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NEW ENERGY FUNCTIONALS FOR THE INCOMPRESSIBLE

HALL-MHD SYSTEM

JIN TAN

Abstract. We show the existence and uniqueness of solutions to the three-

dimensional incompressible Hall-magnetohydrodynamic (Hall-MHD) system
with initial data in critical Sobolev spaces. Our result works for general phys-

ical parameters, thus improves the partial result obtained very recently by

Danchin and the author in [13] and fully answers a problem proposed by Chae

and Lee in the Remark 2 of [6]. Considering the so-called 2 1
2

D flows for the

Hall-MHD system (that is 3D flows independent of the vertical variable), we
show that under the sole assumption that the initial magnetic field is small in

the critical Sobolev space leads to a global well-posedness statement.

1. Introduction

In this paper, we consider the following three-dimensional incompressible resis-
tive and viscous Hall-MHD system in the whole space:

∂tu+ u · ∇u+∇P − ν∆u = (∇×B)×B,
divu = 0,

∂tB −∇×
(
u×B − h(∇×B)×B

)
= µ∆B,

(u,B)|t=0 = (u0, B0),

(1.1)

where the unknowns are u, B and P, that represent the velocity field, the magnetic
field and the scalar pressure, respectively. The parameters ν and µ are the fluid
viscosity and the magnetic resistivity, while the positive number h measures the
magnitude of the Hall effect compared to the typical length scale of the fluid. For
compatibility with (1.1)2, we assume that divu0 = 0 and, for physical consistency,
since a magnetic field is a curl, we suppose that divB0 = 0, a property that is
propagated by (1.1)3.

The Hall-MHD system (1.1) is useful when modelling the magnetic reconnection
phenomenon, which cannot be explained by the classical MHD system (that corre-
sponding to h = 0) where the Hall electric field EH := hJ × B (here the current
J is defined by J := ∇× B) is neglected. The study of the Hall-MHD system has
been initiated by Lighthill in [23]. Owing to its importance in the theory of space
plasma, like e.g. star formation, solar flares or geo-dynamo, it has received lots of
attention from physicists (see e.g. [2, 16, 20, 27, 30]).

The mathematical study of the Hall-MHD system has been considered only
rather recently. We mention that, the results [1, 5, 14, 10] are focused on the
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weak solutions, while [6, 4, 33, 34, 9] are focused on the strong solutions with reg-
ular enough (sub-critical) initial data. In [31, 32, 11, 35], the long-time behaviour
and optimal space-time decay rates of strong solutions are obtained. Recently, in
[12, 13], the authors proved global (for small initial data) and local (for any initial
data) well-posedness in critical Besov spaces. For Hall-MHD system without resis-
tivity, it was showed in [7] that there exists finite time singularity formation within
axisymmetry, and several strong ill-posedness results are presented in [21].

For any couple (w, z) of vector-fields on R3, thanks to the equality

(∇× w | z) = (w | ∇ × z), (1.2)

where (· | ·) denotes the scalar product in L2(R3;R3), Hall-MHD system (1.1) ac-
tually shares a same energy inequality as to the classical MHD system (see e.g.
[26, 19]): for all t ≥ 0,

1

2

d

dt

(
‖u(t)‖2L2 + ‖B(t)‖2L2

)
+ ν‖∇u(t)‖2L2 + µ‖∇B(t)‖2L2 ≤ 0. (1.3)

Indeed, (1.3) plays a key role in the proofs of Leray-Hopf type weak solutions of
Hall-MHD system in [1, 5]. However, we emphasis that due to the additional Hall
term: ∇× ((∇×B)×B), the magnetic equation (1.1)3 becomes quasi-linear, and
the only known natural a priori bound (1.3) is super-critical more than the classical
MHD system, or the Navier-Stokes equations. Moreover, as mentioned in [12, 34],
we shall see that the difficulties not only comes from Hall term but also from the
coupling between u and B through the term ∇ × (u × B) in (1.1)3. Somehow, it
seems difficult to get exactly the same results as for the generalized Navier-Stokes
equations that presented in e.g. [3, Chap. 5].

In [12, 13], Danchin and the author pointed out that the Hall-MHD system (1.1)
better behaves if ν = µ (which is not physically motivated) since, although being
still quasi-linear, the Hall term disappears in the energy estimate involving the
so-called velocity of electron v := u − hJ. Indeed, considering v as an additional
unknown, the following extended formulation of the Hall-MHD system is obtained:

∂tu− ν∆u = B · ∇B − u · ∇u−∇π,
∂tB − ν∆B = ∇× (v ×B),

∂tv − ν∆v = B · ∇B − u · ∇u−∇×
(
(∇× v)× curl−1(u− v)

)
+∇× (v × u) + 2∇× (v · ∇curl−1(u− v))−∇π,

divu = divB = div v = 0,

(1.4)

in which the −1-th order homogeneous Fourier multiplier (the so-called Biot-Savart
operator) curl−1 is defined on the Fourier side by

F(curl−1z)(ξ) :=
iξ ×F(z)(ξ)

|ξ|2
·

That redundant equation (1.4)3 is still quasi-linear but, owing to (1.2), the most
non-linear term cancels out when performing an energy estimate, since

(∇× ((∇× v)×B) | v) = 0.

Let us now briefly explain what we mean by critical regularity for the Hall-MHD
system (1.1). In fact, because Hall term breaks the natural scaling of the classical
MHD system (the reader may refer [25] for results in critical spaces), there does
not exist a genuine scaling invariance for the Hall-MHD system (1.1). However, it
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can be seen that some scaling invariance does exist for System (1.4) and the scaling
invariance of (u,B, v) is the same as for the velocity in the Navier-Stokes equations:

(u,B, v)(t, x) ; (λu, λB, λv)(λ2t, λx) and (u0, B0, v0)(x) ; (λu0, λB0, λv0)(λx).

This observation motivates the use of criticality in [12, 13] and for more details on
the definition of criticality for Hall-MHD system, one may read [28].

1.1. Main results. Our first main goal is to prove Fujita-Kato type result for the
3D Hall-MHD system (1.1) in the spirit of the celebrated work [15] (see also [8]) for
the Navier-Stokes equations. In our context, this amounts to proving that System
(1.1) supplemented with initial data (u0, B0) such that (u0, B0) is small enough in

the critical homogeneous Sobolev space Ḣ
1
2 (R3) × (Ḣ

1
2 (R3) ∩ Ḣ 3

2 (R3)) admits a
unique global solution.

