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Characterization of translation invariant MMD on Rd and

connections with Wasserstein distances

Thibault Modeste ∗ Clément Dombry †

August 27, 2024

Abstract

Kernel mean embeddings and maximum mean discrepancies (MMD) associated with posi-
tive definite kernels are important tools in machine learning that allow to compare probability
measures and sample distributions. We provide a full characterization of translation invari-
ant MMDs on Rd that are parametrized by a spectral measure and a semi-definite positive
symmetric matrix. Furthermore, we investigate the connections between translation invari-
ant MMDs and Wasserstein distances on Rd. We show in particular that convergence with
respect to the MMD associated with the Energy Kernel of order α ∈ (0, 1) implies conver-
gence with respect to the Wasserstein distance of order β < α. We also provide examples
of kernels metrizing the Wasserstein space of order α ≥ 1. A short numerical experiment
illustrates our findings in the framework of the one-sample-test.

Keywords : Reproducing Kernel Hilbert Space, Kernel Mean Embedding, Maximum Mean
Discrepancy, translation invariance, Wasserstein distance.

1 Introduction

Background. Many problems in statistics and machine learning require comparing several
probability measures and/or sample distributions: goodness-of-fit testing compares a sample
distribution to a reference distribution (Chwialkowski et al., 2016); two-sample testing com-
pares two sample distributions (Gretton et al., 2012); independence testing compares a joint
distribution to a product distribution (Gretton et al., 2005); generative model fitting compares
the distributions of real and fake data (Dziugaite et al., 2015; Sutherland et al., 2017). The
different methods proposed in these references all rely on the important notion of Maximum
Mean Discrepancy (MMD).
MMDs are semi-metrics between probability measures and their definition relies on the theory
of Reproducing Kernel Hilbert Spaces (RKHS) and Kernel Mean Embeddings (KME). Given a
symmetric positive definite kernel k and its associated RKHS Hk, the KME is a map µ 7→ K(µ)
that assigns a function K(µ) ∈ Hk to each signed measure µ in a suitable subspace Mk (defined
in Equation (3) below). The corresponding MMD between two measures µ and ν is defined as
the RKHS distance between their embeddings, i.e. dk(µ, ν) := ∥K(µ) − K(ν)∥Hk

. When the
KME is injective, in which case the kernel is called characteristic, the MMD defines a proper
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distance that can be used to compare probability measures and/or sample distributions. Due to
their theoretical tractability and computational efficiency, KMEs and MMDs are widely used in
many areas of machine learning. We refer to Smola et al. (2007) for an overview on distribution
Hilbert space embeddings and their applications in machine learning.

Related works. In the last decade, an important line of research has focused on theoretical
properties of KMEs and MMDs. Sriperumbudur et al. (2010) and Sriperumbudur et al. (2011)
consider conditions ensuring that a kernel is characteristic, meaning that the associated kernel
mean embedding is injective. In the particular case of invariant kernels on Rd, the question can
be addressed thanks to Fourier analysis and the kernel is shown to be characteristic if and only
if the spectral measure has a full support on Rd \ {0} (Sriperumbudur et al., 2010, Theorem
9). Already considered in the latter references, the question of whether MMD can metrize weak
convergence of distributions has been fully addressed by Simon-Gabriel and Schölkopf (2018)
and Simon-Gabriel et al. (2023). The main result is that, for a continuous kernel with RKHS
included in the space of continuous functions vanishing at infinity, the MMD metrizes weak
convergence if and only if the kernel is characteristic.
Although weak convergence is an important concept and a minimal requirement, this notion of
convergence is very weak, as its name suggests. A stronger notion of convergence, which has
turned out to be very useful and successful in machine learning, is the convergence in Wasserstein
space. The Wasserstein distance is related to optimal transport (Villani, 2008) and was recently
used successfully in statistics and machine learning, as described in the recent monograph by
Panaretos and Zemel (2020) or survey by Montesuma et al. (2023) – see also the numerous
references therein. To cite only a few, optimal transport is used in learning algorithms (Frogner
et al., 2015), signal processing (Kolouri et al., 2017), generative models (Lei et al., 2019). . .,
algorithmic fairness Si et al. (2021). . . One of the main question addressed in the present paper
is whether a MMD can metrize the Wasserstein space. We show that the answer is positive and
that the use of unbounded kernels is needed. In a slightly different perspective, Auricchio et al.
(2020) and Vayer and Gribonval (2023) establish non-asymptotic inequalities relating MMD and
Wasserstein distances.

Main contributions. Our main findings are the following:

• The class of translation invariant MMD on Rd is characterized by a spectral measure
and a symmetric positive semi-definite matrix (Corollary 2.4). Extending the results of
Sriperumbudur et al. (2010), we provide an explicit formula for the MMD in terms of
Fourier transform (Proposition 2.6) and provide a necessary and sufficient condition for
the kernel to be characteristic over probability measures (Proposition 2.8).

• Strong connections between Energy kernels and Wasserstein distances are established
(Theorem 3.4) in Section 3.3. More precisely, for α ∈ (0, 1), we denote by dα the MMD
associated with the energy kernel of order α and by Wα the Wasserstein distance of order
α; we prove that convergence of probability measures with respect to Wα implies conver-
gence with respect to dβ for all 0 < β ≤ α and, conversely, that convergence with respect
to dα implies convergence with respect to Wβ for all 0 < β < α.

