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Monotone discretization of anisotropic differential operators
using Voronoi’s first reduction

Frédéric Bonnans∗, Guillaume Bonnet†, Jean-Marie Mirebeau‡

June 14, 2023

Abstract

We consider monotone discretization schemes, using adaptive finite differences on
Cartesian grids, of partial differential operators depending on a strongly anisotropic
symmetric positive definite matrix. For concreteness, we focus on a linear anisotropic
elliptic equation, but our approach extends to divergence form or non-divergence form
diffusion, and to a variety of first and second order Hamilton-Jacobi-Bellman PDEs.
The design of our discretization stencils relies on a matrix decomposition technique
coming from the field of lattice geometry, and related to Voronoi’s reduction of positive
quadratic forms. We show that it is efficiently computable numerically, in dimension
up to four, and yields sparse and compact stencils. However, some of the properties
of this decomposition, related with the regularity and the local connectivity of the
numerical scheme stencils, are far from optimal. We thus present fixes and variants
of the decomposition that address these defects, leading to stability and convergence
results for the numerical schemes.

Keywords: Adaptive finite differences, Anisotropic elliptic equation, Hamilton-Jacobi
equation, Selling decomposition, Voronoi’s first reduction

1 Introduction

In this paper, we address a matrix decomposition problem arising in the design of mono-
tone finite difference schemes for strongly anisotropic partial differential equations (PDEs),
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discretized on a Cartesian grid of dimension d ≤ 4. As an application, we focus on a linear
elliptic anisotropic PDE for concreteness, but our results are equally well suited to a variety
of linear and non-linear PDEs arising in deterministic and stochastic control, or related with
the Monge-Ampère equation, as discussed in Appendix A. The PDEs of interest are usually
defined in terms of a field D of symmetric positive definite matrices, encoding the problem
geometry, which is typically anisotropic and whose eigenvectors are not aligned with the
discretization grid. A key step of the discretization is the pointwise decomposition of D as a
positively weighted sum of rank one matrices with integer entries, see (6) below, from which
a finite difference scheme can be devised. For that purpose, we leverage tools from lattice
geometry known as Selling’s decomposition and more generally Voronoi’s first reduction of
positive quadratic forms [30], following [6, 17, 23]. We investigate closely the properties of
these matrix decompositions relevant to the implementation and analysis of the numerical
schemes, including efficient computation, radius of the support, uniqueness and regularity
of the coefficients, and the so-called spanning property which is related to the connectivity
of the scheme stencils, and we propose two modified decompositions improving on these
aspects.
Outline. We show in Section 1.1 how the monotone discretization of an anisotropic linear
elliptic PDE can be related to a symmetric matrix decomposition problem, and how the
properties of the decomposition relate with the stability and the convergence rate of the
scheme solutions. We present in Section 1.2 some suitable matrix decompositions in dimen-
sion d ≤ 4, leading to efficient numerical schemes and with a low numerical cost. The rest
of this paper is devoted to proofs, whose organization is outlined in Sections 1.1 and 1.2,
with the exception of Appendix A which discusses the discretization of other PDEs.

Contributions. We establish stability estimates and convergence rates for a monotone
discretization of a linear anisotropic elliptic PDE, given a decomposition of the diffusion
tensor field with suitable properties, see Theorems 1.3 and 1.4. Motivated by this applica-
tion and others, we investigate the properties of a matrix decomposition related to Voronoi’s
first reduction of positive quadratic forms, including the radius of its support. Addressing
some shortcomings of this construction, we present in particular a variant obeying a lo-
cal connectivity property in dimension d = 4 in Theorem 1.6, and a variant with smooth
coefficients in dimension d = 2 in Theorem 1.8.

Notations. Throughout this paper, we denote by (b1, · · · , bd) the canonical basis of Rd,
and let 1 := (1, · · · , 1) ∈ Rd, where the dimension d is always clear from context; we also
let b0 := −1 in such way that b0 + · · ·+ bd = 0. The d× d identity matrix is denoted Idd.

When presenting an estimate, the notation “C = C(a, b, c, · · · )” means that C is a
constant depending only on the specified parameters a, b, c, · · · .

We denote by Zd the collection of nonzero vectors of length d ≥ 1 with integer entries,
considered up to a global change of sign, and by Λd the collection of all non-negative maps
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λ : Zd → [0,∞[ whose support supp(λ) := {e ∈ Zd | λe 6= 0} is finite:

Zd := (Zd \ {0})/±, Λd := {λ = (λe)e∈Zd : Zd → [0,∞[, finitely supported}. (1)

In practice, we manipulate the elements e ∈ Zd like regular vectors, but we take care to
only involve them in symmetric expressions. The group of unimodular matrices of shape
d× d is denoted

GL(Zd) := {A ∈ Zd×d | |detA| = 1}. (2)

We denote by Sd ⊃ S+
d ⊃ S

++
d the sets of symmetric, non-negative, and positive definite

matrices respectively. Similarly R+ := [0,∞[ and R++ :=]0,∞[ respectively denote non-
negative and positive reals, and Z+ and Z++ denote non-negative and positive integers.
Symmetric matrices are equipped with the Loewner order: given M,M ′ ∈ Sd, one has
M �M ′ (resp. M ≺M ′) if M ′ −M ∈ S+

d (resp. M ′ −M ∈ S++
d ). For each D ∈ S++

d , we
define a norm ‖ · ‖D on Rd and anisotropy ratio µ(D) ∈ [1,∞[ by

‖v‖D :=
√
〈v,Dv〉, µ(D) :=

√
‖D‖‖D−1‖. (3)

Here and below we denote by 〈v, w〉 := v>w the Euclidean scalar product of v, w ∈ Rd, by
|v| the Euclidean norm, and by ‖A‖ := max{|Av| | |v| = 1} the spectral norm of a matrix
A. Any D ∈ S++

d admits the eigenvalues λmax(D) := ‖D‖ and λmin(D) := ‖D−1‖−1.

1.1 Stability and convergence of an elliptic PDE discretization

We consider an anisotropic elliptic equation, with periodic boundary conditions, as a toy
illustrative problem for our approach to monotone PDE discretization. A closely related
numerical scheme is studied in [17], but the stability and convergence results Theorems 1.3
and 1.4 are new, see Section 5.2 and Appendix C for their respective proofs. Our dis-
cretization method equally applies, possibly more naturally, to non-linear PDEs related to
deterministic or stochastic control and to the Monge-Ampère operator, but for concision
this discussion is postponed to Appendix A.

Denote by T := R/Z the one dimensional torus, and by Th := (hZ)/Z its discretization
where h−1 ≥ 2 is an integer. Given a field of positive definite matrices D : Td → S++

d ,
continuously differentiable, we consider the (negated) elliptic PDE operator

Lu(x) := div(D(x)∇u(x)). (4)

The considered discrete finite difference operator involves non-negative weights (λe(x))e∈Zd
x∈Td ,

subject to assumptions discussed later in Definition 1.2, and is defined as

Lhuh(x) :=
1

h

∑
e∈Zd
σ=±1

λe(x) + λe(x+ σhe)

2

uh(x+ σhe)− uh(x)

h
. (5)
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We prove in Theorem 1.3 a coercivity property for the operator Lh, and we establish in
Theorem 1.4 some first and second order convergence rates of its solutions towards those
of L, under suitable assumptions. Note that similar properties can be established for more
standard discretizations [19, §2.6.1], and they do not constitute the main feature of the
proposed scheme Lh, which is its non-negativity.
Remark 1.1 (Non-negativity). If −Lu ≥ 0 on Ω in the weak sense1, and u ≥ 0 on ∂Ω, for
some u ∈ H1(Ω) where Ω is a smooth and strict subdomain of Td, then u ≥ 0 on Ω by
the usual maximum principle for elliptic PDEs. Likewise, if −Lhuh ≥ 0 on a subdomain
Ωh ( Tdh, and uh ≥ 0 on Tdh \ Ωh, and Theorem 1.3 below applies, then uh ≥ 0 on Ωh.
Indeed, the corresponding linear system is defined by an M -matrix (by (5) this matrix has
a positive and dominant diagonal, non-positive off-diagonal elements, and by the coercivity
estimate (9) it is invertible). Non-negative schemes are a prerequisite in applications such
as geodesic distance computation using the Varadhan formula [5, 11], since ln(uh) is con-
sidered. Discretizations of other PDEs, based on the same principles, and enjoying similar
monotonicity properties, are presented in Appendix A.

The discretization (5) is well behaved when its coefficients obey the following properties.

Definition 1.2. A family of coefficients λ : X → Λd, denoted λ = (λe(x))e∈Zdx∈X and where
X is a metric space (or an open subset of Rd for the grad-Lipschitz property), is said to be:

• D-Consistent, where D : X → S++
d is a positive definite tensor field, if for all x ∈ X

D(x) =
∑
e∈Zd

λe(x)ee>. (6)

• R-Supported, if r(x) ≤ R for all x ∈ X, where

r(x) := max{|e| | e ∈ Zd, λe(x) > 0}.

• K-Lipschitz (resp. K-grad-Lipschitz), if for all x, y ∈ X one has

|λe(x)− λe(y)| ≤ K|x− y|,
(
resp. |∇λe(x)−∇λe(y)| ≤ K|x− y|

)
.

• ε-Spanning, if for all x ∈ X there exists e1, · · · , ed ∈ Zd such that

|det(e1, · · · , ed)| = 1, min{λe1(x), · · · , λed(x)} ≥ ε. (7)

One of the main objectives of this paper, postponed to Section 1.2 below, is to propose
practical and numerically efficient methods for constructing coefficients λ obeying the above
properties. For now, we discuss Definition 1.2 and contrast our approach with two-scales
discretizations of PDEs, see [13, 27].

1In other words
∫

Ω
〈∇ϕ(x), D(x)∇u(x)〉dx ≥ 0 for any continuously differentiable and non-negative test

function ϕ whose support is contained in Ω.
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• D-Consistency is a qualitative property, which ensures the second order consistency
of the scheme Lh with L (assuming in addition the grad-Lipschitz property), which
can be verified by a Taylor expansion as in the proof of Proposition C.15 below.
Alternatively, other works consider a variant of (6) featuring a consistency error, at
the price of a more complex numerical analysis. For instance two-scales discretizations
[13,27] feature such an error, depending on an intermediate scale satisfying h� k �
1, and vanishing as k → 0. A consistency error is also unavoidable if one addresses
rank deficient semi-definite diffusion tensors [24], unless their kernel is spanned by
vectors with integer entries.

• R-Support is a quantitative property, controlling the effective discretization scale
k = Rh of the numerical scheme. The constructions proposed in this paper obey
r(x) ≤ Cµ(D(x)) where C = C(d), see Theorem 1.6. The radius R is therefore
controlled, for our numerical scheme, by the square root of the maximal condition
number (3) of the tensor field D, and the effective scale is proportional to the grid
scale. In contrast, two scales discretizations of PDEs involve an effective discretization
scale k which decreases sub-linearly with h, for instance k = h

2
5 is optimal in [13],

and for this reason they suffer from reduced convergence rates.

• K-Lipschitz and K-grad-Lipschitz are regularity properties. To the knowledge of
the authors, all practical finite difference schemes based on adaptive tensor decom-
positions such as (6) previously proposed in the litterature, feature coefficients with
Lipschitz regularity, but not better, see [6, 13, 17, 36]. This is often sufficient to es-
tablish the convergence of the numerical methods, yet improved convergence rates
may be established if the coefficients have a higher order regularity, see for instance
Theorem 1.4 and [21, 34] which are also discussed in Appendix A. In this paper, we
present a matrix decomposition with Lipschitz coefficients in dimension d ≤ 4, and a
smooth (hence grad-Lipschitz) decomposition in dimension d = 2, see Theorems 1.6
and 1.8 below respectively.

• The ε-spanning assumption ensures that the graph underlying the numerical scheme
is locally connected, see Section 5. If this was not the case, then the sub-grids of
hZd corresponding (for instance) to the points with an even or odd sum of coordi-
nates could be disconnected, leading to chessboard artifacts, see (36). In this paper,
we establish regularity properties of the solutions of discretized PDEs under this as-
sumption, ruling out these artifacts, see Theorem 1.3.

We further motivate Definition 1.2 by establishing stability and convergence results
under these assumptions for the numerical scheme (5). For that purpose, define

Qh(u) := hd
∑
x∈Tdh

Qxh(u), where Qxh(u) :=
1

2

∑
e∈Zd
σ=±1

λe(x)
(u(x+ σhe)− u(x)

h

)2
, (8)
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for any u : Tdh → R and any x ∈ Tdh, in such way that −〈Lhu, u〉 = Qh(u). Our first result
is a coercivity estimate relating the discrete elliptic energy Qh to the discrete L2

h norm of
the discrete gradient vector ∇hu(x) ∈ Rd, where ‖u‖2

L2
h

:= 〈u, u〉L2
h
and

∇hu(x) :=
(u(x+ hbi)− u(x)

h

)
1≤i≤d

, 〈u, v〉L2
h

:= hd
∑
x∈Tdh

u(x)v(x).

Strictly speaking, (9) is only a semi-coercivity estimate, since constant functions are in the
kernel of Lh, but the semi- prefix is dropped in the text for concision and readability.

Theorem 1.3 (Coercivity of the discrete elliptic energy). Consider weights λ : Td → Λd
which are bounded by λmax, R-supported, K-Lipschitz, and ε-spanning, for some constants
λmax, R,K, ε > 0. Then for all 0 < h ≤ h0 and all u : Tdh → R one has

c‖∇hu‖2L2
h
≤ Qh(u) ≤ C‖∇hu‖2L2

h
, (9)

where the constants C, c > 0 and h0 > 0 only depend on (λmax, R,K, ε).

We next establish a convergence rate for the scheme solutions, with periodic boundary
conditions for simplicity. Let us acknowledge here that adapting the scheme to maintain
similar convergence rates on a bounded domain, with e.g. Dirichlet or Neumann boundary
conditions, is a non-trivial problem especially in the case of wide stencil schemes such as
(5), which we regard as an opportunity for future work. We denote by T1

h the convolution
operator with the indicator function of the cube [−h/2, h/2]d of width h.

Theorem 1.4 (Convergence rate, elliptic equation). Consider a diffusion tensor field D :
Td → S++

d and coefficients λ : Td → Λd obeying the D-consistency, R-support, K-Lipschitz
(resp. K-grad-Lipschitz) and ε-spanning properties. Consider a r.h.s. f ∈ L2(Td), with zero
mean, and let fh := T1

h T1
h f. Denote by u : Td → R and uh : Tdh → R a solution to Lu = f

and Lhuh = fh respectively. If ‖∇2u‖L2 (resp. ‖∇3u‖L2) is finite, then

‖∇h(T1
h u− uh)‖L2

h
≤ Ch‖∇2u‖L2 .

(
resp. ‖∇h(T1

h u− uh)‖L2
h
≤ Ch2‖∇3u‖L2 ,

)
for all 0 < h ≤ h0, where h0 > 0 and C only depend on (‖D‖∞, R,K, ε).

1.2 Voronoi’s decomposition and variants

The discretization of anisotropic differential operators by finite differences naturally leads
to a matrix decomposition problem, as illustrated in Section 1.1 and Appendix A, whose
coefficients should obey a number of properties, summarized in Definition 1.2. In the
following, we describe an efficient method for computing such decompositions, leveraging
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(variants of) a tool from discrete geometry known as Voronoi’s first reduction of quadratic
forms [30]. For that purpose, define for all D ∈ S++

d

Λ(D) := argmax
λ∈Λd

{ ∑
e∈Zd

λe |
∑
e∈Zd

λeee> = D
}
. (10)

In other words, Λ(D) collects the decompositions of the symmetric positive definite matrix
D whose offsets e ∈ Zd have integer entries, and whose sum of weights λe is maximal.
Note that the definition (1) of the search space Λd requires that the coefficients λe ≥ 0 are
non-negative (and finitely supported), so that (10) has the structure of a linear program
with infinitely many unknowns and constraints.

Voronoi’s first reduction [30] is classically defined as the dual linear program to (10),
see Section 2. It benefits from invariances and symmetries, under the group GL(Zd) of
unimodular changes of coordinates (2), which have been extensively studied and enable
in particular the classification of the vertices of the skeletal structure of the associated
polyhedron in dimension d ≤ 8 [8, 33]. The following result describes the set (10) in
dimension d ≤ 4, and specifies an element λ(D) within it.

Proposition 1.5. For each D ∈ S++
d , 2 ≤ d ≤ 4, we have the following description of the

set Λ(D), within which we select the following element λ(D):

• If d ∈ {2, 3}, then Λ(D) is a singleton, and λ(D) is defined as its unique element.

• If d = 4, then Λ(D) is either a singleton or an equilateral triangle, and λ(D) is defined
as either its unique element or its barycenter.

We emphasize that Proposition 1.5 is completely practical, in the sense that λ(D) can
be computed in a fast and reliable manner. The computation of λ(D) amounts to the
solution of a linear program, within a polyhedron whose vertices (known as perfect forms)
are extensively classified in the dimensions d of interest, which is used to speed up the
computation, see Remark 3.1. A pseudo-code is presented in Section 3, see Algorithms 1
and 2 and Propositions 3.5 and 3.6, and numerical codes are provided2, extending the
works [6, 17]. Recall that the anisotropy ratio µ(D) :=

√
‖D‖‖D−1‖ is defined as the

square root of the condition number of D ∈ S++
d .

For concreteness, we illustrate on Fig. 1 the coefficients (λ(Dt))t∈[0,1] defined by Propo-
sition 1.5 and Theorem 1.8 below, where Dt := (1 − t)D0 + tD1 interpolates between two
randomly chosen D0, D1 ∈ S++

d . The main purpose of Fig. 1 is to illustrate the Lipschitz
regularity of the coefficient t ∈ [0, 1] 7→ λe(Dt) from Proposition 1.5, and the smoothness of
the coefficient defined by Theorem 1.8, for any e ∈ Zd. One can also visualize on this exam-
ple the set {e ∈ Zd | λe(Dt) > 0}, for any given t ∈ [0, 1]. The R-support and ε-spanning
properties, established in the following result, can be visually checked by observing that
this set is contained in a ball of small radius and contains a basis of Zd.

2www.github.com/Mirebeau/AdaptiveGridDiscretizations
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Theorem 1.6. The mapping λ : S++
d → Λd, defined in Proposition 1.5 and where 2 ≤ d ≤

4, obeys the following properties. For all D,D′ ∈ S++
d , denoting µ := max{µ(D), µ(D′)},

• Consistency, in the sense that D =
∑

e∈Zd λ
e(D)ee>.

• R(µ)-Support, in the sense that ‖e‖ ≤ R(µ) for all e ∈ supp(λ(D)).

• K(µ)-Lipschitz, in the sense that |λe(D)− λe(D′)| ≤ K(µ)‖D −D′‖ for all e ∈ Zd.

• ε-Spanning, in the sense that in there exists e1, · · · , ed ∈ Zd such that |det(e1, · · · ,
ed)| = 1 and min{λe1(D), · · · , λed(D)} ≥ ελmin(D).

We denoted R(µ) := Cµ, K(µ) := Cµ2 with constants C = C(d) and ε = ε(d) > 0.

The R(µ)-support estimate is actually established in arbitrary dimension, see Theo-
rem 4.3, with explicit (but not sharp) constants (33) in dimension d ≤ 4. It was previously
only known in dimension d ∈ {2, 3} [22], and in arbitrary dimension d with a sub-optimal
estimate R(µ) = Cµd−1 [23, Proposition 1.1]. The Lipschitz and spanning properties were
established in dimension d ∈ {2, 3} in [5]. The definition of λ(D) in dimension d = 4 from
Proposition 1.5 is original to our knowledge, and ensures that those coefficients are uniquely
defined and obey the Lipschitz and spanning properties of Theorem 1.6. By an immediate
composition argument, we obtain the properties of Definition 1.2.

Corollary 1.7. Let D : X → S++
d be Lipschitz, bounded, and of bounded condition number,

where 2 ≤ d ≤ 4 and X is a metric space. Define λe(x) := λe(D(x)), for all x ∈ X, e ∈ Zd.
Then λ : X → Λd is D-consistent, R-supported, K-Lipschitz, and ε-spanning, in the sense
of Definition 1.2. The constants R, K, and ε > 0, only depend on ‖D‖∞, ‖µ(D)‖∞, and
the Lipschitz constant of D.

A shortcoming of the decomposition of Proposition 1.5, is that D ∈ S++
d 7→ λe(D)

has Lipschitz regularity but not better, for any e ∈ Zd. This decomposition coefficient is
in fact piecewise linear w.r.t. D, a property inherited from the structure of Voronoi’s first
reduction which is a linear program. For this reason we introduce an alternative smooth
decomposition, in dimension d = 2.

Theorem 1.8. There is a computable decomposition λ̃ ∈ C∞(S++
2 ; Λ2) which is con-

sistent, Cµ-supported, Cµ2-Lipschitz, and ε-spanning, for some C, ε > 0 with the nota-
tions of Theorem 1.6. It is also Cµ4/λmin-grad-Lipschitz, in the sense that ‖∇2λ̃e(D)‖ ≤
Cµ(D)4/λmin(D), for all e ∈ Zd, where the hessian is defined over the open subset S++

d ⊂
Sd.

Remark 1.9 (Dimensions 5 and 6). For a matrix D ∈ S++
d of arbitrary dimension d, the

set Λ(D) is a finite dimensional compact convex polytope. A decomposition λ(D) ∈ Λ(D)
may be computed at a reasonable numerical cost if d ∈ {5, 6}, using a direct extension of
the techniques presented in this paper. An important caveat, however, is that no selection
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principle of λ(D) ∈ Λ(D) is able to ensure the spanning property, see Proposition 5.5.
Dimension d = 5 may be relevant in some medical data processing techniques [15], which
involve solving anisotropic PDEs on R3 × S2, whereas dimension d = 6 may open ap-
plications to three-dimensional elasticity, whose anisotropy coefficients are gathered in a
six-dimensional symmetric positive definite Hooke tensor. We regard those potential appli-
cations are opportunities for future work.

