we have the transformation

a|0〉+ eiχb|1〉 →
BS1

a|0〉+ eiχTb|1〉 − eiχRb|2〉 (10)

where T and R =
√

1− T 2 are the transmission and reflectivity amplitudes respectively
(the minus sign comes from unitarity). In the following we impose T = a/b and we finally
introduce a last 50/50 beam splitter (BS2) with input modes |0〉, |1〉 and outcomes |3〉, |4〉.
This leads to the transformation:

a|0〉+ eiχTb|1〉 − eiχRb|2〉

= a|0〉+ eiχa|1〉 − eiχ
√
b2 − a2|2〉

→
BS2

a√
2

(1 + eiχ)|3〉+
a√
2

(1− eiχ)|4〉

−eiχ
√
b2 − a2|2〉. (11)

We consider two particular cases: If χ = 0 we have

|Ψ+〉 →
χ=0
|Ψ+〉 −→

BS1,BS2

√
2a|3〉 −

√
b2 − a2|2〉, (12)

and if χ = π we instead obtain

|Ψ+〉 →
χ=π
|Ψ−〉 −→

BS1,BS2

√
2a|4〉+

√
b2 − a2|2〉. (13)



International Journal of Quantum Foundations 8 (2022) 22

Suppose we have only a state in the |0〉 mode (for example by blocking the |1〉 gate just
after BS0). Letting the wave-plate (i.e., whatever χ is) and BS1 in place in the empty path
|1〉 doesnt affect beam |0〉 evolution which is only impacted by BS2. We thus deduce

|Ψ0〉 := |0〉 −→
χ,BS1,BS2

1√
2
|3〉+

1√
2
|4〉. (14)

Now, assuming a ψA model satisfying the PIP and ROI we consider the hidden variable
λ ∈ ΛΨ+ in the ontic support of |Ψ+〉. Since this is a ψA model Eq. 4 holds true and
we can define Pχ(3|λ),Pχ(4|λ) where the superscript χ reminds that the experimental
protocol, i.e., the response function, generally depends on the value χ. Moreover, if χ = 0

we get

Pχ=0(4|λ) = 0 ∀λ ∈ ΛΨ+ (15)

and if χ = π we get

Pχ=π(3|λ) = 0 ∀λ ∈ ΛΨ+ . (16)

Furthermore, for the particle prepared in state |Ψ0〉 we have

P(3|λ) + P(4|λ) = 1 ∀λ ∈ ΛΨ0 (17)

where the superscript χ of Pχ(α|λ) (α = 3 or 4) has been removed to agree with ROI.
Finally, assuming with Hardy that λ ∈ ΛΨ+ ∩ ΛΨ0 , we get from Eqs. 15,16.

P(3|λ) = 0,P(4|λ) = 0 ∀λ ∈ ΛΨ+ ∩ ΛΨ0 . (18)

Eq. 18, which is independent of χ, conflicts with Eq. 17 and therefore we conclude [6] that
ΛΨ+ ∩ ΛΨ0 = ∅. In others words we get the result:

H-ROI theorem–ψA models satisfying PIP and ROI can not be fully ψE .
As already mentioned this result is restricted to very particular states for which b ≥ a,

i.e., |〈Ψ0|Ψ+〉|2 ≤ 1
2 . Its generalization to any pair of states would require to go beyond

ROI [6].
However, there is more in the H-ROI theorem. Indeed, going back to the preparation of

state |Ψ0〉 (i.e. in the light blue zone of Fig. 1) observe that we actually omitted one crucial
step, that is, the transformation from the initial state |Ψin〉 existing before the initial BS0

into the state |Ψ0〉. As we explained, this can easily be done by a beam-blocker removing
the |1〉 mode or by using an additional beam-splitter (i.e., to preserve unitarity and avoid
further discussions about the particle absorption). In either case, it leads to the evolution

|Ψin〉 −→
BS0

|Ψ+〉 −→
abs.

a|Ψ0〉+ |rest〉 (19)
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where |rest〉 (‖rest〉|‖2 = b2) is the irrelevant part of the state absorbed or deviated by the
device and a|Ψ0〉 = a|0〉 := |Ψ′0〉 constitutes the prepared mode. Here, comes the issue:
Going back to Eq. 17 we must now have

P(3|λ) + P(4|λ) = 1 ∀λ ∈ ΛΨin [Ψ0] (20)

where ΛΨin [Ψ0] ⊂ ΛΨin is the subset of ΛΨin leading to the preparation of mode |Ψ′0〉.
Again, a form of ROI was used (see below for comments). Moreover, by comparing with
Eqs. 15, 16 (but with ΛΨ+ replaced by ΛΨin) we get a contradiction: P(3|λ)+P(4|λ) must
equal zero and one at the same time ∀λ ∈ ΛΨin [Ψ0] ⊂ ΛΨin (this is a sketch of the proof
assuming determinism; a more complete derivation is given in Appendix B). Therefore, we
have no other alternative than to abandon the ψA model (see Fig. 1). This leads to the main
result of this article:

