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Abstract. The use of ML technology to design safety-critical systems
requires a complete understanding of the neural network’s properties.
Among the relevant properties in an industrial context, the verification of
partial monotony may become mandatory. This paper proposes a method
to evaluate the monotony property using a Mixed Integer Linear Program-
ming (MILP) solver. Contrary to the existing literature, this monotony
analysis provides a lower and upper bound of the space volume where the
property does not hold, that we denote “Non-Monotonic Space Coverage”.
This work has several advantages: (i) our formulation of the monotony
property works on discrete inputs, (ii) the iterative nature of our algo-
rithm allows for refining the analysis as needed, and (iii) from an industrial
point of view, the results of this evaluation are valuable to the aeronautical
domain where it can support the certification demonstration. We applied
this method to an avionic case study (braking distance estimation using
a neural network) where the verification of the monotony property is of
paramount interest from a safety perspective.

Keywords: Neural network verification · Monotony · Certification ·
Formal Methods

1 Introduction

Over the last years, neural networks have become increasingly popular and a refer-
ence method for solving a broad set of problems, such as computer vision, pattern
recognition, obstacle detection, time series analysis, or natural language process-
ing. Their usage in safety-critical embedded systems (e.g., automotive, aviation) is
also becoming increasingly appealing. The aeronautical domain is known to be one
of the more stringent. Indeed, products are ruled by binding regulation require-
ments to guarantee that the aircraft will safely operate in foreseeable operating
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and environmental conditions. At the end of 2021, the European Union Aviation
Safety Agency (EASA) released the first issue of a concept paper [5] to anticipate
any application for AI-based products: it contains a first set of technical objectives
and organization provisions that EASA anticipates as necessary for the approval of
Level 1 AI applications (‘assistance to human’) and guidance material which could
be used to comply with those objectives.

Among all the properties required to certify AI-based systems, robustness is
of paramount importance and is a widely studied property in the machine learn-
ing and verification communities [2,14,16,18,21,23,24,27–29,31,32]. Although
robustness is a critical property for classification tasks, we see the emergence
of safety-related properties for regression tasks in many industries. For exam-
ple, numerical models have been developed to approximate physical phenomena
inherent to their systems [1]. As these models are based on physical equations,
whose relevancy is asserted by scientific experts, their qualification is carried out
without any issue. However, since their computational costs and running time
prevent us from embedding them on board, the use of these numerical models
in the aeronautical field remains mainly limited to the development and design
phase of the aircraft. Thanks to the current success of deep neural networks,
previous works have already investigated neural network-based surrogates for
approximating numerical models [12,22]. Those surrogates come with additional
safety properties linked to induced physics. One of them is the monotony which
is motivated by the fact that monotonic functions are ubiquitous in most physics
phenomena. For instance, one should expect that the estimate of a braking dis-
tance should be a monotonic function with respect to specific parameters such
as the state of the brakes (nominal or degraded) or the state of the runway (dry
or wet). Another case where monotony is relevant is in DNNs used for control.
Today, state-of-the-art methods for enforcing partial monotony assume that if
the property is not respected on the whole operational domain of the ML-based
function, this puts at risk its certification (i.e., its compliance determination to
certification requirements) and, therefore, its industrialization. We believe that
this risk can be covered, especially for models that, in the future, would also be
penalized for being too loose given the reference function. We propose an itera-
tive method that measures and identifies the part of the domain for which the
monotony property is violated, which can be used to demonstrate conformity to
certification requirements.

2 Certification Preamble

As stated before, to certify a product, the following principle shall apply to the
systems composing that product: each system performs its intended function
and safely operates in foreseeable operating and environmental conditions. It
means that even if the system performs a function with poor performance (this
is obviously not desirable from an industrial viewpoint), it can be certifiable if
the product’s safety is guaranteed in the usage domain. Once that is said, a
primordial principle emerges: the safety is to be considered at the system level,



Fig. 1. Typical runtime assurance architecture proposed by NASA [20]

meaning that even if a specific algorithm is not robust in some areas of its input
space, then the system can remain certifiable if one can demonstrate that any
unsafe behavior is prevented or mitigated. One possible mitigation of this risk is
the use of runtime assurance illustrated in Fig. 1 extracted from the NASA paper
[20], which ensures the system’s safety by the design of redundant control system
architecture, where a certifiable function takes over the function not certifiable
with traditional approaches when unsafe context is detected. This mitigation
is relevant regardless of the technology used during the system development.
Coming back to the specific context of ML-based development, the ability to
formally define the areas of the input space where the safety properties of the
model are not preserved can be a powerful asset in the compliance determination
to certification requirements. The use of formal methods can save significant
testing efforts while preserving the safe behavior of the function.

