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ABSTRACT 

Heat shock protein 90 (Hsp90) is a molecular chaperone that folds and remodels 

proteins, thereby regulating the activity of a large number of client proteins. Hsp90 is 

widely conserved across species and is essential in all eukaryotes and some bacteria 

under stress conditions. To carry out protein remodeling, bacterial Hsp90 collaborates 

with the Hsp70 molecular chaperone and its cochaperones. The mechanism of protein 

remodeling carried out by eukaryotic Hsp90 is more complex, involving more than 20 

Hsp90 cochaperones in addition to Hsp70 and its cochaperones. In this review, we 

focus on recent progress toward understanding the basic mechanisms of bacterial 

Hsp90-mediated protein remodeling and the collaboration between Hsp90 and Hsp70. 

We describe the universally conserved structure and conformational dynamics of these 

chaperones and their interactions with each other and with client proteins. The 

physiological roles of Hsp90 in Escherichia coli and other bacteria are also discussed. 

We anticipate that the information gained from exploring the mechanism of the bacterial 

chaperone system will provide a framework for understanding the more complex 

eukaryotic Hsp90 system and its modulation by Hsp90 co-chaperones. 
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1. INTRODUCTION  

Proteome quality control, called proteostasis, depends on a delicate balance between 

the synthesis, folding, aggregation and degradation of cellular proteins. One important 

group of proteins involved in proteostasis is comprised of molecular chaperones, which 
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facilitate protein folding, unfolding and remodeling. These molecular machines modulate 

the kinetic partitioning of polypeptides between pathways leading to active proteins with 

native conformations, protein aggregates or degraded proteins [reviewed in (7; 25; 44; 

56; 98; 109; 122) (Fig. 1).  

 Hsp90, Heat shock protein 90, is a highly conserved ATP-dependent molecular 

chaperone that functions in protein homeostasis by promoting protein folding, 

remodeling, activation and inactivation (13; 64; 126; 139) (Fig. 1). Additionally, Hsp90 

holds client proteins, to protect them from aggregation and degradation (Fig. 1). Hsp90 

is a highly abundant protein in both bacteria and eukaryotes under normal non-stress 

conditions and its level is further increased during stress conditions (9; 82). Hsp90 is 

essential in some bacteria under stress conditions (58; 141), but not in others, including 

Escherichia coli (9). In eukaryotes, Hsp90 is an essential protein. It is known to promote 

the remodeling of hundreds of client proteins and to participate in many cellular 

functions, such as protein trafficking, signal transduction, and receptor maturation (13; 

116; 126). Moreover, some Hsp90 clients are oncogenic proteins and their stabilization 

by Hsp90 can lead to cancer progression, making Hsp90 a potential drug target (18; 97; 

126).  

To perform protein remodeling functions, bacterial Hsp90 requires the 

collaborative activity of another ATP-dependent molecular chaperone, DnaK, the 

bacterial homolog of Hsp70 (41; 44; 104). Hsp70 chaperones, like Hsp90s, are 

important in protein homeostasis and function in protein folding and remodeling (45; 91; 

122). They act with two cochaperones, a J-domain protein and a nucleotide exchange 

factor. J-domain proteins deliver substrates to Hsp70 and stimulate Hsp70 ATPase 
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activity (23; 45; 66). Nucleotide exchange factors promote ADP release and ATP 

binding by Hsp70 (14; 45). Eukaryotic Hsp90 collaborates with Hsp70 and its 

cochaperones in some, but not all, protein remodeling activities (13; 100; 116; 126). In 

addition, protein remodeling of specific clients by eukaryotic Hsp90 is regulated by one 

or several of the more than 20 Hsp90 cochaperones (64; 126). In contrast, bacteria lack 

homologs of the eukaryotic Hsp90 cochaperones and bacterial Hsp90 cochaperones 

have yet to be identified (16). 

 

2. DOMAIN ORGANIZATION, STRUCTURE AND CONFORMATIONAL DYNAMICS 

OF HSP90  

2.1. Domain organization  

Hsp90 is a highly conserved protein; for example, there is about 55% similarity between 

E. coli Hsp90 and human Hsp90α. Bacteria generally possess only one Hsp90 isoform, 

whereas eukaryotes have several. In humans, Hsp90s are found in the cytosol (Hsp90α 

and Hsp90β), the endoplasmic reticulum (GRP94) and the mitochondria (TRAP1). In 

yeast, two cytosolic Hsp90 isoforms are found, the constitutively expressed Hsc82 and 

the stress induced Hsp82. (The nomenclature for Hsp90 isoforms is shown in Table 1.) 

