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Abstract

Human endogenous retroviruses (HERVs) represent 8% of the human genome. The

expression of HERVs and their immune impact have not been extensively studied in

Acute Myeloid Leukemia (AML). In this study, we used a reference of 14 968 HERV

functional units to provide a thorough analysis of HERV expression in normal and

AML bone marrow cells. We show that the HERV retrotranscriptome accurately char-

acterizes normal and leukemic cell subpopulations, including leukemia stem cells, in

line with different epigenetic profiles. We then show that HERV expression delin-

eates AML subtypes with different prognoses. We finally propose a method to select

and prioritize CD8+ T cell epitopes derived from AML-specific HERVs and we show

that lymphocytes infiltrating patient bone marrow at diagnosis contain naturally
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(no. 2013.086.2) to TH and by the BMBF grant

01ZZ1804B (DIFUTURE) to A.M.N.B. occurring CD8+ T cells against these HERV epitopes. We also provide in vitro data

supporting the functionality of HERV-specific CD8+ T-cells against AML cells. These

results show that HERVs represent an important source of genetic information that

can help enhancing disease stratification or biomarker identification and an important

reservoir of alternative tumor-specific T cell epitopes relevant for cancer

immunotherapy.

1 | BACKGROUND

Human endogenous retroviruses (HERVs) represent 8% of the human

genome.1 These sequences are remnants of ancestral germline infec-

tions by exogenous retroviruses.2 The original sequence of a HERV is

that of an exogenous retrovirus, with two promoter long-terminal

repeat (LTR) sequences surrounding the virus open-reading frames

(ORFs): gag, pro, pol and env.3 However, after millions of years of evo-

lution, these ORFs have been deeply altered, and there is currently no

description of any autonomous fully infectious HERV.4

The long-standing belief is that HERVs are repressed by epige-

netic mechanisms and are thus not expressed, or only poorly, in nor-

mal tissues.5 However, recent studies have shown that HERV

expression can be detected in a vast range of normal tissues.6

Different pathological conditions can lead to aberrant HERV expres-

sion, as it has now been largely described in auto-immune

diseases7–10 and in cancers,11–14 where HERVs have been the subject

of many studies over the last years. Indeed, it was reported that

HERVs could participate in oncogenesis by inducing chromosomal

instability, promoting aberrant gene expression with their LTR or by

impacting the immune system with their RNA and protein products.15

HERVs could thus play a prominent role in cancer immunity, increas-

ing tumor immunogenicity by promoting (i) an innate immune

response triggered by the viral defense pathway induced by their

nucleic acid intermediates, and (ii) an adaptive immune response by

forming a pool of tumor-associated antigens.16

Acute Myeloid Leukemia (AML) is a heterogeneous disease char-

acterized by the clonal expansion of myeloid progenitor and stem

cells.17 While some AML subtypes are characterized by recurrent

genetic translocations or mutations associated with particular progno-

ses, most AMLs present a normal or complex karyotype, and identify-

ing key factors that predict treatment resistance in these patients

represents a major challenge.17–22 Aside from disease stratification,

AML also belongs to malignancies with the lowest mutational

burdens,23 and finding tumor-specific antigens for immunotherapeutic

approaches remains very difficult as the frequency of mutations

creating neoantigens is expected to be low.24 In this context,

HERV-derived antigens could represent a unique source of alternative

tumor-specific antigens (i.e. antigens that do not originate from single

nucleotide variations in a coding region25,26) that could be exploited

for the development of new immunotherapies.

To date, little is known about the expression of HERVs in AML

and its relevance as either a biomarker or a therapeutic target.

Evidence of HERV-K /HML-2 expression in AML cells was shown as

early as 1993 and confirmed in the early 2000s.27,14 Few studies then

focused on HERVs in AML until the late 2010s, with the demonstra-

tion that azacytidine (Aza) activates the transcription of different

HERVs, potentially contributing to its clinical effects.28 The exact role

of HERVs in Aza therapy is however a matter of debate, with recent

evidence arguing in favor of a HERV-independent therapeutic

effect.29 More recently, a link was established between HERVs and

the expression of surrounding genes in AML, suggesting a regulatory

role of these retroelements.30 However, few data exist on HERV

expression and their immune impact in AML, with studies relying on

non-exhaustive quantification methods such as polymerase chain

reaction (PCR) and focusing only on a few HERV loci14 or globally

quantifying HERVs at the family level together with transposable

elements.31

In this study, we thoroughly assessed HERV expression in AML

and normal blood and bone marrow cells. Using a recent method to

exhaustively quantify the HERV retrotranscriptome in next-

generation sequencing data, we show that the latter can accurately

define normal and leukemic cell populations, including leukemia stem

cells (LSCs) that can be characterized by a 25-HERV signature. We

also show that leukemic cells present a distinct epigenetic profile

compared to their normal cell counterparts, with a significant correla-

tion between the expression of HERVs located in open chromatin

regions and surrounding cancer-associated genes. We then show that

the HERV retrotranscriptome can be used to discriminate AML pro-

files from bulk RNA-seq data, distinguishing known but also new AML

subtypes of different prognoses. Finally, we show that HERVs specifi-

cally expressed in AML cells represent a reservoir of T cell epitopes

able to elicit specific immune responses in AML patients.

2 | METHODS

2.1 | Raw RNA-seq data

Raw RNA-seq data files were accessed from the NCBI Gene Expres-

sion Omnibus (GEO) portal, under the accession numbers GSE74246

for the sorted hematopoietic normal and AML cells from Corces

et al.,32 GSE49642, GSE52656, GSE62190, GSE66917, GSE67039

and GSE106272 for the LEUCEGENE data sets. TCGA LAML33 and

BEAT-AML34 data were accessed from the NCI Genomic Data

Commons (GDC) data portal (https://portal.gdc.cancer.gov/). Raw data
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for the AMLCG cohort18 were directly provided by the AMLCG group.

HLA genotyping of TCGA, BEAT, and AMLCG cohorts was assessed

using archasHLA v0.2.0.35 THP-1 cell line data were accessed from the

Broad Institute Cancer Cell Line Encyclopedia (CCLE) portal (https://

portals.broadinstitute.org/ccle).