• We exhibit new families of kernels that metrize the Wasserstein spaces of order α ≥ 1
(Theorem 3.5) in Section 3.4.

• We provide non-asymptotic inequalities betweenW1 and dα for tight subsets of probability
measures (Proposition 3.7) in Section 3.5.
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Structure of the paper. Section 2 gathers some necessary material on reproducing kernel
Hilbert spaces, kernel mean embeddings and maximum mean discrepancies in Section 2.1 and
some important results about equivalent kernels and their characterization via variograms closely
related to Sejdinovic et al. (2013) in Section 2.2. Original results on the characterization of
translation invariant MMDs on Rd are presented in Section 2.3, Corollary 2.4 being the main new
result. Next we focus in Section 3 on the connections between MMDs and Wasserstein distances.
Some background on Wasserstein spaces is presented in Section 3.1 and some preliminary results
in Section 3.2. The relationships between MMDs associated with the Energy Kernel of order
α < 1 and Wasserstein distances of order α < 1 are investigated in Section 3.3. New families
of kernels metrizing the Wasserstein spaces of order α ≥ 1 are studied in Section 3.4. Finally,
some nonasymptotic inequalities relating MMDs and Wasserstein distances are established in
Section 3.5. All the proofs are postponed to Section 6.

Notation. In Sections 2.1 and 2.2, (X ,B) denotes a measurable space and M (resp. P) the
sets of signed measures (resp. probability measures) on (X ,B). The total variation measure of
a signed measure µ ∈ M is denoted by |µ|. In the rest of the paper, we take X = Rd endowed
with its Borel sigma-field and M (resp. P) denotes the space of Borel signed measures (resp.
probability measures) on Rd. We equip Rd with its canonical Euclidean structure and we write
∥x∥ and x · y respectively for the norm of x and the inner product between x and y. The
characteristic function of µ ∈ M is denoted by µ̂ and defined by

µ̂(ξ) =

∫
Rd

ei(x−y)·ξ µ(dξ), ξ ∈ Rd.

For α > 0, we define Mα =
{
µ ∈ M :

∫
Rd ∥x∥α |µ|(dx) <∞

}
and Pα = Mα ∩ P as the set

of signed measures (resp. probability measures) with finite moment of order α. The minimum
between a, b ∈ R is denoted by a ∧ b.

2 Kernel Mean Embeddings and Maximum Mean Discrepancy

This section is dedicated to the characterization of translation invariant maximum mean dis-
crepancies (MMD) where we show that the underlying kernel need not be translation invariant
in order that the MMD be. In Section 2.3, such kernels are characterized by a semidefinite
positive matrix Σ and a possibly infinite measure ν on Rd \ {0}, see Corollary 2.4. Necessary
material on MMDs and variograms are introduced in Sections 2.1 and 2.2 respectively.

2.1 Preliminary: Hilbert space embedding of measures

We present some basic elements of the theory of Reproducing Kernel Hilbert Spaces (RKHS),
Kernel Mean Embeddings (KME) and Maximum Mean Discrepancy (MMD). For more details,
the reader could refer to Berlinet and Thomas-Agnan (2004), Smola et al. (2007) or Steinwart
and Christmann (2008, Section 4).

Reproducing Kernel Hilbert Space (RKHS). Let X be an arbitrary space and F(X ,R)
denote the space of real valued function on X . A function k : X ×X → R is called a kernel if it
is symmetric and positive definite. The latter condition means that∑

1≤i,j≤n

aiajk(xi, xj) ≥ 0, for all n ≥ 1, x1, . . . , xn ∈ X , a1, . . . , an ∈ R.
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An Hilbert space H ⊂ F(X ,R) is called a RKHS if, for all x ∈ X , the evaluation map f 7→ f(x)
is continuous. By the Riesz representation theorem, there exists, for all x ∈ X , a unique
representer K(x) ∈ H such that

∀f ∈ H, f(x) = ⟨f,K(x)⟩.

Then, the function k(x, y) = ⟨K(x),K(y)⟩ is a kernel and is called the reproducing kernel of H
because of the following reproducing property : for all x ∈ X , k(x, ·) ∈ H and

∀f ∈ H, f(x) = ⟨f, k(x, ·)⟩. (1)

In particular, we have K(x) = k(x, ·). The reproducing kernel characterizes the RKHS. Con-
versely, Aronszajn’s theorem states that for any kernel k on X × X , there exists an unique
RKHS, noted Hk, with reproducing kernel k.