3 Related Work

In recent years, assessing the robustness of neural networks has been tackled
with formal verification (i.e., sound algorithms demonstrating whether a prop-
erty holds or not). Verifying properties on a neural network is challenging because
neural networks are non-convex functions with many non-linearities, with hun-
dreds to millions of parameters. Even if the type of architecture studied is
restricted to piecewise-linear networks, it is known that this problem is already
NP-hard [29]. There has been tremendous progress in the field of verification,
from robustness proof of networks trained on MNIST to scaling up to CIFAR
10 and even TinyImagenet. These successes are particularly due to the collab-
oration of different communities that made it possible to formulate and tackle
the robustness problem from different perspectives. Without being exhaustive,
we can cite the methods that rely on Lipschitz-based optimization [32,33], input
refinement [27] and semi-definite relaxations [21].

So far, the verification community has mainly tackled robustness verification
from adversarial robustness [26] to computing the reachable set of a network
[30] despite a few other properties that are highly relevant for the industry.
Among those properties, partial monotony under specific inputs appears to be
a key property, especially for regression tasks. Indeed, the need for monotony
appeared in various contexts such as surrogate modeling [11], economics [6],



fairness [13], or interpretability [19] and is thus a highly desirable feature in
the industry. Previous works proposed to enforce the monotony property during
the design; In [9], they relied on heuristics regularizers to promote monotony,
whose main drawback lies in the absence of guarantees and therefore will require
verification as a post-processing step. On the other side, [7] and [15] adopted
hand-designed monotonic architectures, which may harden the training and not
perform well in practice. Lastly, up to our knowledge, previous works mainly
considered monotony under continuous inputs, while many industrial use-cases
have monotony constraints on discrete inputs. One notable exception is the fair-
ness verification in [25] that can be applied on both a discrete or a continuous
input and holds similarity with monotony verification.

When it comes to continuous inputs, monotony is equivalent to verifying a
property on the gradients on the whole domain. Indeed the sign of the gradient
component corresponding to monotonous inputs should always be positive or
negative. However, for a neural network with discrete inputs, the gradient sign
condition is not necessary for the monotony to hold, even when the gradient can
be computed by extending the input domain to reals. For piece-wise linear neural
networks such as ReLU networks, we can base verification on the very definition
of monotony (Definition 1), which can be cast as solving a mixed-integer linear
programming problem. This method is complementary to the literature using
the gradient condition and can verify monotony over discrete inputs.

Verifying the monotony is recognized to be more challenging than robustness
since it is a global property on the whole domain rather than a local neighbor-
hood [15]. However, we argue that applying partial monotony over the whole
domain, which may affect the performance and put at risk the product’s release,
is a very drastic approach. Indeed, in an industrial context, it is necessary to
balance quality and safety, especially as the systems will be constrained by other
specifications than just monotony, such as accuracy. The solution we propose is
a partitioning scheme that splits the operational domain into areas where the
monotony property is respected and areas where it is (partially) violated; in the
latter, the neural network’s behavior could be mitigated. This possibility has
been considered on a collision detection use case in [4] and studied at a higher
level for the certification of a system before an ML component [17].

4 Monotony Analysis

In this section, we define the concept of partial monotony with respect to a set
of inputs. Let V be a (finite) set of input features. For each feature v ∈ V we
denote D(v) the domain in which v ranges. Hence, let X = ×v∈V D(v) be the
input space, Y be the output space and f :X→Y be the neural network. Note
that the features are generally of two types (V = Vd � Vc):

– v ∈ Vd are features whose domain D(v) is discrete (e.g., a finite set of labels
or categorical values)

– v ∈ Vc are features whose domain D(v) is a real interval



Fig. 2. Purpose of the algorithm through Example 1. In x1 the runway is dry and in
x2 the runway is wet. The left plot represents f(x1) − f(x2) where only the positive
values are displayed (monotony property violated). The two plots on the right are the
projection of these points on the plane composed of feature 1 and 2.

