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The introduction of structural defects in other-
wise periodic media is well known to grant ex-
ceptional space control and localization of waves
in various physical fields, including elasticity.
Despite the variety of designs proposed so far,
most of the approaches derive from contextual
modifications that do not translate into a design
paradigm due to the lack of a general theory. Few
exceptions include designs endowed with topo-
logical dispersion bands, which, however, require
changes over substantial portions of the structure.
To overcome these limitations, here we introduce
a new rationale based on real-space topology to
achieve localized modes in continuous elastic me-
dia. We theoretically predict and experimentally
demonstrate the spectral flow of a localized mode
across a bulk frequency gap by modulating a sin-
gle structural parameter at any chosen location
in the structure.
The simplicity and generality of this approach
opens new avenues in designing wave-based de-
vices for energy localization and control.

INTRODUCTION

The quest for media capable of exceptional wave local-
ization has attracted increasing interest in many research
fields, owing to its promise of fostering new function-
alities, such as defect-immune and scattering-free wave
propagation1, unprecedented potential for energy har-
vesting applications2, object cloaking3 and enhanced en-
ergy transport4, to cite a few. For this reason, wave lo-
calization has been extensively studied for over a century
in various physical domains, including electromagnetism,
elasticity and acoustics. In particular, the fundamental
interplay between local properties (material composition
and geometrical architecture) and structural defects has
been proven to lead to the emergence of localized modes5

offering intriguing possibilities for spatial wave control.
Localized modes can be broadly classified through the
symmetry of the structure hosting the wave propagation,
i.e., (i) random / disordered6–10, (ii) quasi-periodic11–14

and (iii) periodic media with the introduction of de-
fects15–17. In this context, continuous elastic media offer

a)Electronic mail: marco.miniaci@univ-lille.fr

a rich playground in such a quest because of their fourth
order tensor-based physics coupling longitudinal, shear
and flexural deformations18. It has been shown that elas-
tic localized modes can be achieved by breaking specific
symmetries by adding or removing inclusions in the unit
cell, by varying their size and shape in order to create
point15,19–22 or line defects23–25.
However, despite the variety of designs proposed so far,
all these approaches are based on ad-hoc modifications
that do not translate into a general design paradigm.
Hence they do not allow a systematic prediction, a pri-
ori, of the presence / absence of a localized mode under
a structural modification. Another limitation of these
approaches is that the induced localized modes are ex-
tremely sensitive to the presence of additional defects in
the structure, meaning a high risk of uncontrolled fre-
quency shifts of the modes.
The recent introduction of topological protection in elas-
ticity has opened new possibilities for a more systematic
design procedure for achieving localized modes insensi-
tive to defects26–30 because endowed with nontrivial, or
topologically protected, dispersion bands. However, solu-
tions explored so far require material / geometrical mod-
ifications over the entire or substantial portions of the
structure31, due to the fact that such modes arise at
the interface between two domains with distinct topo-
logical properties characterized by different topological
invariants, such as the Zak phase or Chern number32.
In this context, the recent introduction of the concept
of fragile topological phases33,34 has challenged this no-
tion by demonstrating the presence of topological modes
even in the absence of nontrivial invariants. A spectral
flow of a family of localized modes arising across an in-
terface under twisted boundary conditions35, i.e., as spe-
cific physical parameters are smoothly changed, has been
demonstrated. However, these observations are limited
to pressure acoustic waves34,36 (where the propagation
is described through a scalar field potential), electronic
charges localizing at corners and dislocation cores due
to filing anomaly-induced topological effects37, and pho-
tonic lattices38. On the contrary, the spectral flow of lo-
calized modes in continuous elastic systems has remained
elusive so far, due to their unique tensor-based nature of
its wave equations18 implying high modal density and
their tendency to hybridize under structural modifica-
tions.
In this Letter, using polymeric 3D-printed metamateri-
als, we report for the first time the experimental observa-
tion of a family of localized modes spanning a frequency
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bandgap between two bulk dispersion bands. We observe
the spectral flow of this mode using 10 different sam-
ples that accommodate a smooth local modulation of the
stiffness of a single unit cell. The observed behaviour is
accompanied by a thoroughly interpretation based on a
theoretical model allowing to fully predict, a priori, the
presence or absence of the localized mode as a function
of the modulated mechanical parameters. The key idea
is to determine the number of natural frequencies in each
dispersion band for finite structures with defects by solely
exploiting real-space topological properties. In contrast
to prior works on localized interface modes, the struc-
ture on both sides of the modulated unit cell remains
here identical.
The simplicity and generality of the proposed approach,
clearly showing that the centre of the localized mode can
be arbitrary chosen within the original structure, thus
suppressing the need of substantial modifications of the
initial structure, as required by traditional topological
protection approaches, may open new avenues in design-
ing wave-based devices for elastic energy localization and
control.