Theorem 1.1. Let (u0, B0) ∈ Ḣ 1
2 (R3) with divu0 = divB0 = 0, and ∇ × B0 ∈

Ḣ
1
2 (R3). There exists a constant c1 > 0 depending only on ν, µ, h such that, if

‖u0‖
Ḣ

1
2 (R3)

+ ‖B0‖
Ḣ

1
2 (R3)

+ ‖∇ ×B0‖
Ḣ

1
2 (R3)

< c1,

then there exists a unique global solution

(u,B) ∈ C(R+; Ḣ
1
2 (R3)) ∩ L2(R+; Ḣ

3
2 (R3))

to the Cauchy problem (1.1), such that B ∈ L∞(R+; Ḣ
3
2 (R3)) ∩ L2(R+; Ḣ

5
2 (R3)).

Adopting the low-high frequencies decomposition method as in [3] and [18] for the
Navier-Stokes equations, we have the following consequence which states that global
solutions, even if large and with infinite energy, enjoying a suitable integrability
property have to decay to zero at infinity. In contrast with [13], the assumption
that ν = µ is not required here, thanks to an improved stability estimate in L2 (see
Proposition 1.5) and similar arguments as in [13].

Corollary 1.2. Assume that (u0, B0) ∈ Ḣ
1
2 (R3) with divu0 = divB0 = 0 and

∇ × B0 ∈ Ḣ
1
2 (R3). Suppose in addition that the Hall-MHD system supplemented

with initial data (u0, B0) admits a global solution (u,B) such that

(u,B,∇×B) ∈ L∞loc(R+; Ḣ
1
2 (R3)) ∩ L4

loc(R+; Ḣ1(R3)).

Then, (u,B) also belongs to L2
loc(R+; Ḣ

3
2 (R3)), and satisfies

lim
t→+∞

(
‖u(t)‖2

Ḣ
1
2

+ ‖B(t)‖2
Ḣ

1
2

+ ‖B(t)‖2
Ḣ

3
2

)
= 0. (1.5)

In particular, all the solutions constructed in Theorem 1.1 satisfy (1.5).

In the last, we consider the 2 1
2D flows for the Hall-MHD system (1.1) (that is

3D flows depending only on two space variables), as proposed by Chae and Lee in
[6]. This issue is well-known for the incompressible Navier-Stokes equations (see
e.g. the book by Bertozzi and Majda [24]). In our case, the corresponding system
reads: 

∂tu+ u · ∇̃u+ ∇̃π = B · ∇̃B + ν∆̃u,

d̃ivu = 0,

∂tB − ∇̃ × (u×B) + h ∇̃ × (j ×B) = µ∆̃B,

(u,B)|t=0 = (u0, B0),

(1.6)
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where the unknowns u and B are functions from R+ × R2 to R3, ∇̃ := (∂1, ∂2, 0),

d̃iv := ∇̃·, ∆̃ := ∂21 + ∂22 and

j := ∇̃ ×B =

 ∂2B
3

−∂1B3

∂1B
2 − ∂2B1

 ·
After a small modification of the proof of [5] allows to establish that for any

initial data (u0, B0) in L2(R2;R3) with d̃ivu0 = d̃ivB0 = 0, there exists a global-

in-time Leray-Hopf weak solution (u,B) ∈ L∞(R+;L2(R2)) ∩ L2(R+; Ḣ1(R2)) of
System (1.6) that satisfies:

1

2

d

dt

(
‖u(t)‖2L2(R2) + ‖B(t)‖2L2(R2)

)
+ ν‖∇̃u(t)‖2L2(R2) +µ‖∇̃B(t)‖2L2(R2) ≤ 0. (1.7)

For 2 1
2D flows, we obtain a global existence and uniqueness result for System

(1.6) by assuming only that ‖B0‖H1 is small enough and u0 ∈ H1(R2). In contrast
with [13], the assumption that ν = µ is not required. It reads:

Theorem 1.3. Let (u0, B0) be divergence free vector-fields with u0 in H1(R2;R3)
and B0 in H1(R2;R3). There exists a constant c2 > 0 depending only on the H1

norm of u0, and on ν, µ, h such that if

‖B0‖H1(R2) ≤ c2,

then there exists a unique global solution (u,B) to System (1.6), with

(u,B) ∈ L∞(R+;H1(R2)), (∇̃u, ∇̃B) ∈ L2(R+;H1(R2)).

Moreover, the following energy balance is satisfied for all t ≥ t0 ≥ 0 :

‖u(t)‖2L2(R2) + ‖B(t)‖2L2(R2) + 2
w t

t0

(
ν‖∇̃u(τ)‖2L2(R2) + µ‖∇̃B(τ)‖2L2(R2)

)
dτ

= ‖u(t0)‖2L2(R2) + ‖B(t0)‖2L2(R2). (1.8)

Remark 1. At the same time, the critical Sobolev regularity of the 2 1
2D model

corresponds to u0 in L2(R2) and to B0 in H1(R2), if only u0 is in L2(R2) and that
the initial data are small, then it will be possible to prove a global existence and
uniqueness result of solutions with critical regularity, in the spirit of the 3D one.

1.2. New energy functionals. Due to the scaling of the magnetic field for the
Hall-MHD system, it seems reasonable to consider the current function J = ∇×B
as an auxiliary unknown. Applying the operator curl to both sides of (1.1)3, one
has

∂tJ − curl curl (u×B) + h curl curl (J ×B) = µ∆J. (1.9)

Using the following equality for divergence-free vector-fields

curl (w × z) = (curlw)× z + (curl z)× w − 2w · ∇z +∇(w · z), (1.10)

we rewrite (1.9) to

∂tJ − µ∆J = curl (J × u− 2u · ∇B) + 2h curl (J · ∇B)

+ curl ((curlu)×B)− h curl ((curl J)×B) . (1.11)
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Keeping in mind that as B is divergence free, one has the following equivalence of
norms for any s ∈ R:

‖∇B‖Ḣs ∼ ‖J‖Ḣs with J := ∇×B. (1.12)

It can be seen that the terms in the first line of (1.11) are of semi-linear type
which are fine, while the rest terms in the second line are troublemakers, since the

failure that Ḣ
d
2 (R3) ↪→ L∞(Rd) in the case d = 2, 3. Thus one really sees that

the difficulties of proving existence (and uniqueness) of solutions to the Hall-MHD
system in critical Sobolev spaces are come from not only the Hall term but also the
coupling ∇× (u × B) in (1.1)3. The ideas presented in [12, 13] in order to cancel
these two trouble terms only work in the case that ν = µ.