In this work, we are interested in monotony properties, which supposes that the
set Y has an order relation denoted �; usually, Y ⊆ R and � is one of the usual
orders (≤, ≥). The monotony property will be relative to a subset of discrete
features, α⊆Vd for which a partial order is defined on ×v∈α D(v), also denoted
� without risk of confusion. For x∈X, let us denote x↓α the projection of x onto
the dimensions in α, and ᾱ = V\α.

Definition 1. Monotony Property
A function f is monotone with respect to an order � on the output domain Y
and to a subset of discrete features α ⊆ Vd endowed with a partial order defined
on ×v∈α D(v) also denoted � (without risk of confusion) if and only if

∀(x1, x2) ∈ X2 : x1 ↓ᾱ = x2 ↓ᾱ ∧ x1 ↓α � x2 ↓α =⇒ f(x1) � f(x2)

4.1 Goal of the Analysis

Our analysis aims to identify the sub-spaces where the monotony does not hold
using a MILP solver. Example 1 describes a toy example (a simplified version of
the case study in Sect. 5) that we will use to explain the main concepts.

Example 1. Setup: Let f be a neural network estimating the braking distance of
an aircraft based on its speed, its weight and the runway’s state (dry or wet).
Property: for the same speed and weight (x1↓ᾱ = x2↓ᾱ), the braking distance on a
wet runway must be higher than on a dry one (x1↓α � x2↓α =⇒ f(x1)� f(x2)).
Goal: Identify and quantify the input areas where the property does not hold.

If we plot f(x1) − f(x2) versus the speed and the weight, the Definition 1
holds if and only if all the values are negative. The 3D plot in Fig. 2 shows a sketch
of this example when the monotony property partially holds, i.e. f(x1) − f(x2)
is partially positive. To ease the visualization we only draw the positive values.
The crosshatched area in the 2D plots are projections of the positive values
of the curve on the plane representing the speed and the weight features and



Fig. 3. Based on Fig. 2: representation of Ω and Ω considering Example 1 (Color figure
online)

models the area where the monotony property is not respected, namely the Non-
Monotonic Space Coverage denoted as ω. The rightmost 2D plot shows what we
expect from our analysis on Example 1: identifying and estimating ω. To estimate
ω, we partition the space (grid in Fig. 2) and then the monotony property is
checked on each sub-spaces. The dark red area represents the identified sub-space
where monotony issues occur, i.e., an over-approximation of ω. In addition, our
approach provides a lower and upper bound of the size of ω relative to the whole
input domain, respectively denoted as Ω and Ω (See Fig. 3).

Our approach can distinguish the sub-spaces where the monotony property
does not hold (dark red area in Fig. 3) from the ones where it partially holds
(orange area in Fig. 3). Hence, the lower bound is the dark red area, while the
upper bound is the dark red and orange areas. The benefit of having a lower and
upper bound, instead of just an overestimation, is to be able to assess whether
our estimation is precise: large gaps between the upper and lower bound may
reveal that our bounds are not representative of ω. The iterative nature of our
approach overcomes this problem: we refine our space, which leads to a finer grid
for the Fig. 3 and run again the MILP solver where the property partially holds
to have a most accurate estimation of ω.

4.2 MILP Formulation

Neural Network Encoding. Let f : X → Y be a neural network composed of n
layers with ReLU activations. The layer 0 corresponds to the input layer while the
layer n to the output one. We use the MILP formulation proposed by [3], which uses
the big-M method [8] to encode the ReLU activation. By convention, the notations
in bold denote the MILP variables, and those not in bold denote constants. For
1 ≤ i ≤ (n − 1), let Ci be the conjunction of constraints for the layer i:

Ci � x̂i = W ixi−1 + bi (1)

∧ xi ≤ x̂i + M i(1 − ai) ∧ xi ≥ x̂i (2)

∧ xi ≤ M i · ai ∧ xi ≥ 0 (3)