Kernel Mean Embedding (KME). We assume that (X ,B) is a measurable space and the
kernel k is measurable on X × X . The space of signed finite measures (resp. probability
measures) µ on (X ,B) is denoted by M (resp. P) and the total variation measure of µ by
|µ|. The reproducing kernel property (1) readily implies that for any finite discrete measure
µ =

∑n
i=1 aiδxi , the function K(µ) =

∑n
i=1 aiK(xi) ∈ Hk satisfies

∀f ∈ Hk, ⟨f,K(µ)⟩ =
∫
X
f(x)µ(dx). (2)

The KME extends this property to the class of measures

Mk =
{
µ ∈ M :

∫
X

√
k(x, x) |µ|(dx) < +∞

}
. (3)

More precisely, for all µ ∈ Mk, the RKHS Hk is included in L1(µ) and there exists a unique
K(µ) ∈ Hk satisfying Equation (2) –see e.g. Steinwart and Christmann (2008, Theorem 4.26).
The map K : Mk → Hk is the KME associated with k. The measure µ ∈ Mk is represented in
the RKHS by the vector K(µ) in the same way as the point x (identified with the Dirac measure
δx) is represented by K(x).

Maximum Mean Discrepancy (MMD). To compare two measures in Mk, we compare their
images in Hk under the KME: the MMD is defined by

dk(µ, ν) = ∥K(µ)−K(ν)∥Hk
, µ, ν ∈ Mk.

The reproducing kernel property (2) - applied twice - implies

d2k(µ, ν) = ⟨K(µ− ν),K(µ− ν)⟩Hk

=

∫
X×X

k(x, y) (µ− ν)⊗ (µ− ν)(dxdy). (4)

For sample distributions µn = n−1
∑n

k=1 δxk
and νm = m−1

∑m
l=1 δyl , the MMD reduces to

d2k(µn, νm) = n−2
∑

1≤k,l≤n

k(xk, xl) +m−2
∑

1≤k,l≤m

k(yk, yl)− 2n−1m−1
∑

1≤k≤n

∑
1≤l≤m

k(xk, yl)
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and is easily computed (for sample of reasonable size). Furthermore, using the dual representa-
tion of the Hilbert norm in Hk, the MMD can also be expressed as

dk(µ, ν) = sup
∥f∥Hk

≤1

∣∣∣∣∫
X
f dµ−

∫
X
f dν

∣∣∣∣ . (5)

This form corresponds to an Integral Probability Metric (Müller, 1997) with test functions
belonging to the unit ball of the RKHS.

2.2 Preliminary: variograms and equivalent kernels

Given different measurable kernels on X×X , one can wonder in which case the associated MMDs
are equal. This question is investigated in Sejdinovic et al. (2013), where the authors consider the
relationships between kernels and distances of negative type (Section 4 in Sejdinovic et al. 2013)
and the corresponding MMDs and energy distances (Section 5 and Theorem 22 in Sejdinovic
et al. (2013)). We adopt here a slightly different terminology more related to geostatistics (see
Remark 1 below).

Variogram. We call variogram associated with a kernel k the function

ρ(x, y) =
1

2
k(x, x) +

1

2
k(y, y)− k(x, y), x, y ∈ X .

Clearly, the variogram ρ is a symmetric function on X × X and vanishes on the diagonal, i.e.
ρ(x, x) = 0 for all x ∈ X . Furthermore, according to Berg et al. (1984, Lemma 2.1 p.74), the
variogram is a conditionally negative definite function on X × X , meaning that∑

1≤i,j≤n

aiajρ(xi, xj) ≤ 0

for all x1, . . . , xn ∈ X and a1, . . . , an ∈ R such that
∑n

i=1 ai = 0. See Berg et al. (1984,
Chapter 3) for more details on the strong relationships between positive definite and negative
definite functions. Note that Sejdinovic et al. (2013, Section 4) uses the terminology semi-metric
of negative type induced by k instead of variogram associated with k but the objects considered
are the same.

Equivalent kernels. Two measurable kernels k1 and k2 on X × X are called equivalent if

Mk1 = Mk2 and dk1(µ, ν) = dk2(µ, ν) for all µ, ν ∈ Mk1 ∩ P. (6)

Let us stress that, in this definition, the equality of MMDs is required for probability measures
only. The following statement is a reformulation of Sejdinovic et al. (2013, Theorem 22).

Proposition 2.1. (Sejdinovic et al., 2013, Theorem 22) Two measurable kernels are equivalent
if and only if they have the same variogram.

In order to have a form of uniqueness, we consider the notion of a normalized kernel. Fix an
arbitrary origin o ∈ X . A kernel k is said to be normalized (with origin o) if

k(x, o) = k(o, x) = 0 for all x ∈ X .
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For any kernel k on X×X , there exists a unique kernel k0 which is equivalent to k and normalized
(with origin o); it is given by

k0(x, y) = k(x, y)− k(x, o)− k(o, y) + k(o, o). (7)

Denoting by ρ the common variogram of k and k0, one can easily check that k0 can be written
as

k0(x, y) = ρ(x, o) + ρ(o, y)− ρ(x, y). (8)

Remark 1. The term variogram comes from the theory of stochastic processes and geostatistics
(Cressie, 1993). Let (B(x))x∈X be a square integrable stochastic process on X . The covariance
function is a symmetric and positive definite function on X × X , that is

k(x, y) = Cov(B(x), B(y))

is a kernel. The associated variogram

ρ(x, y) =
1

2
k(x, x) +

1

2
k(y, y)− k(x, y)

=
1

2
Var(B(y)−B(x))

corresponds to half the variance of the increment B(y) − B(x). Given an origin o ∈ X , the
process (B(x)−B(o))x∈X of increments at the origin has covariance

k0(x, y) = Cov(B(x)−B(o), B(y)−B(o))

= k(x, y)− k(x, o)− k(o, y) + k(o, o),

which is the unique normalized kernel with variogram ρ. We focus next on the class of Gaussian
processes. If the process B is centered and Gaussian, then its distribution is fully characterized
by its covariance function. It follows that, given an origin o and a variogram ρ, there exists a
(unique in distribution) centered Gaussian process B = (B(x))x∈X such that

Var(B(y)−B(x)) = 2ρ(x, y) and B(o) = 0 a.s.