2.2 | HERV and gene expression quantification

HERV expression was quantified using a custom pipeline derived from

Telescope.36 Briefly, RNA-seq reads were aligned to a custom tran-

scriptome using bowtie2 v2.2.137 with custom parameters to retain

multimaps (�k 100 --very-sensitive-local --score-min “L,0,1.6”). The
custom transcriptome consisted in the hg38 reference transcriptome

with 14 968 HERV transcriptional units compiled from RepeatMasker

annotations.36 SAM outputs were converted to BAM files using

SAMtools v1.4.38 HERV and gene expression were then calculated

using Telescope36 and HTSeq 0.12.3,39 respectively. Raw counts were

concatenated and normalized independently for each data set using

DESEQ2 v1.28.0 with variance stabilizing transformation (VST).40

2.3 | ATACseq data

Significant peaks called from ATACseq data analysis were retrieved

from the original paper.32 Briefly, peaks were called using MACS2 and

filtered using a custom blacklist. A final set of 590 650 significant

peaks were defined among a list of non-overlapping maximally signifi-

cant 500 bp peaks ranked by their summit significance value. These

significant peaks were re-annotated using HOMER with the command

“annotatePeaks.pl” and two different references: Gencode v33 only

and Gencode v33 with the previously used HERV annotation. Regions

containing significant peaks around +/� 1000 or 3000 bp of a HERV

TSS were considered to be active HERV regions.

2.4 | Unsupervised hierarchical clustering

For the sorted cells, DESEQ2 VST normalized expression data were

directly used for unsupervised hierarchical clustering. Cluster purity

was used as an external validation criterion and was calculated by first

creating a confusion matrix between assigned cluster number and

annotated cell type before adding the maximum values from each row

(i.e. assigned cluster) and dividing by the total number of samples.

A benchmark of distances (euclidean, maximum, and pearson) and

methods (ward.D2, single, complete, average and centroid) was performed

to identify the optimal method leading to the best cluster purity using a

pre-defined number of clusters according to the original annotation.

For bulk data sets, DESEQ2 VST normalized expression data were

independently calculated and further center-scaled for each data set

to correct the potential batch effect. Unsupervised hierarchical clus-

tering was then performed using the average silhouette width and the

Bayesian Information Criterion as internal validation markers.

2.5 | Differential ATAC-count analysis

For differential ATAC-count analysis, raw ATAC-seq counts were

retrieved from the original paper.32 Differential expression analysis

between each AML population (LSC, pHSC, and Blasts) and their nor-

mal counterparts (HSC, GMP, LMPP, and monocytes) was performed

using DESEQ2, with cell type as a covariate. Differentially expressed

regions surrounding a HERV TSS (+/� 20 000 bp) and with a

FDR <5% were retained for the final plot. The rolling mean of 1000

sequential regions, ordered by chromosome location, was then

represented.

2.6 | HERVs, genes, and copy number variation
correlations

HERVs located in extended AHR (peaks +/� 20 000 bp of a HERV

TSS) were selected for correlation analysis. For each HERV, a list of

surrounding genes located at +/� 50 000 bp of their TSS was estab-

lished. Pearson's correlations were calculated between the RNA

expression of each HERV and each of its surrounding gene, indepen-

dently. P-values were corrected with the FDR method. Genes were

then annotated using a published list of cancer-related genes from the

Cancer Gene Census.41 The same list of HERVs was then used to per-

form correlations with CNV from the same cytoband. TCGA LAML

CNV data were retrieved from the NCI GDC portal and used as is to

calculate Pearson's correlations with HERVs from the same cytoband.

2.7 | Survival analysis

Intensively treated patients with available survival data were retained

for the survival analysis. Patients receiving hypomethylating agent

therapies or supportive care were discarded from this analysis. Overall

survival curves were estimated with the Kaplan–Meier method. Only

known prognostic factors (Age, ELN2017, white blood count), batch

and clusters were integrated in the final multivariate cox model.

For the second survival analysis (shown in Figure S6), intensively

treated HLA-A*02 patients were selected and stratified according to

the P1 expression level, cut in terciles. The same covariates were

included in a multivariate cox model of overall survival. Survival ana-

lyses were performed using the R survival and survminer packages.

Cox model proportional-hazards assumptions were assessed using

Schoenfeld's test and inspection of residual plots.

2.8 | Cancer hallmark and immune
signatures GSVA

For each cancer hallmark,42 a unique gene signature was established

(Table S3) based on The Molecular Signatures Database (MSigDb)

Hallmark Gene Set Collection.43 When not available in MSigDb, hall-

mark signatures were established from Gene Ontology (GO) signatures,
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as previously described.44 The signature for the immune evasion hallmark

was retrieved from Hubert et al.,45 Individual enrichment scores were

calculated from each patient by single sample gene-set variation analysis

(ssGSVA),46 and scaled by study. The mean score for each cluster was

then calculated and shown in a radar plot.

Immune signatures were obtained from Thorsson et al.47 and cal-

culated by ssGSVA for each sample. Unsupervised hierarchical cluster-

ing was then performed on study-scaled ssGSVA scores in each

cluster.

2.9 | HERV-LSC signature

To establish the HERV-LSC signature, correlations between the

expression of each unique HERV and the validated LSC17 score48

were computed independently in the 4 bulk RNA-seq data sets.

47 HERVs showing a significant correlation (FDR-adjusted p-value

<0.05) with the LSC17 score in at least 2 data sets and with concor-

dant results (i.e. correlated in the same direction in each data set)

were retained to build signatures. Signatures were calculated as the

mean expression of all HERVs pondered (multiplied) by the sum of

their Pearson's correlation coefficients. To select a minimal number of

HERVs, the resulting 47 HERVs were ranked according to the abso-

lute sum of their Pearson's correlation coefficients, and signatures

were iteratively built by removing the last candidate (i.e. the one with

the lowest summed correlation). Signatures' performances were then

evaluated in the independent testing set of sorted cells from Corces

et al.,32 ROC curves and AUC were drawn and calculated with the plo-

tROC R package. The signature showing the best performances for

LSC classification with the lowest number of HERVs was eventually

selected, leading to the final 25-HERVs signature.