In order to prove Theorem 1.1, our idea to handle that two troublemakers is to use
the Hall term to cancel the term curl ((curlu)×B) by performing a renormalized
energy estimate for (1.11), and meanwhile we take advantage of the equality (1.2)
to write a cancellation to deal with the Hall term. Indeed, this idea is in the
spirit of the hypocoercivity method proposed by Villani [29]: construct a Lyapunov
functional by adding carefully chosen lower-order terms to the natural Lyapunov
functional.

We have the following a priori estimates.

Proposition 1.4. Define

L(t) :=
1

2

(
α ‖u(t)‖2

Ḣ
1
2

+ ‖B(t)‖2
Ḣ

1
2

+ ‖J(t)‖2
Ḣ

1
2

)
− 1

h

(
Λ

1
2u(t)

∣∣Λ 1
2 J(t)

)
,

D(t) :=αν ‖u(t)‖2
Ḣ

3
2

+ µ ‖B(t)‖2
Ḣ

3
2

+ µ ‖J(t)‖2
Ḣ

3
2
, ∀ t ≥ 0,

and

α :=

(
µ

ν
+
ν

µ

)
8

h2
, β :=

(1 + α)(1 + h2)

min{1, h} min{ νh2 , µ}
.

Let (u,B) be a smooth solution of the 3D Hall-MHD system (1.1) on the time
interval [0, T0]. There exists a universal constant C such that on [0, T0], we have

d

dt
L(t) +

1

4
D(t) ≤ C β

√
L(t) D(t). (1.13)

About the fractional derivative operators, the reader may check Definition 2.1.
Using the fact that µ

ν + ν
µ ≥ 2 for ν, µ > 0, and Hölder’s inequality and Young’s

inequality, one has

L(t) ≥1

2

(
α ‖u(t)‖2

Ḣ
1
2

+ ‖B(t)‖2
Ḣ

1
2

+ ‖J(t)‖2
Ḣ

1
2

)
− 1

h2
‖u(t)‖2

Ḣ
1
2
− 1

4
‖J(t)‖2

Ḣ
1
2

≥min{1, h2}
4h2

‖(u,B, J)(t)‖2
Ḣ

1
2
. (1.14)

We know that thanks to (1.14) and Proposition 1.4 we do obtain desired estimates
in order to prove the existence part of Theorem 1.1.

Let us now simply explain our idea. Indeed, when taking L2 scalar product with
J − 1

h u (but not J) for (1.11), we find from (1.2) and basic vector identity that(
curl ((curlu)×B)

∣∣∣ J − 1

h
u

)
=
(
curl ((curlu)×B)

∣∣ J)
=
(
(curlu)×B

∣∣ curl J
)
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=
(
B × (curl J)

∣∣ curlu
)
, (1.15)

−h
(

curl ((curlJ)×B)
∣∣∣ J − 1

h
u

)
=
(
curl ((curlJ)×B)

∣∣u)
=
(
(curl J)×B

∣∣ curlu
)

= −
(
B × (curl J)

∣∣ curlu
)
. (1.16)

Obviously, the sum of the above two scalar products cancels out and when per-
forming similar (renormalized) energy estimate of the higher-order Λ

1
2 , the above

products still cancel each other, up to some lower-order commutator terms. Next,
to couple with the cross term

(
∂tΛ

1
2 J
∣∣ − 1

hΛ
1
2u
)
, we take L2 scalar product with

Λ
1
2 (αu − 1

h J) for the resulting equation of applying Λ
1
2 to (1.4)1 and since the

non-linear terms in (1.4)1 are of lower-order, we can choose some appropriate α

and use Young’s inequality to handle the another cross term (∇Λ
1
2u
∣∣∇Λ

1
2 J).

About the uniqueness part of Theorem 1.1, we emphasis that a direct estimate
in the space L2 maybe not enough, since the obtained L2 stability estimate in [13]
strongly rely on the condition ν = µ. We consider slightly regular space and obtain
the following stability estimates:

Proposition 1.5. Let (u1, B1) and (u2, B2) be two solutions of the Hall-MHD
system on [0, T ]×R3, supplemented with the divergence-free initial data (ui,0, Bi,0)
and such that, for i = 1, 2,

(ui, Bi,∇×Bi) ∈ L∞(0, T ; Ḣ
1
2 ) and (ui, Bi,∇×Bi) ∈ L4(0, T ; Ḣ1).

Then there exists a constant M depends only on ν, µ, h such that for all t ∈ [0, T ],

‖(u1 − u2)(t)‖2
H

1
2

+ ‖(B1 −B2)(t)‖2H1

+
w t

0

(
ν‖∇(u1 − u2)‖2

H
1
2

+ µ‖∇(B1 −B2)‖2H1

)
dτ

≤
(
‖u1,0 − u2,0‖2

H
1
2

+ ‖B1,0 −B2,0‖2H1

)
exp

(
M

w t

0
V (τ) dτ

)
with V (τ) := ‖(u1, u2, B1, B2,∇×B1,∇×B2)(τ)‖4

Ḣ1 , for all τ ∈ [0, t].

We remark that after localization of the 3D Hall-MHD system (1.1) by means
of the Littlewood-Paley spectral cut-off operators (one may read [3] for its defini-
tion), the idea illustrated previously may valid in critical Besov spaces of the type

Ḃ
1
2
2,r (for any r ∈ [1,∞]), which does not need the assumption ν = µ sated in

Theorem 2.3 of [12]. The details are left to the interested reader.

For 2 1
2D flows, the proof of Theorem 1.3 is essentially relies on the following

proposition.