Organization. After some discussion of Voronoi’s first reduction in Section 2, we prove
Proposition 1.5 in Section 3. The parts of Theorem 1.6 related to Lipschitz regularity,
support radius, and the spanning property, are established in Sections 3 to 5 respectively.
Theorem 1.8 is proved in Section 6. Finally, we discuss in Appendix B the defects of some
apparently straightforward constructions of smooth and spanning decompositions.

2 Voronoi’s first reduction of positive quadratic forms

Voronoi’s first reduction [35] is a tool from the field of lattice geometry [30], with applica-
tions in sphere packing, arithmetic, and PDE discretizations in this paper and [23]. In this
section, we show its duality with the matrix decomposition problem (10) in Proposition 2.3,
and we present a (known) structural result in dimension d ≤ 4 in Proposition 2.8. Voronoi’s
first reduction was originally intended as a tool for classifying positive quadratic forms up
to arithmetical equivalence.

Definition 2.1 (Arithmetical equivalence). Two matrices M , M ′ ∈ Sd are said arithmeti-
cally equivalent if there exists A ∈ GL(Zd) such that M ′ = A>MA.

Voronoi’s first reduction Vor(D) of D ∈ S++
d is defined similarly to a linear program,

although with infinitely many constraints. Its modern presentation involves an auxiliary
objectMd ⊂ Sd, referred to as Ryskov’s polyhedron:

Vor(D) := min
M∈Md

Tr(DM), Md := {M ∈ Sd | ∀e ∈ Zd, 〈e,Me〉 ≥ 1}. (11)

The optimization problem (11) is well-posed, as proved by Voronoi himself [30,35].

Theorem 2.2 (Voronoi). Ryskov’s polyhedron is a subset of S++
d , on which the determinant

is positively bounded below. It is a locally finite polyhedron, in the sense that finitely many
constraints are active locally in the neighborhood of any point. It has finitely many equiv-
alence classes of vertices for the relation of arithmetical equivalence. The linear program
Vor(D) is well-posed in the sense that the collection of minimizers of (11) is non-empty
and compact for any D ∈ S++

d .

For any M ∈ S++
d we define the sets

S++(M) := {D ∈ S++
d | Vor(D) = Tr(DM)}, Ξ(M) := {e ∈ Zd | 〈e,Me〉 ≤ 1}. (12)
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Figure 1: Illustration of the proposed decompositions of D(t) = (1 − t)D0 + tD1, where
D0, D1 ∈ S++

d are chosen arbitrarily. The curves represent coefficients t ∈ [0, 1] 7→ λe(D(t)),
where the vector e ∈ Zd is indicated in the legend. Top : d = 4, decomposition of
Proposition 1.5. Middle : d = 2, Selling’s decomposition, also used in Proposition 1.5.
Bottom : d = 2, with the alternative smooth decomposition of Theorem 1.8.
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If M belongs to Ryskov’s polyhedronMd, then S++(M) collects all matrices D ∈ S++
d for

which M is optimal in (11, left), whereas Ξ(M) denotes the set of active constraints in (11,
right). Note that S++(M) is convex, and that Ξ(M) is finite by Theorem 2.2.

We establish below some duality relations between the linear program (10) defining our
discretization and Voronoi’s first reduction (11).

Proposition 2.3. Let M ∈ Md and let D ∈ S++(M). Then the set Λ(D) of maximizers
in (10) is a nonempty convex compact polytope characterized by

Λ(D) =
{
λ ∈ Λd

∣∣∣ supp(λ) ⊂ Ξ(M),
∑

e∈Ξ(M)

λeee> = D
}
. (13)

Proof. For now, we waive the constraint that λ is finitely supported in (10), and we define

Λ′(D) := argmax
λ∈l1w(Zd)

{ ∑
e∈Zd

λe
∣∣∣ λ � 0,

∑
e∈Zd

λeee> = D
}

= argmax
λ∈l1w(Zd)

(−f(λ)− g(Aλ)), (14)

where the vector space l1w(Zd) := {λ : Zd → R | |λ|l1w < +∞} is equipped with the norm
| · |l1w : λ 7→

∑
e∈Zd |e|

2|λe|, and where

f(λ) := χ{λ�0} −
∑
e∈Zd

λe, Aλ :=
∑
e∈Zd

λeee>, g(P ) := χ{P=D}.

We denoted by χA the characteristic function of a set A, i.e. χA(x) = 0 if x ∈ A and
χA(x) = ∞ otherwise. The choice of the norm | · |l1w is justified by the fact that any
admissible λ in (14) satisfies

|λ|l1w = Tr
( ∑
e∈Zd

λeee>
)

= Tr(D) < +∞. (15)

The dual optimization problem to (14), in the sense of Fenchel’s duality theorem [2, Theo-
rem 1.113], is defined as argminM∈Sd f

∗(−A>M) + g∗(M) where

f∗(µ) = χµ�−1, A>M = (〈e,Me〉)e∈Zd , g∗(M) = Tr(DM).

Note that the characteristic function f is defined over l1w(Zd)∗ = l∞w (Zd), whose norm
reads |µ|l∞w := sup{e ∈ Zd | |µ(e)|/|e|2}. We recognize the minimization problem (11). The
duality gap is always non-negative, hence ifM ∈Md is optimal in (11), then for any λ ∈ l1w
admissible in (14),

0 ≤ Vor(D)−
∑
e∈Zd

λe = Tr(DM)−
∑
e∈Zd

λe =
∑
e∈Zd

λe(〈e,Me〉 − 1). (16)

Moreover, the constraint qualification condition 0 ∈ int(dom g − Adom f) (equivalently
D ∈ int(Adom f), where Adom f = {

∑
e∈Zd λ

eee> | λ ∈ l1w(Zd), λ � 0}) is satisfied, since
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D may be approximated by symmetric positive definite matrices with rational eigenvectors.
Therefore the inequality in (16) is an equality if and only if λ ∈ Λ′(D). Using that all terms
in the right-hand side of (16) are non-negative, we deduce that an admissible λ in (14)
belongs to Λ′(D) if and only if it is supported on Ξ(M). In particular, any λ ∈ Λ′(D) is
finitely supported, thus Λ(D) = Λ′(D) and (13) holds. The compactness of Λ(D) follows
from the fact that any λ in the finite-dimensional set Λ(D) satisfies (15).

Proposition 2.3 above admits a converse, Proposition 2.4, implying that for allM ∈Md

S++(M) = S++
d ∩

{ ∑
e∈Zd

λeee>
∣∣∣ λ : Zd → [0,∞[, supp(λ) ⊂ Ξ(M)

}
. (17)

Proposition 2.4. Let D ∈ S++
d and M ∈Md. Assume that D =

∑
e∈Ξ(M) λ

eee> and that
supp(λ) ⊂ Ξ(M), for some λ ∈ Λd. Then D ∈ S++(M) and λ ∈ Λ(D).

Proof. Let M ′ ∈ Md. Then, for any e ∈ Ξ(M), one has 〈e,M ′e〉 ≥ 1 = 〈e,Me〉. It follows
that

Tr(DM ′) =
∑

e∈Ξ(M)

λe〈e,M ′e〉 ≥
∑

e∈Ξ(M)

λe〈e,Me〉 = Tr(DM).

Thus M is optimal in (11), and we deduce using Proposition 2.3 that λ ∈ Λ(D).

In order to proceed with the proof of Theorem 1.6, we need a more precise description
of Ryskov’s polyhedron Md. The vertices of Md are classically called perfect forms [35],
and we denote their set as

Perfect(d) :=
{
M ∈Md | SpanR{ee> | e ∈ Ξ(M)} = Sd

}
.

For any perfect form M ∈ Perfect(d), we denote by

N (M) :=
{
M ′ ∈ Perfect(d) | dim(SpanR{ee> | e ∈ Ξ(M) ∩ Ξ(M ′)}) = d(d+ 1)/2− 1

}
,

the collection of neighbor vertices of M inMd, where d(d+ 1)/2 = dim(Sd). Note that

S++(M) = {D ∈ S++
d | Tr(DM) ≤ Tr(DM ′), ∀M ′ ∈ N (M)}, (18)

by the usual optimality condition in linear programs. The polyhedral structure of Md is
compatible with the relation of arithmetical equivalence defined in Definition 2.1:

Proposition 2.5. If M ∈ Perfect(d) and A ∈ GL(Zd), then A>MA ∈ Perfect(d) and

Ξ(A>MA) = {A−1e | e ∈ Ξ(M)}, N (A>MA) = {A>M ′A |M ′ ∈ N (M)}.

Proof. This follows directly from the definitions of Md, Ξ(M), and N (M), and from the
fact that for any A ∈ GL(Zd) one has {Ae | e ∈ Zd} = Zd.
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The classification of perfect forms up to arithmetical equivalence is a classical problem
in lattice geometry [8], whose complexity explodes as dimension increases, see [33] for the
latest complete classification in dimension d = 8. The discussion is fortunately simpler in
dimension d ≤ 4, and the only two relevant perfect forms are described in Propositions 2.6
and 2.7. There is a canonical perfect form, existing in arbitrary dimension d, and defined
as follows: denoting 1 := (1, . . . , 1) ∈ Zd,

Ad :=
1

2
(Idd +11>) =

1

2


2 1 . . . 1

1
. . . . . .

...
...

. . . . . . 1
1 . . . 1 2

 . (19)

The following identity will be useful: for any D ∈ Sd with coefficients (Dij)
d
i,j=1, one has

D =
∑

1≤i≤d
(
∑

1≤j≤d
Dij)bib

>
i −

∑
1≤i<j≤d

Dij(bi − bj)(bi − bj)>. (20)

The union of two sets X and Y known to be disjoint is denoted X t Y .

Proposition 2.6. The matrix Ad is a perfect form, in any dimension d ≥ 1, and

Ξ(Ad) = {±bi | 1 ≤ i ≤ d} t {±(bi − bj) | 1 ≤ i < j ≤ d}. (21)

Proof. Let e ∈ Zd be such that 1 ≥ 〈e,Ade〉 = (|e|2 + 〈e,1〉2)/2. Then |e|2 ≤ 2, and
therefore e has either one or two nonzero components, equal to ±1. In the latter case
these components have opposite sign, since 〈e,1〉2 = 0. This establishes (21) and the
fact that Ad ∈ Md. Finally (20) shows that SpanR{ee> | e ∈ Ξ(Ad)} = Sd, hence
Ad ∈ Perfect(d).

In dimension d = 4, the following is also a perfect form, which is not arithmetically
equivalent to A4 since it does not have the same determinant:

D4 :=
1

2


2 1 1 0
1 2 1 1
1 1 2 1
0 1 1 2

 . (22)

The notations Ad and D4 are customary, see [8] for a more general classification and the
relation with the classification of root lattices.

Proposition 2.7. The matrix D4 is a perfect form, and

Ξ(D4) = {±bi | 1 ≤ i ≤ 4} t {±(bi − bj) | 1 ≤ i < j ≤ 4, {i, j} 6= {1, 4}} (23)
t {±(b1 − bi + b4) | 2 ≤ i ≤ 3} t {±(b1 − b2 − b3 + b4)}. (24)
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Proof. We compute Ξ(D4) using exhaustive enumeration and a computer assisted proce-
dure, see [8, Proposition 7] for an alternative approach. If 〈e,Me〉 ≤ 1, for some e ∈ Zd
and M ∈ S++

d , then |e|2 ≤ λmin(M)−1. For any of the finitely many vectors e ∈ Zd
such that |e|2 ≤ λmin(D4)−1 = (5 +

√
17)/2 ≈ 4.56, we check that 〈e,D4e〉 ≥ 1 and

gather the cases of equality in the r.h.s. of (23). It follows that D4 ∈ Md, and since
SpanR{ee> | e ∈ Ξ(D4)} = Sd, the matrix D4 is a perfect form.

Comparing the number #(Ξ(A4)) = 10 and #(Ξ(D4)) = 12 of active constraints at
the perfect forms A4,D4 ∈ M4 with the dimension dim(S4) = 10 of the optimization
space, we find that D4 is a degenerate vertex of Ryskov’s polyhedronM4, whereas A4 is
a nondegenerate vertex.

In dimension d ∈ {2, 3}, there is only one equivalence class of perfect forms for the
relation of arithmetical equivalence, associated with the representative Ad as established
by Gauss [18]. For this reason Voronoi’s first reduction (11) is particularly simple to study
and to compute, using Selling’s algorithm [9, 32], see Section 3.1. In contrast there is in
dimension d = 4 one additional equivalence class of perfect forms, associated with the
representative D4, see [20].

Proposition 2.8 (d ≤ 3: [18], d = 4: [20]). Let d ≤ 4, and define

Perfect0(d) := {Ad}, d ≤ 3, Perfect0(4) := {A4,D4}. (25)

Then Perfect0(d) ⊂ Perfect(d) and each M ∈ Perfect(d) is arithmetically equivalent to
exactly one element of Perfect0(d).

In dimension d ≥ 5, by Theorem 2.2, there exists similarly a finite set Perfect0(d)
containing exactly one representative of each equivalence class of perfect forms. Voronoi’s
proof is non-constructive, and this set is only known explicitly in dimension d ≤ 8 [33].

Elements of proof of Proposition 2.8, and discussion of Voronoi’s algorithm. In addition to
the historical references [18, 20], a modern proof is also presented in [8, Theorem 5]. Note
that the inclusion Perfect0(d) ⊂ Perfect(d) follows from Propositions 2.6 and 2.7.

Since the set of vertices of any polyhedron is connected for the adjacency relation, and
in view of the invariance properties of Ryskov’s polyhedron see Proposition 2.5, it suffices
to check, for any M ∈ Perfect0(d), that any M ′ ∈ N (M) is arithmetically equivalent to
some M0 ∈ Perfect0(d). This enumeration technique is known as Voronoi’s algorithm.

Remark 2.9. We implemented Voronoi’s algorithm following [31], and observe that, in di-
mension d = 4, all 10 neighbors of the nondegenerate vertex A4 ofMd are arithmetically
equivalent toD4, while the degenerate vertexD4 has 48 neighbors arithmetically equivalent
to A4 and 16 neighbors arithmetically equivalent to D4. We also obtain explicitly the uni-
modular matrices corresponding to the above arithmetic equivalence relations. This data
is needed for the numerical implementation of the decomposition presented in Algorithm 2.
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3 Computing the decomposition

We explain in this section how one may compute in practice, and implement numerically,
the decomposition λ(D) of a matrix D ∈ S++

d defined in Proposition 1.5. After an op-
tional preliminary step described in Remark 3.4, the procedure is to solve the minimization
problem (11) known as Voronoi’s first reduction using Algorithm 2, and then to obtain the
explicit coefficients as described in Propositions 3.5 and 3.6. As a side product, we estab-
lish in Proposition 3.8 the locally Lipschitz regularity of this decomposition, announced in
Theorem 1.6. Finally, we discuss the special case d ∈ {2, 3} in Section 3.1.

Algorithm 1 Solving Voronoi’s first reduction — abstract version
Initialization: Let M ∈ Perfect(d) (for instance M ← Ad).
While there exists M ′ ∈ N (M) such that Tr(DM ′) < Tr(DM) do M ←M ′.
Return M .

Algorithm 2 Solving Voronoi’s first reduction — practical version
Initialization:

Let M0 ∈ Perfect0(d) (for instance M ← Ad).
Let A ∈ GL(Zd) (for instance A← Id).

While there exists M ∈ N (M0) such that Tr(DA>MA) < Tr(DA>M0A)
do

look up a decomposition M = (A′)>M ′0A
′ with M ′0 ∈ Perfect0(d) and A′ ∈ GL(Zd)

M0 ←M ′0.
A← A′A.

Return M0 and A.

Since the cost minimized in (11) is linear, the minimum in attained at some vertex of
Ryskov’s polyhedronMd, which can be found by iterating over perfect forms in the manner
described in Algorithm 1. This algorithm is however not directly implementable since we did
not explain how the set N (M) is computed, for an arbitrary perfect form M . In practice,
in order to benefit from the symmetries of Ryskov’s polyhedron, we represent a perfect
form M by a pair (M0, A), where M0 ∈ Perfect0(d), A ∈ GL(Zd), and M = A>M0A. This
yields Algorithm 2, which is equivalent to Algorithm 1 as shown by Proposition 2.5. Finally,
given M0 ∈ Perfect0(d), we use Voronoi’s algorithm as described in Remark 2.9 to express
each element of N (M0) in the form (A′)>M ′0A

′, where M ′0 ∈ Perfect0(d) and A′ ∈ GL(Zd).
The numerical evaluation of Tr(DA>MA) = Tr([ADA>]M), for all M ∈ N (M0), is made
efficient by computing only once the matrix product ADA>, and recognizing the Frobenius
inner product.

Remark 3.1 (Computational efficiency and on the fly computation of perfect forms). Linear
programs, i.e. the minimization of a linear form over a polyhedron defined by (finitely many)
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inequalities, can be addressed using a variety of numerically methods. This includes interior
point methods [25], which never consider the polytope vertices, and the simplex algorithm,
which discovers and computes a path through the skeleton defined by the polytope edges
and vertices on the fly as the optimization progresses.

The simplex algorithm can be used to solve Voronoi’s first reduction, up to minor mod-
ifications related to the fact that Ryskov’s polyhedron is defined by infinitely many con-
straints. Algorithm 2 is a variant of the simplex algorithm enhanced by the precomputation
of the skeleton of Ryskov’s polyhedron on which it operates.

When solving a generic linear program, precomputing the skeleton of the optimization
polytope is generally a bad idea, due to its high time and space complexity. However, in the
intended applications3 of this work, one needs to solve millions of linear programs on the
same polytope, namely Ryskov’s polyhedron, whose skeleton happens to have a particularly
simple structure at least in dimension d ≤ 6. For this reason, the precomputation of the
skeleton leads to strong efficiency gains.

We report the computation times of 0.022s, 0.057s, 0.12s, 1.1s, 5.25s, in dimension
d = 2, 3, 4, 5, 6 respectively, for computing Voronoi’s decomposition of 500 000 matrices of
shape d × d on a laptop equipped with an Nvidia® 2060 MaxQ GPU, using a CUDA®

implementation of Algorithm 2 (with a straightforward parallelization of this embarrassingly
parallel task). The processed matrices are generated as AA> + εTr(AA>) Id, where A is
an n × n matrix whose coefficients are drawn from a normal distribution, and where the
relaxation parameter ε = 0.01 is used to avoid excessively degenerate matrices, which are
irrelevant for PDE discretizations.

The proposed approach is only effective in small dimension, since the structure of
Ryskov’s polyhedron becomes significantly more complex in dimension d ≥ 7, and is not
classified in dimension d ≥ 9.

Proposition 3.2. For any D ∈ S++
d , Algorithm 1 terminates and returns a perfect form

M such that D ∈ S++(M). Equivalently, Algorithm 2 terminates and returns a perfect
form M0 ∈ Perfect0(d) and a matrix A ∈ GL(Zd) such that D ∈ S++(A>M0A).

Proof. By Theorem 2.2 the set {M ∈ Md | Tr(DM) ≤ α} is a bounded polyhedron,
nonempty if α is sufficiently large, and in particular there are finitely many perfect forms
M such that Tr(DM) ≤ α. Thus Algorithm 1 iterates over finitely many perfect forms M .
Since the cost Tr(DM) decreases strictly at each iteration, the algorithm terminates. The
returned M satisfies Tr(DM) ≤ Tr(DM ′) for any M ′ ∈ N (M), therefore it is a minimizer
in (11), see (18).

Algorithm 2 returns the minimizer of (11) in the factorized form A>M0A where M0 ∈
Perfect0(d) and A ∈ GL(Zd). This is useful since then, by the following proposition, we only

3Typically solving anisotropic PDEs on Cartesian grids, see Theorem 1.4 and Appendix A, which in-
volves computing Voronoi’s decomposition of a Riemannian metric tensor, or a diffusion tensor, or a Hooke
elasticity tensor, which is given as data and is different at each discretization point.
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need to know how to compute λ(D) for matrices D ∈ S++(M0) for some M0 ∈ Perfect0(d).

Proposition 3.3. Let D ∈ S++(A>M0A), for some M0 ∈ Perfect0(d) and A ∈ GL(Zd).
Then ADA> ∈ S++(M0), and one has (assuming d ≤ 4 for the second identity)

Λ(D) = {(λAe)e∈Zd | λ ∈ Λ(ADA>)}, λ(D) = (λAe(ADA>))e∈Zd . (26)

Proof. We have AZd = Zd, henceMd = {A>MA |M ∈Md}, which implies

Vor(ADA>) = min
M∈Md

Tr(ADA>M) = min
M∈Md

Tr(DA>MA) = min
M∈Md

Tr(DM) = Vor(D)

= Tr(DA>M0A) = Tr(ADA>M0).

Therefore ADA> ∈ S++(M0) as announced. The equalities (26) then follow directly from
Propositions 2.3 and 2.5.

Remark 3.4 (Basis reduction as a preliminary step to Voronoi’s reduction). Computing the
decomposition of D ∈ S++

d , or of A>DA for some A ∈ GL(Zd), are equivalent problems
by Proposition 3.3. However, the number of iterations of Algorithms 1 and 2, and thus the
numerical cost, may be strongly reduced in the latter case, if the anisotropy ratio µ(D) is
large and if the change of coordinates A is well chosen, using typically a basis reduction
method. In the special case of dimension d ≤ 3, where Algorithm 1 reduces to Selling’s
algorithm presented Section 3.1, such a preprocessing is alluded to in [9, Remark 7.0.3],
and it is shown in [17, Corollary 1 and Proposition 1] that Selling’s algorithm terminates
in a single step if the greedy lattice basis reduction algorithm [26, Fig 3] is used for pre-
processing, which has complexity O(lnµ(D)). Similar improvements can be expected in
dimension d = 4. However, these concerns appear mostly relevant for applications related
to number theory where µ(D) � 100. In contrast, for the comparably mild anisotropy
ratios encountered in PDE discretizations, our numerical experience suggests that the basis
reduction preprocessing step is not essential.

