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ABSTRACT: While the chemistry for peptide macrocyclization has been greatly advanced, methods capable of introducing 

crosslinker motifs with large structural diversity are still limited. Herein, we report a simple and versatile method to staple unprotected 

native peptides with a wide range of easily accessible diiodo and triiodoarene reagents via palladium-catalyzed multiple S-arylation 

of cysteine residues. Iodoarenes with different arene and heteroarene cores can be incorporated into peptide macrocycles of varied 

ring size and amino acid composition in high efficiency and selectivity under mild conditions. 

Synthetic peptide macrocycles are becoming an increasingly 

valuable source for hit identification in drug discovery.1 

Stapling linear peptide precursors with crosslinking molecules 

is commonly used to generate the peptide macrocycles.2 While 

the crosslinkers were mainly used to constrain the peptide 

conformation in the early developments of peptide stapling, 

recent studies showed that linker motifs can play more active 

roles in constructing sophisticated three-dimensional structures, 

modulating physiochemical properties or directly engaging 

with the targets.3 By far, methods for stapling peptide via 

crosslinking the side chain of cysteine (Cys) residues have 

enjoyed the most success due to the high reactivity and 

selectivity of Cys under biocompatible conditions.4-9 Among 

the crosslinking chemistry, substitution reactions with reagents 

bearing multiple halide handles such as benzyl halides and -

halo acetamides for SN2 substitution and electron-deficient 

haloarenes for SNAr reaction have been widely employed.5,6 

Nucleophilic addition reactions with strong electrophiles such 

as maleimides provide another common tactic.7 Recently, the 

chemoselective arylation of cysteine and lysine side chains with 

organometallic complexes has also been successfully utilized.8 

Despite these significant  

 

Scheme 1. Construction of complex peptide macrocycles via 

crosslinking cysteines with multi-armed linkers. 
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advances, the existing methods are not particularly well suited 

to incorporate linkers with complex structures or to expand the 

structural diversity of linkers due to the associated synthetic 

difficulties. Herein, we report a new method to construct 

peptide macrocycles via palladium-catalyzed multiple S-

arylation of cysteine residues of native peptides with diiodo and 

triiodoarene reagents. A large number of easily accessible 

iodoarenes with different arene and heteroarene cores can be 

incorporated into peptide macrocycles of varied ring size and 

amino acid (AA) composition in high efficiency and selectivity 

under mild conditions. 

Metal-catalyzed arylation reactions of thiols have recently 

emerged as a viable strategy for selective modification of 

peptides in unprotected form and proteins under mild 

conditions.10-14 Notably, Pentelute and Buchwald reported the 

use of stoichiometric aryl-palladium complexes for 

chemoselective S-arylation of Cys residue of unprotected 

peptides at room temperature (rt).13 Messaoudi and co-worckers 

developed a more practical protocol for S-arylation of peptides 

with various aryl iodides using the Xantphos-Pd-G3 catalyst.14 

Recently, we applied Messaoudi’s protocol in an intramolecular 

fashion to construct aryl thioether-bridged peptide 

macrocycles.15 This method has also been successfully adapted 

to make DNA-encoded library of peptide macrocycles. While 

this intramolecular reaction provides a useful method to 

generate aryl thioether-bridged peptide macrocycles, it requires 

the use of peptide precursors carrying a preinstalled iodo 

handle. To overcome such limitation, we set out to investigate 

whether two Cys residues of unprotected native peptides can be 

crosslinked by bis S-arylation with diiodoarene reagents under 

similar Pd-catalyzed conditions. 

As shown in Scheme 2, we were pleased to find the reaction 

of linear peptide PA-Leu-Cys-Ala-Val-Ala-Cys-NH2 a bearing 

two Cys residues separated by three spacing AA units reacted 

with 2.0 equiv of 1,4-diidobenzene 1 to give the desired cyclic 

product a-1 in 66% isolated yield under the conditions of 10 
mol% of Xantphos-Pd-G3 catalyst and 4.0 equiv of 
diisopropyl ethylamine (DIPEA) base in the mixed solvents 
of THF and H2O (4/1) at a concentration of 10 mM at rt for 
30 minutes. The N-terminus of substrate a was capped with a 

picolinamide (PA) group to enhance the UV absorption in LC 

analysis. Besides a-1, small amounts of disulfide-linked cyclic 

side product SP1 and acyclic side product SP2 with both Cys 

residues arylated with a 4-iodo-phenyl group were also formed 

(~15% combined yield based on LC analysis). The yield of 

product a-1 slightly dropped when THF was replaced with 

CH3CN. EtOH and MeOH co-solvent gave comparable results, 

while dioxane and hexafluoroisopropanol (HFIP) co-solvents 

gave considerably lower yield (see supporting information (SI) 

for details). The peptide substrate a was prepared using the 

standard solid phase peptide synthesis (SPPS) procedure and 

obtained as a trifluoracetic acid (TFA) salt following the 

cleavage and deprotection with TFA. The reaction of crude 

TFA-containing peptide substrate without the addition of base 

proceeded slowly and completed in about 4 hours under the 

otherwise identical conditions. The addition of DIPEA greatly 

accelerated the reaction, allowing the reaction to complete in 10 

minutes. The use of other bases such as Et3N and K2CO3 gave 

similar results (see SI for detailed reaction optimization). 

Reaction at 1.0 mM concentration of a gave similar results. 