Proposition 1.6. Define ω := ∇̃ × u and

L̃(t) :=
1

2

(
α̃ ‖u(t)‖2L2 + α̃‖B(t)‖2L2 + ‖ω(t)‖2L2 −

1

h

(
ω(t)

∣∣B(t)
))

,

D̃(t) := α̃ν‖∇̃u(t)‖2L2 + α̃µ‖∇̃B(t)‖2L2 + ν ‖∇̃ω(t)‖2L2 , ∀ t ≥ 0,



7

and

α̃ :=

(
µ

ν
+
ν

µ

)
8

h2
, β̃ :=

(
1

α̃2µ2ν3h4
+

1

ν5

)
h2

min{1, h2}
.

Let (u,B) be a smooth solution of the 2 1
2D Hall-MHD system (1.6) on the time

interval [0, T1]. Then (1.7) is satisfied and there exists a universal constant C such
that on [0, T1], we have

L̃(t) +
w t

0
D̃(τ) dτ ≤

(
L̃(0) +

‖(u0, B0)‖4L2

ν
3
2 µ

1
2

)
exp(Cβ̃‖(u0, B0)4L2). (1.17)

Due to the coupling between magnetic field and fluid velocity, it seems hard to
impose smallness condition only on initial magnetic field. As found in [13], if one

consider ω = ∇̃ × u as an auxiliary unknown then, indeed, an a priori L2 estimate
can be obtained for ω without any smallness assumption on the initial data, under
the assumption that ν = µ. Here, we use again the idea of adding some harmless
terms into the natural energy functional, in order to cancel out the troublemakers
when performing L2 estimate of ω. More details on the proof of Proposition 1.6 will
be presented in Section 4.

To prove the uniqueness part of Theorem 1.3, we apply a weak-strong uniqueness
theorem from [13] which valid for all positive parameters ν, µ and h.

Finally, we mention that some cross products between the magnetic (current)
filed and the fluid velocity (vorticity) field are involved in several conservation laws
that have been discussed in [14].

The paper will unfold in the following way: In the next section, a few definitions
and technical results will recalled. Section 3 is devoted to the proof of Theorem
1.1. In the last section, we prove Theorem 1.3.

We end this introductory part by presenting a few notations. As usual, we denote
by C harmless positive constants that may change from line to line, and A . B
means that A ≤ CB. For X a Banach space, p ∈ [1,∞] and T > 0, the notation
Lp(0, T ;X) or LpT (X) designates the set of measurable functions f : [0, T ] → X
with t 7→ ‖f(t)‖X in Lp(0, T ), endowed with the norm ‖ · ‖Lp

T (X) := ‖‖ · ‖X‖Lp(0,T ).

We agree that C([0, T ];X) denotes the set of continuous functions from [0, T ] to X.
We will keep the same notations for multi-component functions. Throughout the
paper, the commutator of two elements, f and g, is the element [f, g] := fg − gf.

2. Preliminary

For the reader’s convenience, we here recall a few results that will be repeatedly
used in the paper (more details may be found in e.g. [3, Chap. 1]). Let us first
recall the definitions of Sobolev spaces and fractional derivation operators.

Definition 2.1. Let s be in R. The homogeneous Sobolev space Ḣs(Rd) (also de-

noted by Ḣs) is the set of tempered distributions u on Rd, with Fourier transform
in L1

loc(Rd), satisfying
‖u‖Ḣs := ‖Λsu‖L2 <∞,

where Λs stands for the fractional derivative operator defined in terms of the Fourier
transform by

F(Λsu)(ξ) := |ξ|sFu(ξ), ξ ∈ Rd.
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The nonhomogeneous Sobolev space Hs(Rd) (also denoted by Hs) is the set of tem-
pered distributions u on Rd, with Fourier transform in L1

loc(Rd), satisfying

‖u‖Hs := ‖〈D〉su‖L2 <∞ with F(〈D〉su)(ξ) := (1 + |ξ|2)s/2Fu(ξ).

We have the following proposition.

Proposition 2.2. Let s0 ≤ s ≤ s1. Then, Ḣs0 ∩ Ḣs1 is included in Ḣs, and we
have for all θ in [0, 1],

‖u‖Ḣs ≤ ‖u‖1−θ
Ḣs0
‖u‖θ

Ḣs1
with s = (1− θ)s0 + θs1. (2.1)

We will often use the following Sobolev embedding for 0 ≤ s < d/2:

Ḣs(Rd) ↪→ L
2d

d−2s (Rd), (2.2)

and sometimes the following Gagliardo-Nirenberg inequality:

‖u‖L∞(R3) . ‖u‖1−θḢs(R3)
‖u‖θ

Ḣs′ (R3)
, s <

3

2
< s′, θ =

3
2 − s
s′ − s

· (2.3)

The following inequalities (see e.g. [22], Lemma 2.10) are needed.

Lemma 2.3. Let s > 0 and 1 < p, p1, p2, p3, p4 < ∞ satisfying 1
p = 1

p1
+ 1

p2
=

1
p3

+ 1
p4
· There exists a constant C > 0 such that

‖Λs(uv)− uΛsv‖Lp ≤ C(‖∇u‖Lp1‖Λs−1v‖Lp2 + ‖Λsu‖Lp3‖v‖Lp4 )

and

‖Λs(uv)‖Lp ≤ C(‖Λsu‖Lp1 ‖v‖Lp2 + ‖u‖Lp3‖Λsv‖Lp4 ).

Finally, we recall a bootstrap argument from [13].

Lemma 2.4. Let X, D, W be three nonnegative measurable functions on [0, T ]
such that X is also differentiable. Assume that there exist two nonnegative real
numbers C and α such that

d

dt
X2 +D2 ≤ CWX2 + CXαD2. (2.4)

If, in addition,

2CXα(0) exp

(
Cα

2

w T

0
W dt

)
< 1, (2.5)

then, for any t ∈ [0, T ], one has

X2(t) +
1

2

w t

0
D2 dτ ≤ X2(0) exp

(
C

w t

0
W dτ

)
· (2.6)

3. Global Fujita-Kato type solutions for the 3D flows

This section is devoted to prove Theorem 1.1, it includes the existence part and
the uniqueness part.
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3.1. Existence. First and foremost, we prove Proposition 1.4.