2.10 | Differential HERV expression analysis

Differential expression analysis was performed using DESEQ2.40 Raw

counts of HERVs and genes from all normal and AML data sets were

merged and integrated into the same DESEQ object, using study

(i.e. batch) as a covariate in the design formula. Differential expression

analysis was performed for all the 4 independent bulk AML data sets

and the sorted LSC and pHSC populations against each of the 42 nor-

mal tissues. Fold change were shrunk with the apeglm method.49

Features with a fold change superior to 4 (log2FC >2) and a base

mean of at least 1 normalized count per million were considered to be

overexpressed.

2.11 | Open-reading frame detection and peptide
selection

ORFs were defined using EMBOSS's sixpack v6.6.0.050 to translate

HERV sequences into the 6 possible frames. ORFs of at least

10 amino-acids were then aligned to a reference of known HERV proteins

(Gag, Pro, Pol, Env, Rec, and Np9 from different HERV families). This ref-

erence was established from Uniprot,51 referencing all existing manually

reviewed HERV protein sequences, resulting in 71 references (research

equation: keyword:”endogenous retrovirus” AND reviewed:yes AND

organism:“Homo sapiens (Human) [9606]”, last accession: 12/11/2020).
Blast was used for the alignment, with optimal parameters for retroviruses

(Word size = 3, composition-based statistics, no “low-complexity-region”
filter). ORFs aligning with at least 75% identity with a known HERV pro-

tein and an E-value < 0.01 were considered for further analysis.

Retained ORFs were then screened for predicted HLA-A*02

strong binders using MHCflurry v2.052 and netMHCpan 4.1.53

Peptides with an affinity rank <= 0.5th percentile for both tools were

considered to be strong-binders. The human proteome was down-

loaded on Uniprot (ID: UP000005640) to validate the absence of

match before peptide synthesis and in vitro validation.

2.12 | Additive model

Differential expression at the peptide level between normal bone

marrow and AML cells was estimated by relocating each peptide in

all the potential HERVs with predicted ORFs coding for one of the

262 peptides. Each peptide could thus have one or several differen-

tial expression data according to the number of HERVs they were

found in. This total number of HERVs was considered by considering

the total sum of fold change of each HERV containing the peptide of

interest, leading to an estimation of the cumulated fold change per

peptide. To avoid prioritization of targets with artificially high fold-

changes due to very low expression levels, each fold change was

pondered by the base mean of its respective HERV, leading to the

final additive model.

2.13 | Biological samples

Bone marrow samples were collected from AML patients at diagnosis

at the Centre Hospitalier Lyon Sud in Lyon, France. Sample collection

was approved from the institutional review board and ethics commit-

tee (20.01.31.72653–21/20_3) and after obtaining the written

informed consent of patients, in accordance with the Declaration of

Helsinki. BMMCs were obtained by Ficoll density gradient centrifuga-

tion (Eurobio, FR, EU) and immediately cryoconserved in fetal bovine

serum (FBS) with 10% dimethyl sulfoxide (DMSO).

2.14 | MILs growth

Bone marrow mononuclear cells (BMMCs) were rapidly thawed at

37°C and grown in RPMI medium (Gibco, FR, EU) supplemented with

8% human AB-serum (Etablissement Français du Sang, FR, EU) and

high doses (6000 UI/ml) of IL-2 (PROLEUKIN aldesleukine, Novartis

Pharma, CH, EU) after a 2-hour resting period. Plates were then incu-

bated for 14 days, with medium replacement when needed.
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2.15 | MHC Dextramer® reagents and flow
cytometry analysis

After 14 days of growth, cells were washed in 2 ml washing buffer

(PBS + 2% FBS + 2 mM EDTA [Sigma Alderich, MI, US]) and stained

for 10 min with MHC Dextramer reagents (Immudex®, DK, EU) at

room temperature prior to viability and surface marker staining.

Washing was performed twice to remove unbound reagents and

avoid non-specific binding. An MHC Dextramer carrying non-sense

peptide sequences (A*0201/ALIAPVHAV, ref. WB2666, Immudex®,

DK, EU) was used as a negative control representing background

staining. PBMCs and bone marrow from healthy donors were used as

experimental controls. An overall frequency of at least 0.01% of living

CD8+ T-cells in the absence of significant background staining (non-

sense peptide) was required to consider the positivity of MHC

Dextramer staining.

2.16 | Generation of P1-specific CD8+ T-cells

PBMCs from HLA-A*02 healthy donors were obtained by Ficoll den-

sity gradient centrifugation (Eurobio, FR, EU). Monocytes were iso-

lated from PBMCs by positive selection of CD14+ cells (Myltenyi, GE,

EU). The negative fraction was considered as peripheral blood lym-

phocytes (PBLs). Cells were frozen in FBS 10% DMSO and kept at

�80°C. Monocyte-derived dendritic cells (MoDCs) were generated

from 6-day cultures of CD14+ monocytes in complete RPMI medium

supplemented with 10% FCS and recombinant human GM-CSF

(100 ng/ml) and IL-4 (50 ng/ml). MoDCs were pulsed overnight with

the cognate peptide (10 μg/ml) and 10 ng/ml of LPS (Ultrapure LPS,

E. coli, InVivoGen, FR EU) and washed before co-culture with isolated

PBLs for 6 days (MoDCs:T-cells ratio 1:10) in 96-wells plates. After

6 days, T-cells were counted and restimulated with autologous

MoDCs for 6 more days.

On day 12, MHC dextramer-positive CD8+ T cells were sorted

and expanded on a feeder composed of 35 Gy-irradiated allogeneic

PBMCs and B-lymphoblastoic cell lines in a ratio of 10:1. Feeder cells

were plated in a 96-well round bottom plate at a concentration of

0.10 � 106 cells per well in RPMI 5% human serum with PHA-L

1.5 μg/ml (Merck KgAa, GE, EU) and IL-2150 IU/ml (Novartis Pharma,

CH, EU). Up to 5 � 103 sorted cells were added per well. Cells were

cultured for 14 days and medium was replaced when needed with

fresh IL-2 enriched with RPMI 5% human serum. At the end of feed-

ing CD8+ T cells were checked for their positivity to dextramer stain-

ing (>60% for functionality experiments).