The process B is called the Gaussian process with variogram ρ and origin o.

2.3 Translation invariant MMD on Rd

In the rest of the paper, we consider X = Rd endowed with its Borel sigma-field.

Translation invariant MMD. We study translation invariant MMDs as in the following defi-
nition. For h ∈ Rd, we note τh : Rd → Rd the translation defined by τh(x) = x+ h and by τh#µ
the image (pushforward) of a measure µ on Rd.

Definition 2.2. The MMD associated with a kernel k on Rd × Rd is said to be translation
invariant if, for all µ, ν ∈ Mk and h ∈ Rd, τh#µ, τh#ν ∈ Mk and

dk(τh#µ, τh#ν) = dk(µ, ν). (9)
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Clearly, if the kernel k is translation invariant, i.e. satisfies

k(x+ h, y + h) = k(x, y), for all x, y, h ∈ Rd,

then the associated MMD is invariant. Such kernels are of the form k(x, y) = ψ(x − y) with
ψ a positive definite function and are always bounded since |k(x, y)| ≤

√
k(x, x)

√
k(y, y) =

ψ(0). Under a continuity assumption, the class of translation invariant kernels is studied in
Sriperumbudur et al. (2010, Sections 2 and 3.2) where Bochner Theorem is shown to imply the
existence of a finite symmetric nonnegative Borel measure Λ on Rd such that

k(x, y) =

∫
Rd

ei(x−y)·ξ Λ(dξ). (10)

Furthermore the associated MMD is expressed, for µ, ν ∈ M, as

d2k(µ, ν) =

∫
Rd

|µ̂(ξ)− ν̂(ξ)|2Λ(dξ) = ∥µ̂− ν̂∥2L2(Λ). (11)

Example 1. When X = Rd, the Gaussian kernel is the most popular one in machine learning
and is defined by

k(x, y) = exp(−∥x− y∥2/2), x, y ∈ Rd.

This kernel being bounded, we have Mk = M and, using Fourier theory, the MMD can be
rewritten as

d2k(µ, ν) =

∫
Rd

|µ̂(ξ)− ν̂(ξ)|2 φ(ξ) dξ,

where φ denotes the multivariate standard Gaussian density on Rd. Simon-Gabriel et al. (2023,
Theorem 7) states that this MMD metrizes weak convergence on P.

Characterization of translation invariant MMDs. Interestingly, the class of translation
invariant MMDs is much larger and is fully characterized in the next theorem. A function
γ : Rd → R is said to be negative definite if

n∑
i=1

aiajγ(xi − xj) ≤ 0 (12)

for all x1, . . . , xn ∈ Rd and a1, . . . , an ∈ R such that
∑n

i=1 ai = 0. The following result is
a consequence of Proposition 2.1 and states a one-to-one correspondence between translation
invariant MMDs and negative definite functions.

Corollary 2.3. The MMD associated with the kernel k is translation invariant if and only if
there exists a negative definite function γ : Rd → [0,∞) such that the variogram ρ associated
with k satisfies ρ(x, y) = γ(y − x).
Conversely, for all negative definite function γ : Rd → [0,∞) such that γ(0) = 0, the MMD
associated with the normalized kernel k0(x, y) = γ(x) + γ(y)− γ(y − x) is translation invariant
and its variogram is ρ(x, y) = γ(y − x).

Using the point of view of geostatistics and random processes discussed in Remark 1, the negative
definite function γ can be related to the variogram of a stationary increment process. A process
(B(x))x∈Rd is said to have stationary increments if for all x0, . . . , xn and h ∈ Rd, we have

(B(xi)−B(x0))1≤i≤n
d
= (B(xi + h)−B(x0 + h))1≤i≤n,
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where
d
= stands for equality in distribution. Then Corollary 2.3 can be reformulated as follows:

let k be a kernel on Rd × Rd, ρ the associated variogram and (B(x))x∈Rd the Gaussian process
with origin 0 and variogram ρ (Remark 1); then the MMD associated with k is translation
invariant if and only if (B(x))x∈Rd has stationary increments.
Then we can exploit the fact that the structure of stationary increment Gaussian processes
is well-known and has been characterized in Yaglom and Silverman (1962, Section 3.18) or
Matheron (1973, Theorem 2.1). See also Chilès and Delfiner (2012, Chapter 4) where the
different terminology of Intrinsic Random Function of order 0 (IRF-0) is used or the more
recent article by Shen et al. (2022). The following result follows from Corollary 2.3 by exploiting
the structure of negative definite function (or equivalently of stationary increment Gaussian
processes).