Proof of Proposition 1.4. Applying the fractional derivative operator Λ
1
2 to both

sides of equations (1.4)1, (1.1)3 and (1.11), taking the L2 scalar product with Λ
1
2u,

Λ
1
2B, Λ

1
2 (J − 1

hu), respectively, we get

1

2

d

dt
‖u‖2

Ḣ
1
2

+ ν‖u‖2
Ḣ

3
2

= −(u · ∇u |Λu) + (B · ∇B |Λu) =: A1 +A2,

1

2

d

dt
‖B‖2

Ḣ
1
2

+ µ‖B‖2
Ḣ

3
2

= (∇× ((u− hJ)×B) |ΛB) =: A3

and

1

2

d

dt
‖J‖2

Ḣ
1
2

+ µ‖J‖2
Ḣ

3
2
− 1

h

(
Λ

1
2 ∂tJ

∣∣Λ 1
2u
)
− µ

h

(
∇Λ

1
2 J
∣∣∇Λ

1
2u
)

= A4 +A5 +A6 +A7,

where

A4 :=

(
Λ

1
2 (J × u− 2u · ∇B)

∣∣∣ curl Λ
1
2

(
J − 1

h
u

))
,

A5 := 2h

(
Λ

1
2 (J · ∇B)

∣∣∣ curl Λ
1
2

(
J − 1

h
u

))
,

A6 :=

(
Λ

1
2 ((curlu)×B)

∣∣∣ curl Λ
1
2

(
J − 1

h
u

))
,

A7 := −h
(

Λ
1
2 ((curl J)×B)

∣∣∣ curl Λ
1
2

(
J − 1

h
u

))
.

By Hölder’s inequality and Sobolev embedding (2.2), we get

|A1| ≤ C‖u‖L6‖∇u‖L3‖Λu‖L2 ≤ C‖u‖2
Ḣ1‖u‖Ḣ 3

2
,

|A2| ≤ C‖B‖L6‖∇B‖L2‖Λu‖L3 ≤ C‖B‖2
Ḣ1‖u‖Ḣ 3

2
,

|A3| ≤ C
(
‖u− hJ‖Ḣ1‖B‖L6 + ‖u− hJ‖L6‖B‖Ḣ1

)
‖ΛB‖L3

≤ C(‖u‖Ḣ1 + h ‖J‖Ḣ1) ‖B‖Ḣ1‖B‖
Ḣ

3
2

and by Lemma 2.3 and (1.12) we have

|A5| ≤ Ch (‖Λ 1
2 J‖L3‖∇B‖L6 + ‖J‖L6‖Λ 1

2∇B‖L3)

(
‖curl Λ

1
2 J‖L2 +

1

h
‖curl Λ

1
2u‖L2

)
≤ C

(
h ‖J‖2

Ḣ1‖J‖Ḣ 3
2

+ ‖J‖2
Ḣ1‖u‖Ḣ 3

2

)
.

Term A4 may be bounded similarly as A5:

|A4| ≤ C
(
‖J‖Ḣ1‖u‖Ḣ1‖J‖

Ḣ
3
2

+
1

h
‖J‖Ḣ1‖u‖Ḣ1‖u‖

Ḣ
3
2

)
.

Now, we decompose A6 and A7 as

A6 =
(

Λ
1
2 ((curlu)×B)

∣∣∣ curl Λ
1
2 J
)
− 1

h

(
Λ

1
2 ((curlu)×B)

∣∣∣ curl Λ
1
2u
)

=: A61 +A62,

A7 =
(

Λ
1
2 ((curl J)×B)

∣∣∣ curl Λ
1
2u
)
− h

(
Λ

1
2 ((curl J)×B)

∣∣∣ curl Λ
1
2 J
)

=: A71 +A72

and we rewrite

A61 = −
(

[Λ
1
2 , B×](curlu)

∣∣∣ curl Λ
1
2 J
)
−
(
B × Λ

1
2 (curlu)

∣∣∣ curl Λ
1
2 J
)
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A71 = −
(

[Λ
1
2 , B×](curl J)

∣∣∣ curl Λ
1
2u
)
−
(
B × Λ

1
2 (curl J)

∣∣∣ curl Λ
1
2u
)
.

Not surprisingly, the last terms in A61 and A71 cancel out each other and thus gives

A61 +A71 = −
(

[Λ
1
2 , B×](curlu)

∣∣∣ curl Λ
1
2 J
)
−
(

[Λ
1
2 , B×](curl J)

∣∣∣ curl Λ
1
2u
)
.

Meanwhile, thanks to the commutator estimate in Lemma 2.3 and (1.12), one easily
has

|A62| ≤
1

h
‖[Λ 1

2 , B×](curlu)‖L2 ‖curl Λ
1
2u‖L2

≤C
h

(‖∇B‖L6‖Λ− 1
2 curlu‖L3 + ‖Λ 1

2B‖L6‖curlu‖L3) ‖u‖
Ḣ

3
2

≤C
h

(‖J‖Ḣ1‖u‖Ḣ1 + ‖J‖
Ḣ

1
2
‖u‖

Ḣ
3
2

) ‖u‖
Ḣ

3
2

and similarly

|A72| ≤h ‖[Λ
1
2 , B×](curl J)‖L2 ‖curl Λ

1
2 J‖L2

≤Ch (‖J‖2
Ḣ1 + ‖J‖

Ḣ
1
2
‖J‖

Ḣ
3
2

) ‖J‖
Ḣ

3
2
,

|A61 +A71| ≤C(‖u‖Ḣ1‖J‖Ḣ1‖J‖
Ḣ

3
2

+ ‖u‖
Ḣ

3
2
‖J‖2

Ḣ1 + ‖u‖
Ḣ

3
2
‖J‖

Ḣ
1
2
‖J‖

Ḣ
3
2

).

Next, applying the fractional derivative operator Λ
1
2 to both sides of equation

(1.4)1 and then taking the L2 scalar product with − 1
h Λ

1
2 J , we get

− 1

h

(
Λ

1
2 ∂tu

∣∣Λ 1
2 J
)
− ν

h

(
∇Λ

1
2u
∣∣∇Λ

1
2 J
)

= − 1

h

(
B · ∇B

∣∣ΛJ)+
1

h

(
u · ∇u

∣∣ΛJ) =: A8.

By Young’s inequality, one has∣∣∣∣ν + µ

h

(
∇Λ

1
2u
∣∣∇Λ

1
2 J
)∣∣∣∣ ≤ 2(ν2 + µ2)

µh2
‖u‖2

Ḣ
3
2

+
µ

4
‖J‖2

Ḣ
3
2

≤ αν

4
‖u‖2

Ḣ
3
2

+
µ

4
‖J‖2

Ḣ
3
2
.