We describe below how to compute λ(D) when D ∈ S++(M0), for some perfect form of
reference M0 ∈ Perfect0(d), in dimension d ≤ 4.

Proposition 3.5. Let D ∈ S++(Ad), with coefficients (Dij)
d
ij=1. Then Λ(D) is a singleton,

and

λe(D) =


∑d

j=1Dij if e = ±bi, 1 ≤ i ≤ d,
−Dij if e = ±(bi − bj), 1 ≤ i < j ≤ d,
0 else.

(27)

Proof. By Proposition 2.3, the set Λ(D) is non-empty, and any λ ∈ Λ(D) satisfies supp(λ) ⊂
Ξ(Ad) and

∑
e∈Ξ(Ad) λ

eee> = D. On the other hand, the collection of symmetric matrices
B := {ee> | e ∈ Ξ(Ad)} has cardinality #(B) := d(d+ 1)/2 = dim(Sd) and SpanR B = Sd,
as established in Proposition 2.6, thus B is a basis of Sd. It follows that there exists exactly
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one λ : Ξ(Ad)→ R such that
∑

e∈Ξ(Ad) λ
eee> = D, namely the one defined by (27), which

concludes.

Proposition 3.6. Let D ∈ S++(D4), with coefficients (Dij)
d
i,j=1. For any α, β, γ ∈ R,

let λα,β,γ(D) : Z4 → R be defined by

λeα,β,γ(D) :=



Di1 +Di2 +Di3 +Di4 + γ if e = ±bi, i ∈ {1, 4},
D21 +D22 +D23 +D24 + α if e = ±b2,
D31 +D32 +D33 +D34 + β if e = ±b3,
−Di2 −D14 + β if e = ±(bi − b2), i ∈ {1, 4},
−Di3 −D14 + α if e = ±(bi − b3), i ∈ {1, 4},
−D23 +D14 + γ if e = ±(b2 − b3),

α if e = ±(b1 − b2 + b4),

β if e = ±(b1 − b3 + b4),

D14 + γ if e = ±(b1 − b2 − b3 + b4),

0 else.

Then the set Λ(D) is characterized by

Λ(D) = {λα,β,γ(D) | α ≥ α∗(D), β ≥ β∗(D), γ ≥ γ∗(D), α+ β + γ = 0}, (28)
α∗(D) := max{−D21 −D22 −D23 −D24, D13 +D14, D34 +D14, 0},
β∗(D) := max{−D31 −D32 −D33 −D34, D12 +D14, D24 +D14, 0},
γ∗(D) := max{−D11 −D12 −D13 −D14, −D41 −D42 −D43 −D44, D23 −D14, −D14}.

Thus Λ(D) an equilateral triangle, non-empty but possibly reduced to a single point, whose
barycenter has parameters (α, β, γ) = (α∗(D), β∗(D), γ∗(D))− 1

3(α∗(D)+β∗(D)+γ∗(D))1.

Proof. Let Λ∗(D) := {λ : Ξ(D4) → R | supp(λ) ⊂ Ξ(D4),
∑

e∈Ξ(D4) λ
eee> = D}, so

that Λ(D) = {λ ∈ Λ∗(D) | λ � 0}. Recall that the elements of Ξ(D4) are described in
Proposition 2.7. Since #(Ξ(D4)) = 12 = dim(S4) + 2, and SpanR{ee> | e ∈ Ξ(D4)} = Sd
by definition of a perfect form, the set Λ∗(D) is a two-dimensional affine space. We compute
that Λ∗(D) = {λα,β,γ(D) | α, β, γ ∈ R, α + β + γ = 0}, from which the characterization
(28) follows.

The set Λ(D) is non-empty by Proposition 2.3, hence α∗ + β∗ + γ∗ ≤ 0 (omitting the
parameterD for readability). By construction, it is the convex hull of the three points λα,β,γ
whose parameters are (α∗, β∗,−α∗ − β∗), (α∗,−α∗ − γ∗, γ∗) and (−β∗ − γ∗, β∗, γ∗), hence
Λ(D) is a triangle with the announced barycenter. We conclude observing that the distance
between any two of these vertices is |α∗ + β∗ + γ∗|

√
6 in the Euclidean space RΞ(D4).

In addition to explaining how to compute λ(D), the above propositions also allow us to
establish, in Proposition 3.8 below, the part of Theorem 1.6 about the Lipschitz regularity
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of the coefficients λ of the matrix decomposition. We first obtain a lower bound on the
norm of the obtained unimodular transformation.

Proposition 3.7. Let D ∈ S++(A>M0A), with A ∈ GL(Zd) and M0 ∈ Perfect0(d). Then
‖AD

1
2 ‖ ≤ Cλmax(D)

1
2 , and in particular ‖A‖ ≤ Cµ(D), for some constant C = C(d).

Proof. Using successively (i) the fact that the identity matrix belongs to Ryskov’s polyhe-
dron, and (ii) the optimality of M = A>M0A, we obtain that

dλmax(D) ≥ Tr(D) ≥ Tr(DA>M0A) ≥ λmax(ADA>)λmin(M0) = ‖AD
1
2 ‖2λmin(M0).

This establishes the first estimate. We conclude noting that ‖AD
1
2 ‖ ≥ ‖A‖λmin(D)

1
2 .

Proposition 3.8. Assume that d ≤ 4, and equip Λd with the norm |·|∞ : λ 7→ maxe∈Zd |λe|.
Then the mapping D ∈ S++

d 7→ λ(D) is locally Lipschitz continuous, with dilatation coeffi-
cient bounded by Cµ(D)2 for some constant C.

Proof. We deduce easily from Propositions 3.5 and 3.6 that the mapping λ is Lipschitz
continuous on

⋃
M0∈Perfect0(d) S++(M0), with some dilatation coefficient K0 > 0.

Let D1, D2 ∈ S++
d , I := {tD1 + (1 − t)D2 | t ∈ [0, 1]}, and µ := max{µ(D) | D ∈

I} = max{µ(D1), µ(D2)}. We consider the restriction of the mapping λ to the segment
I. If M = A>M0A ∈ Perfect(d), where A ∈ GL(Zd) and M0 ∈ Perfect0(d), is such that
I ∩ S++(M) is nonempty, then ‖A‖ ≤ Cµ by Proposition 3.7. Since there are only finitely
many A ∈ GL(Zd) such that ‖A‖ ≤ Cµ, it follows that I is the union of finitely many
closed segments I ∩ S++(M). By Proposition 3.3 and the above, λ is Lipschitz continuous
on the segment I ∩ S++(A>M0A), with dilatation coefficient K0‖A‖2 ≤ K0C

2µ2. Thus λ
is K(µ)-Lipschitz on the whole segment I, where K(µ) := K0C

2µ2.

3.1 Selling’s algorithm and formula

Selling’s algorithm [9, 32] can be regarded as a reformulation and a simplification of Algo-
rithm 2 in dimension d ∈ {2, 3}, taking advantage of the fact that Perfect0(d) is a singleton,
see Proposition 2.8. We briefly present this approach and the related concept of superbase
of a lattice, for concreteness and in order to develop a two-dimensional variant with smooth
coefficients in Section 6.

Definition 3.9. A superbase of Zd is a tuple v := (v0, · · · , vd) ∈ (Zd)d+1 such that
|det(v1, · · · , vd)| = 1 and v0 + · · ·+ vd = 0. We define Mv := 1

2

∑
0≤i≤d viv

>
i ∈ S

++
d .

Remark 3.10. The canonical superbase is (b0, · · · , bd) where (bi)
d
i=1 is the canonical basis

of Rd, and b0 := −1 in such way that b0 + · · ·+ bd = 0. Any superbase (v0, · · · , vd) can be
obtained from the canonical one by a linear change of variables: vi = Abi for all 0 ≤ i ≤ d,
for some A ∈ GL(Zd). This defines a bijection between the collections of superbases and of
unimodular matrices.
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We show in Propositions 3.11 and 3.12 that perfect forms arithmetically equivalent to
Ad can be parametrized by superbases, uniquely up to a permutation and a global change
of sign. The perfect form’s optimality in Voronoi’s reduction (11) is characterized by a
geometrical obtuseness property of the superbase in Proposition 3.13.

Proposition 3.11. A matrix M ∈ S++
d is arithmetically equivalent to Ad iff M = Mv for

some superbase v = (v0, · · · , vd). Specifically Mv = AAdA
> if vi = Abi for all 0 ≤ i ≤ d,

for some A ∈ GL(Zd).

Proof. One has 1
2

∑d
i=0 bib

>
i = 1

2(11> + Idd) = Ad, compare with (19). The result follows
noting that a matrix A is unimodular iff the transpose A> is unimodular.

Proposition 3.12. Let v = (v0, · · · , vd) be a superbase, and let M̃v :=
∑

e∈Ξ(Mv) ee
>, then

{e ∈ Zd | 〈e, M̃ve〉 = d} = {±v0, · · · ,±vd}. If two superbases v, v′ are such that Mv′ = Mv,
then v and v′ coincide up to a permutation of their elements and a global change of sign.

Proof. Regarding the first point, we may assume up to a linear change of coordinates that v
is the canonical superbase (bi)0≤i≤d. In that case Ξ(Mv) = Ξ(Ad) is described in (21), and
one readily checks that 〈bi, M̃vbi〉 =

∑
e∈Ξ(Ad)〈e, bi〉2 = d for any 0 ≤ i ≤ d. Conversely,

let x = (x1, · · · , xd) ∈ Zd \ {0} be such that 〈x, M̃vx〉 = d. If x1 = · · · = xd, then
〈x, M̃vx〉 = x2

1〈b0, M̃vb0〉 = dx2
1, and thus x = ±b0 as desired. Otherwise we may assume

up to permuting the coordinates that x1 6= x2, and we thus obtain using (21) that

d = 〈x, M̃vx〉 ≥
[
x2

1 + x2
2

]
+
{
x2

3 + · · ·+ x2
d}+

[
(x1 − x2)2

]
+

d∑
i=3

[
(x1 − xi)2 + (x2 − xi)2

]
.

There are d terms within square brackets, and one within curly braces. Each bracketed term
is a positive integer, and the term between braces is non-negative, hence each bracketed
term equals one and the term between braces vanishes. If follows that x = ±bi for some
1 ≤ i ≤ d, as announced.

Now, if Mv = Mv′ , then M̃v = M̃v′ and therfore {±v0, · · · ,±vd} = {±v′0, · · · ,±v′d} by
the first point. If follows that v′i = ε(i)vσ(i) for some signs ε : {0, · · · , d} → {−1, 1} and in-
dices σ : {0, · · · , d} → {0, · · · , d}. Recalling that v′ contains a basis since | det(v′1, · · · , v′d)| =
1, and that v′0+· · ·+v′d = 0, one easily obtains that ε is constant and that σ is a permutation,
which concludes.

Proposition 3.13. For any D ∈ S++
d and any superbase v = (v0, · · · , vd), the following are

equivalent: (i) D ∈ S++(Mv), and (ii) v is D-obtuse, i.e. 〈vi, Dvj〉 ≤ 0 for all 0 ≤ i < j ≤ d.
In particular, each D ∈ S++

d with d ∈ {2, 3} admits a D-obtuse superbase.

Proof. Up to a unimodular change of coordinates, we may assume that v = (b0, · · · , bd) is
the canonical superbase, and thus Mv = Ad. We denote by (Dij)

d
i,j=1 the coefficients

of D, and note that −〈bi, Dbj〉 = −Dij , for all 1 ≤ i < j ≤ d, and −〈b0, Dbi〉 =
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〈b1+· · ·+bd, Dbi〉 =
∑d

j=1Dij , for all 1 ≤ i ≤ d. Assuming thatD ∈ S++(Mv) = S++(Ad),
we obtain by Proposition 3.5 that these negated scalar products are non-negative, as an-
nounced. Conversely, if the superbase (bi)

d
i=0 is D-obtuse, we obtain by (20) a non-negative

decomposition of D supported on Ξ(Ad), and thus D ∈ S++(Ad) by Proposition 2.4. This
establishes the announced equivalence.

By Voronoi’s theorem, for each D ∈ S++
d there exists M ∈ Perfect(d) such that

D ∈ S++(M). In dimension d ∈ {2, 3}, M must be arithmetically equivalent to Ad by
Proposition 2.8, and thus M = Mv for some superbase v by Proposition 3.11. This super-
base is then D-obtuse by the first point, as announced.

In dimension d ∈ {2, 3}, the neighbor relation between perfect forms, on the skele-
ton of Ryskov’s polyhedron Md, can be rephrased in terms of superbase transformations
discovered by Selling [32], and described in the next result. This turns the solution of
Voronoi’s first reduction of D ∈ S++

d by Algorithm 1 into a succession of superbase trans-
formations, known as Selling’s algorithm [4, Algorithm 1] (with the additional observation
that Tr(Mv′D) < Tr(MvD) iff 〈ṽ0, Dṽ1〉 > 0, with the notations of Proposition 3.14). The
subsequent decomposition of D, as described in Propositions 3.3 and 3.5, is then known as
Selling’s decomposition.

Proposition 3.14 (Selling’s superbase transformations). Let d ∈ {2, 3}, and let v and v′ be
superbases. The following are equivalent : (i)Mv′ ∈ N (Mv), and (ii) there are permutations
ṽ of v, and ṽ′ of v′, and a sign ε ∈ {−1, 1} such that

(Case d = 2) εṽ′ = (ṽ0,−ṽ1, ṽ1 − ṽ0), (Case d = 3) εṽ′ = (ṽ0,−ṽ1, ṽ1 + ṽ2, ṽ1 + ṽ3).

Proof. It is proved in [4, Corollary 2.11] that N (Mv) contains the perfect forms associated
with (ṽ0,−ṽ1, ṽ1 − ṽ0) if d = 2 (resp. (ṽ0,−ṽ1, ṽ1 + ṽ2, ṽ1 + ṽ3) if d = 3), where ṽ is any
permutation of v, and no other perfect form. We conclude using the uniqueness of the
superbase associated to a given perfect form, up to a permutation and a global change of
sign, established in Proposition 3.12.

4 Upper bound on the radius of the stencil

The main results of this section are Proposition 4.2 and Theorem 4.3, which imply the part
of Theorem 1.6 about R(µ)-supportedness (but are not restricted to dimension d ≤ 4).
These results follow from the next technical lemma, which relates Voronoi’s reductions of
a matrix and of its inverse.

Lemma 4.1. For any M0 ∈ Perfect0(d), there exists a finite subset P (M0) ⊂ Perfect(d)
such that: for all D ∈ S++(M0), one has D−1 ∈ S++(M1) for some M1 ∈ P (M0).

The proof is postponed, but let us immediately say that it is constructive, and that
a suitable set, denoted Perfect1(M0) and obeying the conditions of P (M0) in Lemma 4.1,
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is eventually obtained as the collection of vertices of the Pareto front of a multi-objective
linear optimization problem posed on Ryskov’s polyhedron, see (32) below. As a numerical
experiment, presented in Section 4.1 below and limited to dimension d ≤ 5, we compute
this set explicitly.

The following result, together with Proposition 3.7, allows to control the largest and the
smallest singular values of the unimodular transformations arising in Voronoi’s reduction.

Proposition 4.2. Let A ∈ GL(Zd), M0 ∈ Perfect0(d), and D ∈ S++(A>M0A). Then
‖D−

1
2A−1‖ ≤ Cλmin(D)−

1
2 , and thus ‖A−1‖ ≤ Cµ(D), for some constant C = C(d).

Proof. SinceD ∈ S++(A>M0A) one hasADA> ∈ S++(M0), see Proposition 3.3. Therefore
(ADA>)−1 ∈ S++(M1) for someM1 ∈ P (M0), using the notations of Lemma 4.1. Recalling
that Perfect0(d) contains a representative of each class of perfect forms, and that it is finite
as well as P (M0), we find thatM1 = Ã>M ′0Ã for someM ′0 ∈ Perfect0(d) and Ã ∈ A, where
A ⊂ GL(Zd) is a fixed and finite subset.

We have obtained that (ADA>)−1 ∈ S++(Ã>M ′0Ã), equivalently D−1 ∈ S++(A−1Ã>

M ′0ÃA
−>). By Proposition 3.7 one has ‖ÃA−>D−

1
2 ‖ ≤ Cλmax(D−1)

1
2 , thus ‖A−>D−

1
2 ‖ ≤

CC ′λmin(D)−
1
2 where C ′ := maxÃ∈A ‖Ã

−1‖. The first estimate follows, by transposition,
and we conclude noting that ‖D−

1
2A−1‖ ≥ λmin(D−

1
2 )‖A−1‖ = ‖A−1‖λmax(D)−

1
2 .

We next estimate, as announced, the radius of the support of the decomposition of
a positive quadratic form obtained from Voronoi’s reduction, which is also the stencil of
our finite differences scheme. To the best of our knowledge, Theorem 4.3 was previously
proved only in dimension d ≤ 3 [22, Theorem 4.11], while in higher dimension only the
weaker estimate |e| ≤ Cµ(D)d−1 was known [23, Proposition 1.1]. The constant (29), when
choosing P (M0) = Perfect1(M0), is computed in Section 4.1 in dimension d ≤ 5, see (33)
and Remark 4.21.

Theorem 4.3. For any D ∈ S++
d , λ ∈ Λ(D), e ∈ supp(λ), one has ‖e‖D−1 ≤ Cλmin(D)−

1
2 ,

and in particular |e| ≤ Cµ(D). A suitable (but not sharp) constant C = C(d) is

C(d) =
√
dmax{‖e‖M−1

1
|M0 ∈ Perfect0(d), e ∈ Ξ(M0), M1 ∈ P (M0)}, (29)

where P (M0) is a finite set obeying the conditions of Lemma 4.1.

Proof. Up to a unimodular change of coordinates, we may assume that D ∈ S++(M0) for
some M0 ∈ Perfect0(d). Then D−1 ∈ S++(M1) for some M1 ∈ P (M0) by Lemma 4.1,
and e ∈ supp(λ(D)) ⊂ Ξ(M0) by Proposition 2.3. Thus ‖e‖2D−1 = Tr(D−1ee>) ≤
(C(d)2/d) Tr(D−1M1) ≤ (C(d)2/d) Tr(D−1) ≤ C(d)2/λmin(D), using that ee> � ‖e‖2

M−1
1

M1

for the second inequality, and that Idd ∈Md for the third. The result follows.
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Let us now turn to the proof of Lemma 4.1. We denote by e1 ∧ · · · ∧ ed−1 ∈ Rd the
generalized cross product of d− 1 vectors e1, · · · , ed−1 ∈ Rd, which is characterized by the
identity

〈e1 ∧ · · · ∧ ed−1, e〉 = det(e1, · · · , ed−1, e) (30)

for all e ∈ Rd. In dimension d = 3 one recovers the usual cross product e1∧e2 = e1×e2, and
in dimension d = 2 the perpendicular to a given vector ∧e1 = e⊥1 . For any matrix A ∈ Rd×d,
we denote by adj(A) its adjugate matrix (if A is invertible, then A−1 = det(A)−1 adj(A)
by Cramer’s rule), which is also the transposed matrix of cofactors [12].

Lemma 4.4. Let e1, · · · , eI ∈ Rd, and λ1, · · · , λI ∈ R, where I ≥ d− 1. Then

adj
( ∑

1≤i≤I
λieie

>
i

)
=

∑
1≤i1<···<id−1≤I

(λi1 · · ·λid−1
)(ei1 ∧ · · · ∧ eid−1

)(ei1 ∧ · · · ∧ eid−1
)>.

Proof. We can assume w.l.o.g. that λ1, · · · , λI ≥ 0, since the identity to be proved is
polynomial in these variables. Then, up to considering

√
λ1e1, · · · ,

√
λIeI , we can assume

that λ1 = · · · = λI = 1.
Denote Ah := [e1, · · · , eI ,

√
he] ∈ Rd×(I+1), where h > 0 and e ∈ Rd are arbitrary. Then

det(AhA
>
h ) = det

( ∑
1≤i≤I

eie
>
i + hee>

)
= det

( ∑
1≤i≤I

eie
>
i

)
+ h
〈
e, adj

( ∑
1≤i≤I

eie
>
i

)
e
〉

+ o(h)

=
∑

1≤i1<···<id≤I
det(ei1 , · · · , eid)

2 + h
∑

1≤i1<···<id−1≤I
det(ei1 , · · · , eid−1

, e)2.

We used Jacobi’s formula for the derivative of the determinant in the first line, and the
Cauchy-Binet formula in the second line. The announced result follows by matching the
first order terms w.r.t. h in these two expressions, and recalling (30) and the fact that
e ∈ Rd is arbitrary.

We introduce the following notations: for any M0 ∈ Perfect0(d),

E(M0) := {e1 ∧ · · · ∧ ed−1 | e1, · · · , ed−1 ∈ Ξ(M0)} \ {0},

and for any µ : E(M0)→ R,
Dµ :=

∑
e∈E(M0)

µ(e)ee>.

Corollary 4.5. Given M0 ∈ Perfect0(d), one has E(M0) ⊂ Zd. In addition, for any
D ∈ S++(M0) there exists µ : E(M0)→ R+ such that D−1 = Dµ.

Proof. From (30) we see that e1∧· · ·∧ed−1 ∈ Zd for all e1, · · · , ed−1 ∈ Zd, thus E(M0) ⊂ Zd
as announced. From D ∈ S++(M0), we have det(D) > 0 hence D−1 = adj(D)/ det(D),
and a decomposition D =

∑
e∈Ξ(M0) λ(e)ee> whose coefficients λ : Ξ(M0) → R+ are non-

negative. We conclude using Lemma 4.4.
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We define a linear mapping LM0 : Sd → RE(M0), and the image L(M0) of the set of
perfect forms, as follows

LM0(M) :=
(
〈e,Me〉

)
e∈E(M0)

, L(M0) := LM0(Perfect(d)). (31)

Note that Tr(DµM) =
∑

e∈E(M0) µ(e) Tr(ee>M) =
∑

e∈E(M0) µ(e)〈e,Me〉 = 〈µ,LM0(M)〉.