RESULTS

Modal spectral flow through stiffness modula-
tion. The confirmation of the above idea is obtained
by measuring the frequency response function of the
axial displacements of periodic one-dimensional (1D)
mass-spring systems, a schematic representation of
which is reported in Fig. 1A. The rectangle shaded
in light yellow represents the unit cell of the chain
consisting of two identical masses (green dots) and two
springs of alternating stiffness k and δ, respectively. A
defect spring (highlighted in red) located in the middle
of the chain is characterized by a stiffness modulation
parameter λ. Figure 1B reports a 3D rendering of the
printed structures manufactured to realize the elastic
analogue of the above described discrete system. The
unit cell (reported in yellow for the sake of clarity) can
be divided into three regions: a thick one with square
cross-section, corresponding to the masses of the discrete
chain (and referred as masses in what follows), and two
thin beams with circular cross-section of different radii,
corresponding to the springs of stiffness k and δ (and
referred as springs in what follows). The axial stiffness
of each beam is EA/L to first order, being E, A and
L the material Young’s modulus, the cross-section area
and length of the beam, respectively (see Methods for
further details).
The first step towards the observation of a topologically
protected modal spectral flow is to realize a complete
bandgap for all the possible elastic polarizations, namely
bending, shear, torsional and axial modes (see Supple-
mentary Note 139 for further details). This is done by
properly choosing the geometrical parameters of the
unit cell under investigation, when k 6= δ. In our case,

a gap between 5840 Hz and 8280 Hz is opened when
k = 2δ (see Methods). In the second step, a proper
local modulation of the spring stiffness of rigidity k of
the unit cell in a finite system (at an arbitrary location)
is introduced to induce selective shifts in the natural
frequencies of the eigenmode closest to the bandgap.
The stiffness modulation is achieved through a gradual
variation of the radius ϕ of the central beam of the finite
chain (highlighted by grading colors shading from white
to dark blue in Fig. 1B). Ten stiffness modulations are
introduced (as λ · k, with λ ∈ [0.1, 1]) and enumerated as
#1 −#10, corresponding to λ = 1 and λ = 0.1, respec-
tively (supplementary Note 239 reports a photograph of
the manufactured samples).
To unequivocally distinguish between a trivial stiffness
alteration and a topologically protected one leading to a
modal spectral flow, two distinct cases are considered,
namely (i) k > δ and (ii) k < δ. The transmissibility of
the two classes of systems is investigated by scanning
laser Doppler vibrometry (SLDV) of the samples (longi-
tudinal velocities are excited and acquired - see Methods
and Supplementary Note 339 for further details on the
experimental configuration). The transmissibility is
calculated as the ratio of the detected velocity amplitude
at scanning points and the imposed one. Figure 1C
reports the frequency response function in the 0 − 11
kHz frequency range for the two study cases (k > δ in
the left panel, and k < δ in the right panel) when 10
different values of λ are adopted. In the first case, a
spectral flow of the 8th mode from the lower to the upper
bulk region is clearly observed as energy spots passing
across the entire bandgap when λ is varied in the [0.1, 1]
range. On the contrary, when k < δ, no crossing is
observed as the parameter λ is changed. This provides a
direct observation of the aforemetioned modal spectral
flow. The experimental results are perfectly supported
by analytical models reported as overlaid white squares
(natural frequencies of the axial modes of the specimens)
and by time domain numerical calculations (see Supple-
mentary Note 439). It is worth mentioning here that
rigid longitudinal translation modes at zero frequency
are filtered out in the experimental measurements
through a high-pass band filter.