2.17 | Functionality analysis

Dextramer-selected P1-specific CD8+ T cells were co-cultured with

the HLA-A*02 AML cell line THP1 (DSMZ, GE, EU) in a ratio 10:1. T2

cells loaded with P1 or the irrelevant HERV-derived peptide

(SMDDQLNQL) were used as positive and negative controls of

specificity, respectively. After 1 h of co-culture, Golgi Plug (BD, NJ,

US) and CD107a antibody (BD, NJ, US) were added into wells and co-

cultures were maintained for further 4 h. An anti-human MHC I block-

ing Ab (Clone W6/32, InVivoMab, BioXcell, NH, US) was added in

selected wells for 1 h before co-culture (50 μg/ml) and maintained at

10 μg/ml during the entire time of the co-culture to neutralize the

HLA-A*02 dependent T cell activation, as control. Viability (Zombie

NearIR, Biolegend, CA, US), extracellular (CD3, BV421/ CD8, FITC

both Biolegend, CA, US), intracellular staining (IFN-γ PE, Biolegend,

CA, US and TNF-α Pe-Cy7, BD, NJ, US) and fixation were then per-

formed and samples were analyzed on a LSR Fortessa (BD, NJ, US).

3 | RESULTS

3.1 | The HERV retrotranscriptome accurately
defines normal hematopoietic cell populations

As a first step, we examined HERV expression in different normal

hematopoietic cell populations, assuming that distinct HERV profiles

may characterize the main cell types. Using a custom pipeline based

on Telescope,36 we quantified the expression of 14 968 HERV loci in

public RNA-seq data from sorted bone-marrow and peripheral blood

cell populations from 9 healthy donors (spanning 15 different sorted-

cell populations for a total of 49 samples, Figure S1A).32 Unsupervised

hierarchical clustering based on the top 20% most variable HERVs

showed a robust classification of normal hematopoietic cell types with

a cluster purity of 77.6% and a corrected Rand Index of 0.61

(Figure 1A). The same approach based on genes reached a cluster

purity of 65.3% with a corrected Rand Index of 0.47 (Figure 1A).

We then sought to improve the clustering using ATAC-seq data

through the analysis of peaks from open chromatin regions. Using the

HOMER package, we applied a classic human genome annotation

from gencode (v33) to annotate the set of 590 650 significant non-

overlapping peaks from open chromatin regions previously defined in

bone marrow and peripheral blood cells sorted from healthy donors

(n = 80 samples).32 As previously described, unsupervised hierarchical

clustering based on promoter elements (peaks between �100 bp and

1000 bp away from a transcription start-site [TSS]) and intergenic ele-

ments (peaks more than 1000 bp away from any other feature) signifi-

cantly improved cluster classification, with a purity reaching 81.8%

(Figure S1B). We then re-annotated these significant peaks with a

custom reference consisting of the same Gencode annotation

concatenated with the previously used 14 968 HERV loci from

Repeatmasker. This new annotation showed that 16% of the signifi-

cant peaks correspond to HERV regions (Figure 1B). One important

previously reported finding is that classification based exclusively on

intergenic elements (the so-called “distal regulatory elements”) is suf-
ficient to classify normal hematopoietic cell populations.32 Enhanced

annotation of these distal regulatory elements revealed an enrichment

in HERVs, with up to 37.6% of the top 500 variable intergenic peaks

corresponding to a HERV region (Figure 1B). A plot of the total aggre-

gated count from these regions showed a gaussian distribution
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F IGURE 1 Definition of normal hematopoietic cell populations based on the HERV retrotranscriptome. (A) Unsupervised hierarchical
clustering of normal hematopoietic cell populations based on HERV (left) or gene (right) expression in RNA-seq. Clustering was performed with
the ward. D2 method based on the maximum distance. (B) Annotation of all significant ATAC-seq peaks (left) and top variable intergenic peaks
(right) with a custom annotation of Gencode v33 with HERV references from Repeatmasker. (C) Unsupervised hierarchical clustering of normal
hematopoietic cell populations based on ATAC-seq peaks from HERV regions (+/� 1000 (left) or 3000 (right) bp from HERVs' TSS). Clustering
was performed with the ward. D2 method based on the maximum distance. CLP: Common Lymphoid Progenitor, CMP: Common Myeloid
Progenitor, Ery: Erythrocyte, GMP: Granulocyte-Macrophage Progenitor, HSC: Hematopoietic Stem cell, LMPP: lymphoid-primed multipotent
progenitor, MEP: Megakaryocyte-Erythroid Progenitor, MPP: Multipotent Progenitor. [Color figure can be viewed at wileyonlinelibrary.com]
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surrounding HERV TSS, confirming the good quality of the ATAC-seq

signal (Figure S1C). Clustering of samples based on active HERV regions

(AHR, defined by peaks surrounding HERVs regions +/� 1000 or

3000 bp) further improved the clustering, reaching 88.3% cluster purity

(Figure 1C).

Altogether these results show that the HERV retrotranscriptome

can be used to characterize normal immature and mature hematopoi-

etic cell populations. The improved clustering obtained with ATAC-seq

data suggests that AHR reflect epigenetic footprints associated with

cell differentiation.