Lemma 4.6. The linear mapping LM0 : Sd → RE(M0) is injective, for anyM0 ∈ Perfect0(d).

Proof. If LM0(M) = 0, then Tr(D−1M) = 0 for all D ∈ S++(M0) by Corollary 4.5 and
noting that 〈e,Me〉 = Tr(Mee>) for any e ∈ Rd. Thus Tr(D′M) = 0 for all D′ ∈ Sd,
by linearity since S++(M0) has non-empty interior. The result follows by recognizing the
Frobenius inner product on Sd, and choosing D′ = M .

Lemma 4.7. There exists n0(d) ∈ Z++ such that L(M0) ⊂ 1
n0(d)Z

E(M0)
+ for all M0 ∈

Perfect0(d).

Proof. The elements of Perfect0(d) have rational coefficients, since they are the vertices of a
polytope defined by rational inequalities, hence by finiteness there exists a positive integer
such that n0(d) Perfect0(d) ⊂ Zd×d. By arithmetical equivalence n0(d) Perfect(d) ⊂ Zd×d,
since GL(Zd) ⊂ Zd×d. Recalling that E(M0) ⊂ Zd, we obtain that n0(d)〈e,Me〉 is an
integer for all e ∈ E(M0), which is positive since Perfect(d) ⊂ S++

d . The result follows.

We equip RE(M0)
+ with the componentwise partial ordering. Analogously, the tuples

a = (a1, · · · , an) and b = (b1, · · · , bn) satisfy a � b iff (ai ≤ bi for all 1 ≤ i ≤ n). An
element a of a partially ordered set A is said to be minimal if there is no b ∈ A \ {a} such
that b � a. There may be several minimal elements.

Corollary 4.8. For any M0 ∈ Perfect0(d), the set of minimal elements of L(M0), denoted
L1(M0), is finite.

Proof. It suffices to prove that the set of minimal elements of any A ⊂ ZN+ is finite, where
N is arbitrary. Hence, it suffices to prove that there is no sequence (ak)k≥0 of pairwise non-
comparable elements in ZN+ . For contradiction, consider such a sequence, whose elements
are denoted ak = (a1

k, · · · , aNk ). Then for any k ≥ 0, there exists 1 ≤ i ≤ N such that
aik < ai0. Thus, there exists a fixed 1 ≤ i ≤ N and a strictly increasing σ : Z+ → Z+ such
that aiσ(k) is independent of k ∈ Z+. But this produces an infinite sequence of pairwise non-
comparable elements in ZN−1

+ , which by induction yields a contradiction (the case N = 1
being obvious), and the result is proved.

We consider the multi-objective optimization problem consisting in minimizing LM0

over a set M ⊂ Sd (for instance M = Md). The set of solutions to this problem, often
referred to as the Pareto front, is defined as

ParetoM0(M) := {M1 ∈M |6 ∃M2 ∈M \ {M1}, LM0(M2) � LM0(M1)}.
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Note that one cannot have LM0(M2) = LM0(M1) in the above, by Lemma 4.6. In the
following, we define the set Perfect1(M0) as follows:

Perfect1(M0) := Perfect(d) ∩ ParetoM0(Md). (32)

Lemma 4.9. For any M0 ∈ Perfect0(d), one has LM0(Perfect1(M0)) ⊂ L1(M0).

Proof. Let M1 ∈ Perfect1(M0). Since M1 ∈ Perfect(d), one has LM0(M1) ∈ L(M0).
Assume that LM0(M1) 6∈ L1(M0). Then there exists a ∈ L(M0) \ {LM0(M1)} such
that a � LM0(M1). By definition of L(M0), there exists M2 ∈ Perfect(d) \ {M1} such
that a = LM0(M2). Therefore LM0(M2) � LM0(M1), which is impossible since M1 ∈
ParetoM0(Md).

Lemma 4.10. Let M ⊂ Sd, M0 ∈ Perfect0(d), and µ ∈ RE(M0)
++ . Then for any M1 ∈

argminM∈MTr(DµM), one has M1 ∈ ParetoM0(M).

Proof. Assume that M1 6∈ ParetoM0(M). Then there exists M2 ∈ M \ {M1} such that
LM0(M2) � LM0(M1). By Lemma 4.6, LM0(M2) 6= LM0(M1). Therefore Tr(DµM2) =
〈µ,LM0(M2)〉 < 〈µ,LM0(M1)〉 = Tr(DµM1), which contradicts the assumptions.

Remark 4.11. When choosing M = Md, Lemma 4.10 provides a sufficient condition for
a perfect form M1 ∈ Perfect(d) to belong to Perfect1(M0). It can be proved that this
condition is also necessary, see Corollary 4.16 below.

Proof of Lemma 4.1. We choose P (M0) := Perfect1(M0) which is defined in (32). By
Corollary 4.8 and Lemma 4.9, Perfect1(M0) is a finite set. It remains to prove that for any
D ∈ S++(M0), the function M 7→ Tr(D−1M) is minimized by some M1 ∈ Perfect1(M0).

Given D ∈ S++(M0), there exist by Corollary 4.5 some weights µ ∈ RE(M0)
+ such that

D−1 = Dµ. For ε > 0, we use the notation µ + ε1 := (µE + ε)E∈E(M0). The quantity
Tr(Dµ+ε1M) is minimized for some M ∈ Perfect(d), which we call M(ε). By Lemma 4.10,
one has M(ε) ∈ ParetoM0(Md), hence M(ε) ∈ Perfect1(M0). We conclude the proof by
letting M1 := limε→0M(ε), up to extracting a converging subsequence.

Remark 4.12. An alternative, arguably simpler, replacement for the set Perfect1(M0) in the
proof of Lemma 4.1 could be P̃erfect1(M0) := ParetoM0(Perfect(d)). Note that one has by
definition L1(M0) = LM0(ParetoM0(Perfect(d))), and therefore, by Lemmas 4.6 and 4.9,
Perfect1(M0) := Perfect(d) ∩ ParetoM0(Md) ⊂ ParetoM0(Perfect(d)) =: P̃erfect1(M0).
However, it is not obvious whether this inclusion is an equality, and Fig. 2 suggests that
it may not be. Our motivation for choosing the definition (32) is that (i) it leads to a
potentially sharper estimate in (29), and (ii) it allows computing Perfect1(M0) using the
procedure described in Section 4.1.
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Figure 2: Multi-objective optimization over a polygon K ⊂ R2, and over its vertices.
Left: Pareto front of the problem minx∈K(x1, x2). Right: Pareto front of the problem
minx vertex ofK(x1, x2). Note that the second Pareto front is not included in the first one.

Remark 4.13 (Eutacticity). A perfect form M ∈ Perfect(d) is said eutactic if

M−1 =
∑

e∈Ξ(M)

µ(e)ee>,

for some positive coefficients µ : Ξ(M) → R++. This well-studied condition character-
izes local minima of the determinant over Ryskov’s polyhedron, see [30, Theorem 3.9].
Corollary 4.5 is strongly reminiscent of the eutaticity property, since it describes the de-
composition of an inverse matrix as a sum of rank one matrices, but eventually we could
not find a genuine connection.

4.1 Construction of the set Perfect1(M0) in dimension d ≤ 4.

The objective of this section is to compute a constant C(d) such that Theorem 4.3 holds.
For that purpose, we choose P (M0) = Perfect1(M0) in the statement of this result, for
all M0 ∈ Perfect0(d), which fullfils the required conditions as established in the previous
section. The finite set Perfect1(M0) is defined in (32) using the Pareto front for a multi-
objective linear programming problem on Ryskov’s polyhedron. Methods for computing
Pareto fronts for multi-objective linear programming problems have been well-studied in
the literature, see for instance [16]. We describe below such a method in our setting, and
we apply it in dimensions d ≤ 4, and d = 5 in Remark 4.21.

The only non-standard property of our setting is the fact that Ryskov’s polyhedron is
defined by infinitely many affine constraints. We overcome this by defining, for any α ∈ R,

Mα
d := {M ∈Md | Tr(M) ≤ α},

which is a bounded polyhedron in the usual sense, and is non-empty if α is large enough.
We denote by Vα(d) the set of vertices ofMα

d , and by Nα(M) ⊂ Vα the set of neighbors
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of any M ∈ Vα(d) on the skeletal structure ofMα
d . Similarly to (32), for M0 ∈ Perfect0(d),

we define
Vα1 (M0) := Vα(d) ∩ ParetoM0(Mα

d ).

Lemma 4.14. Let M ∈ Sd, α > Tr(M), and M0 ∈ Perfect0(d). Then:

(i) M ∈ Perfect(d) ⇐⇒ M ∈ Vα(d).

(ii) M ∈ ParetoM0(Md) ⇐⇒ M ∈ ParetoM0(Mα
d ).

(iii) M ∈ Perfect1(M0) ⇐⇒ M ∈ Vα1 (M0).

If moreover M ∈ Perfect(d) and α > Tr(M ′) for any M ′ ∈ N (M), then:

(iv) N (M) = Nα(M).

Proof. Properties (i) and (iv) are true as local geometric properties ofMd, and (iii) follows
directly from (i) and (ii). It remains to prove (ii). The implicationM1 ∈ ParetoM0(Md) =⇒
M1 ∈ ParetoM0(Mα

d ) follows directly from the definition of ParetoM0 . Conversely, assume
that M1 6∈ ParetoM0(Md). Then there exists M3 ∈ Md \ {M1} such that LM0(M3) �
LM0(M1). Let M4 := M1 + t(M3 −M1) for t > 0 small enough so that Tr(M4) ≤ α. Then
M4 ∈Mα

d \ {M1} and LM0(M4) � LM0(M1). Therefore M1 6∈ ParetoM0(Mα
d ).

We first describe a method for checking whether a perfect form M ∈ Perfect(d) belongs
to Perfect1(M0).

Proposition 4.15. Let M0 ∈ Perfect0(d), α ∈ R, and M1 ∈ Vα(d). Then M1 ∈ Vα1 (M0) if
and only if there exists µ ∈ RE(M0)

++ satisfying one of the two following equivalent conditions:

(i) M1 ∈ argminM∈Mα
d

Tr(DµM).

(ii) Tr(DµM1) ≤ Tr(DµM), ∀M ∈ Nα(M1).

Proof. Conditions (i) and (ii) are equivalent by the usual optimality condition in linear
programs. The result is a direct consequence of [16, Theorem 6.11], and of the fact that
Tr(DµM) = 〈µ,LM0(M)〉.

Corollary 4.16. Let M0 ∈ Perfect0(d) and M1 ∈ Perfect(d). Then M1 ∈ Perfect1(M0) if
and only if there exists µ ∈ RE(M0)

++ satisfying one of the two following equivalent conditions:

(i) Dµ ∈ S++(M1).

(ii) Tr(DµM1) ≤ Tr(DµM), ∀M ∈ N (M1).

Proof. Conditions (i) and (ii) are equivalent by the usual optimality condition in linear
programs, see (18). Now let α > Tr(M1) be large enough so that α > Tr(M) for any
M ∈ N (M1). Then the result follows from Lemma 4.14 and Proposition 4.15.

27



Checking the existence of µ ∈ RE(M0)
++ satisfying the condition (ii) of Corollary 4.16

amounts to checking the feasibility of a linear program, which can be done algorithmically.
Let us now describe a method for checking whether a subset P of Perfect1(M0) coincides

with the whole of Perfect1(M0). To this end, we use the following well-known property
about the connectivity of the Pareto front of a multi-objective linear program.

Proposition 4.17. Let α ∈ R, M0 ∈ Perfect0(d), and M1, M2 ∈ Vα1 (M0). Then there
exists a family of matrices (M (i))1≤i≤I ⊂ Vα1 (M0), where I is a positive integer, such that
M (1) = M1, M (I) = M2, and M (i+1) ∈ Nα(M (i)) for any 1 ≤ i < I.

Proof. This follows from [16, Theorem 7.10].

Corollary 4.18. Let M0 ∈ Perfect0(d), and let P ⊂ Perfect1(M0) be a nonempty set. If,
for any M ∈ P , one has N (M) ∩ Perfect1(M0) ⊂ P , then P = Perfect1(M0).

Proof. Let us denote by M1 some element of P . Let M2 ∈ Perfect1(M0), and let us show
that M2 ∈ P .

Since Perfect1(M0) is a finite set, we may choose α ∈ R large enough so that Tr(M) < α
and Tr(M ′) < α for any M ∈ Perfect1(M0) and M ′ ∈ N (M). Then by Lemma 4.14, one
has M1, M2 ∈ Vα1 (M0).

Let (M (i))1≤i≤I be as in Proposition 4.17. Since M (I) = M2, it suffices to prove by
induction that M (i) ∈ P for any 1 ≤ i ≤ I.

We know that M (1) = M1 ∈ P . Now let 1 ≤ i < I and assume that M (i) ∈ P .
Recall that M (i+1) ∈ Nα(M (i)) and M (i+1) ∈ Vα1 (M0). Using Lemma 4.14, we deduce that
M (i+1) ∈ N (M (i)) and M (i+1) ∈ Perfect1(M0). Then it follows from the assumptions that
M (i+1) ∈ P , which concludes the proof.

In view of the above, we use Algorithm 3 in order to compute Perfect1(M0).

Algorithm 3 Computing Perfect1(M0)

Initialization:
Let µ ∈ RE(M0)

++ (chosen arbitrarily).
Let M1 ∈ Perfect(d) be such that Dµ ∈ S++(M1) (computed using Algorithm 1).
P ← {M1}.

Repeat
P ′ ←

(⋃
M∈P N (M) ∩ Perfect1(M0)

)
\ P

P ← P ∪ P ′.
while P ′ 6= ∅.
Return P .

Proposition 4.19. Assuming that M0 ∈ Perfect0(d), Algorithm 3 terminates and returns
Perfect1(M0).
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Proof. By Corollary 4.16, one hasM1 ∈ Perfect1(M0), see the initialization of Algorithm 3.
Therefore, at each iteration, P is a nonempty subset of Perfect1(M0). Since the cardinal-
ity of P is increased at each iteration, and since Perfect1(M0) is finite by Corollary 4.8
and Lemma 4.9, the algorithm must terminate. After the termination condition is met,
Corollary 4.18 guarantees that P = Perfect1(M0).

Let us describe the results that we obtained by applying Algorithm 3 forM0 ∈ Perfect0(d),
2 ≤ d ≤ 4. We obtain the cardinalities

# Perfect1(A2) = 1, # Perfect1(A3) = 3, # Perfect1(A4) = 22, # Perfect1(D4) = 545.

For concreteness, the set Perfect1(A2) = {M×2 } contains a single element, defined as

M×d :=
1

2
(3 Idd−11>) =

1

2


2 −1 · · · −1

−1 2
. . .

...
...

. . . . . . −1
−1 · · · −1 2

 .

The elements of Perfect1(A3) are obtained as

M×3 + bi ⊗ bj , 1 ≤ i < j ≤ 3,

where bi⊗ bj := 1
2(bib

>
j + bjb

>
i ) stands for the symmetrized outer product. The elements of

Perfect1(A4) have three possible forms:

M×4 + bi ⊗ bj + bj ⊗ bk + bk ⊗ bl, M×4 + bi ⊗ bj + bj ⊗ bk + bk ⊗ bi,
M×4 + bi ⊗ bj + 2bk ⊗ bl, where {i, j, k, l} = {1, 2, 3, 4}.

We do list the elements of Perfect1(D4), which is larger and more complex. Another
observation is that Perfect1(M0) is invariant under the (transposed) unimodular isometries
of M0, as shown in Lemma 4.20 below, and we can thus consider the classes of its elements
modulo the isometry group of M0. The set Perfect1(A3) has a single isometric equivalence
class of cardinality 3. The elements of Perfect1(A4) arithmetically equivalent to A4 (resp.
D4) form a single isometric equivalence class of cardinality 12 (resp. 10). The elements of
Perfect1(D4) arithmetically equivalent to A4 (resp. D4) form three isometric equivalence
classes of cardinality 48, 48, 288 (resp. 1, 16, 144).

Lemma 4.20. Let M0 ∈ Perfect0(d) and A ∈ GL(Zd) be such that A>M0A = M0. Then
AM1A

> ∈ Perfect1(M0) for all M1 ∈ Perfect1(M0).

Proof. The result follows from the definition (32) of Perfect1(M0) and the observation that
Ξ(M0) = A−1Ξ(M0), and DA−1E = A>DEA so that Tr(M1DA−1E) = Tr(AM1A

>DE) for
any E ⊂ Ξ(M0), using the notations of (31).
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M A2 A3 D4 A4 D5 A5 A5,0 φ2

#Ξ(M) 3 6 12 10 20 15 15 36
#N (M) 3 6 64 10 400 15 15 38 124

# Perfect1(M) 1 3 545 22 11 386 192 880 333 712 ?
#(Perfect1(M)/Isom(M)) 1 1 6 2 6489 10 598 ?

r(M)2 8/3 2 6 4 36 6 20 ?

Table 1: Properties of perfect forms related to the computation of Perfect1. We denote by
Perfect1(M)/Isom(M) the collection of equivalence classes of Perfect1(M) modulo unimod-
ular isometries of M . We denote r(M) := max{‖e‖M−1

1
| e ∈ Ξ(M),M1 ∈ Perfect1(M)},

thus C(d) =
√
dmax{r(M) |M ∈ Perfect0(d)}, see (29) with P (M0) = Perfect1(M0).

From the sets Perfect1(M0) that we computed, we deduce the following values for the
constants C(d) defined in (29), when choosing P (M0) := Perfect1(M0):

C(2) = 2
√

2/3 ≈ 1.633, C(3) =
√

6 ≈ 2.449, C(4) = 2
√

6 ≈ 4.899. (33)

This result is new in dimension d = 4, and improves on [22, Theorem 4.11] when d ∈ {2, 3}.
The constants (33) are directly related to the width of our finite difference stencils, and
thus to the accuracy, parallelization potential, ease of implementing boundary conditions,
of the resulting numerical schemes as discussed in Section 1.1.

Remark 4.21 (Extension to higher dimensions). The computation of Perfect1(M0) involves
the numerical solution of linear optimization problems featuring

(#Ξ(M0)
d−1

)
unknowns and

#N (M1) constraints for some M1 ∈ Perfect(d), see Corollary 4.16, where #S denotes the
cardinal of a set S. In dimension d = 4, the most difficult case is

(
12
3

)
= 220 unknowns

and 64 constraints for M0 = M1 = D4, which is easily addressed using standard software
packages.

Following the suggestion of a referee, we considered the case d = 5, where there are
three perfect forms [8] : D5, A5 and A5,0, see Eqs. (19), (22) and (34) and Table 1. In
dimension d = 5, the most difficult case is

(
20
4

)
= 5845 unknowns and 400 constraints

for M0 = M1 = D5, which again is numerically tractable. Our numerical computation
of Perfect1(D5) takes advantages of the invariance property of Lemma 4.20, involves the
numerical solution of more than 300 000 instances of the linear program of Corollary 4.16,
and terminates in approximately 14 hours using a single core of a macbook pro laptop
equipped an M1 Max processor and with 32 GB of RAM. Note that the computation
terminates in seconds for A2,A3,D4,A4,A5, and in minutes for A5,0. A companion code
is provided alongside this paper for the interested reader4. We obtain C(5) =

√
180 ≈ 13.42.

There are seven perfect forms in dimension d = 6, denoted (φi)
6
i=0 following [1,8]. The

case M0 = M1 = φ2 leads to a linear program featuring
(

36
5

)
= 376 992 unknowns and

4https://github.com/Mirebeau/Perfect1-computation
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38 124 constraints, see Table 1. The computation of Perfect1(φ2) likely involves solving
millions of instances of such problems, but unfortunately we could not address a single one
using our numerical ressources. We regard this extension as opportunity for future work.

5 Guarantees against checkerboard artifacts

In Section 5.1, we establish Theorem 5.1, which coincides with the part of Theorem 1.6
about the ε-spanning property. In Section 5.2, we show how this property may be used to
prove the absence of checkerboard artifacts in some finite difference schemes.

5.1 The spanning property

Theorem 5.1. Let D ∈ S++
d , where d ≤ 4. Then for some constant ε = ε(d) > 0,

SpanZ{e ∈ Zd | λe(D) ≥ ελmin(D)} = Zd.

Theorem 5.1 is a new result in dimension d = 4. In dimensions d ∈ {2, 3} it was estab-
lished in [5, section 4.3], for the numerical analysis of a discretization of a non-divergence
form PDE with a point source singularity.

Lemma 5.2. Let d ∈ S++
d and λ ∈ Λ(D). Then for some constant ε = ε(d) > 0

SpanR{e ∈ Zd | λe ≥ ελmin(D)} = Rd.

Proof. The proof adapts and extends [5, Lemmas B.7 and B.8]. Let n ≥ d, and let

c(d, n) := min
{

max
i1<···<id

λmin

( ∑
1≤j≤d

eije
>
ij

) ∣∣∣ (e1, . . . , en) ∈ (Rd)n,
∑

1≤i≤n
eie
>
i = Idd

}
.

Then c(d, n) is positive, as the minimum of a positive continuous function over a non-
empty compact set. By a simple change of variables, for any (e1, . . . , en) ∈ (Rd)n such that∑n

i=1 eie
>
i = D, there exists i1 < · · · < id such that

∑d
j=1 eije

>
ij
� c(d, n)D.

We now choose nd := max{#(Ξ(M0)) | M0 ∈ Perfect0(d)} and let cd := c(d, nd). Let
M ∈ Perfect(d) be minimizing in (11). By Proposition 2.3, one has D =

∑
e∈Ξ(M) λ

eee>,
where #(Ξ(M)) ≤ nd. Thus there exists Ξ ⊂ Ξ(M), #(Ξ) = d, such that

∑
e∈Ξ λ

eee> �
cdD, and therefore SpanR Ξ = Rd.