 Hsp90 is a homodimer under most conditions (13), although yeast mitochondrial 

Hsp90, TRAP1, has been observed to tetramerize under some conditions (65). The 

Hsp90 protomer is composed of three domains, the N-terminal domain (NTD), the 

middle domain (MD) and the C-terminal domain (CTD) (13; 77; 114; 139). The NTD is 

responsible for ATP binding and hydrolysis. The ATP binding site is structurally related 

to the GHKL (Gyrase, Hsp90, Histidine Kinase, MutL) family of ATPases, which are 
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characterized by having a “split ATPase.” As such, Hsp90 residues essential for ATP 

hydrolysis are located in the MD, away from the ATP binding pocket in the NTD and 

conformational rearrangements are required for ATP hydrolysis (24; 95; 129). The MD 

is the principal domain involved in client binding (6; 43; 49; 70; 84; 103; 134; 146). 

Hsp70 also interacts with a region in the Hsp90 MD (30; 42; 74)}(12). Hsp90 

dimerization occurs through CTD interactions. 

 Although the domain organization is conserved, differences exist among the 

Hsp90s. One difference is that bacterial Hsp90 and mitochondrial Hsp90, TRAP1, lack a 

flexible charged linker of about 50 residues that connects the NTD and MD in eukaryotic 

cytosolic Hsp90. It has been suggested that the flexible linker modulates Hsp90 

conformational changes that are important for chaperone function and regulation by 

cochaperones (50; 143). The second major difference is that eukaryotic cytosolic Hsp90 

homologs possess a C-terminal MEEVD motif that is absent in bacterial Hsp90, 

mitochondrial TRAP1 and endoplasmic reticulum (ER) Hsp90, GRP94 (13; 126). This 

region is responsible for binding to many Hsp90 co-chaperones that contain 

tetratricopeptides repeat domains (TPR) (64; 81; 126). The absence of this C-terminal 

extremity in bacterial Hsp90, as well as in TRAP1 and GRP94, is consistent with the 

observation that homologs of Hsp90 containing cochaperones have not been identified 

in bacteria, mitochondria and the ER (64; 81; 126) (28).  

 

2.2. Structure of Hsp90 and conformational dynamics  

The structure of Hsp90 has been extensively studied by a combination of approaches 

including X-ray crystallography, SAXS, negative-stain EM and FRET (13; 77; 81; 88; 94; 
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113; 114; 126; 145). Structures of truncated and full-length Hsp90 from various species 

with and without nucleotides, cochaperones, or clients have been obtained. Altogether 

they show that Hsp90 is a highly dynamic and flexible protein, and that it cycles through 

large conformational changes to perform chaperone activity.  

The crystal structure of E. coli Hsp90 in the absence of nucleotide (apo form) 

was solved by Agard and coworkers. It shows the Hsp90 dimer adopting an open V-

shape conformation with dimerization occurring through the CTD (129) (Figure 2A). 

However, in solution, apo Hsp90 presents a more extended conformation than observed 

in the crystal structure (76; 131; 132). Multiple V-shaped and extended conformations of 

eukaryotic Hsp90 have also been visualized in solution, highlighting the considerable 

flexibility of the apo form of Hsp90 (15; 75). 

 A very different structure is seen when Hsp90 binds nucleotide. When bound to 

the non-hydrolyzable ATP analog, AMP-PNP, and stabilized by the cochaperone 

p23/Sba1, Pearl and colleagues observed yeast Hsp82 in a closed conformation with a 

subdomain in the NTD, referred to as the lid, covering the bound nucleotide (4) (Fig. 

2C). In this conformation the two NTDs rotate and contact one another. Additionally, 

elements of the NTD and the MD become closer than in the apo conformation, a 

prerequisite for ATP hydrolysis by the “split ATPase”.  Recently, structural studies by 

Agard and coworkers of mitochondrial TRAP1 bound to AMP-PNP have revealed the 

existence of a slightly different closed form with a strained asymmetric conformation 

(79) (Fig. 2D). In this structure, one protomer is in a conformation similar to the one 

found in the closed structure of yeast Hsp82 (4), while the other protomer shows a helix 

swap at the interface between the MD and the CTD. Functional importance of this 
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conformational asymmetry has been suggested (32; 102). In contrast, structural studies 

of the ER Hsp90 paralog, GRP94, show that in the presence of AMP-PNP, GRP94 

adopts a symmetric closed twisted dimer, with dimerization in the NTD being controlled 

by a pre-N domain extension that is not present in other Hsp90s (60) (Fig. 2E). 

Structures of ADP-bound Hsp90 reveal an even more compact conformation than that 

seen with AMPPNP (129; 131) (Fig. 2B). 

The conformations observed by structural and biochemical studies describe an 

ATP cycle starting with an apo, open V-shaped, conformation of Hsp90 (Fig. 2). ATP 

binding causes the NTD to rotate and dimerize, with the lid closing over the nucleotide. 

At this point Hsp90 is in the closed conformation that is competent to hydrolyze ATP. 

Following ATP hydrolysis, ADP and phosphate are released, and the dimer again 

adopts the open apo conformation as the cycle is completed. However, differences exist 

among the different Hsp90 isoforms. The bacterial Hsp90 ATP hydrolytic cycle is driven 

in a deterministic fashion by a mechanical ratchet mechanism (46; 117). In contrast, 

eukaryotic Hsp90 seems to be more flexible than bacterial Hsp90, functioning in a non-

deterministic manner by populating all the conformations independent of the nucleotide 

(96).  