Term A8 may be bounded similarly as A1:

|A8| ≤
C

h
(‖B‖2

Ḣ1 + ‖u‖2
Ḣ1) ‖J‖

Ḣ
3
2
.

Hence, recalling the definitions of L(t) and D(t) and using repeatedly the interpo-
lation inequality (2.1) and Young’s inequality, it is easy to deduce from the above
inequalities that

d

dt
L(t) +D(t)

≤ν + µ

h

(
∇Λ

1
2u
∣∣∇Λ

1
2 J
)

+ α(|A1|+ |A2|) + |A3 +A4 + · · ·+A8|

≤αν
4
‖u‖2

Ḣ
3
2

+
µ

4
‖J‖2

Ḣ
3
2

+ C
(1 + α)(1 + h2)

h
‖(u,B, J)‖

Ḣ
1
2
‖(u,B, J)‖2

Ḣ
3
2
. (3.1)

Notice that

D(t) ≥ min
{ ν

h2
, µ
}
‖(u,B, J)(t)‖2

Ḣ
3
2
,

we thus complete the proof of Proposition 1.4 by substituting the above inequality
and (1.14) into (3.1). �
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Now, combining Proposition 1.4 with Lemma 2.4 implies that there exists a
constant c1 > 0 such that, if

‖u0‖
Ḣ

1
2

+ ‖B0‖
Ḣ

1
2

+ ‖J0‖
Ḣ

1
2
< c1 ≤

1

8Cβ max{
√
α, 1}

,

then √
L(0) ≤ 1

8Cβ

and we have for all t ∈ [0, T ]

L(t) +
w t

0
D(τ) dτ ≤ CL(0). (3.2)

We conclude from (3.2) that we obtained a priori bounds for (u,B, J) in the space

L∞(0, T ; Ḣ
1
2 ) ∩ L2(0, T ; Ḣ

3
2 ) uniformly in time. In order to prove rigorously the

existence part of Theorem 1.1, one may resort to the following classical procedure:

(1) smooth out the initial data and get a sequence (un, Bn)n∈N of smooth
solutions to System (1.1) on the maximal time interval [0, Tn);

(2) apply (3.2) to (un, Bn)n∈N so as to prove that Tn = ∞ and that the

sequence (un, Bn, Jn)n∈N with Jn := ∇×Bn is bounded in L∞(R+; Ḣ
1
2 )∩

L2(R+; Ḣ
3
2 );

(3) use compactness to prove that (un, Bn)n∈N converges, up to extraction, to
a solution of System (1.1) supplemented with initial data (u0, B0).

Since each steps of proving existence are extremely similar to the ones that are
clearly presented in [13], we omit the details here.

3.2. Uniqueness. Let us finally prove the uniqueness part of the theorem. Indeed,
one only needs to prove Proposition 1.5.

Proof. In order to estimate the difference (δu, δB) := (u1−u2, B1−B2) in the space

E(T ) :=
(
L∞T (L2 ∩ Ḣ 1

2 ) ∩ L2
T (Ḣ1 ∩ Ḣ 3

2 )
)
×
(
L∞T (L2 ∩ Ḣ1) ∩ L2

T (Ḣ1 ∩ Ḣ2)
)
.

We first need to justify that, indeed, (δu, δB) belongs to that space. One can observe
that 

∂tδu− ν∆δu = R1,

∂tδB − µ∆δB = R2,

(δu, δB)|t=0 = (δu(0), δB(0))

(3.3)

where

R1 := P(B1 · ∇δB + δB · ∇B2 − u1 · ∇δu− δu · ∇u2),

R2 := ∇× (u1 × δB + δu×B2)− h∇× (J1 × δB + δJ ×B2),

J1 := ∇×B1, J2 := ∇×B2, δJ := J1 − J2.

To achieve our goal, it suffices to prove that R1 belongs to the space L2(0, T ; Ḣ−1)∩
L2(0, T ; Ḣ−

1
2 ) and R2,∇R2 ∈ L2(0, T ; Ḣ−1). Now, since (δu, δB, δJ) ∈ L4(0, T ; Ḣ1)

and using repeatedly the product laws (see e.g. Corollary 2.55 in [3]):

Ḣ1(R3)× L2(R3) ↪→ Ḣ−
1
2 (R3), Ḣ1(R3)× Ḣ 1

2 (R3) ↪→ L2(R3),

we get

‖R1‖L2(0,T ;Ḣ−1) . ‖B1‖L∞T (L3)‖δB‖L2
T (L6) + ‖δB‖L2(0,T ;L6)‖B2‖L∞T (L3)
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+ ‖u1‖L∞T (L3)‖δu‖L2
T (L6) + ‖δu‖L2

T (L6)‖u2‖L∞T (L3)

. T
1
4 ‖(u1, u2, B1, B2)‖

L∞(0,T ;Ḣ
1
2 )
‖(δu, δB)‖L4(0,T ;Ḣ1),

‖R1‖
L2(0,T ;Ḣ−

1
2 )
. ‖B1‖L4

T (Ḣ1)‖∇δB‖L4
T (L2) + ‖δB‖L4(0,T ;Ḣ1)‖∇B2‖L4

T (L2)

+ ‖u1‖L4
T (Ḣ1)‖∇δu‖L4

T (L2) + ‖δu‖L4
T Ḣ

1)‖∇u2‖L4
T (L2)

. ‖(u1, u2, B1, B2)‖L4(0,T ;Ḣ1)‖(δu, δB)‖L4(0,T ;Ḣ1),

‖R2‖L2(0,T ;Ḣ−1) . ‖(u1 − hJ1)× δB‖L2(0,T ;L2) + ‖(δu− h δJ)×B2‖L2(0,T ;L2)

. T
1
4 ‖(u1, B2, h J1)‖

L∞(0,T ;Ḣ
1
2 )
‖(δB, δu, h δJ)‖L4(0,T ;Ḣ1)

and

‖R2‖L2
T (L2) . ‖(u1 − hJ1)× δB‖L2(0,T ;Ḣ1) + ‖(δu− h δJ)×B2‖L2(0,T ;Ḣ1)

. ‖∇(u1 − hJ1)‖L4
T (L2)‖δB‖L4

T (L∞) + ‖u1 − hJ1‖L∞T (L3)‖∇δB‖L4
T (L6)

+ ‖δu− h δJ‖L4
T (Ḣ1)‖B2‖L4

T (L∞) + ‖δu− h δJ‖L∞T (L3)‖∇B2‖L4
T (L6).