Corollary 2.4. Let k be a normalized (with origin 0) and continuous kernel on Rd × Rd. If
the MMD associated with k is translation invariant, then there exists a symmetric nonnegative
Borel measure Λ on Rd \ {0} satisfying∫

Rd

(
∥ξ∥2 ∧ 1

)
Λ(dξ) <∞ (13)

and a d× d symmetric positive semi-definite matrix Σ such that

k(x, y) =

∫
Rd

(
1− eix·ξ

)(
1− e−iy·ξ)Λ(dξ) + xTΣy. (14)

Conversely, for any such Λ and Σ, the kernel k defined by (14) is continuous on Rd × Rd,
normalized, and the associated MMD is translation invariant.

Note that the integrability condition (13) ensures that the integral in Equation (14) is well-
defined because ∣∣∣(1− eix·ξ

)(
1− e−iy·ξ)∣∣∣ ≤ 4 ∧

(
∥x∥∥y∥∥ξ∥2

)
.

The symmetry condition implies that the kernel is real-valued and given by

k(x, y) =

∫
Rd

(
1− cos(x · ξ)− cos(y · ξ) + cos((x− y) · ξ)

)
Λ(dξ) + xTΣy. (15)

Properties of translation invariant MMDs. In the light of Corollary 2.4, we next establish
several properties of translation invariant MMDs. First, the following proposition characterizes
translation invariant MMDs that are bounded.

Proposition 2.5. Let k be the kernel defined by (14). The following statements are equivalent:

i) k is bounded on Rd × Rd;

ii) Λ is a finite measure and Σ = 0.

In this case, the two kernels defined in Equations (10) and (14) respectively are easily shown to
be equivalent and thus associated with the same MMD defined by Equation (11).

Next we discuss the domain of definition Mk of the KME associated with k and the form of the
corresponding MMD dk. Note that the kernel decomposes into k = kΛ + kΣ with

kΛ(x, y) =

∫
Rd

(
1− eix·ξ

)(
1− e−iy·ξ

)
Λ(dξ) (16)

kΣ(x, y) = xTΣy, . (17)
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As a consequence, Steinwart and Ziegel (2021, Lemma 3.3) implies Mk = MkΛ ∩MkΣ and

d2k(µ, ν) = d2kΛ(µ, ν) + d2kΣ(µ, ν) for all µ, ν ∈ Mk.

One can therefore study kΛ and kΣ separately and, for the sake of readability, we use the short
notation MΛ and dΛ (resp. MΣ and dΣ) instead of MkΛ and dkΛ (resp. MkΣ and dkΣ).
Recall that Mα denotes the set of finite signed measures with a finite absolute moment of order
α > 0.

Proposition 2.6. Let kΛ be the kernel defined by Equation (16). If
∫
Rd(∥ξ∥α ∧ 1)Λ(dξ) < ∞

for some α > 0, then Mα/2 ⊂ MΛ. In particular, Equation (13) implies that M1 ⊂ MΛ. For
µ, ν ∈ MΛ,

d2Λ(µ, ν) =

∫
Rd

∣∣µ̂(ξ)− ν̂(ξ)− µ(Rd) + ν(Rd)
∣∣2 Λ(dξ). (18)

Note that for probability measures µ, ν ∈ MΛ ∩ P, Equation (18) yields d2Λ = ∥µ̂ − ν̂∥L2(Λ) as

in Equation (11), because the difference µ(Rd)− ν(Rd) vanishes.

Proposition 2.7. Let kΣ be the kernel defined by Equation (17). Then the space MΣ is char-
acterized by

MΣ =
{
µ ∈ M :

∫
Rd

|ej · x| |µ|(dx) <∞ for all 1 ≤ j ≤ r
}
,

where r denotes the rank of Σ and (e1, . . . , er) an orthonormal system of eigenvectors associated
with the positive eigenvalues 0 < λ1 ≤ . . . ≤ λr. For µ, ν ∈ MΣ,

d2Σ(µ, ν) =
r∑

j=1

λj

∣∣∣ ∫
Rd

(ej · x)µ(dx)−
∫
Rd

(ej · x) ν(dx)
∣∣∣2.

In particular, if Σ is strictly positive definite, then MΣ = M1 and, for µ, ν ∈ M1,

d2Σ(µ, ν) = ∥e(µ)− e(ν)∥2Σ

where e(µ) =
∫
Rd xµ(dx) is the expectation of µ and ∥x∥2Σ = xTΣx the squared norm associated

with Σ.

We finally focus on conditions ensuring that the kernel k is characteristic over probability mea-
sures, meaning that dk defines a proper distance (and not only a semi-metric) on Mk∩P, which
happens exactly when the KME is injective on Mk ∩P. Note that the kernel k is never charac-
teristic on Mk because d2k(µ, µ+ αδ0) = 0 for all µ ∈ Mk and α ∈ R, showing that the KME is
not injective on Mk. The following theorem provides a necessary and sufficient condition and
generalizes Theorem 9 in Sriperumbudur et al. (2010) which considers bounded kernels only.

Proposition 2.8. The MMD dk is a distance on Mk ∩ P if and only if supp(Λ) = Rd.