In bacteria, the cycle is further modulated by the Hsp70 chaperone and its 

cochaperones and by clients (42; 44; 133; 134) (Fig. 2F). In eukaryotes, Hsp90 

cochaperones and post-translational modifications, as well as Hsp70, Hsp70 

cochaperones and clients, play roles in regulation (5; 13; 64; 126).  

  

2.3. Client binding by Hsp90 
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Hsp90 binds to a large number of clients with highly diverse structural characteristics 

or folding statuses spanning from intrinsically disordered to partially or natively folded 

(94; 116; 120; 126; 139). In addition, no consensus motif has been found in the clients 

that bind Hsp90. In bacteria very few natural Hsp90 clients have been identified (see 

section 5), while in eukaryotes, many Hsp90 clients have been reported, including 

kinases, steroid hormone receptors, transcription factors and many other proteins. For 

an up-to-date list of Hsp90 clients, visit the page maintained by Didier Picard, 

https://www.picard.ch/downloads/Hsp90interactors.pdf.  

A region on E. coli Hsp90 comprising residues in the MD and CTD important for 

client binding has been identified by Genest et al. by a genetic screen (43). Mutations in 

this region strongly affect client binding, therefore reducing the chaperone function. The 

same region was identified by Street et al. using a structural approach (133-135). The 

residues in the MD and CTD important for client binding define a large binding surface 

in a cleft between the two protomers of the dimer. This binding surface is rearranged in 

the different conformations of Hsp90, suggesting a possible mechanism to regulate 

client binding and release. 

Eukaryotic yeast Hsp82 has also been shown to interact with clients through 

residues in the MD and CTD (43; 105; 134). More recently, structural studies of Hsp90 

in complex with the ligand binding domain of the glucocorticoid receptor (GR-LBD) (70; 

84) or with the Cdk4 kinase and Cdc37 co-chaperone (146), confirm the MD as the 

main interaction site in Hsp90 with additional contacts in other domains. However, for 

some clients, the binding region is different. For example, the Tau protein principally 

interacts with an extended region in the NTD of Hsp90 (67). 
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3. THE DNAK CHAPERONE: AN HSP90 PARTNER 

3.1. Structure of DnaK 

Hsp90 collaborates with Hsp70, another ATP-dependent molecular chaperone, in a 

variety of protein remodeling activities. However, in the absence of Hsp90, Hsp70 

functions independently in a wide array of cellular processes that involve protein folding 

and remodeling (7; 122). In addition to promoting de novo protein folding and activation, 

Hsp70s participate in the prevention of aggregation and the disaggregation and 

refolding of misfolded and aggregated proteins. They also act with proteases to rid cells 

of irreversibly misfolded proteins (21; 29; 35; 91; 98; 107). There is high conservation 

between human Hsp70 and bacterial Hsp70, referred to as DnaK.  

 DnaK, like all Hsp70s, is comprised of an N-terminal nucleotide-binding domain 

(NBD) connected by a short flexible linker to the substrate-binding domain (SBD) (17; 

21; 44; 90-92; 122; 160) (Fig. 3A). The NBD is divided into four subdomains, which form 

two lobes with a deep cleft between them where nucleotide binds. The SBD is made up 

of two subdomains: SBDb, which contains the substrate binding pocket and is 

composed of b-strands, and SBDa, which is a helical lid domain. In addition, there is an 

unstructured C-terminal tail. Hsp70 undergoes large conformational transitions that are 

dependent on the nucleotide-bound state. In the ADP-bound state, the NBD and SBD 

are spatially separated, connected only by the linker. Hsp70 is considered to be “closed” 

in the ADP conformation, with the helical lid subdomain of the SBD covering the 

substrate binding pocket in the SBDb (Fig. 3A) (11; 21; 89-91; 158; 159). Although the 

SBDa closes when a peptide is bound to the substrate-binding site, it remains partially 
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open when the substrate is a large polypeptide, suggesting the importance of lid 

mobility in accommodating diverse substrates (87; 124; 144). In the ATP-bound state, 

the lid is open and SBDb and SBDa bind to different faces on the NBD, leaving the 

substrate-binding site accessible for rapid, low affinity substrate interactions (Fig. 3A) 

(72; 115). In addition, the SBDa rotates to interact with the NBD, which causes the 

interdomain linker to dock into an exposed groove in the NBD and induce 

conformational changes in the NBD (Fig. 3A) (33; 72; 115). Altogether, the structures of 

the ADP-bound closed conformation and ATP-bound open conformation of Hsp70 DnaK 

reveal large structural rearrangements dependent on nucleotide binding state. 