∧ ai ∈ {0, 1}|xi| (4)



where x̂i and xi are the vector of neuron values at the layer i before and after the
ReLU activation respectively. M i is a large valid upper bound s.t. −M i ≤ x̂i and
xi ≤ M i [3]. Wi and bi are, respectively, the weights and bias at the layer i, and
ai is a binary vector that represents whether the neurons are activated or not.
The Eq. (1) is the constraint for the affine transformation and the Eqs. (2)–(4)
are the constraints encoding the ReLU activation. For the output layer n, there
is no ReLU activation, then we have:

Cn � x̂n = Wnxn−1 + bn (5)

It remains to encode the constraints of the input layer, which enforce the
lower and upper bounds of the domain of the input features. Our analysis relies
on a partition of the input space X, thus the encoding of the input layer will
depend on it: let P be a partition of X, p ∈ P be a subset of X represented
by a set of linear constraints (also denoted p). Hence, the neural network f is
encoded as the conjunction of the constraints defined for each layer and p which
is constraining the input layer:

Cf (p) � p ∧
(

n∧
i=1

Ci

)
∧ Cn (6)

Monotony Property Encoding. Following Definition 1, we must encode f
twice in MILP: Cf

1 and Cf
2 . Similarly to the encoding of the input space’s

constraints, we encode the monotony property regarding the partition P. So,
let pi, pj ∈ P2 be two sub-spaces of X such that ∃x1, x2 ∈ pi×pj , x1↓ᾱ =
x2↓ᾱ ∧ x1 ≺ x2. Then, we have:

Cmon(pi, pj) �
(
x0
1↓ᾱ = x0

2↓ᾱ ∧ x0
1↓α � x0

2↓α

)
∧

(
Cf

1 (pi) ∧ Cf
2 (pj)

)
∧

(
x̂n
1 ≤ x̂n

2

)
(7)

C¬mon(pi, pj) �
(
x0
1↓ᾱ = x0

2↓ᾱ ∧ x0
1↓α � x0

2↓α

)
∧

(
Cf

1 (pi) ∧ Cf
2 (pj)

)
∧

(
x̂n
1 ≥ x̂n

2 + ε

)
(8)

The MILP solver may output either SAT, UNSAT or TIMEOUT. For (7) and (8),
TIMEOUT means that the time limit is reached. Cmon checks whether the neural
network f is monotonic:

– SAT: there is an assignment for x0
1,x

0
2 ∈ pi ×pj which respects the monotony.

– UNSAT: the monotony is violated on the entire sub-space pi × pj .

C¬mon checks whether the neural network is not monotonic:

– SAT: there is an assignment for x0
1,x

0
2 ∈ pi × pj which violates the monotony.

– UNSAT: the monotony is respected on the complete sub-space pi × pj .

To avoid having SAT for C¬mon when x̂n
1 = x̂n

2 , we introduce the ε term (Eq. 8).
To determine for each sub-space pi × pj whether the monotony property

holds, partially holds, or does not hold (see Fig. 3), we must solve successively
C¬mon and Cmon (see Sect. 4.3 for more detail).



Algorithm 1. Monotony analysis refinement
Require: T : the number of iteration of the procedure
1: P1 ← {(pi, pj) ∈ P2 | ∃(x1, x2) ∈ pi × pj , x1 ≺ x2 and x1↓ᾱ = x2↓ᾱ}
2: Ω0 ← 0 and ̂P0 ← P1

3: Ω ← [ ], P¬mon ← ∅, and P
partially mon ← ∅

4: for t from 1 to T do
5: ̂Pt ← ̂Pt−1 ∧ Pt

6: (P¬mon
t , P partially mon

t ) ← F( ̂Pt)

7: Ωt ← Ωt−1 +
|P ¬mon

t |
|Pt| and Ωt ← Ωt +

|Ppartially mon
t |

|Pt| {See Fig. 4}
8: Ω ← Ω + (Ωt, Ωt)

9: P
¬mon ← P

¬mon ∪ P¬mon
t and P

partially mon ← P partially mon
t

10: ̂Pt ← P partially mon
t

11: Pt+1 ← partition(Pt)
12: end for
13: return Ω, P¬mon and Ppartially mon

4.3 Verification Procedure

As explained in Sect. 4.1, our verification procedure implies the partition of the
space and the verification of each sub-space. In Algorithm 1 the monotony prop-
erty is iteratively analyzed regarding a partition while refining this partition in
the zone of interest to sharpen the analysis. Algorithm 2 details the verification
run at each iteration.