Let e ∈ Ξ, and let v ∈ Rd \ {0} be orthogonal to SpanR(Ξ \ {e}). Then

cd‖v‖2D ≤
∑
e′∈Ξ

λe
′〈e′, v〉2 = λe〈e, v〉2 ≤ λe‖e‖2D−1‖v‖2D ≤ Cλe‖v‖2D/λmin(D),

using Theorem 4.3 for the last inequality, with C = C(d). Therefore λe ≥ (cd/C)λmin(D),
which concludes.
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Lemma 5.3. Let d ≤ 4 and M = A>M0A ∈ Perfect(d), where A ∈ GL(Zd) and M0 ∈
Perfect0(d). Let also Ξ ⊂ Ξ(M) be such that SpanR Ξ = Rd and #(Ξ) = d. If M0 = Ad,
then SpanZ Ξ = Rd. This remains true if M0 = D4, except for the following three subsets:
{A−1e | e ∈ Ξi} ⊂ Ξ(M), 1 ≤ i ≤ 3, where

Ξ1 := {±b1, ±b4, ±(b2 − b3), ±(b1 − b2 − b3 + b4)},
Ξ2 := {±b2, ±(b1 − b3), ±(b4 − b3), ±(b1 − b2 + b4)},
Ξ3 := {±b3, ±(b1 − b2), ±(b4 − b2), ±(e1 − b3 + b4)}.

Proof, computer assisted. By Proposition 2.5, we may assume without loss of generality that
A = Idd. Thus Ξ = {b1, · · · , bd} is a d-element subset of a known set, described in Proposi-
tions 2.6 and 2.7. In dimension d = 4, this gives C4

Ξ(A4) = C4
10 = 210 or C4

Ξ(D4) = C4
12 = 495

possibilities. We proceed by exhaustive computer enumeration, and consider all such sub-
sets Ξ = {e1, · · · , ed} such that det(e1, · · · , ed) 6= 0, corresponding to the assumption that
SpanR Ξ = Rd. We check that | det(b1, · · · , bd)| = 1, which yields the announced result
SpanZ Ξ = Zd, except in the case of Ξi, 1 ≤ i ≤ 3, where |det(e1, · · · , ed)| = 2.

Alternatively, in the case where M0 = Ad, a formal argument which holds in arbitrary
dimension d is presented in [5, Lemma B.6].

Before turning to the proof of Theorem 5.1, we present two results showing that this
property is in a sense unexpected, and may not hold for variants of the proposed construc-
tion. Corollary 5.4 below shows that it is important to choose λ(D) as the barycenter of
Λ(D), and not just any point of Λ(D), in order for Theorem 5.1 to apply. Proposition 5.5
then shows that no such selection principle within Λ(D) works in dimension d = 5.

Corollary 5.4. Let D :=
∑

e∈Ξ1
ee>, and let λ ∈ Λd be defined by λe := 1 if e ∈ Ξ1,

λe := 0 otherwise. Then λ ∈ Λ(D) and SpanZ{e ∈ Zd | λe > 0} 6= Zd.

Proof. One has SpanZ{e ∈ Zd | λe > 0} = SpanZ(Ξ1) 6= Zd by Lemma 5.3. The fact that
λ ∈ Λ(D) follows from Proposition 2.4, using that Ξ1 ⊂ Ξ(D4).

Proposition 5.5. There exists D0 ∈ S++
5 such that Λ(D0) = {λ0} is a singleton, and

supp(λ0) is a basis of a sub-lattice of Z5 of index two. Thus, any mapping λ : S++
5 → Λ5

such that λ(D) ∈ Λ(D) for all D ∈ S++
5 , fails the ε-spanning property at D0 for all ε > 0.

Proof. Let us introduce the perfect form A5,0 ∈ Perfect(5), following the notations of [8],
and its minimal vectors Ξ(A5,0) = {e1, · · · , e15} ⊂ Z5, presented in column form:

A5,0 =
1

4


4 1 1 −2 −2
1 4 1 −2 −2
1 1 4 −2 −2
−2 −2 −2 4 1
−2 −2 −2 1 4

 , Ξ(A5,0) =


1 0 0 0 0 1 1 0 0 0 0 1 1 0 1
0 1 0 0 0 0 0 1 1 0 0 1 0 1 1
0 0 1 0 0 0 0 0 0 1 1 0 1 1 1
0 0 0 1 0 1 0 1 0 1 0 1 1 1 1
0 0 0 0 1 0 1 0 1 0 1 1 1 1 1

 . (34)
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Let D =
∑15

i=1 λieie
>
i , where λi ≥ 0 for all 1 ≤ i ≤ 15 are any given non-negative coeffi-

cients. Since #Ξ(A5,0) = 15 = dim(S5), the set of admissible decompositions Λ(D) only
contains a single element λ : namely the one defined by λei = λi, for all 1 ≤ i ≤ 15, and
λe = 0 for all e /∈ Ξ(A5,0).

We now observe that det(e1, e2, e10, e11, e12) = −2, thus (e1, e2, e10, e11, e12) is a basis
of a sub-lattice of Z5 of index two. Letting D0 :=

∑
i∈{1,2,10,11,12} eie

>
i , we have D0 ∈ S++

5

since (e1, e2, e10, e11, e12) is a basis of the vector space R5, and by the above Λ(D0) = {λ0}
where λ0 is the indicator function of {e1, e2, e10, e11, e12}. The result follows.

Proof of Theorem 5.1. Let M = A>M0A ∈ Perfect(d) be minimizing in (11), where A ∈
GL(Zd) and M0 ∈ Perfect0(d). For now, let ε be as in Lemma 5.2. Then there exists
Ξ ⊂ Ξ(M), #(Ξ) = d, such that SpanR Ξ = Rd and λe(D) ≥ ελmin(D), for any e ∈ Ξ.

We assume from now on that M0 = D4 and Ξ = {A−1e | e ∈ Ξi}, for some 1 ≤
i ≤ 3, since otherwise Lemma 5.3 concludes the proof. Let κ1 := min{λe(D) | e ∈ Ξ}
and κ2 := min{λe(D) | e ∈ Ξ(M)}. We know that κ1 ≥ ελmin(D). Let us show that
κ2 ≥ (ε/4)λmin(D).

Note that Ξ(D4) = Ξ1 ∪ Ξ2 ∪ Ξ3 and that
∑

e∈Ξi
ee> is independent of i ∈ {1, 2, 3}

(thus so is
∑

e∈Ξi
(A−1e)(A−1e)>). We deduce that λ̃ ∈ Λ(D), where

λ̃e :=


λe(D)− κ1 if e ∈ Ξ,

λe(D) + κ1/2 if e ∈ Ξ(M) \ Ξ,

0 else.

Since Λ(D) is a triangle and λ(D) is its barycenter, see Proposition 3.6, the point λ̂ :=
(3/2)λ(D) − (1/2)λ̃ belongs to Λ(D). By construction, there is e∗ ∈ Ξ(M) \ Ξ such that
κ2 = λe∗(D). One has

0 ≤ λ̂e∗ = 3
2λ

e∗(D)− 1
2(λe∗(D) + κ1/2) = κ2 − κ1/4.

Thus, for any e ∈ Ξ(M), one has λe(D) ≥ κ2 ≥ κ1/4 ≥ (ε/4)λmin(D). This concludes the
proof, since SpanZ Ξ(M) = SpanZ Ξ(D4) = Zd.

5.2 Absence of checkerboard artifacts

We establish the coercivity property of the discretized elliptic energy announced in The-
orem 1.3. The spanning property of the scheme coefficients plays a key role, by ensuring
the connectivity of the stencils of the finite differences discretization. Coercivity is used in
the proof of the convergence rate Theorem 1.4, and also rules out checkerboard artifacts or
similar high frequency oscillations that may arise with ill designed wide stencil finite differ-
ence schemes, such as (36) discussed below. The upper and lower estimates announced in
Theorem 1.3 are established independently in Proposition 5.8 and Corollary 5.10.
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Denote by δehu(x) := (u(x+ he)− u(x))/h the first order finite difference of u : Tdh → R
in the direction e ∈ Zd. Recall that T := R/Z and Th := (hZ)/Z, where the grid scale
h > 0 is the inverse of a positive integer. The discretized elliptic energy (8) is defined as a
sum of squares of finite differences. A basic ingredient of the proof is the ability to control
such terms by others.

Lemma 5.6. Let (a0, . . . , an) ∈ Rn+1. Then (a0−an)2 ≤ n
(
(a0−a1)2 + · · ·+(an−1−an)2

)
.

Proof. Apply the Cauchy-Schwarz inequality to (a0−a1, . . . , an−1−an) and (1, . . . , 1).

Corollary 5.7. Let e0, · · · , en−1 ∈ Zd and e := e0 + · · ·+ en−1. Let h > 0, x = x0 ∈ hZd,
and xi+1 := xi + hei for all 0 ≤ i < n. Then for any u : hZd → R,(

δehu(x)
)2 ≤ n[(δe0h u(x0)

)2
+ · · ·+

(
δ
en−1

h u(xn−1)
)2]

.

Proof. Apply Lemma 5.6 with ai := u(xi), 1 ≤ i ≤ n.

Let us mention that, in a spirit similar to Theorem 1.3, a Lipschitz estimate for so-
lutions of the discretized eikonal equation (46) is established in [14], using closely re-
lated techniques and starting from the bound max{0, δehu(x)

}
≤ max{0, δe0h u(x0)} + · · · +

max{0, δen−1

h u(xn−1)}.
We next prove the easy part of Theorem 1.3, which is the announced upper bound.

For convenience, we denote by n(d,R) := #{b ∈ Zd||b| ≤ R} the number of integer points
within a radius R.

Proposition 5.8 (Upper bound for the discrete elliptic energy). Consider weights λ : Td →
Λd which are bounded by λmax and R-supported. Then Qh(u) ≤ C‖∇hu‖2L2

h
, for all h > 0

and u : hZd → R, where C = C(d, λmax, R).

Proof. Define for any x ∈ Th, recalling that (b1, · · · , bd) denotes the canonical basis of Rd,

Ex,Rh (u) :=
∑
|b|≤R,
y:=x+hb

∑
1≤i≤d

[
(δbih u(y))2 + (δ−bih u(y))2

]
, (35)

where implicitly the offset b ∈ Zd. Consider e ∈ Zd with |e| ≤ R. Denote e = (σ1α1, · · · , σdαd) ∈
Zd, where σ1, · · · , σd ∈ {−1, 1} and α1, · · · , αd ∈ Z+, and observe that e = σ1b1 + · · · +
σ1b1 + σ2b2 + · · ·+ σ2b2 + · · · , where each term σibi is repeated αi times, for all 1 ≤ i ≤ d.
Then by Corollary 5.7 we successively obtain:(

δehu(x)
)2 ≤ C0E

x,R
h (u), Exh (u) :=

∑
e∈Z

λe(x)
[(
δehu(x)

)2
+
(
δ−eh u(x)

)2] ≤ C1E
x,R
h (u),

where C0 := R
√
d ≥ α1 + · · ·+ αd and C1 := 2λmaxn(d,R)C0. Eventually, we conclude

Eh(u) :=
∑
x∈Tdh

Exh (u) ≤ C1

∑
x∈Tdh

Ex,Rh (u) = 2n(d,R)C1

∑
x∈Tdh

‖∇hu(x)‖2.
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Before turning to the proof of the lower bound for the discrete elliptic energy, we would
like to illustrate a situation where it may fail. The following is an example of a finite
difference scheme featuring such undesirable checkerboard artifacts:

1

2

2∑
i=1

u(x+ hei) + u(x− hei)− 2u(x)

h2
= 0 in T2

h, (36)

where e1 := (1, 1), e2 := (1,−1), and 1/h ∈ 2Z++. This scheme is a discretization of the
equation ∆u(x) = 0 in T2. Consider the two subsets of T2

h defined as

(h{(i, j) ∈ Z2 | i+ j ∈ 2Z})/Z2, (h{(i, j) ∈ Z2 | i+ j ∈ 2Z + 1})/Z2, (37)

collecting points whose sums of coefficients are respectively even and odd after scaling by
h−1. Then the solutions of (36) are precisely the functions which are constant on each one
of the sets (37), but are not necessarily constant on the whole of T2

h. The reason underlying
this failure is that the offsets e1, e2 do not span Z2 with integer coefficients, although they
span R2 with real coefficients, since | det(e1, e2)| = 2 6= 1. In fact SpanZ{e1, e2} = {(a, b) ∈
Z2 | a + b ≡ 0 (mod 2)} is a subgroup of index two of Z2. In general, issues of similar
nature can be expected to arise when the offsets of the finite difference scheme span a strict
subgroup of Zd, of arbitrary index greater than or equal to two. The spanning property
rules out this undesirable behavior.

The numerical scheme (36) can be obtained as the optimality condition of the discrete
elliptic energy Eh defined by (5), with constant coefficients λ±e1(x) = λ±e2(x) = 1/2,
λe(x) = 0 otherwise, and r.h.s. f = 0. These coefficients fail the spanning property, and
the energy Eh attains its minimum (which is zero) on maps u : T2

h → R which are constant
on each of the two sets (37), but are possibly not globally constant.

Lemma 5.9. Consider weights λ : Td → Λd which are R-supported, K-Lipschitz, and ε-
spanning. Then for any 0 < h ≤ h0 and any x0, x∗ ∈ Tdh with |x0 − x∗| = h, there exists
e0, · · · , en−1 ∈ Zd \ {0} with n ≤ n0 such that for all 0 ≤ i < n

λ±ei(xi) ≥ ε/2, with xi+1 := xi + hei

and in addition xn = x∗. The constants h0 > 0 and n0 only depend on (d,R,K, ε).

Proof. A closely related argument appears in [14, Lemma 4.3], in the context of the dis-
cretization of a three-dimensional eikonal equation based on Selling’s algorithm.

Let h > 0 and x0 ∈ Tdh. By the ε-spanning property, there exist e′1, · · · , e′d ∈ Zd such
that | det(e′1, · · · , e′d)| = 1 and λ±e

′
i(x0) ≥ ε for all 1 ≤ i ≤ d. Denote by A ∈ GL(Zd)

the matrix whose columns are (e′1, · · · , e′d), and note that 1 = | det(A)| ≤ ‖A‖d−1‖A−1‖−1,
thus ‖A−1‖ ≤ ‖A‖d−1 ≤ C0 := (R

√
d)d−1. (In the case where the weights are obtained

as in Corollary 1.7, namely λ(x0) := λ(D(x0)), one also has the possibly sharper estimate
‖A−1‖ ≤ Cµ(D(x0)), see Proposition 4.2.)
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Let x∗ = x0 + hb where ±b is an element of the canonical basis of Rd. Then we
have b = α1e

′
1 + · · · + αde

′
d, with α1, · · · , αd ∈ Z such that n := |α1| + · · · + |αd| =

|A−1b|l1 ≤
√
d‖A−1‖ ≤ n0 with n0 := C0

√
d. We may assume that α1, · · · , αd ≥ 0, w.l.o.g.

up to changing some of the (e′i)
d
i=1 into their opposites, and we define (e0, · · · , en−1) :=

(e′1, · · · , e′1, e′2, · · · , e′2, · · · ) where each element e′i is repeated αi times, for all 1 ≤ i ≤ d.
Letting xi+1 := xi + hei, for all 0 ≤ i < n, we do have xn = x0 + h(e0 + · · ·+ en−1) =

x0 + hb = x∗. Finally, when h ≤ h0 := ε/(2Kn0R), we conclude that for all 0 ≤ i < n

λ±ei(xi) ≥ λ±ei(x0)−Kh|e0 + · · ·+ ei−1| ≥ ε−Kn0Rh ≥ ε/2.

Corollary 5.10 (Lower bound for the elliptic energy). With the notations and assumptions
of Lemma 5.9. One has c‖∇hu‖2L2

h
≤ Qh(u), for all 0 < h ≤ h0 and u : Tdh → R, where the

constant c > 0 only depends on (d,R,K,E).

Proof. Consider x0 ∈ Tdh, and 0 < h ≤ h0, and let x∗ = x + hbi for some 1 ≤ i ≤ d where
(bi)

d
i=1 denotes the canonical basis of Rd. Then by Corollary 5.7 and Lemma 5.9

(δbih u(x0))2 ≤ n
[(
δe0h u(x0)

)2
+ · · ·+

(
δ
en−1

h u(xn−1)
)2] ≤ 2n0

ε
Ex,R1

h (u),

where Ex,R1

h (u) :=
∑
|b|≤R1

y:=x+hb

Eyh(u) and R1 := n0R. We then conclude

‖∇u‖2L2
h

= hd
∑
x∈Th

∑
1≤i≤d

(
δbiu(x)

)2 ≤ 2dn0

ε
hd
∑
x∈Th

Ex,R1

h (u) =
2dn0n(d,R1)

ε
Eh(u).

6 Smooth decomposition

In dimensions d ∈ {2, 3}, the decomposition λ(D) of a matrix D ∈ S++
d defined in Propo-

sition 1.5 coincides with Selling’s decomposition [9, 32], see Section 3.1, and has piecewise
linear coefficients. In this section, we construct a smooth variant of Selling’s decomposition
in dimension d = 2, as announced in Theorem 1.8 which gathers the results of Theorems 6.4
and 6.11 and Propositions 6.12 and 6.13 below. The extension of this construction to di-
mension d = 3 does not appear to be straightforward, and is an opportunity for future work.
As a first step, we introduce two auxiliary functions, which are smooth approximations of
the absolute value and of the median of three values.

Lemma 6.1 (Regularization of the absolute value). Let φ ∈ C∞(R; [0, 1]) be even and such
that φ = 1 on a neighborhood of the origin, and φ = 0 on [1,+∞). Define

sabs(x) := φ(x)(1 + x2)/2 + (1− φ(x))|x|,

for all x ∈ R. Then sabs ∈ C∞(R;R), and g(x) := sabs(x) − |x| obeys 0 ≤ g ≤ 1/2 on R,
and g = 0 on [1,+∞).
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Proof. The function sabs is smooth as a sum of products of smooth functions, and since
the coefficient (1−φ(x)) vanishes in a neighborhood of the origin where the absolute value
|x| has a singularity.

Define f(x) := (1 + x2)/2− x, so that g(x) = φ(x)f(|x|) for all x ∈ R. Observing that
f(x) = (1 − x)2/2 we obtain that 0 ≤ f ≤ 1/2 on [0, 1]. Since 0 ≤ φ ≤ 1 this implies
0 ≤ g ≤ 1/2 on [−1, 1]. Finally, g vanishes like φ outside of [−1, 1].

In numerical applications, we may choose φ(x) = 1|x|≤1, which is not smooth but
nevertheless yields a regularized absolute value sabs with a Lipschitz gradient, and thus
a modified Selling decomposition with a Lipschitz gradient. This convention is used in
Fig. 1 (bottom). In a similar spirit, the next lemma introduces a smooth approximation
of the median of three values, which in addition is expressed in terms of quantities obey-
ing some invariance properties under Selling’s superbase transformations, see the proof of
Theorem 6.4.

Lemma 6.2 (Regularization of the median value). Define

smed(ρ0, ρ1, ρ2) := S/(2
√
Q+ 2S), with S := ρ0ρ1+ρ1ρ2+ρ2ρ0, Q := (ρ2−ρ1)2, (38)

when Q+ 2S > 0. If 0 ≤ ρ0 ≤ ρ1 ≤ ρ2 and ρ1 > 0, then ρ1/(2
√

2) ≤ smed(ρ0, ρ1, ρ2) < ρ1.

Proof. Assume that 0 ≤ ρ0 ≤ ρ1 ≤ ρ2 and ρ1 > 0. Noting that Q + 2S ≥ ρ2
1 + ρ2

2 > 0,
we obtain that smed(ρ0, ρ1, ρ2) is well-defined. Since f0(t) := t/

√
1 + t is non-decreasing

on [0,+∞), and indeed f ′0(t) = (1 + t/2)(1 + t)−3/2 ≥ 0 over that interval, we obtain that
S/
√
Q+ 2S is a non-decreasing function of S when Q is fixed, and thus that smed(ρ0, ρ1, ρ2)

is a non-decreasing function of ρ0 ∈ [0, ρ1] when ρ1 and ρ2 are fixed. Thus it suffices to show
that ρ1/(2

√
2) ≤ smed(0, ρ1, ρ2) and that smed(ρ1, ρ1, ρ2) < ρ1. By homogeneity, one may

assume without loss of generality that ρ1 = 1, hence it suffices to show that for t = ρ2 ≥ 1,

1/
√

2 ≤ 2 smed(0, 1, t) = t/
√

(t− 1)2 + 2t = t/
√

1 + t2 =: f1(t),

2 > 2 smed(1, 1, t) = (1 + 2t)/
√

(t− 1)2 + 2(1 + 2t) = (1 + 2t)/
√
t2 + 2t+ 3 =: f2(t).

Observing that f1 and f2 are strictly increasing on [1,+∞), by differentiation similarly to
f0, and that f1(1) = 1/

√
2 and f2(t)→ 2 as t→ +∞, we conclude the proof.

Similarly to Selling’s original decomposition, the regularized decomposition that we
introduce is defined using the notion of superbase of Z2, see Definition 3.9. By Proposi-
tion 3.13, any matrix D ∈ S++

2 admits a D-obtuse superbase (v0, v1, v2) ∈ (Z2)3. It satisfies
|det(v1, v2)| = 1, v0 + v1 + v2 = 0, and ρi ≥ 0 for any i ∈ {0, 1, 2} where

ρ0 := −〈v1, Dv2〉, ρ1 := −〈v0, Dv2〉, ρ2 := −〈v0, Dv1〉. (39)

Selling’s formula, which can be deduced from Propositions 3.5 and 3.13, then asserts that

D =
∑

0≤i≤2

ρieie
>
i , where ei := v⊥i . (40)
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Lemma 6.3. Let D ∈ S++
2 , and let v = (v0, v1, v2) be a D-obtuse superbase. Assume, up

to permuting v, that the Selling weights satisfy 0 ≤ ρ0 ≤ ρ1 ≤ ρ2. Then ρ2‖v2‖2 ≤ λmax(D)
and ρ0 + ρ1 ≥ ‖v2‖2λmin(D), and in particular ρ2 ≤ λmax(D) and ρ1 ≥ λmin(D)/2 > 0.