3.2 | Acute myeloid leukemia cells show distinct
HERV profiles close to their normal cell of origin

We next evaluated how the HERV retrotranscriptome may help to

distinguish AML cells. We performed the same clustering approach,

integrating the 32 RNA-seq and 45 ATAC-seq bone marrow samples

from 12 AML patients at diagnosis to our previous samples

(Figure S1A).32 Unsupervised clustering based on the top 20% variable

AHR (+/� 1000 bp from a HERV TSS) in ATAC-seq resulted in a good

classification of normal and AML cells, with a slight increase in cluster

purity compared to the top 20% most variable intergenic peaks

(Figure 2A). Clustering based on HERV expression in RNA-seq yielded

comparable results (Figure S2A). Interestingly, leukemic blast cells

(blasts) clustered with either monocytes or granulocyte-monocyte

progenitor (GMP) cells, LSCs with either GMP or lymphoid-primed

multipotent progenitor (LMPP) cells and pre-leukemic hematopoietic

stem cells (pHSCs) with either GMP or HSC/multipotent progenitor

(MPP) cells, suggesting a clustering with their cell of origin as previ-

ously described.32 Cluster purity based on the original categories of

cells did not consider these similarities and was thus a poor indicator

of clustering performance in this case. Differential ATAC-count analy-

sis centered on extended AHR (+/� 20 000 bp from a HERV TSS)

revealed distinct profiles between AML LSCs, blasts and pHSCs com-

pared to their normal counterparts, with globally a more open chro-

matin in blasts and a more closed chromatin in LSCs and pHSCs

(Figure 2B). To further characterize the role of HERVs in these AHR,

we computed correlations between RNA expression of each HERV

present in an AHR and its respective surrounding genes located at

+/� 50 000 bp. Strikingly, we mostly found positive correlations

between HERV expression and their surrounding genes (Figure S2B).

Annotation of the genes with a pre-established list of cancer-

associated genes from the Cancer Gene Census database41 revealed

several genes positively correlated with HERVs expressed in AHR

(Figure 2C). Of note, the highest correlation was found for GATA1

with ERVLB4_Xp11.23b (Pearson's R: 0.74, adjusted p-value:

8.11e-14) (Table S1). Using TCGA LAML RNA-seq data, we then

explored the association between each HERV located in an AHR and

gene copy number variation (CNV) on the same cytoband. This

highlighted several HERVs correlated both positively and negatively

with deletions, and mostly positively with amplifications on the same

cytoband (Figure 2D). These results demonstrate that HERV

expression profiles differ according to the AML cell type, and suggest

that HERVs are associated with gene regulation.

3.3 | HERV expression defines subtypes of AML
with distinct cancer hallmarks and outcomes

Having established that the HERV retrotranscriptome characterizes

particular cell types, we then wondered whether HERV expression

could define distinct AML profiles in bulk RNA-seq data. We explored

HERV expression in 4 independent RNA-seq data sets (TCGA,

AMLCG, LEUCEGENE, and BEAT), retaining only bone marrow sam-

ples from AML patients at diagnosis (n = 788) (Table S2). For each

data set, we selected the top 2000 most variable HERVs based on the

scaled DESEQ2 VST normalized count (Figure S3A). We merged the

4 data sets, keeping only the intersect between each top 2000 candi-

date HERVs, resulting in 961 variable HERVs conserved across the

4 data sets. Unsupervised hierarchical clustering guided by the aver-

age silhouette (Figure S3B) and Bayesian Information Criterion (BIC)

evolution defined 9 clusters that were not dependent on the study

(Figure 3A and Figure S3C). These 9 clusters were associated with sig-

nificant differences in overall survival among intensively treated

patients (Figure 3B), independently of established prognostic factors

such as age, ELN2017 and white blood count, integrated in a multivar-

iate Cox model (Figure 3C). These clusters also presented distinct

cancer hallmark profiles (Figure 3D), as assessed by single sample

gene-set variation analysis (GSVA) based on cancer hallmark signa-

tures (Table S3). GSVA of immune signatures47 revealed no clear

immune subtype profiles, distinguishing clusters with globally low or

high immune scores (Figure 3E).

We then assessed whether these clusters were associated with

known recurrent translocations or gene mutations. We found a clear

enrichment in inv,16 t(8;21), and t(15;17) in clusters 1, 7, and 9, respec-

tively (Figure 3F). Other karyotypes (such as complex, poor or inter-

mediate abnormalities) showed no particular association with any

cluster, underlining the heterogeneous composition of these groups.

Regarding gene mutations, we observed a tendency for an enrichment

in RUNX1 mutation in cluster 5 and in TP53 mutation in cluster

3 (Figure 3F).

Focusing on HERVs discriminating each cluster (i.e. HERVs over-

expressed in a given cluster compared to all other clusters), we found

that clusters 8 and 9 had the highest number of different discriminat-

ing HERVs, whereas only few HERVs discriminated clusters 3 and

5 (Figure S3D). HERVs from the HERV-H, ERV-L, MER4, HERV-L, and

HERV-K families were the most frequent HERVs to discriminate clus-

ters (Figure S3E). When reported to the total number of HERVs per

family, HERV-S, HERV-E, HERV-P, ERV1, and HARLEQUIN families

were the most frequently represented (Figure S3F).

To further demonstrate the value of HERV expression as a prom-

ising biomarker, we next established a LSC signature based on HERV

expression. We calculated correlations between each individual HERV

and the previously published LSC17 score48 in the 4 independent data

sets. Forty-seven HERVs with a significant correlation with the LSC17
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F IGURE 2 AML cells show distinct epigenetic profiles compared to their normal counterpart. (A) Unsupervised hierarchical clustering of
normal and leukemic hematopoietic cell populations based on HERV-centered (left) or global intergenic (right) open regions in ATAC-seq.
Clustering was performed with the ward. D2 method based on the maximum distance. (B) Differential ATAC-count analysis between AML and
normal BM cells. Log2FC between each AML subpopulation (blast, LSC, pHSC) and normal BM cells is shown on the y axis, and chromosomal
location on the x axis. Only values with an FDR <0.05 were considered. (C) Correlation between RNA expression of HERVs located in active
chromatin regions and the surrounding cancer-associated genes (+/� 50 000 bp). Significant Pearson's R are represented in orange (positive) or blue
(negative). p-values were corrected using the FDR method. (D) Correlation between RNA expression of HERVs located in active chromatin regions