Algorithm 1. The monotony is defined on the space X2; however, we define
earlier the partition P of X. Hence to verify the monotony on the complete space,
i.e. X2, we need to go through all the sub-spaces i.e. pi × pj , ∀(pi, pj) ∈ P2.
However, it may happen that the monotony does not apply to the sub-space
(pi, pj) because there are no comparable elements within the sub-space: P1, in
Line 1, contains all and only the (pi, pj) including comparable elements. We
denote the elements of P1 and more generally, Pt, “monotony scenario”.

We propose an iterative procedure where at each iteration we use, in Line 6,
F(·) (see Algorithm 2) to retrieve P¬mon

t and P partially mon
t . Then, we compute in

Line 7 the metrics Ωt and Ωt for the iteration t, which respectively lower-bounds
and upper-bounds ω; ω is the exact ratio of the space where f is not monotonic,
which corresponds to the ratio of monotony scenarios where f is not monotonic.
In Line 11, we refine the partition of the space for the next iteration: partition
is the function that takes the current partition of the space and returns a finer
partition; we suppose that all elements in the partition have the same size. Note
that Pt gets finer and finer through the iterations: the more we refine, the more
elements Pt will have. We highlight that in Line 5, the operator ∧ applies the
intersection between each subset of P̂t−1 and Pt where Pt is a finer partition
of the space than P̂t−1. It allows to get the elements of interest (P̂t−1) in the
right level of details (Pt). For the first iteration, we run F(·) on all the elements
(initialization of P̂0 to P ). However, we only need to refine the sub-spaces where
the monotony property is partially respected for the other iterations. Finally,



Fig. 4. Run of Algorithm 1 on Example 1 with the detailed computation of Ωt and
Ωt. The crosshatched area represents the sub-space the algorithm strives to estimate.
(Color figure online)

the algorithm returns the lower and upper bounds of each iteration and all the
sub-spaces where the monotony property does not hold or partially holds.

In Fig. 4 we run Algorithm 1 on Example 11: α contains the runway’s state,
we partition X on α and we have a unique (pi, pj) in P1; in pi the runway
is dry and in pj wet. Then, the two axes represent features of ᾱ (speed and
weight) and the squares, the partition of the space. The crosshatched surface
is the exact sub-space where the monotony property does not hold. The orange
squares means that the monotony property partially holds, the dark red squares
means it does not hold, and the light green squares means it holds. Through the
iteration, we refine the partition (smaller squares) while running the verification
only for the smaller squares (in solid lines) coming from a bigger orange square
(in Line 5; P̂t−1 is the orange square of iteration 2 and Pt is the small squares
of iteration 3).

Algorithm 2. The verification function F(P ) aims to analyze the monotony of
f regarding P a subset of P2 which gathers the sub-spaces where the monotony
property must be checked. Intuitively, the partition P and thus P can be seen as
the level of details of the monotony analysis. Indeed, a finer partition P results
in smaller sub-spaces in P ; hence a more detailed analysis.

Then, from Lines 4 to 12, we identify in which sub-spaces pi × pj the neural
network f partially respects or does not respect the monotony property and
sort them in P partially mon and P¬mon. In Lines 4 and 5, solve(·) refers to
any off-the-shelf MILP solver taking as input a MILP problem. Table 1 shows
the interpretation of the monotony of f within the sub-space regarding every
truth values of the conditions of Lines 4 and 5. Note that we arrive in Line 11
when the condition of Line 4 is False, and we jump to the next sub-space (or
monotony scenario) because the monotony property holds for the current sub-
space pi ×pj . Finally, we return the two sets gathering the sub-spaces where the
monotony property does not hold and where it partially holds.

