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A low-level set of stationary features
dedicated to non-intrusive load monitoring.

Farid Dinar1,2, Romain Chayla1, Sébastien Paris2 and Éric Busvelle2,3

Abstract— We study a NILM (Non-intrusive load monitoring)
problem by considering the classification in two steps: a first
step centered on the short duration signal of an electrical
device (around one second) and a second step centered on the
sequence of operating modes of this electrical device (separated
by several seconds). The second step is mainly based on an
RNN (recursive neural network) and will be described in future
work. In this article, we study the first step which consists of
a simple classification of certain electrical devices in stationary
mode. We show that two parameters and some harmonics
constitute a characteristic set of features and we look for a
minimal set of features that preserve good results. We compare
(both theoretically and practically) the meaning of odd and even
harmonics. We illustrate our results using the PLAID database
and some of our own electrical devices, in order to validate our
real-time embedded system.

I. INTRODUCTION
Local production and storage of ”green” electrical energy

are among the possible paths towards ecological transition,
making it possible to partially overcome the all-centralized
model favored until now. From a few homes to the scale of a
building or a small village, the approach consists of pooling
the production of energy consumed by the community, and
optimizing its use by minimizing the share of conventional
production. The advantages of local production are numerous
and indisputable: empowerment of consumers, reduction
of losses by Joule effect due to the transport of energy,
improvement of the overall efficiency of installations, and
reduction of the use of more contested production methods
(see for example [5]).

However, carbon-free production tools (photovoltaic,
wind, hydraulic) are intermittent and often out of sync
with the real needs of consumers. Storage is expensive and
inefficient and is not a solution on its own. It is therefore
necessary to consume more intelligently in order to reduce
the need for storage while guaranteeing an optimal quality of
service. It has been shown (see for example the meta-analysis
[1]) that simple personalized feedback on energy-consuming
devices can help reduce energy consumption by more than
12%. It should also be noted that a more global return, with
general advice, does not make it possible to achieve such
levels of savings. Coupled with a local green energy pro-
duction system, accompanied by personalized advice based
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on optimization approaches (whether conventional or from
machine learning), the expected benefit will be even greater.
The more precise estimation of possible savings is currently
unknown, because the proposed approach is new enough
that the benefits have not yet been precisely quantified. The
interest of pooling information between several households,
but in a limited number, makes it possible to consider
more advanced optimizations, because taking into account
a greater number of devices, to better manage constraints
(such as consumption peaks), without, however, arriving at
a situation that is too complex to manage. In addition, the
community approach, when it has been tested, has often
shown much better results than the approach consisting in
delegating the installation of renewable energy production
means to large groups. An example is the development of
wind power in Denmark, which was largely initiated (under
the impetus of state guarantees) by individual initiatives and
cooperatives (see [5]). Wind power generation in Denmark
is over 6000 MW in 2019.

II. THE SUNLEAVS PROJECT

The level of technological maturity of local energy produc-
tion solutions on a household scale is quite high, especially
when it is based on a single means of production (generally
photovoltaic or wind power). The use of a real energy mix
on the scale of a household (micro-grid) is already rarer.
However, the major specificity of this project is the number
of consumers, between ten and fifty households. The prob-
lems introduced by this scale factor have not been studied
extensively. The starting point of this work is non-intrusive
measurement (NILM, non-intrusive load monitoring), the
only approach fully compatible with domestic use. Since the
work of George William Hart in 1992 ([9]), energy disag-
gregation has been the subject of numerous academic studies
(see [1], [21] for example) and applications (”e.quilibre”
service, with the very controversial French counter Linky).
In our case, on the scale of several households, the prob-
lem becomes a semi-intrusive measurement problem, since
we have several measurement points for all the electrical
appliances, taken as a whole. In addition, it is well known
that characterization attempts in the domestic network, non-
intrusive and at high frequency, can be contaminated by
electrical devices upstream of the meter, on the distribution
network. We can therefore consider improving detection by
using all the information from several neighbors, members
of the community.