Note that our assumptions ensure that Bi and ∇Bi are in L4(0, T ; Ḣ1) and thus we
do have, by the Gagliardo-Nirenberg inequality (2.3), δB,B1, B2 in L4(0, T ;L∞).
Moreover, thanks to Sobolev embeddings (2.2), we are sure that R2 ∈ L2(0, T ;L2).

Now, estimating (δu, δB) in the space E(T ) follows from Lemma 5.10 in [3]
and standard energy estimates applied on (3.3). More precisely, using Hölder’s
inequality and (2.2), we have

1

2
‖δu(t)‖2L2 −

1

2
‖δu(0)‖2L2 +ν

w t

0
‖δu(τ)‖2

Ḣ1 dτ

.
w t

0
(‖B1 ⊗ δB‖L2 +‖B2 ⊗ δB‖L2 + ‖u2 ⊗ δu‖L2) ‖∇δu‖L2 dτ

.
w t

0
(‖B1‖Ḣ1‖δB‖

Ḣ
1
2

+‖B2‖Ḣ1‖δB‖
Ḣ

1
2

+‖u2‖Ḣ1‖δu‖
Ḣ

1
2

)‖δu‖Ḣ1 dτ

and
1

2
‖δu(t)‖2

Ḣ
1
2
− 1

2
‖δu(0)‖2

Ḣ
1
2

+ ν
w t

0
‖δu(τ)‖2

Ḣ
3
2
dτ

≤
w t

0
(‖B1 · ∇δB‖

L
3
2

+‖δB · ∇B2‖
L

3
2

+ ‖u1 · ∇δu‖
L

3
2

+ ‖δu · ∇u2‖
L

3
2

) ‖Λδu‖L3 dτ

.
w t

0
(‖B1‖Ḣ1‖δB‖Ḣ1 +‖δB‖Ḣ1‖B2‖Ḣ1 + ‖u1‖Ḣ1‖δu‖Ḣ1 + ‖δu‖Ḣ1‖u1‖Ḣ1) ‖δu‖

Ḣ
3
2
dτ

and
1

2
‖δB(t)‖2L2 −

1

2
‖δB(0)‖2L2 + µ

w t

0
‖δB(τ)‖2

Ḣ1 dτ

.
w t

0
(‖(u1 − hJ1)× δB‖L2 + ‖(δu− h δJ)×B2‖L2) ‖∇ × δB‖L2 dτ

.
w t

0
(‖(u1 − hJ1)‖Ḣ1‖δB‖

Ḣ
1
2

+ ‖δu− h δJ‖
Ḣ

1
2
‖B2‖Ḣ1) ‖δB‖Ḣ1 dτ.

Moreover, by Lemma 2.3 and using repeatedly (1.12) and the product law:

‖wz‖Ḣ1(R3) . ‖w‖Ḣ 3
2 (R3)

‖z‖Ḣ1(R3) + ‖w‖Ḣ1(R3)‖z‖Ḣ 3
2 (R3)

,

we write
1

2
‖ΛδB(t)‖2L2 −

1

2
‖ΛδB(0)‖2L2 + µ

w t

0
‖ΛδB(τ)‖2

Ḣ1 dτ
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.
w t

0

(
‖u1 × δB + δu×B2 − hJ1 × δB‖Ḣ1‖Λ2δB‖L2 + h ‖[Λ, B2×]δJ‖L2‖ΛδJ‖L2

)
dτ

.
w t

0

(
‖u1‖

Ḣ
3
2
‖δB‖Ḣ1 + ‖u1‖Ḣ1‖δJ‖

Ḣ
1
2

+ h(‖J1‖Ḣ1‖δB‖L∞ + ‖J1‖Ḣ1‖δJ‖
Ḣ

1
2

)‖δJ‖Ḣ1

+ h‖J2‖Ḣ1‖δJ‖
Ḣ

1
2
‖δJ‖Ḣ1

)
dτ.

At this stage, interpolation inequality (2.1) and Young’s inequality imply that

‖B1‖Ḣ1‖δB‖
Ḣ

1
2
‖δu‖Ḣ1 ≤ ‖B1‖Ḣ1‖δB‖

1
2

L2‖δB‖
1
2

Ḣ1
‖δu‖Ḣ1

≤ ν

20
‖δu‖2

Ḣ1 +
µ

20
‖δB‖2

Ḣ1 +
C

ν2µ
‖δB‖2L2‖B1‖4Ḣ1 ,

‖B1‖Ḣ1‖δB‖Ḣ1‖δu‖
Ḣ

3
2
≤ ν

20
‖δu‖2

Ḣ
3
2

+
C

ν
‖ΛδB‖2L2‖B1‖2Ḣ1 ,

‖u1‖Ḣ1‖δu‖Ḣ1‖δu‖
Ḣ

3
2
≤ ‖u1‖Ḣ1‖δu‖

1
2

Ḣ
1
2
‖δu‖

3
2

Ḣ
3
2

≤ C

ν3
‖u1‖4Ḣ1‖δu‖2

Ḣ
1
2

+
ν

20
‖δu‖2

Ḣ
3
2
,

‖(u1 − hJ1)‖Ḣ1‖δB‖
Ḣ

1
2
‖δB‖Ḣ1 ≤ ‖(u1 − hJ1)‖Ḣ1‖δB‖

1
2

L2‖δB‖
3
2

Ḣ1

≤ C

µ3
‖(u1, h J1)‖4

Ḣ1‖δB‖2L2 +
µ

20
‖δB‖2

Ḣ1 ,

h‖J1‖Ḣ1‖δB‖L∞‖δJ‖Ḣ1 ≤ h‖J1‖Ḣ1‖δB‖
1
2

Ḣ1
‖δJ‖

3
2

Ḣ1

≤ Ch4

µ3
‖J1‖4Ḣ1‖δB‖2Ḣ1 +

µ

20
‖δJ‖2

Ḣ1 ,

h‖J1‖Ḣ1‖δJ‖
Ḣ

1
2
‖δJ‖Ḣ1 ≤ h‖J1‖Ḣ1‖δB‖

1
2

Ḣ1
‖δJ‖

3
2

Ḣ1

≤ Ch4

µ3
‖J1‖4Ḣ1‖δB‖2Ḣ1 +

µ

20
‖δJ‖2

Ḣ1 ,

and similar inequalities for the other terms of the right-hand sides of the above
inequalities. In the end, we get for all t ∈ (0, T ),