H-ROI (no-go) theorem (II)–PIP and ROI together conflict with ψA theories.
Several remarks must be done concerning this result: First, observe that in [6] no

preparation stage Eq. 19 was involved since the motivation was to justify the PBR
conclusion from different hypotheses (i.e., PIP and ROI instead of PIP-PS). On the contrary,
for our deduction Eq. 19 is key. Without relying on the PIP-PS, we actually precise the PBR
theorem by showing that if we assume a ψA model PIP, and ROI then we necessarily run
into a contradiction: Neither ψEA nor ψOA models are therefore allowed.

We point out that the definition of ROI used here is weaker than in [6]. Indeed, Eq. 17
shows that the key idea is to refute the existence of an empty wave [22,34] and therefore
if we know which path the particle is going along (i.e., |0〉 due to the presence of the
beam-blocker) the empty path not taken and what is inside it (i.e., the wave-plate in path
|1〉) have no influence on the indicator function P(4|λ) and P(3|λ). But note that in
our theorem H-ROI(II), the hidden variables λ are defined before the wave-packet |Ψin〉
interacts with the device. The condition Eq. 20 is thus more dynamics than in [6] and
exploits the ψEA nature of the ontological models considered. We note en passant that our
analysis of the preparation procedure shows some interesting connections with the notion
of state update recently discussed in [35]. It should be interesting to further investigate
this connection. We also remind that we didn’t here considered the broader framework
of ontic indifference for all quantum states discussed in [6] (and in [36] in relation with a
continuity assumption). However, since we already ruled out ROI for ψA models this casts
some doubts on the physical pertinence of a broader framework. This, clearly, should be
the subject of further work.

Furthermore, we stress that if we start with a ψN model, e.g., like the dBB theory, and
if we supplement the model with a τΦ ∈ Γ vector we will not in general be able to satisfy
ROI since the wavefunction that is now part of the ontological space Λ × Γ is a highly
delocalized hidden variable (e.g., in modes |Ψ±〉). The derivation presented here could not
run. This again shows the importance of distinguishing between different mathematically
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equivalent frameworks (like dBB theory being either ψEN or ψOA ) when we apply physical
principles such as ROI. Moreover, this shows that the dBB theory can not be ruled out by
our theorem prohibiting ψA models with ROI. Indeed, either the dBB theory is ψEN , and
agrees with ROI, or it is ψOA (in the Λ× Γ space) and doesn’t agree with ROI. In each case
there is no conflict with our no-go theorem.

Finally, remark that whereas ontic indifference is a natural hypothesis for spatial degrees
of freedom it is not a mandatory hypothesis. For example, ROI is violated in the ψEA toy
model proposed by Spekkens [6,13,37]. Furthermore, dBB models for bosonic quantum
fields [22] using a wavefunctional representation Ψ([φ(x)], t), where φ(x) := λ is a
continuous field playing the role of an hidden-variable, also generally disagree with ROI.

To conclude, after introducing a general terminology involving ψA and ψN

models together with the more traditional ψE and ψO models used in the original
Harrigan/Spekkens framework, we emphasized the fact that the PBR theorem only
prohibits the existence of ψEA hidden-variables theories. ψN models in general, and ψEN
models in particular, are not forbidden. The H-ROI theorem was subsequently analyzed
in this framework and a stronger theorem: H-ROI(II) was derived which is proving the
incompatibility of PIP, ROI and ψA theories. Altogether, this hierarchy of theorems
imposes strong constraints on future hidden-variables models and opens new exciting
questions concerning ψN and ψA models. In particular, it lets open the possibilities: (i)
To further develop ψN models which, like the dBB theory, assumes ROI, or (ii) to modify
drastically the usual space-time ontology by relinquishing ROI. This suggests some highly
nonlocal wavefunctional ψN and ψ0 approaches but it could even save ψEA models by
dropping the PIP [4,13,38–42] or the free-choice assumption [43].

Acknowledgments I thank Cristian Mariani for organizing very stimulating
discussions about the PBR theorem during the year 2021 [44].

A.