The previous work is the first step to address in order
to improve power consumption. The goal is to consume as



much energy as possible locally, and therefore to minimize
the use of energy distributed by large operators. Incidentally,
we can resell any surplus production to them. This is a
problem that has mainly been studied on the scale of a
household or on the scale of national production. Having
a motivated community, gathered around a local production
and use project, makes it possible to envisage unprecedented
optimizations. Indeed, on this scale, many uses can be
deferred over time, which is not possible on smaller or
larger scales (washing machines and dishwashers, recharging
of electric vehicles, water balloons hot,. . . ). An even more
convincing example concerns the well-known problem of
consumption peaks. The solution sometimes envisaged is
to set up an RTP (Real Time Pricing) type protocol which
dissuades consumers from consuming at certain times. Local
optimizers that take this protocol into account inevitably
lead to strong instabilities on the network and a rebound in
peak consumption [3]. Distributed optimization can solve this
problem at the scale of the production micro-grid. However,
this promising approach requires solving several difficulties,
and we can identify two main ones:

• establish an optimal strategy for triggering electrical
devices. On this scale, the number of large household
appliances is quite large. This confers an interest in
optimization, but also certain difficulties. It is indeed
a problem of optimal scheduling (triggering of the
devices), under a weak maximum constraint (of produc-
tion capacity, but which can be violated at times during
inevitable peaks of consumption), and subject to dis-
turbances some of which are measured and predictable
(weather) and others not (sporadic use of electrical
appliances, breakdowns);

• implement this strategy in the community. Here again,
we want to favor a non-intrusive method as much as
possible. Indeed, in addition to a financial investment
for the purchase of receiver and control modules, the
automatic triggering of electrical appliances remotely
and without the knowledge of consumers in the home
poses technical and human problems. If this approach
is easily possible for a hot water tank, it is less so for
noisy devices requiring human intervention.

The recent article [18] offers a survey of currently known
methods in a framework quite close to what we are looking
for.

In this paper, we will focus on NILM, the first part of the
SUNLEAVS project. An important part of our study is the
development of an electronic device which will be described
below.

III. NON-INTRUSIVE LOAD MONITORING

Non-intrusive load monitoring is a well-known problem
and there exists a lot of papers dealing with this subject (see
[20] for recent survey paper). Several studies use available
databases (Table I present some of these databases) in
order to compare various approaches (see e.g. [6], [8]) but
an important part of our work is the improvement of an
electronic device already developed by INDEWATT. The

Database Type sampling
frequency

reference

PLAID single 30 kHz [7], [16]

WHITED single 44 kHz [12]

UK-DALE multiple 16 kHz [13]

REDD multiple 15 kHz [14]

COOLL single 100 kHz [19]

TABLE I
SOME LABELED DATASET FOR NILM

actual version of this device is a data logger which samples
the voltage and current with a sample time of one second
and which store several parameters in the cloud : root mean
square (RMS) voltage URMS , RMS current IRMS , frequency
F , active power P and reactive power Q (and therefore the
complex power S = P + iQ and phase of voltage relative
to the current, cosφ = P

|S| ). These parameters are used as
information for the user on his energy consumption. It will
be later used in order to help the user to manage his energy
demand according to its community.

These five parameters are redundant, hence only two
parameters give useful information. The RMS Voltage and
the fundamental frequency of the voltage being regulated
(and more or less constant, URMS ≈ 220V and F ≈ 60Hz),
only two parameters give independent information, IRMS

and cosφ (or other combinations among active and reactive
power).

In order to distinguish several electric devices operating
stationary, it is clear that these two parameters are not suffi-
cient. Therefore, we plan to use high order harmonics of the
current I(t). Indeed, high order harmonics give information
on the linearity of the device and this information will allow
us to distinguish, for instance, a classical on/off lamp from a
dimmer controlled lighting system which change the voltage
waveform applied to the lamp (hence the current).

Remark 1: Our device is based upon a specific electronic
component from ATMEL to measure root mean square
current/voltage, phase and power, and an ESP32 in charge
of basic computations and communication with the cloud via
domestic WiFi. In order to estimate harmonics at sufficient
order, we sample the current at a frequency Fs = 1MHz for
one second, using capabilities of ESP32 and perform Fourier
transform using FFT in ESP32.This allow us to estimate
the spectrum of the signal up to Nyquist frequency Fn =
500 kHz and therefore to estimate square current/voltage,
phase, power and harmonics at a sample time of approxi-
mately Ts = 1 s.