‖δu(t)‖2
L2∩Ḣ

1
2

+ ‖δB(t)‖2
L2∩Ḣ1 +

w t

0

(
ν‖δu(τ)‖2

Ḣ1∩Ḣ
3
2

+ µ‖δB(τ)‖2
Ḣ1∩Ḣ2

)
dτ

≤ (‖δu(0)‖2
L2∩Ḣ

1
2

+ ‖δB(0)‖2
L2∩Ḣ1) +M

w t

0
V (τ)

(
‖δu‖2

L2∩Ḣ
1
2

+ ‖δB‖2
L2∩Ḣ1

)
dτ.

Since our assumptions ensure that V is integrable on [0, T ], applying Gronwall’s
inequality completes the proof of Proposition 1.5. �

We have complete the proof of Theorem 1.1. �

4. Global unique solvability of the 2 1
2D flows with large velocity

In order to prove Theorem 1.3, let us first prove Proposition 1.6.

Proof of Proposition 1.6. Applying the operator ∇̃× to (1.6)1, it is easy to find
that ω satisfies

∂tω + ∇̃ × (ω × u) = ν∆̃ω + ∇̃ × (j ×B).

Taking the L2 scalar product with ω + 1
hB (but not ω) for above equation, we get
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1

2

d

dt
‖ω‖2L2 + ν‖∇̃ω‖2L2 +

1

h

(
∂tω

∣∣B)+
ν

h

(
∇̃ω

∣∣ ∇̃B)− (j ×B ∣∣ ∇̃ × ω)
= A1 +A2, (4.1)

where

A1 := −
(
ω × u

∣∣∣ ∇̃ × ω) ,
A2 := − 1

h

(
ω × u

∣∣∣ ∇̃ ×B) .
Also, taking the L2 scalar product with 1

h ω for (1.6)3, we get

1

h

(
ω
∣∣ ∂tB)− µ

h

(
∇̃ω

∣∣ ∇̃B)+
(
j ×B

∣∣ ∇̃ × ω) = A3, (4.2)

where

A3 :=
1

h

(
u×B

∣∣∣ ∇̃ × ω) .
Adding (4.2) into (4.1), and putting together with the result of energy inequality
(1.7) multiplied by α̃, we obtain that

d

dt
L̃(t) + D̃(t) +

ν + µ

h

(
∇̃ω

∣∣ ∇̃B) ≤ A1 +A2 +A3. (4.3)

Using Hölder’s inequality, Sobolev embedding (2.2), interpolation inequality (2.1)
and then Young’s inequality, we write

|A2| ≤
1

h
‖ω‖L4‖u‖L4‖∇̃B‖L2

≤ C

α̃µh2
‖ω‖L2‖∇̃ω‖L2‖u‖L2‖∇̃u‖L2 +

α̃µ

4
‖∇̃B‖2L2

≤ C

α̃2µ2νh4
‖u‖2L2‖∇̃u‖2L2‖ω‖2L2 +

ν

8
‖∇̃ω‖L2 +

α̃µ

4
‖∇̃B‖2L2 .

Very similarly, we have

|A1| ≤‖ω‖L4‖u‖L4‖∇̃ω‖L2 ≤ C

ν3
‖u‖2L2‖∇̃u‖2L2‖ω‖2L2 +

ν

8
‖∇̃ω‖2L2 ,

|A3| ≤‖B‖L4‖u‖L4‖∇̃ω‖L2 ≤ C

ν
‖u‖L2‖B‖L2‖∇̃u‖L2‖∇̃B‖L2 +

ν

8
‖∇̃ω‖2L2 .

Meanwhile, it is easy to see that(ν
h

+
µ

h

) ∣∣(∇̃ω ∣∣ ∇̃B)∣∣ ≤4(ν2 + µ2)

ν h2
‖∇̃B‖2L2 +

ν

8
‖∇̃ω‖2L2

≤ α̃µ
2
‖∇̃B‖2L2 +

ν

8
‖∇̃ω‖2L2 .

Now, notice that

L̃(t) ≥1

2

(
α̃ ‖u(t)‖2L2 + α̃‖B(t)‖2L2 + ‖ω(t)‖2L2

)
− 1

h2
‖B(t)‖2L2 −

1

4
‖ω(t)‖2L2

≥min{1, h2}
4h2

‖(u,B, ω)(t)‖2L2 . (4.4)

Combining above estimates, we can rewrite (4.3) to

d

dt
L̃(t) +

1

4
D̃(t) ≤

(
C

α̃2µ2νh4
+
C

ν3

)
h2

min{1, h2}
‖u‖2L2‖∇̃u‖2L2L̃(t)
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+
C

ν
‖u‖L2‖B‖L2‖∇̃u‖L2‖∇̃B‖L2 .

Applying Gronwall’s lemma enables us to finish the proof of Proposition 1.6. �

Existence and uniqueness. At this stage, thanks to Proposition 1.6 and inequal-
ity (4.4), one can follow the proof of inequality (5.3) in [13] to get the Ḣ1 estimate
of the magnetic field by assuming that B0 is small enough in H1. Then, one can
work out a standard procedure similar to that of sub-section 3.1 and complete the
proof of the existence part of Theorem 1.3. In order to prove the uniqueness, we
apply the weak-strong uniqueness Theorem 2.6 established in [13] which valid for
general physical parameters.

Finally, to check that the energy balance (1.8) is fulfilled, one can use the same
approximation scheme as in the proof of existence (the energy balance is clearly
satisfied by approximate solution sequnece (un, Bn)) then observe that (un, Bn)n∈N
is actually a Cauchy sequence in L∞(R+;L2(R2))∩L2(R+; Ḣ1(R2)), which may be
checked by arguing as in the proof of uniqueness.

It completes the proof of Theorem 1.3. �
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