In the ψN dBB approach for point-like particles [23] the hidden-variables are the
positions of the N particles with coordinates x1, ...,xN ∈ R3 in the ‘real’ 3D space.
These are regrouped under a single super-vector X := [x1, ...,xN ] in the configuration
space R3N where the wavefunction ψ(X, t) evolves. Furthermore, in the dBB theory the
particles have a deterministic dynamics and we have very generally

d

dt
Xψ(t) = FΨ(Xψ(t), t) (21)

which characterizes a first-order dynamic belonging to the ψN class.
Moreover, the density of probability

PΨ(Xψ(t), t) = |ψ(Xψ(t), t)|2 (22)
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defines a hidden-variable probability density PΨ(λ) if we identify λwith the vectorXψ(t0)

at an initial time t0 (i.e., PΨ(λ) := |ψ(Xψ(t0), t0)|2). But since two wavefunctions can
overlap in the configuration space Eq. 4 is in general not valid and the model is thus ψEN .

It is however remarkable that both de Broglie and Bohm conceived the wavefunction
as an ontic field. De Broglie wanted to elaborate a theory where the wave field was the
primary enity (the double solution theory) whereas Bohm considered the wavefunction as
a quantum potential QΨ acting upon the particles and fields. In this empirically equivalent
ψOA formulation it is Eq. 5 of the main article that must be used instead of Eq. 1.

B.

The general proof of the contradiction starts with Eq. 1 and 3 of the main article:

PMΨ (α) = Tr[EMα ρΨ] =

∫
Λ
PMΨ (α|λ)PΨ(λ)dλ

=

∫
Λ
PM (α|λ)PΨ(λ)dλ (23)

where beside the PIP we used the fact that for a ψA model PMΨ (α|λ) = PM (α|λ). We added
a label M for the quantum measurement protocol considered. Furthermore according to
quantum mechanics we also defined the quantum probability using a projector operator
EMα for the measurement outcome α (

∑
αE

M
α = 1) and the density matrix ρΨ = |Ψ〉〈Ψ|

at initial time (we use the Heisenberg representation).
We assume a measurement sequence M1,M2 on the system described by the

wavefunction |Ψ〉 and write α, β the outcomes of the first and second measurements
respectively. After introducing the Λ space the joint quantum probability associated with
recording α and β reads:

PM2,M1

Ψ (β, α) = Tr[EM1
α EM2

β EM1
α ρΨ]

=

∫
Λ
PM2,M1(β, α|λ)PΨ(λ)dλ (24)

or equivalently

PM2,M1

Ψ (β, α) =

∫
Λ
PM2,M1(β|α, λ)dPΨ(α, λ)

=

∫
Λ
PM2,M1(β|α, λ)PM1(α|λ)PΨ(λ)dλ. (25)

After comparing Eq. 24 and Eq. 25 we obtain:

PM2,M1(β|α, λ) =
PM2,M1(β, α|λ)

PM1(α|λ)
(26)

which obeys the usual normalization for the indicator function:∑
β

PM2,M1(β|α, λ) =

∑
β PM2,M1(β, α|λ)

PM1(α|λ)
= 1. (27)
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For the present purpose we consider the deduction divided in 3 logical steps:
–Step (i) As a first step (see Fig. 2 of the main article) the detection of a particle at gates

3 or 4 after passing through arm |0〉 with the beam-blocker in place and removing the wave
propagating in arm |1〉. This corresponds to the sequence:

|Ψin〉 −→
BS0

|Ψ+〉 −→
abs.

a|Ψ0〉+ |rest〉

−→
χ,BS1,BS2

a√
2

(|3〉+ |4〉) + |rest〉. (28)

As explained in the text of the main article the nature of state |rest〉 is not very crucial. It
is here enough to have a clear which-path information either using a beam-blocker or an
entangling device.

We call M1 the experiment: ‘The particle goes through BS0 and is interacting with by
the beam-blocker’. If the outcome α =No the particle is stopped by the beam-blocker. If
the outcome α =Yes this corresponds to the preparation of state |Ψ0〉.

We call M2[χ] the second part of the sequential experiment: ‘The particle goes through
the interferometer with the wave-plate and BS1,BS2 in place’. The different outcomes β
correspond to the label of the exit ports β = 2, 3, or 4 (for completeness we also need to
add a gate β = ∅ if the particle is stopped by the beam-blocker).