At this point, it is important to distinguish two kinds of
harmonic phenomenon.

• the first one is due to each device when used in
continuous mode, such as a lamp, a motor, a radiator,
a water heater, or a washing machine in a given mode
of operation, an electric oven when it is heating, and
so on. In all these cases, the process is stationary and



a harmonic analysis using the fast Fourier transform is
a classical way to summarize the frequency content of
the signal I(t). Moreover, the fundamental frequency
F and its harmonics characterize the current as a time
function since I(t) can be written as a Fourier series of
these harmonics.

• the second one is due to the starts and stops of each
device, and to the change of operating mode of some
complicated devices (washing machines, thermostats,
fridge or any regulated systems,...). In this case, the
current is not a stationary process and Fourier analysis
is no more suitable.

In the following, we will focus only on the first case and
we will explain the reason of this choice in this section.
Indeed, our objective is to classify each electric device
accordingly to its electric consumption profile. We plan to
operate at different time scales. Since our device operate with
a sample time of one second, we distinguish micro behavior
(at a scale where the device is in stationary mode) from
macro behavior (succession of cycles). The macro behavior
will be handled with a recurrent neural network. The task
of this RNN will be to identify each device by learning
the succession of cycles of this device. More precisely,
parameters such as IRMS , cosφ and harmonics will be the
inputs of the RNN, with a sample time between 1 and 60
seconds, and the RNN will use its memory to classify each
device.

Remark 2: In our approach, we separate the numerical
processing into two main parts: one is devoted to the classifi-
cation considering only the stationary property of the current
(amplitude, phase, harmonics) and a second part devoted to
the analysis of the events of the device: switching on/off a
thermostat, cycles of a washing machine, etc. At this time,
we are not planning to analyze transient features such as
starting an engine. It has been noticed (see [6]) that the tran-
sient behavior can bring very interesting information but it
supposes to sample the signal very quickly in order to capture
the starting and the stopping of the processes. Our electronic
device is not capable to react fast enough for this purpose.
Moreover, we use the fast Fourier transform to estimate the
harmonics and this spectral analysis only makes sense for
stationary signals. In order to analyze the transient behavior
of I(t), one would have to use wavelet analysis or short-
time Fourier transform (see [17] for interesting discussions
on this topic, [20] for an overview and comparisons, and [10]
for an implementation), but this approach requires too many
operations, network transfers and cloud storage.

From now, we will therefore focus on micro-level param-
eters, IRMS , cosφ and harmonics of F denoted (ci)i∈Z, that
is

y(t) =

∞∑
j=−∞

cje2iπ jF t (1)

(this notation is the classical notation of Fourier expansion,
it is clear that in our case, c0 = 0 and c−i = c̄i)

Moreover, we will always consider our device in stationary
mode, since transient mode will be handled later (and in

future work) by the RNN.

IV. THE PLAID DATABASE

Parameter selection is an important preliminary task before
classification. In order to select parameters among RMS
voltage, current and phases, including harmonics (available
from c1 to c9999), we need a database of steady-state systems.
We choose the well-known PLAID database ([7], [16])
among other interesting databases (see Table I) for two
reasons because of its fast sampling rate, the large set of
electrical devices (many of them being common with our
own devices) and the open access of this database, both to
use the database and to populate it.

Since it is growing thanks to user contributions, there is
several versions of PLAID. We used mainly the version de-
scribed in [16] containing 1876 records of single appliances
(the dataset also contains records of aggregated devices, we
will not use these recordings in this study).

Since we are only interested in stationary signals, we
didn’t use these records directly : we removed from each
signal the non-stationary part. Indeed, as described in the
documentation of the database, appliances activation is in-
cluded in records and we don’t want to use this part of the
signal (although it is an important information, it will be
missed by our measuring device and transient behavior will
be handled with an RNN).