Examples of translation invariant and unbounded MMDs. We next provide examples
of translation invariant MMDs associated with unbounded kernels. It is worth emphasizing that
these MMDs are translation invariant even if the underlying kernels are not.
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Example 2. The quadratic kernel k(x, y) = x · y on Rd × Rd has been considered in Sripe-
rumbudur et al. (2010, Example 2) and is the simplest unbounded kernel associated with a
translation invariant MMD. It corresponds to Λ = 0 and Σ = Idd in Equation (14). Clearly, the
corresponding RKHS is the finite dimensional space of linear functions on Rd, the corresponding
variogram is ρ(x, y) = 1

2∥x− y∥2 and the corresponding stationary increment Gaussian process
can be represented as B(x) = G ·x, x ∈ Rd, with G ∼ N (0d, Idd). According to Proposition 2.7,
the MMD takes the form dk(µ, ν) = ∥e(µ)− e(ν)∥ for µ, ν ∈ M1. In particular dk(µ, ν) = 0 if µ
and ν are probabilities with equal moment of order 1 and dk is not a proper distance on M1.

Example 3. Brownian motion is the most important stationary increment Gaussian process. In
dimension d = 1, its covariance function is k(x, y) = min(x, y) for x, y ≥ 0, and more generally

k(x, y) =
1

2
(|x|+ |y| − |x− y|) for x, y ∈ R.

Clearly, k(x, x) = |x| so that Mk = M1/2. The associated variogram is ρ(x, y) = 1
2 |x− y|. The

spectral measure and matrix in the representation (14) are known to be Λ(dξ) = 1
2π |ξ|

−2 and
Σ = 0 so that the MMD can be rewritten

d2k(µ, ν) =
1

2π

∫
Rd

|µ̂(ξ)− ν̂(ξ)|2

|ξ|2
dξ, µ, ν ∈ M1/2.

Interestingly, when restricted to probability measures, the MMD coincide with the Cramer
defined as the L2-distance between the cumulative distribution functions. More precisely,

d2k(µ, ν) =

∫
Rd

|Fµ(x)− Fν(x)|2 dx, µ, ν ∈ M1/2 ∩ P

with Fµ(x) = µ(] −∞, x]) and similarly for Fν . In the literature on scoring rule, this kernel is
associated with the so-called CRPS (Gneiting and Raftery, 2007).

Example 4. A well known stationary increment Gaussian process on Rd is the fractional Brow-
nian random field with Hurst index H ∈ (0, 1) defined by the covariance

kH(x, y) =
1

2

(
∥x∥2H + ∥y∥2H − ∥x− y∥2H

)
, (19)

see Herbin and Merzbach (2007) or Cohen and Istas (2013, Section 3). This is a natural extension
of the previous example because the particular case d = 1 and H = 1/2 corresponds to the
Brownian motion. The kernel satisfies k(x, x) = ∥x∥2H so that Mk = PH . The corresponding
variogram is ρ(x, y) = 1

2∥x− y∥2H . The spectral measure and matrix in the representation (14)
are known to be (Cohen and Istas, 2013, Section 3.3.1)

Λ(dξ) =
1

c(d,H)
∥ξ∥−d−2Hdξ and Σ = 0

with constant

c(d,H) =

√
πΓ(H + 1/2)

2d/2HΓ(2H) sin(πH)Γ(H + d/2)
.

The MMD can be rewritten

d2k(µ, ν) =
1

c(d,H)

∫
Rd

|µ̂(ξ)− ν̂(ξ)|2

∥ξ∥d+2H
dξ, µ, ν ∈ MH . (20)

Thus family of kernels is connected with the α-distance correlation for independence tests
(Székely and Rizzo, 2009, Section 4). In the literature on scoring rule, this kernel is associ-
ated with the so-called Energy Score (Gneiting and Raftery, 2007).
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Example 5. Another extension of Brownian motion to higher dimension is the fractional Brow-
nian sheet (Cohen and Istas, 2013, 3.3.2) defined by the covariance function

k(x, y) =
d∏

l=1

1

2

(
|xl|2Hl + |yl|2Hl − |xl − yl|2Hl

)
,

where x = (xl)1≤l≤d, y = (yl)1≤l≤d ∈ Rd and H1, . . . ,Hd ∈ (0, 1). Here the spectral measure

takes the product form Λ(dξ) =
∏d

l=1 c(1, Hl)
−1|ξl|−1−2Hldξl and Σ = 0.

3 Metrizing the Wasserstein space with MMD

The MMD associated with a characteristic kernel defines a distance on the space of probability
measures. Understanding the notion of convergence – or equivalently the topology, associated
with this distance – is an important question which has been investigated in particular by
Sriperumbudur et al. (2010) and Simon-Gabriel and Schölkopf (2018). Most of the results in
this line of research consider bounded kernels and the equivalence between weak convergence
and convergence in MMD.

In this section, we investigate the case of unbounded kernels and consider whether convergence
in Wasserstein spaces can be metrized by an MMD. The intuition behind this is that convergence
of probability measures dk(µn, µ) → 0 for the MMD implies convergence of integrals

∫
fdµn →∫

fdµn for all test functions f ∈ Hk – see Equation (5). When k is bounded and continuous,
the RKHS is included in the space of bounded continuous functions and one cannot expect more
than weak convergence. On the opposite, when k is unbounded, the RKHS contains unbounded
function and one may hope convergence of integrals for power test functions x 7→ ∥x∥β, β > 0,
whence the relationship with convergence of moments and Wasserstein spaces. Because the
Energy Kernels from Example 4 are naturally related to power functions, the associated MMDs
are natural candidates for metrizing the Wasserstein distance.