Proof. The existence of a suitable permutation of v is clear. Denoting ei := v⊥i , for all 0 ≤
i ≤ 2, we obtain ρ2‖e2‖4 ≤ 〈e2, De2〉 ≤ λmax(D)‖e2‖2. On the other hand λmin(D)‖v2‖2 ≤
〈v2, Dv2〉 = ρ0 +ρ1, since |〈e0, v2〉| = |〈e1, v2〉| = | det(e1, e2)| = 1. We conclude noting that
‖e2‖ = ‖v2‖ ≥ 1, since v2 ∈ Z2 \ {0}.

Consider D ∈ S++
2 and a D-obtuse superbase v = (v0, v1, v2), permuted so that ρ0 ≤

ρ1 ≤ ρ2. Then the regularized Selling decomposition λ̃(D) : Z2 → R is defined as

λ̃e(D) :=



ρ0 + w/2 if e := ±v⊥0 ,
ρ1 − w if e := ±v⊥1 ,
ρ2 − w if e := ±v⊥2 ,
w/2 if e := ±(v1 − v2)⊥,

0 else,

(41)

where w := m sabs(ρ0/m)−ρ0, withm := smed(ρ0, ρ1, ρ2). For comparison, the coefficients
λ(D) ∈ Λ2 of Proposition 1.5, which correspond to the usual Selling decomposition (40),
are obtained by choosing w = 0 in (41).

Theorem 6.4. Let D ∈ S++
2 . Then the decomposition λ̃(D) is independent of the choice

of superbase v, provided it is D-obtuse and such that ρ0 ≤ ρ1 ≤ ρ2. It is consistent, in the
sense that ∑

e∈Z2

λ̃e(D)ee> = D, (42)

and its weights are nonnegative and have C∞ regularity.

The next four lemmas are devoted to the proof of Theorem 6.4. We prove in Lemma 6.5
that the equality (42) holds and that the weights (41) of the regularized Selling decompo-
sition are nonnegative. We establish in Lemma 6.7 that these weights are smooth (and in
particular uniquely defined) in the neighborhood of a matrix admitting a strictly D-obtuse
superbase, and in Lemma 6.8 a similar regularity result in the complementary case.

Lemma 6.5. The regularized Selling decomposition is consistent and has non-negative
weights.

Proof. We use the notations of Theorem 6.4. Since D is nondegenerate, at most one of
Selling’s non-negative weights ρ0, ρ1, ρ2 vanishes, see (40). Upon sorting, this yields 0 ≤
ρ0 ≤ ρ1 ≤ ρ2 and ρ1 > 0, and in particular smed(ρ0, ρ1, ρ2) is well-defined and obeys
the bounds of Lemma 6.2. It follows that 0 ≤ w := mg(ρ0/m) ≤ m/2 < ρ1/2, by
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Lemmas 6.1 and 6.2, hence the weights (41) are non-negative as announced. Using again
(41) we compute∑

e∈Z2

λ̃e(D)ee> =
∑

0≤i≤2

ρieie
>
i +

w

2

(
e0e
>
0 − 2e1e

>
1 − 2e2e

>
2 + (e1 − e2)(e1 − e2)>

)
,

where ei := v⊥i . Observing that e0 = −e1 − e2 and recalling the parallelogram identity
(e1 +e2)(e1 +e2)>+(e1−e2)(e1−e2)> = 2(e1e

>
1 +e2e

>
2 ), one obtains that the second term

in the r.h.s. vanishes, and consistency (42) therefore follows from Selling’s formula (40).

A superbase v is said to be strictly D-obtuse, where D ∈ S++
2 , if all the weights (39)

are positive.

Lemma 6.6. Let D ∈ S++
2 , and let v = (v0, v1, v2) be a D-obtuse superbase with Selling

weights ρ0 ≤ ρ1 ≤ ρ2. If v is strictly D-obtuse, i.e. ρ0 > 0, then any other D-obtuse
superbase coincides with v up to a permutation and a global change of sign. Otherwise if
ρ0 = 0 then ṽ := (v2 − v1, v1,−v2) is also D-obtuse, and any other D-obtuse superbase
coincides with v or ṽ up to a permutation and a global change of sign.

Proof. Let us recall that Selling’s decomposition (40) corresponds to the coefficients λ(D)
of Proposition 1.5 in dimension d ∈ {2, 3}, which are uniquely defined. Let v̂ = (v̂0, v̂1, v̂2)
be an arbitrary D-obtuse superbase. If ρ0 > 0 then {±v⊥0 ,±v⊥1 ,±v⊥2 } = supp(λ(D)) =
{±v̂⊥0 ,±v̂⊥1 ,±v̂⊥2 }, from which the first point follows. If ρ0 = 0, then recalling that ρ1 > 0
by Lemma 6.3 we obtain that {±v⊥1 ,±v⊥2 } = supp(λ(D)) ⊂ Z2 contains two elements
of v̂. Thus v̂1 = v1 and either v̂2 = v2 or v̂2 = −v2, up to a global change of sign and
permutation of v̂, and therefore v̂ = v or v̂ = ṽ respectively, since v̂0 = −v̂1 − v̂2, as
announced. Finally, we note that 〈v1, Dv2〉 = −ρ0 = 0, 〈v2 − v1, Dv1〉 = −‖v1‖2D ≤ 0 and
〈v2 − v1,−Dv2〉 = −‖v2‖2D ≤ 0, so that ṽ is D-obtuse as announced, which concludes.

Lemma 6.7. The weights of the regularized Selling decomposition are smooth in the neigh-
borhood of any D∗ ∈ S++

2 which admits a strictly D∗-obtuse superbase v = (v0, v1, v2)

Proof. Denote by 0 < ρ∗0 ≤ ρ∗1 ≤ ρ∗2 the Selling weights of D∗ defined by (39), up to
permuting the superbase v.

• Case ρ∗0 = ρ∗1. Then m∗ = smed(ρ∗0, ρ
∗
1, ρ
∗
2) < ρ∗1 = ρ∗0 by Lemma 6.2. Thus

m∗ sabs(ρ∗0/m
∗) = m∗ρ∗0/m

∗ = ρ∗0,

by Lemma 6.1 since ρ∗0/m∗ > 1. Therefore w∗ := m∗ sabs(ρ∗0/m
∗) − ρ∗0 = 0 and the

weights (41) coincide with those of Selling’s original decomposition. In particular,
they are uniquely defined.

Likewise, for D close enough to D∗, we obtain ρ0/m > 1 by continuity, and thus
w = 0, with obvious notations. As a result, the classical and the regularized Selling
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decompositions have the same weights and offsets. The weights ρ0, ρ1, ρ2 of Selling’s
decomposition (39) are linear functions of D, in a neighborhood of D∗, hence they
are smooth as announced.

• Case ρ∗0 < ρ∗1. Then for D close enough to D∗ one has likewise ρ0 < ρ1. Noting
that (38) is a symmetric expression of ρ1 and ρ2, we obtain that m = smed(ρ0, ρ1, ρ2)
depends smoothly on D in a neighborhood of D∗, even in the case where ρ∗1 = ρ∗2.
(This also shows that the weights (41) are uniquely defined, even when ρ∗1 = ρ∗2.)
Thus w and the weights (41) are also smooth by composition, which concludes.

Lemma 6.8. The weights of the regularized Selling decomposition are smooth in the neigh-
borhood of any D∗ ∈ S++

2 which does not admit a strictly D∗-obtuse superbase.

Proof. By Proposition 3.13 there exists a D∗-obtuse superbase v = (v0, v1, v2), whose
weights ρ∗0 ≤ ρ∗1 ≤ ρ∗2 defined by (39) satisfy ρ∗0 = 0 since v is not strictly D∗-obtuse, and
ρ∗1 > 0 sinceD∗ is non-degenerate. The only otherD∗-obuse superbase is ṽ := (ṽ0, ṽ1, ṽ2) :=
(v1−v2,−v1, v2) by Lemma 6.6, up to a global change of sign and a permutation. The change
of sign is irrelevant, and the permutation is fixed by imposing that 0 = ρ∗0 = −〈ṽ1, D

∗ṽ2〉,
ρ∗1 = −〈ṽ0, D

∗ṽ2〉, and ρ∗2 = −〈ṽ0, D
∗ṽ1〉 (an ambiguity remains in the special case where

ρ∗1 = ρ∗2, but it is harmless since (38) and (41) are symmetric expressions of ρ1 and ρ2).
Consider D in the neighborhood of D∗, and denote by (ρ0, ρ1, ρ2) and (ρ̃0, ρ̃1, ρ̃2)

the weights of Selling’s formula associated with the superbases v and ṽ, namely ρi :=
−〈vi−1, Dvi+1〉 and ρ̃i := −〈vi−1, Dvi+1〉 with circular indexing (note that one of v or ṽ
may not be D-obtuse, and thus define negative weights). Then

ρ̃0 = −〈−v1, Dv2〉 = −ρ0,

ρ̃1 = −〈v1 − v2, Dv2〉 = −〈2v1 + v0, Dv2〉 = ρ1 + 2ρ0,

ρ̃2 = −〈v1 − v2,−Dv1〉 = −〈−2v2 − v0,−v1〉 = ρ2 + 2ρ0.

Therefore m := smed(ρ0, ρ1, ρ2) = smed(ρ̃0, ρ̃1, ρ̃2) =: m̃, in view of the identities

Q := (ρ2 − ρ1)2 = (ρ̃2 − ρ̃1)2 =: Q̃,

S := ρ0ρ1 + ρ1ρ2 + ρ2ρ0 = det

(
ρ0 + ρ2 ρ0

ρ0 ρ0 + ρ1

)
= det(D) = ρ̃0ρ̃1 + ρ̃1ρ̃2 + ρ̃2ρ̃0 =: S̃.

Note that the matrix in the second line represents the quadratic form (40) in the unimodular
basis (v1, v2). It follows that ω := m sabs(ρ0/m) = m̃ sabs(ρ̃0/m̃), since sabs is even, and
therefore w = ω − ρ0 and w̃ = ω + ρ0. The weights and offsets of Selling’s regularized
formula with ṽ are thus

(ρ̃0 + w̃/2, ρ̃1 − w̃, ρ̃2 − w̃, w̃/2) = (ω/2− ρ0/2, ρ1 − ω + ρ0, ρ2 − ω + ρ0, ω/2 + ρ0/2),

(ṽ⊥0 , ṽ
⊥
1 , ṽ

⊥
2 , ṽ

⊥
1 − ṽ⊥2 ) = (v⊥1 − v⊥2 , −v⊥1 , v⊥2 , −v⊥1 − v⊥2 ).
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Compare with the weights and offsets of Selling’s regularized formula with v, namely

(ρ0 + w/2, ρ1 − w, ρ2 − w,w/2) = (ω/2 + ρ0/2, ρ1 − ω + ρ0, ρ2 − ω + ρ0, ω/2− ρ0/2),

(v⊥0 , v
⊥
1 , v

⊥
2 , v

⊥
1 − v⊥2 ) = (−v⊥1 − v⊥2 , v⊥1 , v⊥2 , v⊥1 − v⊥2 ).

The decompositions agree, up to permuting the first and last weight and offset, and changing
the sign of the second offset. Since they are defined by smooth expressions, the result
follows.

Quantitative regularity estimates. We quantify below the Lipschitz constant of the
coefficients and of their gradients, with respect to the square root µ(D) of the condition
number of the matrix D ∈ S++

2 . From now on, all results of this section remain valid
if φ(x) = 1|x|≤1 is chosen in Lemma 6.1 instead of a suitable φ ∈ C∞(R; [0, 1]), except
that the weights of the decomposition only haveW 2,∞

loc regularity (i.e. continuous first order
derivatives and locally bounded second order derivatives) rather than C∞ regularity.

The mapping considered in Lemma 6.9 (i) is known as the perspective function of f .

Lemma 6.9. The following holds for any f ∈ C2(Rd,R).

(i) Define g(x, ρ) := ρf(x/ρ). Then |∇g(x, ρ)| ≤ 5 max{|f(x/ρ)|, |∇f(x/ρ)|}, and
‖∇2g(x, ρ)‖ ≤ (16/ρ)‖∇2f(x/ρ)‖, for all x ∈ Rd and all ρ > 0 such that |x| ≤ 3ρ.

(ii) Define h(x) := f(Bx), where B is a matrix of shape d′ × d. Then |∇h(x)| ≤
‖B‖|∇f(Bx)| and ‖∇2h(x)‖ ≤ ‖B‖2‖∇2f(Bx)‖, for all x ∈ Rd.

Proof. Note that ∇g = (∇xg, ∂ρg) ∈ Rd+1, and that the hessian ∇2g is built of the blocks
(∇2

xg, ∂ρ∇xg, ∂2
ρg). The announced estimates easily follow from the exact expressions

∂ρg(x, ρ) = f
(x
ρ

)
− 1

ρ
〈∇f

(x
ρ

)
, x〉, ∇xg(x, ρ) = ∇f(

x

ρ
),

∂2
ρg(x, ρ) =

1

ρ3
〈x,∇f2

(x
ρ

)
x〉, ∂ρ∇xg(x, ρ) = − 1

ρ2
∇2f(

x

ρ
)x, ∇2

xg(x, ρ) =
1

ρ
∇2f(

x

ρ
),

∇h(x) = B>∇f(Bx), ∇2h(x) = B>∇2f(Bx)B.

Lemma 6.10. Define the triangular domain T := {(s, t) | 0 ≤ s ≤ t ≤ 1}, and the functions
m : T → R and ω : T \ {(0, 0)} → R by

m(s, t) := smed(s, t, 1) =
s+ t+ st

2
√

1 + t2 + 2s+ 2st
, ω(s, t) := m(s, t) sabs

( s

m(s, t)

)
.

Then |∇ω(s, t)| ≤ C0 and ‖∇2ω(s, t)‖ ≤ C1/t, with constants C0, C1 depending only on φ.
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Proof. One has ω = g ◦ m̃ where g(x, ρ) := ρ sabs(x/ρ) and m̃(s, t) := (s,m(s, t)). One
has m ∈ C∞(T ), as a composition of smooth functions and since the denominator does not
vanish, and thus ∇m and ∇2m are uniformly bounded over T , hence also ∇m̃ and ∇2m̃.

Applying Lemma 6.9 (i) to sabs, and noting that sabs′ and sabs′′ are bounded over R, we
obtain that |∇g(x, ρ)| ≤ C and ‖∇2g(x, ρ)‖ ≤ C/ρ for some constant C. Furthermore, over
the domain of evaluation, one has |x| = s ≤ t ≤ 3m(s, t) = 3ρ as required, recalling that
m(s, t) ≥ t/(2

√
2) by Lemma 6.1. The announced estimates follows by composition.

Theorem 6.11. For any D∗ ∈ S++
2 and e ∈ Z2, one has for some constant K = K(φ)

|∇λ̃e(D∗)| ≤ Kµ(D∗)
2, ‖∇2λ̃e(D∗)‖ ≤ Kµ(D∗)

4/λmin(D∗).

Proof. Let (v∗0, v
∗
1, v
∗
2) be a D∗-obtuse superbase, sorted such that the Selling weights (39)

obey ρ∗0 ≤ ρ∗1 ≤ ρ∗2. Let also A ∈ GL(Z2) be such that v∗i = Abi, for all 0 ≤ i ≤ 2, where
(b0, b1, b2) is the canonical superbase see Remark 3.10, and note that ‖A‖ ≤ C0µ(D) for
some constant C0 by Propositions 3.7, 3.11 and 3.13. For D ∈ S++

2 close enough to D∗, the
coefficients of Selling’s smoothed decomposition (41) are obtained as the composition of

f1 : D 7→ D′ := A>DA,

f2 : D′ 7→ (ρ0, ρ1, ρ2) := −(〈b1, D′b2〉, 〈b2, D′b0〉, 〈b0, D′b1〉)
f3 : (ρ0, ρ1, ρ2) 7→ ω := ρ2 ω(ρ0/ρ2, ρ1/ρ2),

followed by the fixed linear mapping (ρ0, ρ1, ρ2,ω) 7→ (ρ0 +w/2, ρ1−w, ρ2−w, w/2) where
w := ω − ρ0. Therefore

|∇(f3 ◦ f2 ◦ f1)(D∗)| ≤ C‖A‖2, ‖∇2(f3 ◦ f2 ◦ f1)(D∗)‖ ≤ C‖A‖4
1

ρ∗2

1

ρ∗1/ρ
∗
2

= C
‖A‖4

ρ∗1
,

where we applied Lemma 6.9 (ii) to the linear mappings f1 : S2 → S2 and f2 : S2 →
R3, noting that ‖f1(D)‖ = ‖A>DA‖ ≤ ‖A‖2‖D‖ and that f2 is fixed hence bounded
independently of D∗. Regarding f3 we used the estimates of Lemma 6.10, and applied
Lemma 6.9 (i) with x := (ρ∗0, ρ

∗
1) and ρ := ρ∗2, noting that |x| ≤ ρ∗0 + ρ∗1 ≤ 2ρ∗2 as required.

We conclude recalling that ‖A‖ ≤ µ(D), and that ρ∗1 ≥ λmin(D∗)/2 by Lemma 6.3.

Radius and spanning property. The next results complete the proof of Theorem 1.8.

Proposition 6.12. For any D ∈ S++
2 and e ∈ supp(λ̃(D)) one has ‖e‖D−1 ≤ Cλmin(D)−

1
2 ,

and in particular |e| ≤ Cµ(D), where C is an absolute constant.

Proof. Let v = (v0, v1, v2) be a D-obtuse superbase, sorted such that ρ0 ≤ ρ1 ≤ ρ2,
and denote ei := v⊥i for all 0 ≤ i ≤ 2. Since 0 < ρ1 ≤ ρ2 by Lemma 6.3, the offsets
{±e1,±e2} are contained in the support of Selling’s decomposition (40), and therefore
max{‖e1‖D−1 , ‖e2‖D−1} ≤ C0λmin(D)−

1
2 by Theorem 4.3. Using the triangular inequality,

we obtain ‖e‖D−1 ≤ 2C0λmin(D)−
1
2 for all e ∈ supp(λ̃(D)) ⊂ {±e0,±e1,±e2,±(e1 − e2)}

since e0 = −e1 − e2, as announced. We conclude noting that |e| ≤ ‖e‖D−1λmax(D)
1
2 .
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Proposition 6.13. For any D ∈ S++
2 , SpanZ{e ∈ Z2 | λ̃e(D) ≥ λmin(D)/4} = Z2.

Proof. Let v be a D-obtuse superbase with Selling weights ρ0 ≤ ρ1 ≤ ρ2, and denote
ei := v⊥i for all 0 ≤ i ≤ 2. Since v is a superbase, one has |det(e1, e2)| = |det(v1, v2)| = 1.
Let m := smed(ρ0, ρ1, ρ2) and w := m sabs(ρ0/m) − ρ0. Then w = mg(ρ0/m) ≤ m/2 ≤
ρ1/2, using successively Lemmas 6.1 and 6.2. We conclude, using Lemma 6.3 for the last
inequality

λ̃e2(D) := ρ2 − w ≥ λ̃e1(D) := ρ1 − w ≥ ρ1/2 ≥ λmin(D)/4.
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A Discretization of degenerate elliptic PDEs

Degenerate ellipticity is a property of differential operators which is at the foundation of
the theory of viscosity solutions of PDEs [10] and of the related comparison principles.
Degenerate elliptic (DE) operators arise in a variety of contexts, such as deterministic
or stochastic optimal control problems, optimal transport problems, and more generally
Hamilton-Jacobi-Bellman PDEs, see the discussion below. Decompositions of symmetric
positive definite matrices can be used to discretize these DE operators in a way that pre-
serves their structure, and leads to the discrete degenerate ellipticity (DDE) property, which
is a key tool in the subsequent convergence analysis [28]. In this appendix, we illustrate the
relevance of Definition 1.2 and Theorems 1.6 and 1.8 for the discretization of several PDEs.

For completeness, let us recall the formal definition of the DE and DDE properties
[10,28], omitting for simplicity the discussion of boundary conditions.

Definition A.1 (Degenerate ellipticity [10]). Let F be a differential operator on an open
domain Ω ⊂ Rd, of the form

Fu(x) := F̃(x, u(x),∇u(x),∇2u(x)), (43)

for all x ∈ Ω and all u ∈ C2(Ω). We say that F is degenerate elliptic5 if F̃ = F̃(x, v, p,M) is
non-decreasing w.r.t. the second variable v ∈ R, and non-increasing w.r.t. the last variable
M ∈ Sd with respect to the Loewner order.

Definition A.2 (Discrete degenerate ellipticity [28]). Let X be a finite set, and let F :
RX → RX be a finite differences scheme, of the form

Fu(x) := F̃
(
x, u(x), [u(y)− u(x)]y∈X\{x}

)
. (44)

We say that F is degenerate elliptic if F̃ = F̃ (x, v, [δy]y∈X\{x}) is non-decreasing w.r.t. the
second variable v, and non-increasing w.r.t. the last variable [δy]y∈X\{x} componentwise.

In each of the following subsections, we consider a DE operator defined via a field of
symmetric positive definite matrices D : Ω → S++

d over a domain Ω ⊂ Rd, and a DDE
scheme involving coefficients λ : Ω→ Λd (or a family of such fields Dα and coefficients λα,
indexed by some parameter α ∈ A). We of course recommend setting λ(x) := λ(D(x)), fol-
lowing Corollary 1.7, which is a practical choice that ensures the properties (D-consistency,
R-support, K-Lipschitz, ε-spanning) of Definition 1.2 whose relevance is discussed.