In order to select the stationary part of each signal from
the database, we need to separate the transient and stable
behavior of the appliance on each record of the database.
We will only consider weak stationarity. Indeed, the transient
behavior is due to the activation of the device, so it can be
detected by considering only the second order moment of the
signal. More precisely, we use a moving window to calcu-
late the moving standard deviation over time (1000 sample
times). We find the largest part of the signal with a constant
and non-zero standard deviation (to avoid the stationary part
before activation of the device). For example, the figure
1 shows the current consumption of an air conditioner at
startup. At the beginning, the signal is very close to zero then
increases rapidly and falls again to stabilize in a stationary
mode. It is this last part (in red) that will be used to calculate
the features.

We removed appliances appearing too rarely in the
database. At the end of this process, our database contains
1824 records concerning 11 devices, each device being rep-
resented by a minimum of 75 records and a maximum of 246
records. Classes of appliances are air conditioner, compact
fluorescent lamps, fans, fridges, hairdryers, heaters, incan-
descent light bulbs, laptops, microwave, vacuum, washing
machines. After removing non-stationary part, the minimum
size of signals is 6000 sample times.

V. FEATURES CALCULATION : HARMONICS

Only a few parameters can be measured:
• The current IRMS and the voltage URMS

• The phase cosφ between voltage and current
• Harmonics coefficients cj in (1)
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Fig. 1. Stationary part (red) in whole signal (blue)
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Fig. 2. FFT of stationary part (red) vs. whole signals (blue)

or some other equivalent combinations of measures such
as active and reactive power, for instance. In stationary
mode, these parameters are an exhaustive set of parameters
since they are sufficient to reconstruct the current I(t) using
the inverse Fourier transform (and mathematically speaking,
IRMS should be redundant with the spectrum of the current
signal because of the Parseval’s identity).

Many authors have already studied this feature selection
problem, see for instance the harmonic selection in [8], [11],
[17]. However, our main concern is to validate our approach
by selecting features only from the stationary mode of each
device. Therefore, the conclusions of these authors apply
only partially to our case. For instance, we will mainly
focus on odd harmonics lower than 15. The importance
of odd harmonics relatively to even harmonics has been
shown in [11], [17] but without theoretical explanation. We
propose below a simple calculation to explain this well-
known remark.

A. The Fourier series decomposition

The Fourier series decomposition will be much more
useful to us. To a periodic function y(t) of period T ,
therefore of frequency F = 1

T defined on R, it matches
a sequence of coefficients (cj)j∈Z defined by

cj =
1

T

∫ T
2

−T
2

y(t)e−2iπ jF tdt

The inverse passage, from the frequency domain to the time
domain, is written:

y(t) =

∞∑
j=−∞

cje2iπ jF t

The coefficients cj are therefore (complex) amplitudes of
periodic functions of frequency kF .

We have the famous Parseval equality (resulting from the
Pythagorean theorem) which links the power of the signal
to the coefficients of the Fourier series, therefore to the total
spectral power:

1

T

∫ T
2

−T
2

|y (t)|2 dt =
∞∑

j=−∞
c2j

Discrete Fourier Transform: The discrete Fourier trans-
form of a sampled signal (yn)n=0,...,N−1 is a numerical
sequence of the same length (ŷk)k=0,...,N−1 defined by

ŷk =

N−1∑
n=0

yne
−2iπk n

N

and the inverse transform is given by

yn =
1

N

N−1∑
k=0

ŷke
2iπk n

N

If the signal was sampled with a frequency Fe and by noting
Te the sampling period, yn = y(nTe), the exponential is
written e2iπk

Fe
N nTe so coefficients ŷk correspond to frequen-

cies that are multiples of Fe

N .
It is sometimes called FFT (Fast Fourier Transform),

which is the famous algorithm used to calculate it (and
therefore the name of the function in many software).

The link between the Fourier series decomposition and
the discrete Fourier transform: Let’s write the Fourier series
decomposition of a periodic signal with period T , therefore
frequency F = 1

T sampled with period Te, therefore fre-
quency Fe = 1

Te
. It must be assumed that before sampling,

an anti-aliasing filter has been used in order to cut off
frequencies above Fe

2 , therefore |j|F < Fe

2 We also assume,
to simplify the interpretation of the calculations, that F is a
multiple of Fe

N , and we note F = ν Fe

N , so that fracFeF =
N
ν :
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1
2
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2
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=

1
2
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2
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cje2iπ jν Fe
N nTe =

1
2

N
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j=− 1
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N
ν
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ν j n
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By comparing this writing with that of the inverse discrete
Fourier transform, we see that

• if k is not a multiple of ν then ŷk = 0
• if there exists j such that k = jν then 1

N ŷk = cj
• if j = 1, we see that the corresponding frequency is F

and corresponds to the fundamental period of the signal
e2iπ F t. Strict multiples of ν correspond to harmonics.