3.1 Background on Wasserstein spaces

We first provide the necessary background on Wasserstein spaces. For the purpose of this paper,
the underlying space will always be Rd and we therefore restrict our presentation to this case.
More general results as well as proofs can be found in Villani (2003, Section 7).
Recall that Mα (resp. Pα) denotes the set of signed measures (resp. probability measures) with
a finite absolute moment of order α > 0. Given two probability measures µ, ν on Rd, we denote
by Γ(µ, ν) the set of couplings between µ and ν, that is the set of probability measures γ on
Rd × Rd such that

γ(B × Rd) = µ(B) and γ(Rd ×B) = ν(B),

for all Borel set B ⊂ Rd. The Wasserstein distance of order α is defined, for α ≥ 1, by

Wα(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
Rd

∥x− y∥α γ(dx,dy)
)1/α

, µ, ν ∈ Pα.

For α ∈ (0, 1), it is defined by

Wα(µ, ν) = inf
γ∈Γ(µ,ν)

∫
Rd

∥x− y∥α γ(dx, dy).
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For all α > 0, the Wasserstein space (Pα,Wα) is a complete and separable metric space. The
case α < 1 is somewhat less usual and we stress that the Wasserstein distance Wα is then equal
to the Wasserstein distance of order 1 on the metric space (Rd, ρα) with the alternative distance
ρα(x, y) = ∥x− y∥α.
An important result in the theory of Wasserstein space is the Kantorovitch-Rubinstein duality
which states that

W1(µ, ν) = sup
{∫

Rd

φd(µ− ν) : φ : Rd → R 1-Lipschitz
}
.

In the case α > 1, a more involved duality theory, called Kantorovitch duality, holds but it will
not be needed here. In the case α < 1, we have

Wα(µ, ν) = sup
{∫

Rd

φd(µ− ν) : φ : Rd → R (α, 1)-Hölder
}
, (21)

where a function φ is said to be (α, 1)-Hölder if |φ(x)−φ(y)| ≤ ∥x− y∥α for all x, y ∈ Rd. Note
that the set of (α, 1)-Hölder functions is equal to the set of 1-Lipschitz functions on Rd equipped
with the distance ρα, so that the duality in the case α < 1 is a straightforward consequence
from the Kantorovitch-Rubinstein duality.
We finally discuss the notion of convergence in Wasserstein spaces. Let α > 0 and (µn)n≥1, µ ∈
Pα. According to (Villani, 2003, Theorem 7.12), the following statements are equivalent:

i) Wα(µn, µ) → 0;

ii) the sequence (µn)n≥1 converges weakly to µ and∫
Rd

∥x∥α µn(dx) →
∫
Rd

∥x∥α µ(dx);

iii) for all continuous functions φ : Rd → R satisfying |φ(x)| = Ox→∞(∥x∥α), we have∫
Rd

φ(x)µn(dx) →
∫
Rd

φ(x)µ(dx).

Note that the convergence in Pα is stronger for larger values of α. More precisely, β < α implies
Pα ⊂ Pβ, and for all (µn)n≥1, µ ∈ Pα,

Wα(µn, µ) → 0 implies Wβ(µn, µ) → 0. (22)

3.2 Some negative answers

Our main question is whether an MMD can metrize the Wasserstein distance according to the
following definition.

Definition 3.1. Let k be a kernel on Rd and α > 0. We say that the MMD dk associated with the
kernels k metrizes the Wasserstein space of order α if P∩Mk = Pα and, for all (µn)n≥1, µ ∈ Pα,

dk(µn, µ) → 0 if and only if Wα(µn, µ) → 0.

The following proposition is elementary but it emphasizes the need for unbounded kernels.
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Proposition 3.2. Assume the kernel k metrizes the Wasserstein space of order α > 0. Then k
is unbounded on Rd × Rd.

Another negative result focuses on translation invariant MMDs associated with kernel of the
form (14). According to Proposition 2.6, such kernels satisfy P1 ⊂ Mk so that it is natural to
ask whether dk can metrize the Wasserstein space of order 1.

Proposition 3.3. There exists no kernel k of the form (14) such that dk metrizes the Wasser-
stein space of order 1.

The proof relies on a counter-example with measures of the form µn = (1−pn)δ0+pnδxn , n ≥ 1,
with sequences xn → ∞, pn → 0 chosen so that (µn)n≥1 converges to δ0 for the MMD dk but
not for the Wasserstein distance W1. More generally, as a straightforward adaptation of this
construction shows, there exists no translation invariant MMD metrizing the Wasserstein space
of order α ≥ 1.

3.3 Energy kernels and Wasserstein spaces of order α < 1

We focus in this section on the special class of Energy Kernels, see Example 3. We recall that,
for α ∈ (0, 1), the Energy Kernel is defined by

kα(x, y) = ∥x∥2α + ∥y∥2α − ∥x− y∥2α, x, y ∈ Rd,

and that the associated MMD is defined onMα and translation invariant. For clarity of notation,
we denote by dα = dkα the MMD associated with kα. The following theorem links Energy Kernels
and Wasserstein distances.