 

3.2. Conformational dynamics of DnaK and the role of DnaK cochaperones 

Hsp70 chaperone activity is coupled to large conformational transitions between the 

ATP- and ADP- bound state of Hsp70. These conformational changes are regulated by 

two Hsp70 cochaperones, a J-domain protein (JDP) and a nucleotide exchange factor 

(NEF) (45; 53; 66; 72; 78; 85; 90; 92). JDPs recognize and bind substrates thus 

targeting them for Hsp70 action. They also stimulate ATP hydrolysis by Hsp70 and 

promote high affinity substrate binding (23; 45; 66; 71). In E. coli, DnaJ is the principal 

JDP, although there are several others, including CbpA (45; 66). Eukaryotes generally 

have a large number of JDPs and it has been suggested that JDPs are responsible for 

imparting substrate specificity to Hsp70s (10; 23; 45; 66). NEFs interact with the NBD of 

DnaK and accelerate nucleotide exchange by DnaK by promoting ADP release and 

ATP binding (14; 17; 45; 53). GrpE is the sole E. coli NEF. Eukaryotes generally 

possess multiple NEFs, including Hsp110, Bag domain proteins and HspBP1 (14; 111; 
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127; 130; 140). While eukaryotic NEFs are functionally similar to GrpE, they do not 

share structural homology.  

 The mechanism for protein remodeling and reactivation by E. coli DnaK is the 

summation of work from many groups, particularly those of Bukau, Mayer and Hartl, and 

is shown in Fig. 3B (7; 90; 91; 122). First, a substrate containing non-native regions 

interacts with a JDP and is delivered to DnaK (Fig. 3B, step 1) (92; 119; 144; 160; 

161).The JDP stimulates ATP hydrolysis by DnaK, which promotes a conformational 

transition to the closed ADP-bound state of DnaK with bound substrate (Fig. 3B, step 2) 

(1; 23; 45; 66; 71; 78). GrpE accelerates nucleotide exchange by DnaK (Fig. 3B, step 

3), which in turn facilitates substrate release, returning DnaK to the open ATP-bound 

state (14; 17; 45; 53). The released non-native substrate refolds spontaneously or is 

rebound by Hsp70 or another molecular chaperone for additional cycles of binding and 

release (Fig. 3B, step 4).  

 

4. REMODELING ACTIVITY OF HSP90: COLLABORATION BETWEEN HSP90 AND 

THE DNAK CHAPERONE 

4.1. Physical and functional interaction between Hsp90 and the DnaK chaperone  

Hsp90s are required to activate clients and reactivate inactive proteins, however, ATP-

dependent chaperone activity by Hsp90 alone has not been demonstrated in vitro with 

purified proteins using either bacterial or eukaryotic Hsp90 isoforms. In vitro, Hsp90 

alone possesses holdase activity, the ability to bind and stabilize client proteins and 

prevent their aggregation independent of ATP, as first shown by Jakob and Buchner 

(Fig. 5A). The holdase activity is a conserved activity of Hsp90 proteins that has been 
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reported in bacteria and eukaryotes (6; 27; 58; 62; 104; 123; 128; 152; 154; 156). 

However, it remains to be established if holdase activity is a physiologic activity of 

Hsp90. 

To promote remodeling activity in vitro, bacterial Hsp90 requires DnaK and its 

cochaperones, and eukaryotic Hsp90 requires Hsp90 cochaperones and in addition 

some reactions additionally require Hsp70 and its cochaperones. For example, E. coli 

Hsp90 acts with DnaK, DnaJ/CbpA and GrpE to reactivate inactivated model clients (41; 

99). Biochemical experiments have shown that DnaK, with its cochaperones, acts first, 

likely by binding and stabilizing non-native regions of the client. Then in a second step, 

Hsp90 and DnaK, with its cochaperones, act together to complete client remodeling and 

reactivation (41; 42). Recent in vitro experiments by Moran Luengo et al. have shown 

that when the concentration of DnaK is high, DnaK blocks client refolding by shifting the 

client on-off equilibrium toward the on state (99). Under these conditions, Hsp90 

relieves the block to promote productive client folding. This Hsp90 function appears to 

be conserved across species since similar in vitro results were obtained when human 

chaperones and co-chaperones were used. These in vitro reactivation experiments 

require ATP hydrolysis by both DnaK and Hsp90, indicating that protein remodeling is 

occurring during both phases of the reaction (41; 42; 99). In a similar fashion, eukaryotic 

Hsp70, in combination with a JDP, acts prior to Hsp90 in protein reactivation reactions 

in vitro (70; 99; 101; 142; 151). In contrast to protein reactivation by bacterial Hsp90 and 

DnaK, in vitro protein reactivation by eukaryotic Hsp90 and Hsp70 is stimulated by Hop 

(Hsp90-Hsp70 organizing protein), an Hsp90 cochaperone, in addition to a JDP (70; 99; 

101; 142; 151). However, a recent study by Picard and colleagues indicates that human 
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Hsp70 and Hsp90 function more efficiently in the absence of Hop in vivo and in vitro, 

suggesting their mechanism of action is similar to that of bacterial Hsp90 and Hsp70 

(12).  