Eigenvector reconstruction and localization of
the flowing mode. When k > δ, a family of modes,
whose natural frequency traverses the bandgap as the
radius of a single beam is varied, exists. To verify that
these modes are indeed localized (contrary to the case of
k < δ), the 8th mode shape is reconstructed (in terms of
amplitude and phase) for the two classes of systems.
Figure 2A reports the normalized amplitudes of the
displacement of the masses for the 8th mode shape of
the two chains (k > δ, left panel, and k < δ, right panel)
setting the parameter λ to 1 (highlighted by green arrows
and circles in Fig. 1C). Measured values, reported as
red dots, are superimposed on the analytical predictions
(blue lines with square markers), and an excellent



3

agreement is found. In both cases the displacement of
the masses spans the entire chain, clearly confirming
that the mode can be identified with a Bloch mode
lying in the higher and lower bulk bands, as indicated
by the green arrows at λ = 1 in Fig. 1B, pointing up or
down, respectively. Each Bloch mode identification can
be done via an injective mapping in the corresponding
discrete mass-spring chain (see Supplementary Note
539).
Figure 2B reports the normalized amplitudes of the
displacement of the masses for the 8th mode shape of
the two chains (k > δ, left panel, and k < δ, right panel)
now setting the parameter λ to 0.5. In contrast to the
previous case, the chain with k > δ (left panel) clearly
presents a mode shape localized at the center of the
structure (in correspondence of the unit cell exhibiting
the stiffness modulation), with its displacement magni-
tude rapidly dropping away in the peripheral masses.
On the contrary when k < δ (right panel) the 8th mode
shape, still belonging to the (lower) bulk band shows no
localization. Its displacement is maximum at the sample
boundaries and is characterized by a slight amplitude
decrease at the center of of the structure.
Also in this case, the experimental results are fur-
ther corroborated by numerical finite element models
reporting the deformation of the mode shapes below
each subfigure. Some of the masses are numbered for
reference. The axial displacement of the masses with
respect to their equilibrium position is provided (the
reference system is set at the center of the chain and
odd masses are connected by gray arrows to the abscissa
axis of the figure for the sake of clarity) and confirms
the existence and the spectral modal flow across the
bandgap.

Rationale: spectral counting and topology flow.
To understand the rationale of the observed spectral flow
as λ is varied in the k > δ chain, two discrete chains in
the form of rings, as the ones shown in Fig. 3A, are con-
sidered. Depending on where the stiffness modulation is
applied, i.e., to the spring of stiffness k or δ (springs high-
lighted in red), two conditions are possible: (i) if λ = 1,
both chains reported in Fig. 3A reduce to the closed one
reported in the left panel of Fig. 3B; (ii) on the contrary,
when λ = 0, the chains reported in the left and right
panels of Fig. 1A result into the two open chains in the
left panels of Figs. 3C and D, respectively, depending on
whether the k or δ spring is removed. Therefore, depend-
ing on the stiffness variation of the springs, two classes
of chains can be identified: closed (in the form of a ring)
or open (one spring is missing) ones.
It is worth noticing here that in both considered cases,
open or close finite chains, all the natural frequencies lie
on bulk bands (light blue rectangles reported in Figs. 3E
and 3F (refer to Supplementary Note 539 for additional
details). Counting the number of such modes on each
dispersion bulk band lead to different numbers for the
different chain configurations. This difference is the key

factor determining the observed spectral flow.
Indeed, when the limit condition of λ = δ = 0 is enforced,
the considered chains become disjoint units of masses and
springs, as shown in each right panel of Figs. 3B-D. Each
connected mass-spring subsystem generates eigenmodes
with natural frequencies assuming 0 or

√
2k/m values.

Hence, counting the number of such disjointed mass pairs
gives the corresponding multiplicities of natural frequen-
cies in these limit-case systems. In particular, both the
closed ring of Fig. 3B (left panel) and the open ring of
Fig. 3D (left panel) have N multiples of ω = 0 frequencies
when λ = δ = 0 (right panels), where N is the number of
unconnected mass-spring systems. On the contrary, the
open chain in Fig. 3C (left panel) has N + 1 multiples of