A special case of a full-wave rectified signal: Most power
supplies start with a rectifier diode bridge (possibly after
a coil which is a pure inductor). Main voltage UAB(t),
frequency F ≈ 60Hz, is applied to the diode bridge between
A and B. This results in a rectified voltage UDC(t) = |U(t)|
between C and D. This voltage generates a current IDC(t)
which crosses the system, always in the same direction, from
D to C. This current undergoes the effects of the charge,
possibly non-linear, but it has a frequency 2F due to the
rectification, i.e. IDC(t+

T
2 ) = IDC(t). The current IAB(t)

measured on the generator side, upstream of the diode bridge,
is not always in the same direction, but on each half-period
T
2 , it corresponds in absolute value current ICD(t). It follows
that IAB(t+

T
2 ) = −IAB(t)

Let us calculate an even harmonic :

c2k =
1

T

∫ T

0

I(t)e−2iπ×2kFtdt

=
1

T

(∫ T
2

0

I(t)e−2iπ×2kFtdt+

∫ T

T
2

I(t)e−2iπ×2kFtdt

)

=
1

T

(∫ T
2

0

I(t)e−2iπ×2kFtdt

+

∫ T
2

0

im(t+
T

2
)e−2iπ×2kF (t+T

2 ))dt

)

=
1

T

(∫ T
2

0

I(t)e−2iπ×2kFtdt

−
∫ T

2

0

I(t)e−2iπ×(2kFt+k))dt

)
= 0

This also explains why at least one even harmonic is a
good feature for selection since it will allow us to separate
devices with bridge rectifier from others. The other relevant
remark is that it is not necessary to keep high order odd
harmonics. This was confirmed from our study.

Harmonics are calculated for stationary part of signals,
as described before. Figure 2 shows a Fourier transform
of both the whole part of the current signal from Figure
1 (in blue) and the stationary part (in red). Of course, the
side lobes of the sinc function due to signal discontinuities
disappeared when only the stationary part is used to calculate
the harmonic coefficients.

Remark 3: A first experimentation was done with the clas-
sical SCT-013 current clamp associated to a Voltage divider
and a filter Capacitor in order to measure the current. We
sample the signal using an USB-1208FS from Measurement
Computing (capable of sampling at a frequency of 1MHz.
When we perform Fourier analysis, we denoted some energy
around frequency 3 kHz. We didn’t succeed to explain this
phenomenon which disappear when using a more accurate
current clamp (namely Fluke i30s AC/DC Current Clamp).

VI. FEATURES SELECTION

In order to decide what features will be used as input
parameters to our RNN, we perform several tests with several
classifiers (using scikit-learn). However, our objective
is not to choose the best classifier (since this is not the
final stage of our approach) but to determine a minimal
set of parameters which characterize as well as possible
appliances in a steady state while simplifying the next
part of the classification process. In our problem, random
forest (RF) classifier usually performs better than the other
classifiers. Indeed, RF classifiers are known to offer small
generalization error upper bounds (see [15]). Therefore, for
our comparisons, we keep the RF classifier and a simple
support-vector machine (SVM).

Our database has 1824 entries (11 classes of appliances)
, each of them being a set of features, namely : URMS ,
IRMS , cosφ, active power, reactive power, apparent power
and harmonic coefficients.