A.1 The Riemannian eikonal equation.

The eikonal equation is a first order Hamilton-Jacobi PDE, non-linear and static, which
characterizes geodesic distance maps. Consider a domain Ω ⊂ Rd, open and bounded for

5Some works separate these two monotonicity conditions, which are then referred to as properness and
degenerate ellipticity [10].
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simplicity, and equipped with a Riemannian metricM ∈ Lip(Ω,S++
d ). Then the geodesic

distance from the boundary ∂Ω, is the unique viscosity solution [10] to the Riemannian
eikonal PDE

‖∇u(x)‖D(x) = 1, ∀x ∈ Ω, u(x) = 0,∀x ∈ ∂Ω, (45)

where D(x) :=M(x)−1. The differential operator F̃(x, v, p,M) := ‖p‖D(x) is DE. Indeed it
complies with the monotonicity conditions of Definition A.1 since it is independent of both
v and M . The eikonal equation operator ‖∇u(x)‖2D(x) may be discretized as follows [23]:

Fhu(x) :=
∑
e∈Zd

λe(x) max
{

0,−δehu(x),−δ−eh u(x)
}2
, (46)

where x ∈ Ωh := Ω ∩ hZd, and λe(x) ≥ 0 for all e ∈ Zd. The discrete counterpart of (45)
is the system of equations Fhu = 1 on Ωh, where the unknown u : Ωh → R is extended by
0 outside Ωh. The scheme Fh is degenerate elliptic, since it is a non-increasing function of
the finite differences δehu(x) := (u(x+ he)− u(x))/h.

The D-consistency property, of the scheme coefficients λ, implies the first order consis-
tency of the scheme: Fhu(x) = ‖∇u(x)‖2D(x) +O(h), for smooth u, by a Taylor expansion.
The scheme (46) introduced in [23] is in fact an anisotropic generalization of the classical
scheme [29], made possible by this consistency property. The stable and consistent de-
composition obtained in Theorem 1.6 allows its extension to general domains of dimension
d = 4. In contrast, previous implementations relied on Selling’s decomposition and were
thus limited to domains of dimension d ≤ 3. A five dimensional Reeds-Shepp model posed
on R3 × S2 could nevertheless be addressed in [23], by observing that the matrices of the
metric have a block diagonal structure with blocks of shape 3× 3 and 2× 2.

TheR-support property leads to the error estimate ‖u∗h−u∗‖L∞(Ωh) = O(
√
Rh), between

the continuous solution u∗ of (45) and the discrete solution u∗h, see [23, Theorem 1.3]. Using
the decomposition of Theorem 1.6 we obtain R ≤ Cµmax, where µmax := max{µ(D(x)) |
x ∈ Ω} is an upper bound on the anisotropy ratio of the metric. In dimension d ≥ 4,
this is an improvement over the estimate R ≤ Cµd−1

max obtained in [23, Proposition 1.1],
which in addition yields improved convergence rates when one considers a relaxed sub-
Riemannian model. More precisely, assume that Dε = D0 + ε2 Idd for some relaxation
parameter ε > 0, where D0 ∈ Lip(Ω,S+

d ) is only positive semi-definite pointwise. Then one
has µεmax = O(ε−1), thusRε = O(ε−1), with obvious notations. Therefore the error estimate
‖u∗−u∗h,ε‖L∞(Ωh) = O(ε+

√
Rεh), between the sub-Riemannian distance u∗ to the boundary

and the approximation u∗h,ε obtained by relaxation and discretization [23, Theorem 1.8]

(under suitable assumptions), boils down to O(h
1
3 ) with the optimal parameter choice

ε = h
1
3 .

The K-Lipschitz and ε-spanning properties lead to a Lipschitz estimate of the discrete
solution u∗h, namely |u∗h(x) − u∗h(y)| ≤ C|x − y|, for any x, y ∈ Ωh and any sufficiently
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small scale h > 0, see [14, Proposition 4.4]. This estimate rules out numerical instabilities
such as checkerboards artifacts, and is also a necessary property if one wants to consider
point source boundary conditions, so as to compute the geodesic distance from a single
seed rather than from the domain’s boundary. The proof relies on a strategy similar to
the coercivity estimate obtained for elliptic PDEs in Theorem 1.3. Note that this Lipschitz
estimate is established in dimension d ∈ {2, 3} in [14] using Selling’s decomposition for the
inverse metric tensors, yet it only uses the properties of Definition 1.2, and therefore it
extends in a straightforward manner to dimension d = 4 using Theorem 1.6.

A.2 Linear non-divergence form diffusion.

Linear non-divergence form operators arise in the study of stochastic processes, through the
Feynman-Kac formula, and they are also the building blocks of the non-linear Hamilton-
Jacobi-Bellman operators discussed in Appendix A.3 below. A non-divergence form diffu-
sion operator, and its discretization, take the form

Fu(x) = −Tr(D(x)∇2u(x)), Fhu(x) = −
∑
e∈Zd

λe(x)∆e
hu(x), (47)

where D ∈ Lip(Ω,S++
d ) is a field of diffusion tensors, and where λe(x) ≥ 0 is a non-negative

coefficient. We denoted by ∆e
hu(x) := (u(x− he)− 2u(x) + h(x+ he))/h2 the second order

centered finite differences operator. The operator F̃(x, v, p,M) := −Tr(D(x)M) is DE since
the trace of a product of non-negative symmetric matrices is non-negative, and likewise Fh is
DDE by observing that it is a negatively weighted linear combination of the finite differences
u(x+ he)− u(x), e ∈ Zd.

The D-consistency property, of the scheme coefficients λ, yields the second order consis-
tency of the scheme: Fhu(x) = Fu(x) +O(h2) for smooth u using a straightforward Taylor
expansion. In the case where D is only positive semi-definite pointwise, on may consider a
relaxation procedure as discussed in Appendix A.1.

The R-support property keeps the size of the discretization stencil under control. This is
necessary to establish convergence, and is also needed to ensure the DDE property for some
modified schemes. Indeed, consider an inhomogeneous operator featuring an additional
linear first order term: Fu(x) = −Tr(D(x)∇2u(x)) + 〈ω(x),∇u(x)〉. Two approaches can
be envisioned to discretize the first order term, the first one being upwind finite differences,
which are first order accurate and DDE. Alternatively, a second order consistent discretiza-
tion using centered finite differences is proposed in [4, Definition 1.5], which is also DDE
provided |〈ω(x),D(x)−1e〉| ≤ h−1 for any e ∈ supp(λ). By Theorem 4.3, this condition is
met when ‖ω(x)‖D(x)−1 ≤ c

√
λmin(D(x))/h for all x ∈ Ω, where c = c(d) > 0.

The K-Lipschitz and ε-spanning properties are used in the analysis of a numerical
scheme for the computation of geodesic distances based on the solution of linear non-
divergence form diffusion equations [5] (this approach differs from Appendix A.1 where
such distances are computed by solving a non-linear eikonal PDE). The method applies to

48



Randers metrics, a generalization of Riemannian metrics, and provides both an anisotropic
generalization and a first convergence analysis for a popular minimal path computation
technique in geometry processing [11]. The K-Lipschitz and ε-spanning properties are used
in the convergence analysis in the case of point sources [5, Theorem 4.1], i.e. computing
geodesic distances from a single seed. The proof is stated in dimension d ≤ 3 for a scheme
based on Selling’s decomposition, but it extends in a straightforward manner to dimension
d = 4 since it only relies on the properties of Definition 1.2.

The ε-spanning property also allows to establish discrete interior Schauder estimates
for the solutions of elliptic difference operators [34], provided the scheme coefficients are
smooth. Both properties are ensured if they are obtained from the matrix decomposition of
Theorem 1.8. More precisely, [34] assumes that the principal Fourier symbol of the scheme
is invertible, but as shown in the next proposition this is equivalent to the spanning property
in the case of second order operators.

Proposition A.3. Let λe ≥ 0 for all e ∈ Zd, with only finitely many positive coefficients.
Then the following properties are equivalent:

• (Spanning) SpanZ{e ∈ Zd | λe > 0} = Zd.

• (Ellipticity, in the sense of [34]) For all θ ∈ [−1/2, 1/2]d \ {0}, one has p(θ) 6= 0,
where

p(θ) :=
∑
e∈Zd

λe[cos(2π〈θ, e〉)− 1]. (48)

Proof. Assume first that the spanning property holds. Observe that cos(2πt) − 1 ≤ 0 for
all t ∈ R, with equality iff t ∈ Z. Therefore p(θ) ≤ 0 for all θ ∈ Rd, with equality iff

∀e ∈ Zd, λe > 0⇒ 〈θ, e〉 ∈ Z. (49)

Using the spanning property, and the linearity of the scalar product, we obtain that 〈θ, e〉 ∈
Z for all e ∈ Zd. This implies θ ∈ Zd, hence θ /∈ [−1/2, 1/2]d \ {0}, as announced.

Assume now that the spanning property does not hold. Denote L := SpanZ{e ∈ Zd |
λe > 0}, and introduce the dual lattice L∗ := {θ ∈ Rd | 〈θ, e〉 ∈ Z, ∀e ∈ L}. Then L ( Zd,
and therefore L∗ ) Zd. Consider θ0 ∈ L∗ \ Zd, and define θ := θ0 − round(θ0), where the
rounding operator returns a closest integer componentwise. Then θ ∈ L∗, thus p(θ) = 0,
and by construction θ ∈ [−1/2, 1/2]d \ {0}, which concludes the proof.

A.3 Non-linear second order degenerate elliptic PDEs.

A natural avenue to define and study fully non-linear differential operators, is to introduce
them in the form of a maximum, or sometimes a minimum, of a family of linear operators.
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Consider an arbitrary set A of parameters (in practice, A is usually a domain of Rn), an
open domain Ω ⊂ Rd, and define

Fu(x) := sup
α∈A

Fαu(x), Fαu(x) := aα(x) + bα(x)u(x) + 〈cα(x),∇u(x)〉 − Tr(Dα(x)∇2u(x)).

We assume that bα(x) ≥ 0, cα(x) ∈ Rd, and Dα(x) ∈ S++
d , for each point x ∈ Ω and

parameter α ∈ A. In this way, the linear operator Fα is DDE, and likewise F is DDE,
provided the extremum over α ∈ A is well defined. Extremal operators such as F naturally
arise in Hamilton-Jacobi-Bellman (HJB) PDEs related with stochastic control problems
[21], but they are also encountered in relation with optics and optimal transport since the
Monge-Ampère operator det(∇2u) can be written in this form [7].

In order to define a numerical scheme for the non-linear operator F, a natural first step
is to discretize each linear operator Fα. For that purpose, on a Cartesian grid Ωh := Ω∩hZd
of scale h > 0, we proceed as in Appendix A.2 and in particular we introduce the coefficients
λeα(x), e ∈ Zd, of some decomposition of Dα(x) ∈ S++

d , for any x ∈ Ω, α ∈ A.
The Dα-consistency property means that the discretization Fαh of the linear operator Fα

is either first or second order accurate, depending on the treatment of the first order term.
From this point, one may consider a finite subset Ah ⊂ A, and introduce the discretization
Fh := maxα∈Ah F

α
h of the non-linear operator F. For consistency, the cardinality of Ah

needs to grow to infinity as h → 0, but for numerical efficiency, this cardinality should
not be excessively large either, which leads to compromises. Alternatively the scheme
F̃h := maxα∈A F

α
h , where the optimization is over the full set of parameters A, may often

be computed in closed form. This leads to second order accurate DDE discretizations of
the Monge-Ampère equation [7, Remark 3.4] (in the most favorable case) and of the Pucci
equation [3] in dimension d = 2, and a similar approach is used in [14] for a first order
PDE with a complex anisotropy in dimension d = 3. A key ingredient to computing the
accurate discretization F̃h in closed form is, in each of these cases, the piecewise linear
structure of the coefficients of Selling’s decomposition D ∈ S++

d 7→ λe(D), where e ∈ Zd.
Since the matrix decomposition introduced in Proposition 1.5 is similarly piecewise linear,
these techniques may in principle be extended in dimension d = 4.

The R-support property controls the effective discretization scale of the numerical
scheme. In many cases of interest, including the Monge-Ampère operator, the condition
number of the diffusion tensors is unbounded over the parameter set: sup{µ(Dα(x)) | α ∈
A} = +∞. This leads to a compromise when choosing the discrete parameter set Ah ⊂ A,
since including strongly anisotropic tensors improves the consistency with the differential
operator, but also leads to large stencils and thus degraded finite difference truncation er-
rors, see [7, Remark 3.4]. The improved support radius estimate obtained in this paper
allows to conduct similar analyses in dimension d = 4, and is also relevant when Dα is only
positive semi-definite and a relaxation procedure is used as discussed in Appendix A.1.

The ε-spanning property so far has not been used in the context of extremal operators
such as F, to our knowledge. A significant obstruction, at least to naive approaches, is that
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the active parameter α(u, x) ∈ Ah, such that Fhu(x) = Fα(u,x)u(x) where u : Ωh → R and
x ∈ Ωh, varies possibly discontinuously from point to point. This lack of local consistency
between the active stencils prevents simple arguments based on the concatenation of their
offsets as in the proof of the coercivity property Theorem 1.3.

The K-Lipschitz property of the numerical scheme coefficients, or higher smoothness
properties, are often ingredients of the analysis of the convergence rate of the numerical so-
lution. For concreteness, consider the evolution PDE ∂tu = Fu over the domain [0,∞[×Rd.
The convergence rate O(τ1/4 + h1/2) is established in [21], where τ denotes the time step
and h the grid scale, for finite differences discretizations similar to the one described in this
section, under suitable assumptions (and with possibly time dependent coefficients). One
key assumption of [21] is that the square root of the scheme coefficients x 7→

√
λe(x) be Lip-

schitz, for any e ∈ Zd. This can be ensured by choosing a K-grad Lipschitz decomposition,
such as the one described in Theorem 1.8 in dimension d = 2, as shown below.

Lemma A.4. Let α : Rd → [0,∞[ be such that ∇α is K-Lipschitz. Then
√
α is

√
K/2-

Lipschitz.

Proof. Assume that d = 1, up to restricting to a line, and that K = 1, up to considering
α/K. Then 0 ≤ α(x + h) ≤ α(x) + hα′(x) + h2/2 for any x, h ∈ R. The discriminant
of the r.h.s., seen as a quadratic function of h, thus obeys α′(x)2 − 2α(x) ≤ 0. Therefore
| ddx
√
α| = |α′(x)|/(2

√
α(x)) ≤ 1/

√
2, whenever α(x) > 0.

Let x0 < x1, let us assume w.l.o.g. that α(x0) < α(x1), and let x∗ := max{x ∈ [x0, x1] |
α(x) = α(x0)}. Then α is positive on ]x∗, x1], by the intermediate value theorem. Thus
|
√
α(x1) −

√
α(x0)| = |

√
α(x1) −

√
α(x∗)| ≤ |x1 − x∗|/

√
2 ≤ |x1 − x0|/

√
2 by the above,

which concludes the proof.

B Alternative smooth and spanning decompositions

One of the main objectives of this paper, achieved in Theorems 1.6 and 1.8, is the design of
computable matrix decompositions obeying the spanning property, and suitable smoothness
properties. We anticipate in this appendix a possible objection, which is that an arbitrary
given decomposition may be modified so as to obey these properties. For that purpose, we
consider two such possible modifications, and show that they have undesirable side effects.

For simplicity, we assume in this section that the eigenvalues of the decomposed sym-
metric matrices are positively bounded below, and for that purpose we denote Sεd :=
{D ∈ S++

d | D � ε Idd}, for any ε > 0. We assume given some measurable coefficients
λ : Sεd → Λd (not necessarily those of Proposition 1.5), which are consistent in the sense
that

∑
e∈Zd λ

e(D)ee> = D for all D ∈ Sεd, and are R(µ)-supported in the sense that
|e| ≤ R(µ(D)) for all e ∈ supp(λ(D)), where R is some given function.

The modified coefficients λ̃, λ̂ : S2ε
d → Λd, constructed in (50) and (51) below, respec-

tively enjoy the spanning and smoothness properties. The modifications are simple if not
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trivial from the theoretical standpoint, and yet we do not recommend them in practice for
the three following reasons. (1. Quantitative argument) The matrix decompositions λ̃ and λ̂
are respectively R(µ

√
2) and R(µ

√
3) supported, hence lead to schemes with wider stencils

and thus a larger truncation error than the original λ. (2. Qualitative argument) λ̃ and
λ̂ fail the unimodular invariance property, established in Proposition 2.5 for the construc-
tions proposed in this paper. (3. Implementation argument) The definition of λ̂ involves a
d(d+1)/2-dimensional convolution (51) whose numerical computation is likely impractical.

Obtaining the spanning property. Define, for any D ∈ S2ε
d , the modified coefficients

λ̃e(D) := ε1|e|=1 + λe(D − ε Idd), (50)

for all e ∈ Zd. Note that |e| = 1 iff e = ±bi for some 1 ≤ i ≤ d, where (bi)
d
i=1 denotes the

canonical basis of Rd. The consistency of the modified coefficients follows:∑
e∈Zd

λ̃e(D)ee> = ε
∑

1≤i≤d
bib
>
i +

∑
e∈Zd

λe(D − ε Idd)ee
> = ε Idd +(D − ε Idd) = D.

The modified coefficients λ̃ obey the ε-spanning property (7), since det(b1, · · · , bd) = 1 and
λbi(D) ≥ ε for all 1 ≤ i ≤ d. Since the defining expression (7) of λ̃ involves λ(D−ε Idd), and
since µ(D) ≤ µ(D − ε Idd) ≤ µ(D)

√
2, we find as announced that it is R(µ

√
2)-supported.

Obtaining smooth coefficients. We proceed by mollification in the space of symmetric
matrices. For that purpose we introduce a function ρ ∈ C∞(R), which is even, non-negative,
supported on [−1, 1], and not identically zero. We also denote by ‖A‖F :=

√
Tr(A>A) =√∑n

i,j=1A
2
ij the Frobenius norm of a matrix, which is related to the spectral norm by

‖A‖ ≤ ‖A‖F ≤ ‖A‖
√
d. The modified coefficients are defined for each D ∈ S2ε

d as

λ̂e(D) :=

∫
Sd
λe(D − S)ρε(S) dS, with ρε(S) :=

1

c(d, ε)
ρ
(‖S‖2F

ε2

)
, (51)

where c(d, ε) is a normalization constant such that
∫
Sd ρε(S) dS = 1. The mapping D ∈

S2ε
d 7→ λ̂e(D) is non-negative and smooth for any e ∈ Zd, by an immediate mollification

argument and in view of the local bound 0 ≤ λe(D) ≤ ‖D‖/‖e‖2 ≤ ‖D‖. Note that for
any S ∈ Sd such that ρε(S) > 0, one has ‖S‖ ≤ ‖S‖F ≤ ε. It follows that D − S ∈ Sεd for
any D ∈ S2ε

d , and that µ(D − S) ≤ µ(D)
√

3, hence λ̂ is R(µ
√

3)-supported as announced.
Finally, noting that

∫
Sd Sρε(S) dS = 0 by anti-symmetry, we establish consistency

∑
e∈Zd

λ̂e(D)ee> =

∫
Sd

∑
e∈Zd

λe(D − S)ee>ρε(S) dS =

∫
Sd

(D − S) ρε(S) dS = D.
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C Elliptic equations: convergence rates

In this appendix, we establish convergence rates for the monotone discretization (5) of the
anisotropic elliptic PDE (4), with periodic boundary conditions, as announced in Theo-
rem 1.4. The proof is an adaptation of [19, §2.6.1], originally addressing a classical two-
dimensional scheme featuring a 7 point stencil, and lacking the non-negativity property
which motivates our wide-stencil design, see Remark 1.1. The monotonicity property is not
used in the proof; in fact, monotonicity offers an independent avenue for proving rates of
convergence, which is briefly investigated in Appendix C.1. Let us mention that [19] presents
a much wider catalog of estimates, in the L2

h, W
1
h , and W

2
h discrete Sobolev norms, with

minimal regularity assumptions, etc. We see no obstruction in principle to their adaptation
to the proposed scheme (5), yet this remains outside of the scope of this paper.

Throughout this section, we assume that the scheme coefficients λ : Td → Λd obey the
D-consistency, R-support, K-Lipschitz, and ε-spanning properties, following the assump-
tions of Theorem 1.4. For convenience, we define the shorthands

ML := max{d, ‖D‖∞, R, ‖∇λ‖∞, ε}, ZRd := {e ∈ Zd | |e| ≤ R}.

For any v ∈ L2(Td), we (abusively) consider the quantities ‖∇v‖L2 , ‖∇2v‖L2 , and
‖∇3v‖L2 . If v does not belong to the appropriate Sobolev space, then this quantity is defined
as +∞, and any estimate involving it is simply vacuous. Likewise, estimates involving the
quantity ‖∇2λ‖∞ are vacuous unless we assume K-grad-Lipschitz coefficients.

Lemma C.1. One has for u ∈ L2(Td) and λ ∈ L∞(Td), with the above convention

‖∇u‖L2 ≤ ‖∇2u‖L2 ≤ ‖∇3u‖L2 , ‖∇λ‖∞ ≤ ‖∇2λ‖∞. (52)

Proof. These estimates are easily deduced from the one-dimensional case d = 1, i.e. from
the fact that ‖f‖Lp ≤ ‖f ′‖Lp for any f ∈ W 1,p(T) such that

∫
T f = 0, where p ∈ {2,∞}.

When p = 2 this is an instance of the classical Poincaré-Wirtinger inequality, proved by
e.g. considering the Fourier expansion of f , and when p = ∞ one can note that f has a
zero and admits the Lipschitz constant ‖f ′‖∞.