and CNV: deletions (left) and amplifications (right). Individual chromosomes are represented on the y axis, �log10(FDR) on the x axis. Pearson's R
were independently calculated for each HERV and all the alterations present on the same cytoband. AML: Acute Myeloid Leukemia, BM: Bone
Marrow, CLP: Common Lymphoid Progenitor, CMP: Common Myeloid Progenitor, CNV: Copy Number Variation, Ery: Erythrocyte, FDR: False
Discovery Rate, GMP: Granulocyte-Macrophage Progenitor, HSC: Hematopoietic Stem cell, LMPP: lymphoid-primed multipotent progenitor, LSC:
Leukemic Stem Cell, MEP: Megakaryocyte-Erythroid Progenitor, MPP: Multipotent Progenitor, pHSC: pre-leukemic Hematopoietic Stem Cell. [Color
figure can be viewed at wileyonlinelibrary.com]
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score (adjusted p-value < 0.05) in at least 2 independent data sets

were used to establish a new LSC score based on HERVs expression

only (Table S4, see methods). This 47-HERV LSC signature was fur-

ther refined to select the minimal number of HERVs allowing a good

LSC discrimination. The resulting LSC signature based on 25 different

HERVs showed a very good discrimination in the independent valida-

tion set of sorted AML cells, separating LSCs from all other cells with

an area under the curve (AUC) of 0.80 versus 0.64 for the non-refined

signature and 0.76 for the LSC17 score (Figure 3G). Both the full

47-HERV and the 25-HERV LSC signatures showed a significant

impact on overall survival, mirroring the LSC17 signature's perfor-

mances (Figure S3G). Altogether these results show that HERVs rep-

resent an important source of genetic information that can be used to

define different AML subtypes as well as cell-specific signatures, as

highlighted herein for LSCs.

3.4 | AML-specific HERVs contain several open-
reading frames representing a source of shared tumor
antigens

Considering the specific expression of some HERVs in AML, we evalu-

ated if they may represent a source of shared tumor antigens for

immunotherapeutic approaches. To define leukemia-specific targets,

we used a data set of more than 1000 normal samples from 42 differ-

ent sites extracted from the Genotype-Tissue Expression (GTEX) data-

base in addition to the normal bone marrow and peripheral blood

samples used above. We performed differential HERV expression

analysis between AML and normal tissues, considering transcripts

with a shrunken fold change >4 and a base mean of at least 1 normal-

ized count per million as overexpressed. To be considered as

AML-specific, each HERV candidate had to be overexpressed in at

least 2 independent data sets of AML bone marrow compared to

normal bone marrow cells and not overexpressed in any of the 42

normal tissues compared to any AML dataset. These two filters led to

the final identification of a set of 125 conserved AML-specific HERVs

(Figure S4A). The mean AML expression of these 125 AML-specific

HERVs highly exceeded in most of cases the 75th percentile expres-

sion in normal tissues, with the exception of testis (Figure 4A). When

focusing on the top overexpressed HERVs, we found candidates with

a particularly high differential expression, with log2FC up to 17.47

and 16.58 for ERV316A3_1q25.2b in bulk AML cells and LSCs,

respectively. Several HERVs had an expression level in LSCs com-

pared to normal bone marrow cells at least as high as other current

LSC therapeutic targets (Figure S4B).

To screen for potential HERV-derived epitopes, we next defined

all the putative ORFs by translating these 125 AML-specific HERVs

into the 6 possible frames. To reduce the number of false positives,

ORFs of at least 10 amino-acids were then aligned against a manually

annotated database of 71 known existing HERV proteins derived from

curated Uniprot references. ORFs with at least a 75% identity with an

existing HERV protein and an E-value < 0.01 were selected for

epitope screening. Using these criteria, we found that only 33/125

AML-specific HERVs possessed at least 1 ORF (Figure S4C). Two

independent recent tools trained on mass spectrometry data were

then used for epitope prediction: netMHCpan 4.153 and MHC flurry

2.0.52 HLA-A*02 epitope screening revealed 262 unique peptides

predicted as strong HLA-A*02 binders with both independent tools.

To set up a list of peptides to prioritize, we further ranked these

results. Considering that epitope immunogenicity is linked to its tumor

abundance,54 we established an additive model considering (i) the

mean expression of HERVs containing the peptide sequence, (ii) the

fold change compared to normal bone marrow and (iii) the number of

different HERVs containing the peptide sequence. We relocated each

peptide in all the different HERVs containing its sequence and added

the fold changes pondered by the base mean expression of each indi-

vidual HERV. This additional step filtered-out 158 peptides that were

either shared with HERVs present in normal tissue (pondered nega-

tively in our additive model) or overexpressed but with a very low

base expression. Among the 104 remaining peptides (Figure 4B), the

top expressed candidates were mainly from Gag and Pol proteins of

HERV-K/HML-2 family (Figure S4D).

Overall, these results show that HERVs represent a reservoir of

potential CD8+ T cell epitopes overexpressed in AML that may repre-

sent original therapeutic targets.

3.5 | T-cells specific for HERV-derived epitopes
are naturally present in AML patients

We then examined whether the predicted HERV-derived HLA-A*02

epitopes could elicit an immune response in AML patients. We

selected 8 different HLA-A*02 epitopes among the top candidates in

the additive model, focusing on peptides already identified as immu-

nogenic in our lab (P1, P2, P4, and P6) or peptides preselected in a

previous study in solid tumors but for which the immunogenicity has

so far not been confirmed (P15, P16, P18, and P20).55 Bone marrow-

infiltrating lymphocytes (MILs) were expanded from bone marrow

mononuclear cells (BMMCs) of HLA-A*02 AML patients at diagnosis.

High-dose IL-2 stimulation induced expansion of CD45+ cells from

14.4% to 74.3% (mean values) among living cells in 14 days. Using

HLA-A*02-peptide dextramers, we screened for the presence of spe-

cific CD8+ T cells against the selected epitopes. Strikingly, P1-specific

CD8+ T cells were found in 7/10 patients. Specific CD8+ T cell

against P15 and P16 were also detected at frequencies >0.01% in

1/10 and 2/10 patients, respectively. No significant dextramer stain-

ing was observed on CD8+ T cells expanded from HLA-A*02 normal

bone marrow or CD8+ T cells obtained from HLA-A*02 healthy

peripheral blood mononuclear cells (PBMCs) (Figure 4C, D, Figure S5).