Test Set of features
Score

SVM (%) RForest (%)

1 Irms, cosφ 36.80±1.50 74.80±1.60

2 Irms, cosφ, (c2k)k=0...7 38.70±1.30 81.30±1.40

3 Irms, cosφ, (c2k+1)k=0...7 48.20±2.18 91.10±1.54

4 Irms, cosφ, c1 41.67±2.50 77.06±2.34

5 Irms, cosφ, c1, c2 43.48±2.21 83.37±1.30

6 Irms, cosφ, c1, c2, c3 50.22±3.33 90.11±1.20

7 Irms, cosφ, c1, c2, c3, c4 49.26±1.92 89.15±1.61

8 Irms, cosφ, c1, c2, c3, c4, c5 48.60±1.55 88.90±1.58

9 Irms, cosφ, c1, c2, c3, c4, c5, c6 50.49±1.57 89.15±1.58

10 Irms, cosφ, c1, c2, c3, c4, c5, c6, c7 50.76±1.78 89.86±1.79

11 Irms, cosφ, (c2k+1)k=0...7, c2 49.61±1.97 92.41±1.91

TABLE II
CHOICE OF FEATURES

In order to calculate a score, we randomly shuffle and
split our database into a learning set (1459 set of features,
80% of the database) and a test set (365 elements, 20% of
the database). We train the classifier on the learning set (the
meta-parameters being already fixed) and estimate a score
on the test set. This score is the ratio of appliances being
correctly classified among the whole test set.

We extract several subset of parameters and for each
of them we compare the performance of the classification.
Results are presented in Table II. In order to estimate a
standard deviation on the score, we repeat the learning and
testing phase ten times.

Our electronic device is able to sample the voltage and
current with a frequency equal to 1Hz and give us Irms

and cosφ thanks to its polyphase energy metering integrated
circuit ATMEL M90E32AS. Using only these measurements
allow us a score of 73%. Adding some few harmonics allows
us to increase the score to more than 90% but requires to
sample the currents at a frequency equal to at least 2 kHz (if
the current has a frequency equal to 60Hz and one want to
estimate harmonics at order 15 for instance). Our integrated
circuit is not capable of estimating harmonics but this is easy
with our ESP32 microcontroller unit which can sample the
current at this frequency (up to 1MHz using direct memory
access) with 12 bits.

On Figure 4, we plot the evolution of the score vs. the
number of harmonics. It appears that harmonics higher than
order 5 become less useful for a good classification using
only stationary features.

We have also studied odd harmonics vs. even harmonics
and our results confirm some papers conclusion (see [8]). For
instance, the fact that a set of odd harmonics plus the second
harmonic is a good characterization of an appliance has been
explained in section V and is confirmed by our experiment.
The confusion matrix obtained for the best case (line 11 in
Table II) is shown Table III. Confusion occurs between light
bulb, air conditioner and fan, or fridge and washing machine,
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Fig. 4. Score vs. number of harmonics

APPLIA
NCES

ai
r

co
nd

.
la

m
p

fa
n

fr
id

ge

ha
ir

dr
ye

r

he
at

er

bu
lb

la
pt

op

m
ic

ro
w

av
e

va
cu

um

w
as

h.
m

ac
hi

ne

air cond. 46 0 2 0 0 0 1 0 0 1 0

lamp 0 42 0 0 0 0 0 1 0 0 0

fan 3 0 44 1 0 0 2 0 0 0 0

fridge 0 0 1 12 0 0 0 0 1 0 2

hairdryer 1 1 0 0 47 1 0 0 0 0 0

heater 0 0 0 1 2 13 0 0 0 0 0

bulb 0 0 2 0 0 0 30 0 0 0 0

laptop 0 0 0 0 0 0 0 44 0 0 1

microwave 0 0 0 0 0 1 0 0 30 0 0

vacuum 0 0 0 0 0 0 0 0 1 17 0

wash. machine 0 1 0 1 0 0 0 0 0 0 12

TABLE III
CONFUSION MATRIX

for example. These confusions will be removed by the upper
stage of our classifier using the non-stationary signal on the
long-term behavior.

VII. CONCLUSION

This study is only a preliminary study. Our result cannot
be compared with other results in the literature devoted
to the PLAID database since we decided to ignore the
transient behavior although it helps a lot to characterize
certain devices. We explained that we will defer the use
of transient behavior to the later stage of recursive neural
network classification. Nevertheless, we obtained rather good
results and, moreover, we were able to determine a set of
good characteristics and eliminate redundant or unnecessary
parameters.
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