ω = 0 frequencies and N−1 multiples of
√

2k/m frequen-
cies, due to the fact that going to the limit of λ = δ = 0
two masses are left unconnected.
Now, since all the natural frequencies lie on the disper-
sion bulk band and the bands do not touch when k > δ,
the number of eigenmodes on each band also is expected
to remain unaltered for all the family of possible chains
with decreasing δ (up to the limit condition of λ = 0).
However, if λ is varied from 0 to 1 for both chains in
Fig. 3A, a closed chain starting from the two open chains
in Figs. 3C and 3D is obtained, respectively. In the first
case, the number of modes on the lower band must change
from N + 1 to N as we transition from the open to the
closed chain. Since the eigenvalues of the stiffness op-
erator and thus natural frequencies of the chains vary
smoothly with this parameter λ, the only way to achieve
this change in number of modes is to have a net spectral
flow of one mode from the lower to the upper bulk band
(see Fig. 3E). On the other hand, for the case of spring
stiffness changing by λ · δ, the number of modes remain
the same on each band and thus no net spectral flow will
happen as λ varies from 0 to 1 (see Fig. 3F).
This reasoning clearly explains the presence (absence) of
spectral flow observed in the finite chains in Fig. 1C for
k > δ (k < δ).

DISCUSSION

In conclusion, we have presented a new design strategy
to systematically achieve localized modes in continuous
elastic media based on real-space topology. We have
demonstrated the possibility of a spectral flow across a
bulk frequency gap of a localized mode via thorough ex-
perimental measurements. This is achieved by modulat-
ing a single structural parameter at a chosen location of a
3D printed analogue of an elastic mass-spring chain. The
underlying mechanism responsible for such a transition
has been explained via a detailed analytical model and
corroborated by additional numerical calculations.
This step constitutes a fundamental leap forward in the
context of systematic mode localization in elastic me-
dia, allowing to control its response without requiring
material / geometrical modifications over the entire or
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substantial portions of the structure. It presents several
advantages over other known techniques, such as (i) only
locally varying the unit cell stiffness and (ii) a controlled
frequency shift of the spectral flow.
The proposed structure constitutes only a specific exam-
ple of a new class of materials that can be accessible by
applying 3D printing techniques. We believe these re-
sults will open exciting new opportunities in elasticity
and acoustics, with the possibility of obtaining novel ef-
fects of energy localization and unprecedented degrees of
control thanks to the solely local application of stiffness
variation, making real-space topology a powerful design
strategy of interest in all the fields where vibrations play
a crucial role, such as for instance civil, aerospace and
mechanical engineering.

METHODS

Simulations. Three-dimensional (3D) mode shapes pre-
sented in Fig. 2 are computed via finite element methods
using COMSOL Multiphysics software. The following
mechanical parameters are used for the material adopting
a linear elastic constitutive law: density ρ = 1180 kg/m3,
Young’s modulus E = 2.96 GPa, and Poisson ratio ν = 0.38.
Domains are meshed by means of three-dimensional 8-node
hexahedral quadratic elements of maximum size LFE = 0.5
mm, which is found to provide accurate eigensolutions up
to the frequency of interest. The color-map of the mode
shapes reported in Fig. 2 describes the axial displacement of
each mass from its equilibrium configuration. It varies from
negative (blue) to positive (red) and it is normalized with
respect to the displacement maximum value.

Sample manufacturing and experimental mea-
surements. The specimens, consisting of two classes of
chains hosting 14 masses, are fabricated through additive
manufacturing (Stratasys Objet350 Connex3). Thermo-
plastic polymer (VEROTM), with the following nominal
properties has been used: density ρ = 1180 kg/m3, Young
modulus E = 2.96 GPa, and Poisson ratio ν = 0.38.
The geometrical parameters are the following: size of the
square mass a = 10 mm, length of the beams L = 15 mm,
radii of the beams corresponding to the springs of stiffness
k and δ in the discrete case, respectively of r1 = 1.20 mm
(k) and r2 = 1.20 ·

√
(2) ' 1.70 mm (δ) for the case k < δ

and r1 = 1.20 ·
√

(2) ' 1.70 mm (k) and r2 = 1.20 mm (δ)
for the case k > δ. In both cases the radius of the defect is
rd = r2 ·

√
(λ).

The 10 stiffness modulations for the two classes of chains are
obtained through a gradual variation of the radius ϕ of the
central beam introduced as λ · k, with λ ∈ [0.1, 1].
The experimental frequency response function presented in
Fig. 1C is calculated as the ratio of the detected (averaged
over 100 times) and the imparted velocity at the acquisition
and excitation point, respectively. Elastic waves are excited
impacting manually the left edge of the specimen and
longitudinal wave velocity is acquired at the opposite edge
through a scanning Laser Doppler Vibrometer (SLDV).
The laser sensitivity was set to 20 mm/s/V for all the