1 Note that we simplify the crosshatched area’s shape in order to know the omega
value for the explanation.



Algorithm 2. F(P ) −→ Monotony analysis of P ⊆ P2

Require: P ⊆ P2 gathers the sub-spaces that need to be verified.
1: P¬mon ← ∅
2: P partially mon ← ∅
3: for all (pi, pj) ∈ P do
4: if solve(C¬mon(pi, pj)) is SAT then
5: if solve(Cmon(pi, pj)) is SAT then
6: P partially mon ← P partially mon ∪ {(pi, pj)}
7: else
8: P¬mon ← P¬mon ∪ {(pi, pj)}
9: end if

10: else
11: Continue to the next (pi, pj) {Monotonic on the whole domain pi × pj}
12: end if
13: end for
14: return P¬mon and P partially mon {{P¬mon ∪ P partially mon} ⊆ P}

Table 1. State of the monotony property regarding the condition of Lines 4 and 5

Case Line 4 C¬mon Line 5 Cmon Monotony property on pi × pj

1 True SAT True SAT partially holds

2 True SAT False UNSAT does not hold

3 False UNSAT - - holds

Non-monotonic Space Coverage. Ωt and Ωt are defined as the ratio of sub-
spaces (monotony scenarios) where f has monotony issue over the total number
sub-spaces in Pt (contains all the monotony scenarios):

Definition 2. Lower bound and upper bound of ω

Ωt = Ωt−1 +
|P¬mon

t |
|Pt| (9) Ωt = Ωt +

∣∣∣P partially mon
t

∣∣∣
|Pt| (10)

On the one hand, Ωt takes into account only the sub-spaces where the monotony
property holds not; hence, it lower-bounds ω. On the other hand, Ωt considers the
sub-spaces where the monotony property holds not and partially holds; hence,
it upper-bounds ω. Figure 4 details the computation of these metrics along with
the iteration: at each iteration, the lower bound Ωt is represented by all the dark
red squares and the upper bound Ωt by all the dark red and orange squares.

Example 2. Computation of Ωt and Ωt considering Example 1.

Iteration 1. We consider the entire space. Hence, we only have one sub-space
where we assess the monotony property (|Pt| = 1). There is no dark red square,
i.e. sub-space where the monotony property does not hold, which means that
|P¬mon

1 | = 0, then Ω1 = 0. We have one orange square: in this sub-space, the
monotony property partially holds, then |P partially mon

1 | = 1 and Ω1 = 1.



Iteration 2. We partition the space in 4 smaller sub-spaces (|Pt| = 4) and run
again the verification on each sub-space. We proceed similarly as previously for
the computation of Ω2 and Ω2. We have 3 dark red squares (|P¬mon

2 | = 3) and 1
orange square (|P partially mon

2 | = 1): Ω2 = Ω1 + 3
4 = 0.75 and Ω2 = Ω2 + 1

4 = 1.

Iteration 3. We refine the partition of the previous step, and we end up with 16
sub-spaces. However, we only run the verification on the sub-spaces coming from
an orange square (Lines 5 of Algorithm 1), i.e. , a sub-spaces where f is partially
monotonic. We have Ω3 = 3

4 + 1
16 = 0.8125 and Ω3 = 3

4 + 1
16 + 2

16 = 0.9375.

The Proposition 1 shows that the lower and upper bounds are tighter over
the iterations: the more iterations we run, the closer to ω we are.

Proposition 1. For any t ≥ 1, we have

Ωt−1 ≤ Ωt (11) and Ωt ≤ Ωt−1 (12)

Proof. For Eq. 11, from the facts that

Ω0 = 0 and
|P¬mon

t |
|Pt| ≥ 0 and Ωt = Ωt−1 +

|P¬mon
t |
|Pt| ,

we can deduce Ωt−1 ≤ Ωt.
Then, to prove Eq. 12, we need first to state some invariant: for the compu-

tation of Ωt (Algorithm 1, Line 7) we have,

(
P partially mon

t ∪ P¬mon
t

)
⊆ P̂t (13)

Based on Eq. (13), we have:
∣
∣
∣P

partially mon
t ∪ P¬mon

t

∣
∣
∣ ≤

∣
∣
∣P̂t

∣
∣
∣

≤
∣
∣
∣P

partially mon
t−1

∣
∣
∣ ∗ |Pt|

|Pt−1|
By construction of ̂Pt
which is a finer partition of

P
partially mon
t−1

Ωt−1 +

∣
∣
∣P

partially mon
t ∪ P¬mon

t

∣
∣
∣

|Pt|
≤ Ωt−1 +

∣
∣
∣P

partially mon
t−1

∣
∣
∣

|Pt−1|
We divide both side of the
inequality by

∣

∣

∣

̂Pt

∣

∣

∣ and add
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5 Case Study: Braking Distance Estimation