 In studies to explore the mechanism of collaboration between bacterial Hsp90 

and Hsp70, a direct interaction between the two chaperones was discovered (41; 42; 

73; 104). The interaction has been observed both in vivo using a bacterial two hybrid 

assay and in vitro using purified proteins (41; 42; 73). Although the interaction is weak, it 

is stabilized by both client protein and JDP (42). Hsp90 residues important for the 

interaction with DnaK were identified using mutagenesis, bacterial two hybrid and 

reactivation assays. The residues are located in a region of the MD of Hsp90 (42) (Fig. 

4A). Further work showed that, in vivo and in vitro, Hsp90 interacts with the DnaK NBD 

(Fig. 4B) and, more specifically, with a region of DnaK that overlaps with the JDP 

binding region (73), which had been previously defined (3; 40; 71; 93; 136). Crosslinking 

experiments demonstrated that the residues shown to be important for the Hsp90-DnaK 

interaction were indeed the sites of the direct interaction (30), and together with a 

molecular docking study suggested a model for the interaction (Fig. 4C). The 

significance of the overlapping sites on DnaK for Hsp90 and DnaJ is currently unknown. 

Additionally, many of the residues in the shared Hsp90- and JDP-binding site of DnaK 

are buried when DnaK is in the ATP-bound conformation, indicating that the ADP-bound 

form of DnaK interacts with Hsp90 (72; 92; 115). 

 Eukaryotic Hsp90s and Hsp70s also directly interact, albeit weakly. For example, 

the yeast Hsp90 and Hsp70 homologs, Hsp82 and Ssa1, have been shown to interact 

both in vivo and in vitro (19; 36; 37; 74; 101; 118). Moreover, mutational analysis of 
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Hsp82 suggested and crosslinking studies confirmed that the site of interaction involves 

the region of Hsp82 homologous to that of bacterial Hsp90 (30; 74).The demonstration 

that yeast Hsp90 and Hsp70 directly interact was unexpected because yeast possess a 

Hop homolog, Sti1, that binds to both Hsp90 and Hsp70 and provides a bridge 

connecting the two chaperones (55; 63; 125). However, while yeast Hsp90 and Hsp70 

interact directly, Sti1 stabilizes the weak interaction both in vitro (74) and in vivo (19; 

37). It has recently been demonstrated that human Hsp90 and Hsp70 proteins also 

interact directly in the absence of the Hop co-chaperone, and as with bacterial 

chaperones, binding involves the region on Hsp90 homologous to the region on E. coli 

Hsp90 important for DnaK binding (12). Similarly, mouse ER GRP94 and human 

mitochondrial TRAP1 directly bind their respective Hsp70 chaperones, BiP and mortalin 

(137; 138).   

   

4.2. Working model for the synergistic action of Hsp90 and Hsp70 in protein remodeling  

A working model for the pathway of protein refolding by bacterial Hsp90 and DnaK has 

evolved from structural, biochemical and biophysical studies from many groups and is 

consistent with the current knowledge, but still speculative (44; 100) (Fig. 5B). First, a 

client is bound by a JDP (referring to either DnaJ or CbpA in the model for the 

mechanism in E. coli) (Fig. 5B, Step 1) and transferred to DnaK (Fig. 5B, Step 2). As the 

client undergoes repeated cycles of binding to and release from DnaK partial or 

complete refolding of some clients occurs (Fig. 5B, Step 3). The cycle is driven by 

conformational changes of DnaK resulting from ATP binding, hydrolysis and nucleotide 

exchange and is promoted by the JDP and GrpE. Some clients that do not reach their 
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native state by the action of DnaK and its cochaperones are targeted to Hsp90 through 

a transient interaction between DnaK and Hsp90 (Fig. 5B, red arrow). The JDP is likely 

involved in facilitating and stabilizing the interaction between Hsp90, DnaK and client 

(Fig. 5B, Step 4). With ATP hydrolysis, Hsp90 and DnaK interact with each other and 

the client (Fig. 5B, Step 5). Binding of ATP by DnaK leads to the transfer of client to 

Hsp90 and release of DnaK (Fig. 5B, Step 6). The client may undergo repeated cycles 

of binding and release from Hsp90 and eventually reach its native active conformation 

(Fig. 5B, Step 7).  

Models for the mechanism of action of Hsp90 and Hsp70 in eukaryotes have 

recently been reviewed (13; 68; 94; 100; 116; 120; 126; 145). While it is likely that the 

basic mechanism of the collaboration between Hsp70 and Hsp90 is conserved, the 

eukaryotic systems require the participation of many Hsp90 cochaperones and thus are 

significantly more complex than the bacterial system. 

 

5. PHYSIOLOGIC CLIENTS OF HSP90 AND THE FUNCTION OF HSP90 IN 

CELLULAR PROCESSES 

In bacteria, Hsp90 is a very abundant protein under non-stress conditions and its level 

significantly increases under heat and other stress conditions (8; 22; 54; 106). However, 

htpG the gene coding for Hsp90 in E. coli, is not essential for the growth of E. coli and 

many other bacteria. Nevertheless, E. coli deleted for htpG grow slightly slower and 

have a modest increase in aggregated protein at elevated temperatures compared to 

wild-type strains (8). In addition, Hsp90 is essential for swarming in E. coli (61). Another 
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study indicates that biofilm formation is slightly reduced in E. coli in the absence of 

Hsp90 at elevated temperature (48).  