measurements. The data at each λ has been individually
normalized with respect to its maximum value.
A similar procedure is adopted for the experimental mode
shape reconstruction reported in Fig. 2, and mass #7 was
selected as the excitation point (see Supplementary Note 339

for further details).
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FIG. 1. Observation of topologically protected spectral flow in elasticity. A. Schematic representation of a mono-
dimensional mass-spring chain. The unit cell is highlighted as a light yellow rectangle and comprises two masses (green dots)
and two springs of stiffness k (in black) and δ (in grey), respectively. A defect spring (in red) located in the chain is characterized
by a stiffness modulated through the parameter λ. B. Three-dimensional rendering of the experimental samples (for the case
k > δ). The stiffness modulation is obtained by gradually varying the radius ϕ of the central beam (highlighted by grading colors
going from white to dark blue - see the colormap on the right) connecting its two adjacent masses. Ten stiffness modulations
indicated as #1 − #10 are considered. Refer to Methods for further details on the geometrical parameters of the unit cells.
C. Measured frequency response functions (colormap) in the 0 – 11 kHz frequency range for the two classes of elastic chains
(k > δ, left panel, and k < δ, right panel) for different values of λ. In the first case, a spectral flow of the 8th mode from
the lower to the upper bulk band is clearly observed (the mode passes across the entire bandgap as λ is varied in the [0.1, 1]
range). Contrary, in the latter case, no crossing is observed. The data at each λ have been individually normalized with respect
to their maximum value. Overlaid square white dots indicate analytically calculated eigenmodes. Green arrows indicate the
mode shapes that are fully reconstructed and presented in Fig. 2. Elastic waves are excited at the left edge of the specimen
and longitudinal displacement is acquired at the opposite edge through a Scanning Laser Doppler Vibrometer.
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FIG. 2. Eigenvector reconstruction and localization of the flowing mode. A. Normalized amplitudes (measured vs.
analytical predictions) of the axial displacement of masses for the 8th mode shape of the two chains (k > δ, left panel, and
k < δ, right panel) setting the parameter λ to 1. In both cases the displacement of the masses spans the entire chain, clearly
confirming that the mode can be identified as a Bloch mode lying in a bulk band. Measurements are reported as red dots and
analytical predictions as blue lines with square markers. B. Normalized amplitudes (measured vs. analytical predictions) of
the axial displacement of masses for the 8th mode shape of the two chains (k > δ, left panel, and k < δ, right panel) setting the
parameter λ to 0.5. The chain with k > δ (left panel) clearly presents a mode shape localized at the center of the structure,
with its displacement magnitude rapidly dropping away in the peripherical masses. On the contrary when k < δ (right panel)
the 8th mode shape, belonging to the (lower) bulk band, shows no localization. Also in this case, measurements are reported as
red dots and analytical predictions as blue lines with square markers. The insets below each subfigure show the displacement
of the masses (deriving from numerical models) with respect to their equilibrium position, with the reference system at the
center of the chain.
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FIG. 3. Theoretical framework explaining the observed spectral flow. A. Schematic representation of two 1D mass-
spring chains arranged in the form of a ring. The modulation parameter λ is here applied to the spring of stiffness k and δ
(springs highlighted in red), respectively. If λ = 1, the two chains both reduce to the ring reported in the left panel of subfigure
B. If λ = 0, two different open chains are obtained by removing a spring with k or δ stiffness (left panels of subfigures C and
D, respectively). In both cases, the natural frequencies of these systems entirely lie into the bulk bands (frequencies indicated
by the light blue rectangles in subfigures E and F). Taking the lower spring stiffness δ to 0 (we recall here that k > δ) as
a limiting process (δ = 0), two different sets of disjoint chains are obtained. They are characterized by a couple of natural
frequencies ω with multiplicity N (subfigures B and D) or N + 1 and N − 1 (subfigure C). As λ is varied from 0 to 1, the
systems in subfigure A both experience a transition from open to closed chain. This implies that the number of modes on the
lower bulk band changes from N + 1 to N , transitioning from the open to the close chain. E. Since the eigenvalues of the
stiffness operator, and thus the natural frequencies of the chains, vary smoothly with the parameter λ, the only way to achieve
such a change in number of modes is to have a net spectral flow of one mode from the lower to the upper bulk bands. F. On
the contrary, when the spring stiffness δ is changed through the parameter λ, the number of modes remains the same on each
band (N), thus, implying no net spectral flow.
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