However, significant amount of side product SP2 was formed 

(57% LC-estimated yield) when the reaction was carried out at 

a 50 mM concentration of a.   

This macrocyclization strategy was then applied to a wide 

range of peptide substrates and iodoarene reagents. The 

majority of iodoarenes are commercially available at relatively 

low costs. Most of these reagents can be prepared from readily 

available precursors in short steps. As seen in the previous 

studies, all unprotected proteinogenic amino acid residues such 

as Asp (b-1), Gln (j-20), Lys (k-20), Ser (i-20), Thr (l-20), Met 

(j-20), His (j-20), Trp (k-20), and Arg (j-20) were tolerated. A 

variety of other functional groups such benzaldehyde (a-29), 

boronic acid (c-11), nitro (d-2), nitrile (a-10), azo (n-35), and 

ketone (i-31) were well tolerated.  

Aryl bromides (e.g. f-21) were unreactive. Both para- and 

meta-diiodo substituted monoarenes and monoheteroarenes can 

react well. In contrast, macrocyclization with ortho-diiodo 

arenes were much less effective (e.g. c-19). A series of 

heteroarene motifs such as pyridine (e-5), pyridazine (a-6), 

pyrimidine (c-15, h-16), and thiophene (e-17) can be 

incorporated. Product d-18 bearing an azulene linker was 

obtained in good yield. It should be noted that the reactions with 

asymmetrical diiodides gave the macrocyclic products as a 

mixture of regioisomers (e.g. e-5, c-14).  

Polyarene linkers of large spans and sizes can also be 

incorporated into the macrocyclic peptide scaffolds in high 

efficiency. For example, peptide drugs Octreotide bearing 4 

spacing AA units (l-20) and Somatostatin bearing 10 spacing 

AA units (k-20) between the two Cys residues were stapled 

with the 4,4’-biphenyl linker in 48% and 38% isolated yield 

respectively. Symmetrical linkers such as dibenzothiophene (a-

22), carbazole (a-23, a-24), fluorene (d-25, a-26), diphenyl 

ether (m-27), diphenylamine (m-28), bithiophene (d-30), 

bisthiophenylmethanone (i-31), pyrene (d-33), and anthracene 

(e-37) showed similar reactivities. Product a-32 featuring an 

indazole linker was formed in low yield. Incorporation of longer 

linkers such as stilbene (n-34), azobenzene (n-35), and 

terphenyl (n-36) worked well for peptide substrates bearing 

more than 5 spacing AA units between the two Cys residues.  

As shown in Scheme 3, peptide substrates bearing three Cys 

residues can undergo tri S-arylation with symmetrical 

triiodoarene reagents to give the corresponding bicyclic 

products under the same Pd-catalyzed conditions. For example, 

reaction of linear peptide PA-Val-Cys-Gly-Leu-Cys-Gly-Pro-

Gly-Cys-Gly-NH2 p with 1,3,5-triiodobenzene 38 gave product 

p-38 in 45% isolated yield. Monocyclic side products SP3 and 

SP4 were formed in small quantities (~30% combined yield 

based on LC analysis of the reaction 

Scheme 2. Construction of monocyclic peptides via Pd-catalyzed bis-S-arylation of cysteine with diiodoarenes. 



 

 

a) Reaction was performed with a 10 mM concentration of peptide substrate on a 0.05 mmol scale. LC yields were based on UV absorption 

of peptides. HPLC isolated yields are shown in parenthesis. The number of spacing AA units between the two Cys residues is shown in 

parentheses next to Cys side chain. b) Product was obtained as a mixture of regioisomers. c) Catalyst-related species came out during the 

HPLC column washing period which is not shown here. For more nonpolar peptide substrates, the catalyst-related species could come out 

during the gradient separation period. See SI for details. Thr(ol): L-threoninol. PA: picolinic acid. 



 

mixture, see Scheme 3 and SI for their structures). Reactions 

with tri(4-iodophenyl)amine 39 and 1,3,5-tris(4-

iodophenyl)benzene 40 gave the corresponding tricyclic 

products in moderate yields. Reagents 38-40 are commercially 

available and relatively inexpensive. 

Scheme 3. Construction of bicyclic peptides via Pd-catalyzed 

tri-S-arylation of cysteine with triiodoarenes. 

 

a) Reaction was performed with a 10 mM concentration of 

peptide substrate at a 0.05 mmol scale. LC yields were based on 

UV absorption of peptides. HPLC isolated yields were shown in 

parenthesis. The number of spacing AA units between the two Cys 

residues is shown in parentheses next to Cys side chains. b) 

Catalyst-related species came during the column washing period 

which is not shown here. For nonpolar peptide substrates, the 

catalyst-related species could come out during the separation 

period. See SI for details. c) Schematic structures of SP3 and SP4 

based on molecular weight (See SI for details). 

In summary, we have developed a practical and versatile 

method to construct complex peptide macrocycles via 

palladium-catalyzed multiple S-arylation of cysteine residues of 

unprotected native peptides with diiodo and triiodoarene 

reagents. A wide range of arene and heteroarene linkers can be 

incorporated into peptide macrocycles in high efficiency under 

mild conditions. This method provides a powerful tool to 

introduce large structural diversity to the crosslinker motifs of 

peptide macrocycles using readily accessible peptide precursors 

and linker reagents.    
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