Similarly, cells lacking Hsp90 exhibit modest growth phenotypes at elevated 

temperatures in Actinobacillus actinomycetemcomitans and Bacillus subtilis (148; 155). 

In contrast, in Shewanella oneidensis and some cyanobacteria, Hsp90 is essential 

under heat stress (34; 58; 141). Hsp90 also participates in cold tolerance in S. 

oneidensis and Vibrio vulnificus (20; 38). In Mycobacterium tuberculosis, Hsp90 is 

essential in stress conditions, but only in strains with a deletion of ClpB, a Clp/Hsp100 

chaperone (51), revealing an important role of Hsp90 in this bacterium and suggesting 

an overlap in functions of Hsp90 and ClpB. 

 

5.1. Role of Hsp90 in assembly of complex cellular structures  

A role for Hsp90 in the assembly and modulation of large cellular complexes is 

emerging. For example, a recent study indicates that Hsp90 is one of the many 

regulators of the E. coli cell division apparatus. It modulates cell division through 

interactions with FtsZ, the bacterial homolog of eukaryotic tubulin (6). During cell 

division, FtsZ assembles at mid-cell forming the Z-ring, and constriction of this ring 

leads to the separation of the two daughter cells. When Hsp90 is overproduced, Z-ring 

formation and cell division are inhibited, leading to cell filamentation. In cells lacking 

Hsp90, shorter cells are observed compared to wild-type. These observations, together 

with the finding that Hsp90 directly interacts with FtsZ to prevent its assembly in vitro, 

suggest that Hsp90 holds FtsZ, thereby regulating the amount of free FtsZ available to 
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assemble into Z-rings. Interestingly, the ATPase activity of Hsp90 is not required for 

these functions, suggesting that the holdase activity of Hsp90 is sufficient (6). 

Nakamoto and coworkers found that Hsp90 participates in the process of 

photosynthesis in cyanobacteria. They observed that in the absence of Hsp90 

Synechococcus elongatus cell coloration changed from blue-green to yellow-green, 

suggesting effects on phycobilisomes (141), highly-ordered large protein complexes that 

are essential for photosynthesis and work as light-harvesting antenna. It was shown that 

the level of the rod linker (LR30) protein, important for the assembly of the phycobilisome 

(2; 83), was greatly reduced in the absence of Hsp90 (123). It was found that Hsp90 

directly interacts with LR30 and suppresses its thermal aggregation in vitro (123). These 

observations suggest that Hsp90 participates in complex formation by stabilizing a 

protein required for phycobilisome assembly.  

In another study, a large-scale phylogenetic analysis looking at genes that 

coevolved with Hsp90 in bacteria suggested that Hsp90 is involved in motility and 

chemotaxis (112). These results were confirmed by showing that E. coli Hsp90 interacts 

with the flagellar protein FliN and the chemotaxis kinase CheA, both proteins associated 

with large protein complexes. These results suggested that one role of Hsp90 could be 

promoting complex assembly. 

 

5.2. Role of Hsp90 in virulence 

Hsp90 is involved in the virulence of some pathogenic bacteria (26; 39; 47; 69; 80; 147; 

149; 153). For example, Hsp90 is required for maximal virulence of extraintestinal 

pathogenic E. coli (ExPEC). It has been shown that in ExPEC strains, the synthesis of 
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two virulence factors, the genotoxin colibactin and the siderophore yersiniabactin, was 

abolished in the absence of Hsp90 (39). Hsp90 is also involved in the biosynthesis of 

the antibiotic albicidin in Xanthomonas albilineans (149) and the biosurfactant 

arthrofactin in Pseudomonas sp. MIS38 (150). Colibactin, yersiniabactin, albicidin and 

arthrofactin belong to the family of hybrid polyketide/nonribosomal peptides and are 

produced by complex biosynthesis pathways (59; 108; 110; 121), suggesting that these 

pathways share a common protein remodeling mechanism that depends on Hsp90.  

There are other observations implicating a role of Hsp90 in virulence of many 

bacteria, including Salmonella enterica Typhimurium, Edwardsiella tarda, Leptospira 

interrogans, Francisella tularensis subsp. novicida and Pseudomonas aeruginosa (26; 

47; 69; 80; 86; 147; 153). Altogether, these studies suggest a prominent role of Hsp90 

in bacterial virulence.  