In this experiment the joint probabilities PM2[χ],M1

Ψ (β, α) corresponding to Eq. 28 are

PM2[χ],M1

Ψ (4, α = Yes) =
a2

2
,

PM2[χ],M1

Ψ (3, α = Yes) =
a2

2

PM2[χ],M1

Ψ (2, α = Yes) = 0

PM2[χ],M1

Ψ (∅, α = Yes) = 0. (29)

We have also PM2[χ],M1

Ψ (β, α = No) = 0 if β = 2, 3, 4 and PM2[χ],M1

Ψ (β = ∅, α = No) =

b2 but these are not interesting us here. All these probabilities are, of course, independent
of the phase-shift χ and will be written PM2[�χ],M1

Ψ (β, α) in the following
Now, from Eq. 29 and Eq. 27 we get for λ ∈ ΛΨin

PM2[χ],M1

Ψ (2, α = Yes|λ) = 0,PM2[χ],M1

Ψ (∅, α = Yes|λ) = 0

(30)

and

PM2[�χ],M1

Ψ (4, α = Yes|λ) + PM2[�χ],M1

Ψ (3, α = Yes|λ)

= PM1
Ψ (α = Yes|λ) (31)

which generalizes Eq. 20 of the main article. In particular, for a deterministic
hidden-variables theory we have PM1

Ψ (α = Yes|λ) = 1 or 0. If λ ∈ ΛΨin [ψ0] we have
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PM1
Ψ (α = Yes|λ) = 1 and Eq. 31 reduces to Eq. 20:

PM2[�χ],M1

Ψ (4, α = Yes|λ) + PM2[�χ],M1

Ψ (3, α = Yes|λ) = 1

(32)

∀λ ∈ ΛΨin [ψ0]. Note that ROI was not yet used in the reasoning so that Eq. 32 is not yet
exactly Eq. 20: This will require an other step discussed as step (iii) below.

–Step (ii) As a second step we consider a different experiment where the
beam-blocker has been removed. Instead of M1 we now obtain the experiment M0: ‘The
particle goes through BS0’ which corresponds to the preparation of the state |Ψ+〉. The
whole sequence M0 followed by M2[χ] leads to the state

|Ψin〉 −→
BS0

|Ψ+〉 −→
χ,BS1,BS2

a√
2

(1 + eiχ)|3〉

+
a√
2

(1− eiχ)|4〉 − eiχ
√
b2 − a2|2〉, (33)

and therefore to the probabilities

PM2[χ],M0

Ψ (4) = a2(1 + cosχ),

PM2[χ],M0

Ψ (3) = a2(1− cosχ)

PM2[χ],M0

Ψ (2) = b2 − a2. (34)

From Eq. 34 and Eq. 27 we get for λ ∈ ΛΨin

PM2[χ=0],M0

Ψ (4|λ) = 0,PM2[χ=π],M0

Ψ (3|λ) = 0, (35)

and we have also

PM2[χ=0],M0

Ψ (3|λ) + PM2[χ=0],M0

Ψ (2|λ) = 1,

PM2[χ=π],M0

Ψ (4|λ) + PM2[χ=π],M0

Ψ (2|λ) = 1. (36)

Eq. 35 has the same meaning as Eqs. 15 and 16 of the main article.
–Step (iii) We must now introduce our definition of ROI. Going back to step (i),

we want that the operations made in path 1 are inoperative for the dynamics if we already
know that the particle went through path 0. More precisely, returning to Eq. 31 we want that
the probabilities PM2[χ],M1

Ψ (4, α = Yes|λ) and PM2[χ],M1

Ψ (3, α = Yes|λ) are independent
of what occurs in path 1. This must be the case from ROI and therefore we write our
condition as:

PM2[�χ],M1

Ψ (4, α = Yes|λ) = PM2[χ],M0

Ψ (4|λ) (37)

PM2[�χ],M1

Ψ (3, α = Yes|λ) = PM2[χ],M1

Ψ (3|λ) (38)

where the condition expresses the fact that the beam-blocker doesn’t change the dynamics
(stochastic or deterministic) once we know the system selected path 0.
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Moreover, from ROI the value of χ must also have no implication. Therefore, if we
select χ = 0 in Eq. 37 and χ = π in Eq. 38 we obtain from Eq. 35 the result:

PM2[�χ],M1

Ψ (4, α = Yes|λ) + PM2[�χ],M1

Ψ (3, α = Yes|λ) = 0.

(39)

This condition obviously contradicts Eq. 31 since it leads to PM1
Ψ (α = Yes|λ) = 0 which

can not always be true (otherwise we would have PM1
Ψ (α = Yes) = 0 and a2 at the same

time). In particular for a deterministic model this can not b true ∀λ ∈ ΛΨin [Ψ0] ⊂ ΛΨin as
discussed in the main article.

We stress that ROI also leads to PM2[�χ],M1

Ψ (2, α = Yes|λ) = PM2[χ],M0

Ψ (2|λ). Together
with Eqs. 36 and 35 it yields PM2[�χ],M1

Ψ (2, α = Yes|λ) = 1 which obviously contradicts
Eq. 30. All these deductions demonstrate the no-go theorem H-OI (II) discussed in the
main article.
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