5.1 Description of the Case Study

Our case study comes from the aeronautical industry. It is an R&D project
consisting in training a neural network to estimate the braking distance of an



Fig. 5. Representation of the position of the four brakes on an aircraft denoted by
bi ∈ {N, A, E, B, R}. For example, we have NN-NN when all the brakes are in the
normal state. Then if the state of one of the left brakes becomes Altered, we have NA-
NN. Note that NA-NN≡AN-NN due to the choice of the representation of the brakes.

aircraft based on physical information. The R&D team provides us with a trained
feedforward neural network composed of 2 layers (30 and 29 neurons on the
first and second layers, respectively) and ReLU activation functions. There are
15 input features, including 13 discrete and 2 continuous. Among the discrete
features, ten describe the state of the brakes. The aircraft has 4 brakes, and
each brake has 5 possible modes: Normal (N), Altered (A), Emergency (E),
Burst (B), and Released (R). Then, the network has 2 features for each mode:
(i) the total number of brakes in a given mode (referred to as “symmetric”) and
(ii) the difference between the number of brakes on the left and right side of a
given mode (referred to as “asymmetric”). From this information, we can find
back the states of the pairs of brakes on the left and right sides of the aircraft
(see Fig. 5), although the state of each individual brake cannot be retrieved.
For clarity and since we have the equivalence between both notations, we will
describe the state of the brakes using the form “b1b2-b3b4”.

To show how to handle simultaneously several input features within the
monotony property, we focus on the one involving the state of the brakes. We
can textually express the monotony property as follows:

When the brakes’ state deteriorates, the braking distance should increase.

To perform the monotony analysis, we need to define what deteriorates means
formally. Relying on the system expert’s knowledge, the following partial order
applies to the different modes of the brake:

N ≺b A ≺b E ≺b B ≺b R (14)

where bi ≺b bj means that the state bj is more deteriorated than the state bi.
We can easily extend the partial order �b on one brake to the state of an aircraft’s
brakes composed of 4 brakes. Let S1 = (b1, b2, b3, b4) and S2 = (b′

1, b
′
2, b

′
3, b

′
4) be

two states of an aircraft’s brakes, we have

S1 ≺ S2 ⇐⇒ ∀bi, b
′
i∈S1×S2, bi �b b′

i and ∃bi, b
′
i∈S1×S2 bi ≺b b′

i (15)



It means that S2 is deteriorated compared to S1 if and only if for all brakes in
S2, the brake’s mode in S2 is at most as good as its counterpart in S1 and there
exists a brake in S2 whose mode is strictly worse than its counterpart in S1.

5.2 Experimentation

Setup. Let V be the set of 15 input features described above, X = ×v∈V D(v) be
the input space, Y = R

+ be the output space, and f : X �→ Y be the neural net-
work estimating the braking distance of an aircraft. We consider the monotony
property as formulated in Definition 1. As stated earlier, we are dealing with the
monotony with respect to the brakes’ space. Hence, α ⊆ V is made up of the ten
features describing the state of the brakes and the partial order � on ×v∈α D(v)
is as defined in Eq. (15). We take advantage of the discrete nature of the brakes’
features: a natural partition P is to enumerate all the possible values for the ten
brakes features. We have |P| = 225.

Monotony Analysis. We run Algorithm 1 for 5 iterations with the setup
described above. The algorithm is explained in Sect. 4.3. Here we only focus on
the partitions used for the analysis and the refinement strategy which are specific
to the case study. Additionally, we will see how to capitalize on the data available
at each iteration to perform some space exploration. P1 is setup using P, and �;
it represents the brakes’ sub-space. Then our partition’s refining strategy is to
start with the remaining discrete features (second iteration) and then consider
the continuous features (the last three iterations). For the discrete features, the
partitioning consists in enumerating the possible values, while for the continuous
features, it consists of a uniform partition (finer through the iterations). To
illustrate the impact of the refinement on the level of details of the analysis,
we detail the total number of sub-spaces in each partition Pt: |P1| = 10800,
|P2| = 259200, |P3| = 6480000, |P4| = 25920000 and |P5| = 103680000.