Based on these results, we decided to evaluate the functionality

of P1-specific CD8+ T-cells generated from HLA-A*02 healthy

donor's PBMCs. After priming by P1-pulsed autologous monocyte-

derived dendritic cells, P1-specific CD8+ T cells were sorted by flow

cytometry using dextramer staining and expanded on feeder cells (see

methods). To confirm the peptide-specific activation of these

expanded T cells, we evaluated the cytokine release following co-
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F IGURE 3 The HERV retrotranscriptome defines AML subtypes with distinct prognosis and cancer hallmarks. (A) UMAP representation of
the 788 AML patients. Clusters defined by the unsupervised hierarchical clustering approach are shown. (B) Overall survival of intensively treated
patients according to the 9 clusters in the whole cohort. (C) Multivariate Cox analysis of overall survival of intensively treated patients. Known
risk factor (Age, ELN2017 and WBC), study (batch) and clusters are integrated in the multivariate model. (D) Cancer hallmark profiles of each
cluster. Each cancer hallmark is represented by its symbol as defined in.42 For each cluster, hallmark scores are calculated by ssGSVA. Mean
scores are represented on a radar plot. (E) Heatmap of immune signature enrichment. Patients were grouped into clusters before performing
unsupervised hierarchical clustering. Z-scores of ssGSVA signature enrichment are represented. (F) Bar chart of genomic alteration (left) and
mutation (right) distribution according to clusters. For each category, the total count and the percentage is represented. (G) ROC-curve of LSC
classification according to the 47-HERV (green), 25-HERV (red) and LSC 17 (blue) LSC signature. LSC: Leukemic Stem Cell, ROC: Receiver
Operating Characteristic Curve, ssGSVA: Single Sample Genes-set Variation Analysis, WBC: White Blood Count. [Color figure can be viewed at
wileyonlinelibrary.com]
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culture with T2 cells loaded either with P1 or an irrelevant HERV-

derived peptide. IFN-γ and TNF-α release was observed only when

the target cells were pulsed with P1 and was inhibited by the addition

of an anti-HLA class I blocking antibody (Figure 4E and Figure S6A).

We then evaluated the functionality of these P1-specific CD8+ T cells

against THP-1, a HLA-A*02 AML cell line shown to express

P1-containing HERVs (Figure S6B). An increased production of IFN-γ

and TNF-α (intracellular staining) and an increase in the percentage of

F IGURE 4 Legend on next page.
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degranulating (CD107a positive) cells was observed when P1-specific

CD8+ T-cells were co-cultured with THP-1 cells (Figure 4E and

Figure S6A). These effects were reversed with the anti-HLA-I blocking

antibody. Furthermore, no increase in cytokine production was found

when unspecific CD8+ T-cells (dextramer-negative CD8+ T-cell frac-

tion sorted and expanded in the same conditions) were incubated with

THP-1. Altogether, these results demonstrated a specific and HLA-I

restricted activation of P1-specific CD8+ T cells in presence of AML

cells.

To further explore the potential impact of P1 expression in AML

cells, we assessed the prognostic value of the expression of HERVs

containing its sequence among HLA-A*02 patients on the overall

cohort. Multivariate Cox analysis revealed that patients with a high

expression of P1-containing HERVs in leukemic cells had a better

overall survival than patients with a low or intermediate expression,

regardless of age, ELN2017, batch and white blood count

(Figure S6C). Overall, these results suggest that HERV-derived epi-

topes elicit a CD8+ T cell response that can be detected in the bone

marrow of AML patients. Furthermore, a higher expression of HERVs

containing immunogenic epitopes may be associated with a better

clinical outcome.

4 | DISCUSSION

Representing 8% of the human genome, HERVs are a great source of

genetic information. However, as the results of their analysis are

largely dependent on the chosen analytical strategy, this signal can

often be missed or misinterpreted. For instance, using a partial data-

base limited to HERVs corresponding to known Uniprot references

(56) can occult a major part of the HERV retrotranscriptome, and

restricting HERV signal to uniquely mapped reads strongly reduces

the signal from conserved, recently integrated families prone to multi-

map.57 Consistently, we used a custom-designed pipeline based on

Telescope,36 a recently developed tool allowing the accurate quantifi-

cation of a complete base of 14 968 HERV loci. One of the main

advantages of Telescope resides in its reassignment algorithm to cor-

rectly reassign a high number of multimaps and thus keep the highest

possible signal from recently integrated and conserved HERV families.

This approach provided a thorough analysis of HERV expression in

normal and AML cell populations, providing a robust classification of

specific cell-types only based on HERV transcriptomes.

Chromatin accessibility represents a major factor of cell differen-

tiation that may capture cell identity more accurately than gene

expression in blood cells.32 Furthermore, HERVs may actively shape

the chromatin architecture.58 In line with these observations, we

show here that a very efficient clustering of normal hematopoietic cell

populations is obtained with the use of AHR located in distal regula-

tory elements. In the same way, AHR profiles allowed not only the dis-

crimination of leukemia cells from normal blood cell populations, but

also between leukemia cells clustering with their cell-of-origin. Thus,

pHSCs, LSCs, and leukemic blast cells displayed a distinct epigenetic

profile with distinct AHR compared to their normal counterparts.

Using the unique information provided by the HERV retrotranscrip-

tome, we built a signature based on 25 HERVs that allowed a robust

classification of LSCs among normal and leukemic bone-marrow cells.

An LSC-HERV signature could represent an original tool to either

evaluate AML prognosis (i.e. as a surrogate marker of the remaining

LSCs) or minimal residual disease during follow-up.

A positive correlation was found between HERV expression from

AHR and their surrounding genes, including cancer-associated genes.

This may reflect the presence of these elements in actively tran-

scribed DNA regions. Alternatively, HERVs may exert a regulatory role

in gene transcription in these regions, as already described.59 In this

context, it is tempting to speculate that some of these HERVs may act

as enhancers for AML oncogenes, as reported recently by Deniz

et al.30 Interestingly, LSCs and pHSCs showed fewer AHR compared

to blasts. This result is consistent with a previous report demonstrat-

ing that transposable elements are silenced in LSCs.31 This may be

due to the fact that silencing of HERVs might promote LSC immune

escape, because HERVs have been described to induce both innate

and adaptive immune responses.16 However, as we show herein,

some HERVs containing conserved ORFs are still overexpressed in

LSCs compared to normal cells, suggesting that it may be possible to

therapeutically boost an immune response against HERV epitopes

in LSCs.