 

5.3. Hsp90 and proteolysis 

There is interplay between proteolysis and Hsp90 chaperone activity in bacteria 

as well as eukaryotes (6; 31; 39; 57; 157). For example, in S. oneidensis, Hsp90 has 

been shown to remodel and stabilize TilS, an essential tRNA modifying enzyme 

required for translation at elevated temperatures (57; 58). In the absence of Hsp90, TilS 

activity is reduced, and translation of proteins whose mRNA sequence contains AUA 

codons is therefore compromised. Interestingly, HslVU protease has been shown to 

degrade TilS in the absence of Hsp90 (57; 58). Since growth of S. oneidensis under 

heat stress relies on TilS activity, no growth is observed in the absence of Hsp90 (TilS 
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degradation), however growth is restored in a strain lacking both Hsp90 and the HslVU 

protease (TilS stabilization). 

As explained above (Section 5.3), the absence of Hsp90 abolishes the 

production of colibactin in ExPEC strains (39). Moreover, in cells lacking both HslVU 

protease Hsp90, production of the toxin is restored by expression of Hsp90. These 

results suggest that an unknown client of Hsp90 responsible for colibactin production is 

degraded in the absence of Hsp90, but stabilized when the protease is absent, such 

that there is a sufficient amount of the client needed for colibactin production.  

In another example, E. coli FtsZ, an Hsp90 client (Section 5.2), has a longer half-

life in vivo in wild-type cells than in cells lacking Hsp90. In addition, in vitro FtsZ is 

degraded by ClpXP protease and Hsp90 protects it from degradation, although the 

physiological protease responsible for FtsZ degradation has not been determined (6).  

E. coli Hsp90 has also been shown to be required for the CRISPR-Cas system, 

an adaptive immunity system that provides resistance to foreign genetic elements, such 

as those present in plasmids and phages (157). Moreover, production of the Cas3 

protein in a strain that does not produce Hsp90 restores CRISPR-Cas activity, 

suggesting that Cas3 is a client of E. coli Hsp90. Further experiments showed that 

Hsp90 protects the Cas3 client from degradation (157).   

Therefore, we can hypothesize that the antagonist action of the Hsp90 

chaperone and the protease on the client could serve as a post-translational regulatory 

mechanism to fine-tune the level of a client protein in some growth conditions. 

In another model, Hsp90 could target misfolded proteins to HslVU, ClpXP and other 

proteases for degradation. 
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6. CONCLUDING REMARKS 

As the mechanism of client remodeling and activation by the ATP-dependent Hsp90 

and Hsp70 chaperones becomes clearer, the highly elaborate nature of the 

collaboration between these two molecular machines also becomes more evident. 

Compared to the bacterial proteins, an additional layer of complexity is found in 

eukaryotes with the numerous Hsp90 cochaperones and posttranslational modifications 

that modulate Hsp90 chaperone activity. However, the bacterial Hsp90 and Hsp70 

chaperones provide an exquisite simpler model to decipher the mechanism of action of 

the Hsp90-Hsp70 collaboration. Interestingly, since Hsp90 and Hsp70 are highly 

conserved from bacteria to eukaryotes, advances made with bacterial proteins can 

directly be translated to the eukaryotic proteins, as exemplified by the identification of 

the client and Hsp70 binding sites in E. coli. Future progress is needed to provide a 

more precise understanding of how clients are remodeled by the chaperone teamwork 

and to define the contribution of each chaperone in this process. To gain a global view 

of the involvement of Hsp90 in bacterial physiology, it becomes crucial now to 

comprehensively identify its clients in bacteria as it has been done in eukaryotes. 

Importantly, given the unexpected importance of Hsp90 in bacterial virulence, Hsp90 

inhibitors specifically targeting the bacterial Hsp90 isoform would be a valuable tool to 

limit bacterial virulence and provide new means to combat multidrug-resistant bacteria. 

The tremendous wealth of knowledge on Hsp90 inhibitors from studies of eukaryotic 

Hsp90 provides a strong foundation for developing novel treatments targeting Hsp90 in 

bacterial infections.  
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Table 1. Main Hsp90 isoforms found in bacteria, yeast and humans. 

 

Species Gene 
name 

Protein 
name Compartment 

Amino 
acids 

number  

UniProt 
ID 

Escherichia coli 
htpG 

Hsp90Ec 
(HtpG) 
(C62.5) 

Cytosol 624 P0A6Z3 

Saccharomyces 
cerevisiae 

HSP82 Hsp82 Cytosol 709 P02829 
HSC82 Hsp82 Cytosol 705 P15108 

Human HSP90AA1 Hsp90α Cytosol 732 P07900 
HSP90AB1 Hsp90β Cytosol 724 P08238 

HSP90B1 GRP94 Endoplasmic 
reticulum 803 P14625 

TRAP1 TRAP1 Mitochondria 704 Q12931 
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FIGURE LEGENDS 

 

Figure 1.  The interplay of chaperones and proteases in proteostasis. Some 

polypeptides emerging from the ribosome are cotranslationally folded by chaperones, 

while others reach their native conformations spontaneously. However, many non-

native and unfolded protein require the assistance of chaperones, including Hsp60s, 

Hsp70s and Hsp90s, to promote folding (step 1). Chaperones are responsible for 

binding to and preventing the aggregation of non-native polypeptides, including Hsp90 

and Hsp70s (Step 2). Remarkably, chaperones are known to disaggregate aggregated 

proteins and restore their activity, including Clp/Hsp100s in collaboration with Hsp70s 

(Step 3). Chaperones, including the Clp/Hsp100 chaperone components of proteases, 

also facilitate degradation of irreversibly damaged and misfolded proteins (Step 4). 