Based on the partition and the outcomes of F(·), the algorithm yields at
each iteration the metrics Ωt and Ωt. Nonetheless, for our case study, we put
in place visualization means (see Fig. 6). However, the relevant visualizations
helping space exploration are case-dependent, so we do not propose any generic
way to do it. Firstly, it might be relevant to visualize the sub-space composed
of the features on which the partial order � is defined, i.e. α corresponding
to the brakes’ space. It is modeled as a graph where the nodes are the brakes’
states (the elements of P), and the edges are the transitions between the states
modeled by the partial order ≺ (the elements of P1) and with the outcomes
of the first iteration, we can highlight (dashed line in Fig. 6) the transitions
which violate the monotony property (in Fig. 6, we plot only a sub-graph as
an example). Then, to include the information of the formal verification of the
following iteration in the space visualization, we plot some features versus the
difference of distances f(x1)−f(x2) and visualize in which sub-spaces monotony
issue occurs. These visualizations are helpful for exploration purposes after the
analysis for the expert of the system (e.g., if the expert can identify some place
of interest within the space and wants to know what happens there).



Fig. 6. Example of visualization of features in α (left) and ᾱ (right).

Table 2. Values of Ω and Ω bounding the percentage of the space where the monotony
property is violated.

Metrics It.1 It.2 It.3 It.4 It.5

Ωt 11.57% 4.11% 1.95% 1.72% 1.61%

Ωt 0.03% 0.45% 1.12% 1.29% 1.39%

Metrics: Non-monotonic Space Coverage. At each iteration, we compute
Ωt and Ωt, which bound the ratio of the space where f violates the monotony
property (i.e. ω). The results are summarised in Table 2. In Fig. 7, we can clearly
see the convergence of Ωt and Ωt. At the first iteration, we can explain the
notable gap between Ω1 and Ω1 by the coarse partitioning of the space. That is
why, Ω1 is large (numerous sub-spaces where the monotony property is partially
respected) and Ω1 small (only few sub-spaces where the monotony property
does not hold). We can notice a significant drop of Ωt compared to the rise of
Ωt: there are more sub-spaces where the monotony property holds than not.
Eventually the algorithm yields a narrow gap between the bounds; we obtain at
the fifth iteration: 1.39% ≤ ω ≤ 1.61%. The stopping criterion of the algorithm
may depends on various things such that the system’s requirements (e.g. bounds
precision, max value to not cross for Ω or min value to reach for Ω).

Through these five steps, we analyze the monotony of f considering finer and
finer partition of the space; we obtain: (i) metrics bounding the percentage of the
space where the neural network is non-monotonic and (ii) the identification of
the sub-spaces where the monotony issue occurs thanks to the formal verification
on each elements of the partitions.

We run our experiments on MacBook Pro 8 core 2,3 GHz Intel Core i9 with 32
Gb of RAM. The MILP solver used is Gurobi 9 [10] and our monotony analysis
took less than 10 h.



Fig. 7. Evolution of Ωt and Ωt

6 Conclusion

This work develops an iterative method to assess the monotony of a neural net-
work using a MILP solver. The monotony property defined is suited for discrete
features. This iterative method allows for lower and upper bounding the space
where the neural network does not hold the property and formally identifies
these areas. This is a step further in the demonstration that neural networks
can preserve important function properties and therefore in the capability to
embed the ML technology in an aeronautical safety-critical system.

We applied this method on an aeronautical case study that consists in esti-
mating the braking distance of an aircraft using a neural network mixing discrete
and continuous inputs. We managed to quantify the percentage of the space
where the neural network does not preserve the monotony property and to iden-
tify formally each sub-space where it occurs. In addition, we showed that we
can capitalize on the available data to visualize the sub-spaces for helping the
braking function’s experts in processing the results of the algorithm.

Note that this work leaves room for some optimizations, such as using tighter
big-M values in Eq. 2–3, or using asymmetric bounds, computed by incomplete
methods such as [23,31]. To the best of our knowledge, the scalability of complete
method remains a challenge in the verification community and is mainly used
with “shallow” neural networks. Thus, this method is mainly useful for small to
medium networks used as surrogates or for control.

As an extension of this work, we plan to estimate the integral under the curve
of f(x1)− f(x2) in the sub-spaces where the monotony is violated by leveraging
our definition of the monotony property. This would give a key indicator on the
level of violation of the monotony property that could support the performance
of the training phase. Another perspective would be to extend this work to
continuous features by using the formulation of the monotony based on the
gradient.
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