For any u : Tdh → R one has the (semi-)coercivity estimate

− 〈Lhu, u〉L2
h

= Qh(u) ≥ cQ‖∇hu‖2L2
h
, (53)

where the equality holds by construction of Lh and Qh, and the inequality by Theorem 1.3
for all sufficiently small grid scales 0 < h ≤ h0 (we assume that this condition is satisfied
in the following), and where h0 > 0 and cQ > 0 only depend on ML. As a first step, we
prove that the considered PDE and its discretization are well posed.

Lemma C.2. For any f ∈ L2(Td) with E[f] = 0, there exists u ∈ H1(Td) such that Lu = f
and E[u] = 0. For any fh : Tdh → R with Eh[fh] = 0, there exists uh : Tdh → R such that
Lhuh = fh and Eh[uh] = 0. We denoted E[f] :=

∫
Td f(x)dx and Eh[fh] := hd

∑
x∈Tdh

fh(x).

53



Proof. By construction, the operator Lh is self-adjoint and vanishes on constant functions,
hence it leaves invariant the subspace Vh := {uh : Tdh → R | Eh[uh] = 0}. If Lhuh = 0 then
uh is constant by (53), and if uh ∈ Vh this implies uh = 0. Therefore the restriction Lh|Vh
is invertible, hence the existence of uh. We only sketch the argument in the continuous
case, which is analogous and extremely classical [19]. Again L is self-adjoint and vanishes
on constant functions, hence maps V := {u ∈ H1(Td) | E[u] = 0} to V ∗ := {f ∈ H−1(Td) |
E[f ] = 0}. Noting that ‖u‖L2 ≤ ‖∇u‖L2 for all u ∈ V by the Poincaré-Wirtinger inequality,
we obtain that V is a Hilbert space when equipped with the norm N(u) := ‖∇u‖L2 . By
the coercivity estimate −〈Lu, u〉 =

∫
Td〈∇u(x),D(x)∇u(x)〉dx ≥ λ∗‖∇u‖2L2 , and the Lax-

Milgram theorem, the restriction L|V is boundedly invertible, hence the existence of u.

We introduce a centered finite difference operator ∂eh, and locally averaged coefficients
λeh, defined as

∂ehu(x) :=
u(x+ he/2)− u(x− he/2)

h
, λeh(x) :=

λe(x+ he/2) + λe(x− he/2)

2
, (54)

for any x ∈ T and e ∈ Zd \ {0}. Denoting by ∂eu(x) := 〈∇u(x), e〉 the directional differen-
tiation operator, we obtain the strikingly similar expressions

Lhu =
∑
e∈Zd

∂eh(λeh∂
e
hu), Lu :=

∑
e∈Zd

∂e(λe∂eu), (55)

which follow respectively from (5) and from the D-consistency property. Note u and λ
are in (55, left) only evaluated at grid points x ∈ Tdh, contrary to what (54) may suggest,
because of operator composition. Define the additional operators

δehu(x) :=
u(x+ he)− u(x)

h
, τ ehu(x) := u(x+ he/2).

Lemma C.3. One has 〈∂ehη, v〉L2
h

= −〈τ ehη, δehv〉L2
h
, for any e ∈ Zd and τ ehη, v : Tdh → R.

Proof. We compute, using a translation by he in the second sum of the second line

h−d〈∂ehη, v〉L2
h

=
∑
x∈Tdh

η(x+ he/2)v(x)−
∑
x∈Tdh

η(x− he/2)v(x)

=
∑
x∈Tdh

η(x+ he/2)v(x)−
∑
x∈Tdh

η(x+ he/2)v(x+ he) = −h−d〈τ ehη, δehv〉L2
h
.

Proposition C.4. Assume that Lhu =
∑

e∈ZRd
∂ehηe, where u, τ ehηe : Tdh → R, for all

e ∈ ZRd . Then ‖∇hu‖L2
h
≤ C

∑
e∈ZRd

‖τ ehηe‖L2
h
for some constant C = C(ML).
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Proof. Any vector e ∈ Zd can be written as e = e0 + · · ·+ en−1, where ±ei belongs to the
canonical basis, and n = |e|l1 . Thus n ≤ n0 := R

√
d if |e| ≤ R. By Corollary 5.7, we obtain

‖δehv‖2L2
h
≤ n

[
‖δe0h v‖

2
L2
h

+ · · ·+ ‖δen−1

h v‖2L2
h

]
≤ n2

0‖∇hv‖2L2
h
, (56)

for any v : Tdh → R. It follows that

|〈Lhu, v〉L2
h
| ≤

∑
e∈Zd

|〈τ ehηe, δehv〉| ≤ n0

∑
e∈Zd

‖τ ehηe‖L2
h
‖∇hv‖L2

h

where we used successively (i) the assumption, and the discrete integration by parts of
Lemma C.3, and (ii) the Cauchy-Schwarz inequality and (56). We conclude the proof by
choosing v := u and using (53).

We define convolution operators Te
h, Tr

h and Th as follows

Te
h u(x) :=

∫ 1
2

− 1
2

u(x+ t he) dt, Tr
h :=

∏
e∈Zrd

Te
h, Th := T1

h TR
h , (57)

for any e ∈ Zd and any r ≥ 1. Thus Te
h denotes convolution along the segment [−he/2, he/2],

and T1
h denotes convolution with the indicator function of the unit cube [−h/2, h/2]d, as

already mentioned in Section 1.1. The larger convolution kernel Th is the composition of T1
h

with convolutions in all directions e ∈ ZRd potentially arising in the discretization stencils.
Note that convolution operators commute with each other, with the differentiation operator
∂e, with the finite difference ∂eh, and with the translation operator τ eh.

We also introduce a formal inverse T̂e
h of Te

h, which is not an actual operator, but a
convention of notation. Indeed the operator Te

h is not invertible, but vanishes for instance
on the function u(x) := sin(2π〈x, f〉/h) which oscillates with high frequency, where f ∈ Zd
is arbitrary. Thus T̂e

h is never considered alone, but always within a product of convolution
operators featuring Te

h, from which this factor should be removed, and for clarity this
grouping is emphasized by the use of square brackets. For instance given e, e1, · · · , eK ∈ Z
and 1 ≤ k ≤ K one has as a convention of notation

[T̂e
h Te

h] := Id, [T̂ek
h Te1

h · · ·T
eK
h ] := Te1

h · · ·T
ek−1

h T
ek+1

h · · ·TeK
h .

Likewise the expressions [T̂e
h TR

h ] and [T̂bi
h T1

h] make sense for any e ∈ ZRd and any 1 ≤ i ≤ d.

Lemma C.5. One has Te
h ∂

e = ∂eh, and thus Th ∂
e = [T̂e

h Th]∂eh, for any e ∈ ZRd .

Proof. The first claim is established by direct integration. Assuming w.l.o.g. that d = 1
and e = 1 ∫ 1

2

− 1
2

u′(x+ th) dt =
u(x+ h/2)− u(x− h/2)

h
.

The second claim follows, since convolutions and differentiations commute.
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Proposition C.6. Assume that Lu = f and Lhuh = fh := T1
h T1

h f. Then

Lh(Th u− uh) =
∑

1≤i≤d
∂bih η

i
1 +

∑
e∈ZRd

∂eh(ηe2 + ηe3 + ηe4)

on Tdh, where denoting ue := ∂eu and ui := 〈bi, D∇u〉 one has

ηi1 := [T̂bi
h T1

h](TR
h −T1

h)ui, ηe2 := (λeh − λe)[Te
h Th]ue,

ηe3 := λe[Te
h Th−T̂e

h Th]ue, ηe4 := λe[T̂e
h Th]ue − [T̂e

h Th](λeue).

Proof. We first define and compute, using Lemma C.5,

η1 :=

d∑
i=1

∂bih η
i
1 = (Th−T1

h T1
h)

d∑
i=1

∂bi(D∇u) = (Th−T1
h T1

h) f.

Then, again by direct computation, using (55) and Lemma C.5,

Lh Th u =
∑
e∈ZRd

∂eh(λeh∂
e
h Th u) =

∑
e∈ZRd

∂eh(λeh[Te
h Th]∂eu),

Lhuh + η1 = Th f =
∑
e∈ZRd

Th ∂
e(λe∂eu) =

∑
e∈ZRd

∂eh([T̂e
h Th](λe∂eu)),

We conclude observing that ηe2 + ηe3 + ηe4 = λeh[Te
h Th]∂eu− [T̂e

h Th](λe∂eu).

Combining Propositions C.4 and C.6 we obtain

‖∇(Th u− uh)‖L2
h
≤ C max{‖τ bih η

i
1‖L2

h
, ‖τ ehηe2‖L2

h
, ‖τ ehηe3‖L2

h
, ‖τ ehηe4‖L2

h
| 1 ≤ i ≤ d, e ∈ ZRd }

(58)
for some constant C = C(ML). In the rest of this section, we present basic estimates
of the norms of convolutions, see Lemmas C.7, C.9 and C.13, followed by specializations
to the members of (58, r.h.s.), see Corollaries C.8, C.11, C.12 and C.14, which together
imply that ‖∇(Th u − uh)‖L2

h
≤ C min{h‖∇2u‖L2 , h2‖∇3u‖L2}. The additional estimate

Corollary C.10 concludes the proof of Theorem 1.4.

Lemma C.7. For any v ∈ L2(Td), and any e ∈ Zd, one has

‖Te
h v‖L2 ≤ ‖v‖L2 ‖T1

h v‖L2
h
≤ ‖v‖L2 . (59)

Also Eh[fh] = 0 (recall that fh := T1
h T1

h f and E[f] = 0), with the notations E and Eh of
Lemma C.2.
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Proof. The estimate (59, left) holds by convexity of the norm and since Te
h is the convolution

with a non-negative kernel of unit integral. Denote by Z := [−1/2, 1/2]d the unit cube,
and observe that (x, z) ∈ Tdh × Z 7→ x+ hz ∈ T is a.e. bijective with Jacobian hd. One has
|T1

h v(x)|2 = (
∫
Z v(x+hz)dz)2 ≤

∫
Z v(x+hz)2dz, by the Cauchy-Schwartz inequality, and

by summation over x ∈ Tdh we obtain (59, right) as announced.
Similarly, one has E[Te

h v] = E[v] and Eh[T1
h v] = E[v], for any e ∈ Zd. Thus Eh[fh] =

Eh[T1
h T1

h f] = E[T1
h f] = E[f] which concludes the proof.

Corollary C.8. One has ‖τ ehηe2‖L2
h
≤ Ch‖∇u‖L2, for some constant C = C(ML) (resp.

‖τ ehηe2‖L2
h
≤ Ch2‖∇u‖L2 for some constant C = C(ML, ‖∇2λ‖∞)), and all e ∈ ZRd .

Proof. One has ‖τ ehηe2‖L2
h
≤ ‖λeh−λe‖∞‖τ eh Te

h Th ue‖L2
h
. Also, ‖λeh−λe‖∞ ≤ min{h|e|‖∇λe‖∞,

h2|e|2‖∇2λe‖∞} by construction (54). In addition ‖τ eh Te
h Th ue‖L2

h
= ‖T1

h Te
h TR

h τ
e
hue‖L2

h
≤

‖Te
h TR

h τ
e
hue‖L2 ≤ ‖ue‖L2 ≤ |e|‖∇u‖L2 , using successively (59, right) and (59, left).

Lemma C.9. Let e1, · · · , en ∈ ZRd and Te
h := Te1

h · · ·T
en
h . Then for any v : Td → R

‖Te
h v − v‖L2 ≤ nRh‖∇v‖L2 , ‖Te

h v − v‖L2 ≤ nR2h2‖∇2v‖L2 .

Proof. For any smooth f : [−1/2, 1/2]→ R and |t| ≤ 1/2, by the Taylor integral formula

|f(t)− f(0)| ≤
∫ 1

2

− 1
2

|f ′(s)|ds, |f(t) + f(−t)− 2f(0)| ≤
∫ 1

2

− 1
2

|f ′′(s)|ds.

It follows that |
∫ 1/2
−1/2 f(t)dt − f(0)| ≤ min{

∫ 1/2
−1/2 |f

′(s)|ds,
∫ 1/2
−1/2 |f

′′(s)|ds}. Choosing
f(t) := v(x + the), where w.l.o.g. v is assumed to be smooth, e ∈ Zd, and x ∈ Td is arbi-
trary, we obtain |Te

h v − v| ≤ min{hTe
h |〈e,∇v〉|, h2 Te

h |〈e,∇2 v e〉|} pointwise (recall that
the expression (57) of the operator Te

h involves an integral over [−1/2, 1/2]). Thus ‖Te
h v−

v‖L2 ≤ min{h‖〈e,∇v〉‖L2 , h2‖〈e,∇2v e〉‖L2} ≤ min{h|e|‖∇v‖L2 , h2|e|2‖∇2v‖L2}, by (59,
left), which establishes the case n = 1. Observing that Te

h v−v =
∑n

k=1 Te1
h · · ·T

ek−1

h (Tek
h v−

v), we obtain the announced estimates using again (59, left).

Corollary C.10. ‖∇h(T1
h u−Th u)‖L2

h
≤ C min{h‖∇2u‖L2 , h2‖∇3u‖L2}, with C = C(ML).

Proof. One has ∂bih (T1
h u−Th u) = T1

h Tbi
h (Id−TR

h )vi, for any 1 ≤ i ≤ d and with vi := ∂biu,
using Lemma C.5. Then ‖T1

h Tbi
h (Id−TR

h )vi‖L2
h
≤ Ch‖∇vi‖L2 (resp. ≤ Ch2‖∇2vi‖L2)

using successively (59, right), (59, left), and Lemma C.9. Summing over i we conclude.

Corollary C.11. One has ‖ηi1‖L2
h
≤ Ch‖∇2u‖L2 for some constant C = C(ML) (resp.

‖ηi1‖L2
h
≤ Ch2‖∇3u‖L2 for some constant C = C(ML, ‖∇2λ‖∞)), and all 1 ≤ i ≤ d.
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Proof. Define T∗h :=
∏1<|e|≤R
e∈Zd Te

h, in such way that TR
h = T1

h T∗h. By construction ηi1 =

T1
h[T̂bi

h T1
h](T∗h ui − ui), and therefore ‖ηi1‖L2

h
≤ C min{h‖∇ui‖L2 , h2‖∇2ui‖L2}, using suc-

cessively (59, right), (59, left), and Lemma C.9.
Recalling that ui := 〈bi, D∇u〉, we obtain ‖∇ui‖L2 ≤ C(‖∇D‖∞‖∇u‖L2+‖D‖∞‖∇2u‖L2),

and ‖∇2ui‖L2 ≤ C(‖∇2D‖∞‖∇u‖L2 + ‖∇D‖∞‖∇2u‖L2 + ‖D‖∞‖∇3u‖L2), by the Leibniz
rule for the differentiation of a product. We conclude using (52).

Corollary C.12. One has ‖ηe3‖L2
h
≤ Ch‖∇2u‖L2 (resp. ‖ηe3‖L2

h
≤ Ch2‖∇3u‖L2), for some

constant C = C(ML), and all e ∈ ZRd .

Proof. Observing that ηe3 = λe T1
h[TR

h T̂e
h](Te

h Te
h ue − ue), we obtain as announced that

‖ηe3‖L2
h
≤ Ch‖λ‖∞‖∇ue‖L2 (resp ‖ηe3‖L2

h
≤ Ch2‖λ‖∞‖∇2ue‖L2) using successively (59,

right), (59, left), and Lemma C.9.

Lemma C.13. Let e1 · · · , en ∈ ZRd and Te
h := Te1

h · · ·T
en
h . Let also α, v : Td → R, and

η := αTe
h v − Te

h(αv). Then one has pointwise

|η| ≤ nhR‖∇α‖∞Te
h |v|, |η| ≤ nh2R2 Te

h(‖∇2α‖∞|v|+ ‖∇α‖∞|∇v|) (60)

If the canonical basis is among the (ei)
n
i=1 (e.g. n ≥ d and ei = bi for all 1 ≤ i ≤ d), then

‖η‖L2
h
≤ nhR‖∇α‖∞‖v‖L2 , ‖η‖L2

h
≤ nh2R2(‖∇2α‖∞‖v‖L2 + ‖∇α‖∞‖∇v‖L2). (61)

Proof. Consider smooth f, g : [−1/2, 1/2]→ R, and let |t| ≤ 1/2. Clearly one has,

|E(t)| ≤ ‖f ′‖∞|g(t)|, where E(t) :=
(
f(t)− f(0)

)
g(t). (62)

Yet, using the identity 2(ab+ cd) = (a+ c)(b+ d) + (a− c)(b− d) we also note that

2(E(t) + E(−t)) =
(
f(t) + f(−t)− 2f(0)

)(
g(t) + g(−t)

)
+
(
f(t)− f(−t)

)(
g(t)− g(−t)

)
,

leading to the finer estimate

2|E(t) + E(−t)| ≤ ‖f ′′‖∞
(
|g(t)|+ |g(−t)|

)
+ ‖f ′‖∞

∫ 1/2

−1/2
|g′(s)|ds. (63)

Define E :=
∫ 1/2
−1/2(f(t) − f(0))g(t)dt, so that E =

∫ 1/2
−1/2E(t)dt =

∫ 1/2
0 (E(t) + E(−t))dt.

We obtain using (62) and (63)

|E| ≤ ‖f ′‖∞
∫ 1/2

−1/2
|g(t)|dt, |E| ≤ ‖f ′′‖∞

∫ 1/2

−1/2
|g(t)|dt+ ‖f ′‖∞

∫ 1/2

−1/2
|g′(t)|dt.

Applying these estimates to f(t) := α(x + t he) and g(t) := v(x + t he), where e ∈ ZRd
and x ∈ Td is arbitrary, we obtain (60) in the case n = 1. The general case follows noting
that η =

∑
1≤k≤n Te1

h · · ·T
ek−1

h (αTek
h −Tek

h α) T
ek+1

h · · ·Ten
h v. Finally, we obtain (61) by

Lemma C.7, which concludes the proof.
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Corollary C.14. One has ‖τ ehηe4‖L2
h
≤ Ch‖∇u‖L2 for some constant C = C(ML) (resp.

‖τ ehηe4‖L2
h
≤ C̃h2‖∇2u‖L2 for some constant C = C(ML, ‖∇2λ‖∞)), for all e ∈ ZRd .

Proof. Recall that ηe3 := λe[T1
h T̂e

h TR
h ]ue − [T1

h T̂e
h TR

h ](λeue). The result follows from (61),
applied to α := λe and v := ue = 〈e,∇u〉, and from (52).

C.1 Establishing a convergence rate using discrete monotonicity

The monotonicity of a finite differences scheme yields an alternative avenue for establishing
convergence rates, independent of the previous arguments which rely on the Lax-Milgram
theorem, exploited in Proposition C.15 to establish a convergence rate for this specific
elliptic equation. See [21] for more refined techniques, and Appendix A for a general
discussion. This approach is in a sense more direct, since the proof essentially only consists
in checking the scheme consistency. In comparison with the previous section, we obtain
convergence rates in the uniform norm, rather than the L2 norm of the discrete gradient.
For simplicity, we introduce a zeroth order term in the PDE, so as to break the invariance
of the solution under the addition of a constant. Note that it is often possible to exploit
the comparison principle for PDEs whose set of solutions is invariant under addition of a
constant, and for their discretizations, but this leads to additional technicalities, see [7] for
a discussion in the case of the Monge-Ampère equation of optimal transport.

Proposition C.15. Assume that u−Lu = f on Td, for some u ∈ C4(Td), D ∈ C3(Td,S++
d )

and f ∈ C2(Td). Consider coefficients λ : Td → Λd which are D-consistent, R-supported,
and have C3 regularity. Then the linear system uh−Lhuh = f on Tdh has a unique solution,
for any h > 0 with h−1 ∈ Z++, and one has for some constant C = C(d,R, ‖∇D‖∞, ‖∇3λ‖∞)

max
x∈Tdh

|u(x)− uh(x)| ≤ Ch2‖∇4u‖∞. (64)

Proof. We note that −Lh is a degenerate elliptic scheme, see its expression (5) and Def-
inition A.2. Thus uh 7→ uh − Lhuh is a linear elliptic scheme, which implies the exis-
tence of a unique solution, see [5, Corollary 3.6]. Let f ∈ C3(R), g ∈ C4(R), and define
e(h) := 1

2(f(0) + f(h))(g(h)− g(0)) for all h ∈ R. We obtain by a Taylor expansion

e(h) = hf0g
′
0 + 1

2h
2(f ′0g

′
0 + f0g

′′
0) + 1

12h
3(3f ′′0 g

′
0 + 3f ′0g

′′
0 + 2g0g

′′′
0 ) +O(h4),

with the convention f0 := f(0) and likewise for f ′, f ′′, g′, g′′, g′′′ evaluated at 0. Therefore
e(h)+e(−h) = h2(f ′0g

′
0 +f0g

′′
0)+O(h4) = h2(fg′)′(0)+O(h4). Choosing f(h) := λ(x+he)

and g(h) := u(x+ he), where e ∈ ZRd and x ∈ Tdh is arbitrary, this yields

∂eh(λeh∂
e
hu) = ∂e(λe∂eu) +O(h2), hence |Lhu− Lu| ≤ C ′h2,
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pointwise on Tdh, where C ′ = C‖∇4u‖∞ with constant C = C(d,R, ‖∇D‖∞, ‖∇λ3‖∞).
(Recall that ‖∇kλ‖∞ ≤ ‖∇k+1λ‖∞ and ‖∇ku‖∞ ≤ ‖∇k+1u‖∞ on Td, for all k ≥ 1, as
already observed in (52, right).) We thus have have on Tdh

u− Lhu− C ′h2 ≤ u− Lu ≤ u− Lhu+ C ′h2, u− Lu = f = uh − Lhuh.

By the discrete comparison principle [5, Lemma 3.5], and since Lh vanishes on constants,
this implies u− C ′h2 ≤ uh ≤ u+ C ′h2, which concludes.
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