Chaperones also prevent degradation by binding to non-native proteins (Step 4).  

 

Figure 2.  Hsp90 chaperone. A. Model of the crystal structure of the E. coli Hsp90 dimer 

in the apo form (PDB: 2IOQ) (129) with the C-terminal domains aligned to the crystal 

structure of the isolated C-terminal domain (PDB: 1SF8) (52). B. Dimer structure of E. 

coli Hsp90 in the ADP-bound conformation (PDB: 2IOP) (129). C. Dimer structure of S. 

cerevisiae Hsp82 in the AMP-PNP–bound conformation (PDB: 2CG9) showing the 

location of the unstructured linker region and contacts between the NTDs (4). D. Dimer 

structure of Danio rerio (zebrafish) mitochondrial Hsp90, TRAP1, in the AMP-PNP–

bound conformation (PDB: 4IPE), showing the location of the helix swap region (79). E. 

Dimer structure of Canis lupus familiaris endoplasmic reticulum Hsp90, GRP94, in the 
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AMP-PNP–bound conformation (PDB: 5ULS), showing the pre-N domain in green (60). 

F. Model of the cycle of Hsp90 conformational dynamics regulated by ATP, 

cochaperones and clients. All images were prepared using PyMOL, and the domains 

are colored as in A. B-E, bound nucleotide is shown in black as CPK models. 

 

Figure 3.  DnaK chaperone. A. The structure of E. coli DnaK is shown on the left in the 

closed ADP-bound conformation (PDB: 2KHO) (11) and on the right in the open ATP-

bound conformation (PDB: 4B9Q) (72). The DnaK NBD (red) is connected by a flexible 

linker to the SBD (blue) that is made up of two subdomains, an a-helical subdomain, the 

“lid”, and a b-sheet subdomain that contains the substrate-binding site. ATP is shown in 

black as a CPK model. B. Cartoon representation of substrate interaction and 

remodeling by DnaK and its cochaperones. The JDP (DnaJ or CbpA) interacts with a 

client (Step 1). Then, the JDP with bound client interacts with DnaK (Step 2). ATP is 

hydrolyzed and GrpE accelerates nucleotide exchange by DnaK (Step 3). The client is 

released from DnaK and either refolds spontaneously (Step 4) or undergoes repeated 

cycles of ATP-dependent binding and release. 

 

Figure 4. Region of interaction between E. coli Hsp90 and DnaK. A. surface-rendered 

model of E. coli Hsp90 dimer in the apo conformation, constructed from the biological 

assembly 1 of PDB code 2IOP (129) using CHARMM to build in missing atoms (73) and 

showing one protomer in gray and the other in light blue. The site of DnaK interaction on 

the MD is shown in red (42) and the site of client-binding in the MD and CTD is shown 

in green (43). B. Cartoon model of DnaK in the ADP-bound conformation (PDB code 
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2KHO) (11) is shown in orange. The site of Hsp90 interaction on the NBD is shown in 

dark blue as CPK models (73). C. Docked surface-rendered model of the apo structure 

of Hsp90 (shown and colored as in A) and a cartoon model of ADP-bound form of DnaK 

(shown and colored as in B) (73). All images were prepared using PyMOL. 

 

Figure 5. A. Working model for the holding activity of Hsp90. First, in an ATP 

independent reaction, the aggregation prone client or folding intermediate is recognized 

by Hsp90 and bound stoichiometrically (Step 1). The client undergoes on and off cycles 

of ATP independent binding and release by Hsp90. Next, for some clients, release 

occurs transiently, without the need for nucleotide, but for other clients, ATP binding, 

hydrolysis, and/or release may be necessary (Step 2). After multiple cycles, the client is 

released and refolds in its native conformation (Step 3).  B. Working model for protein 

remodeling by E. coli Hsp90 in collaboration with DnaK. First, the JDP (DnaJ or CbpA) 

interacts with a client (Step 1). Then, the JDP with bound client interacts with DnaK 

(Step 2). The client undergoes repeated cycles of binding to and release from DnaK 

with partial or complete refolding of some clients occurring (Step 3). Some clients that 

do not reach their native state by the action of DnaK and its cochaperones, are targeted 

to Hsp90 through a transient interaction between DnaK and Hsp90 (red arrow). The 

JDP is involved in facilitating and stabilizing the interaction between Hsp90, DnaK and 

the client (Step 4). With ATP hydrolysis, Hsp90 and DnaK interact with each other and 

the client (Step 5). The client is transferred to Hsp90 and may undergo repeated cycles 

of binding and release from Hsp90 (Step 6). Lastly, the partially folded client is 

eventually released from Hsp90 and reaches its native active conformation (Step 7).  
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