Relying only on HERV expression, we managed to retrieve partic-

ular AML subtypes but also to define new subtypes within normal and

F IGURE 4 HERVs as a source of shared epitopes in AML. (A) Scatter plot showing the mean expression of the 125 AML-specific HERVs
across normal and AML tissues. Dotted lines represent the 75th percentile expression of normal solid and hematopoietic tissues. (B) Scatter plot
of individual peptides in the additive model. For each peptide, cumulative log2FC between AML cells and normal BM (x axis) and number of
unique HERVs containing the peptide sequence (y axis) is represented. Cumulative log2 FC were pondered by the base mean expression of the
corresponding HERV. (C) Summary table of specific CD8+ T cell responses found among MILs in patients. An overall frequency of at least 0.01%
of living CD8+ T-cells in the absence of significant background staining (MHC Dextramer with a non-sense peptide A*0201/ALIAPVHAV) was
required to consider the positivity of MHC Dextramer staining. (D) Representative dextramer results of 4 AML patients. Bone marrow CD8+ T

cell populations are gated among single living cells after 14 days of expansion. CD8 staining is represented on the y axis, dextramer staining is
represented on the x axis. Significant results are shown in red. (E) Functionality analysis of P1-specific CD8+ T-cells. IFN-γ and TNF-α production
are shown. Dextramer-selected P1-specific CD8+ T cells were expanded for 14 days before being co-cultured with T2 or THP-1 cells in a ratio of
10:1. Intracellular (IFN-γ, TNF-α) and extracellular (CD107a) staining were performed after 5 hours of co-culture. Dextramer-negative fraction of
CD8+ T-cells was expanded with the same protocol and used as negative control (data representative of 3 independent experiments). AML:
Acute Myeloid Leukemia, Factor FC: Fold Change, FDR: False Discovery Rate, IFN: Interferon, LSC: Leukemic Stem Cell, MILs: Marrow Infiltrating
Lymphocytes, P1: Peptide 1, TNF: Tumor-necrosis. [Color figure can be viewed at wileyonlinelibrary.com]
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complex karyotype groups. Importantly, the prognostic differences

found across these AML subtypes were independent of the currently

used ELN2017 score, based on the karyotype and mutated genes.

These results suggest that HERVs could be used to improve risk strati-

fication and treatment resistance prediction in patients with no

genetic or molecular abnormalities associated with well-defined prog-

nosis and resistance profiles.

Several studies have evaluated the possibility to predict survival

or response to intensive therapy using gene-expression.18,48,60–63

However, most of these studies do not account for major cofounding

factors (such as treatment type and stem cell transplantation) or do

not contain a validation cohort. When performed, well-made studies

using validation cohorts hardly reach a concordance statistic of 0.8,

most of them being around 0.7.64,65 More recently, Vadakekolathu

J. et al. proposed an immune score based on IFN-γ-related genes that

was able to predict response to flotetuzumab (a CD3xCD123 bispeci-

fic antibody) with an AUC of 0.84.22 Our results suggest that the sys-

tematic association of HERVs with gene expression could greatly

improve gene expression-based predictors.

Finding specific tumor antigens in AML remains a major challenge

for immunotherapeutic approaches. Because AML belongs to malig-

nancies with the lowest mutational burdens,23 the frequency of muta-

tions creating neoantigens is expected to be low. In this context,

HERV-derived antigens represent a unique source of alternative

tumor-specific epitopes25,26 that could be exploited for the develop-

ment of new immunotherapies. Our bioinformatics-based approach

allowed us to identify several CD8+ T cell epitopes from AML-specific

HERVs, that is, HERVs expressed at high levels in AML cells and never

expressed in normal tissue. For practical reasons, we provided a

proof-of-concept using HLA-A*02, the most common human MHC

class I. The proposed pipeline can easily be adapted to other haplo-

types, and it will be of interest to evaluate other HLA alleles to pro-

pose a broader population coverage.

The presence of CD8+ T cells specific for HERV epitopes in the

bone marrow of AML patients at diagnosis confirmed that these epi-

topes are naturally processed and are immunogenic. Using a proteo-

genomic approach, Ehx et al. recently showed that most MHC-class I

tumor-specific antigens from primary AML samples originate from

non-coding regions, encompassing introns and endogenous retroele-

ments.26 Our results substantiate a recent report from Saini et al.

showing that HERVs represent a reservoir of CD8+ T cell epitopes in

myeloid malignancies.66 In this latter study, a high-throughput epitope

screening method was set up based on barcode dextramers. It would

be interesting to combine both approaches to obtain an optimized

epitope detection pipeline associated with a more systematic func-

tional screening method. Of note, the P1 epitope (FLQFKTWWI),

which seemed to be particularly immunogenic in our study and in

another in the context of solid tumors67 was screened by Saini et al.

but not detected with the barcoded dextramers. This discrepancy

could be explained by the use of peripheral blood samples or a lower

sensitivity in the absence of prior expansion of bone marrow T-cells,68

especially in AML, a disease characterized by a massive leukemic cell

infiltration in the bone marrow.

In conclusion, our study unveils the HERV retrotranscriptome as a

powerful tool to characterize and classify specific cell populations and

to provide new tumor-specific epitopes for the development of immu-

notherapeutic strategies. This approach, demonstrated here in AML,

could easily be extended to any disease to provide a better risk-strati-

fication, establish relevant predictive signatures for therapeutic

responses or identify original therapeutic targets.

5 | CONCLUSIONS

The HERVs retrotranscriptome represent an important source of

genetic information that can be used to enhance disease stratification

or identify cell populations, as shown here with leukemic stem cells.

Moreover, HERVs represent an important reservoir of alternative

tumor-specific T cell epitopes that can be identified and prioritized

using our approach.
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