Theorem 3.4. Let α ∈ (0, 1) and (µn)n≥1, µ ∈ Pα.

i) Wα(µn, µ) → 0 implies dα(µn, µ) → 0.

ii) dα(µn, µ) → 0 implies Wβ(µn, µ) → 0 for all β < α.

The theorem reveals the close relationship between the Wasserstein distance Wα and the MMD
dα. The first point states that Wα is stronger than dα, while the second point states that dα is
stronger than Wβ for all β < α. Since Wα can be seen as the limit of Wβ as β ↑ α, this suggests
that dα and Wα are almost equivalent. However, we conjecture that the two distances are not
equivalent on Pα.

3.4 MMD metrizing the Wasserstein space for α ≥ 1

In view of the negative result from Proposition 3.3, we wish to exhibit a MMD that metrizes
the Wasserstein space of order 1, or more generally, of order α ≥ 1. The issue evidenced in the
proof of Proposition 3.3 is that the matrix part dΣ controls the expectation and not the absolute
moment, suggesting the following modification of Equation (14).
Consider the symmetric positive definite kernel

k(x, y) =

∫
Rd

(
1− eix·ξ

)(
1− e−iy·ξ

)
Λ(dξ) + |x|αTΣ|y|α, (23)

where Λ is a symmetric measure on Rd \ {0} satisfying condition (13), Σ is a d × d symmetric
positive semi-definite matrix, α ≥ 1 and |x|α = (|x1|α, . . . , |xd|α) denotes the componentwise
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absolute α-power. Note that the introduction of this absolute power breaks the translation
invariance of the associated MMD.
Combining Proposition 2.6 and a straightforward adaptation of Proposition 2.7, one can prove
that Mk always contains Mα and that, for µ, ν ∈ Mα,

d2k(µ, ν) =

∫
Rd

|µ̂(ξ)− ν̂(ξ)− µ(Rd) + ν(Rd)|2 Λ(dξ) + ∥mα(µ)−mα(ν)∥2Σ, (24)

wheremα(µ) =
∫
Rd |x|α µ(dx) ∈ Rd denotes the absolute α-moment of µ. With similar argument

as in the proof of Proposition 2.7, one can also prove that Mk = Mα if and only if kerΣ∩Rd
+ =

{0}. The next theorem states two important properties of the MMD.

Theorem 3.5. Let α ≥ 1, k be the kernel defined by Equation (23) and dk the corresponding
MMD given by Equation (24).

1. The MMD dk is a distance on Mk ∩ P if and only if supp(Λ) = Rd.

2. The MMD dk metrizes the Wasserstein space Pα if and only if and only if supp(Λ) = Rd

and kerΣ ∩ Rd
+ = {0}.

Example 6. Taking Λ the standard Gaussian measure on Rd as in Example 1 and α ≥ 1, we
obtain the modified Gaussian kernel

k(x, y) = exp(−∥x− y∥2/2) + |x|α · |y|α, x, y ∈ Rd.

According to Theorem 3.5, the corresponding MMD metrizes the Wasserstein space Pα.

Remark 2. It is interesting to see that the condition supp(Λ) = Rd does not imply that the
MMD metrizes weak convergence. It is indeed tempting to think that, in Equation 24, the
first term guarantees weak convergence while the second term ensures convergence of moment of
order α ≥ 1, whence the convergence in Wasserstein space. However this heuristic is not valid, as
the following example shows. Let Σ = 0 and Λ =

∑+∞
j=1 j

−2δπxj , with (xj)j≥1 an enumeration of

the dyadic rational numbers
{
±a/2b : a, b ∈ N

}
. Consider the sequence of probability measures

µn = δ2n , n ≥ 1. For j ≥ 1, it holds µ̂n(xj) = 1 for large enough n, so that µ̂n(ξ) → 1 Λ(dξ)-
a.e. as n → ∞. Then, in view of Equation (24), the Dominated Convergence Theorem implies
dk(µn, δ0) → 0 as n → ∞. Since (µn)n≥1 does not converge weakly to δ0, the MMD does not
metrize weak convergence. To put this result in perspective with Theorem 7 in Simon-Gabriel
et al. (2023), note that the RKHS Hk is not included in the subspace of functions vanishing at
infinity, showing that this hypothesis is crucial in the theorem mentioned.

3.5 Non asymptotic inequalities for the control of Wasserstein distances

We have considered in Theorem 3.4 the topological equivalence between MMDs associated with
energy kernels and Wasserstein distances. In the following we consider stronger results estab-
lishing non asymptotic upper bounds.
The first result gives a strong control of the Wasserstein distance W1 on subsets of probability
measures with uniformly bounded support. A result similar in spirit is due to Auricchio et al.
(2020) where discrete measures on a regular grid of [0, 1]d are considered; their analysis relies
on Fourier analysis and the Wasserstein distance between discrete measures is bounded by the
L2-norm between Fourier transform which is closely related to MMDs. For K > 0, let

T∞,K(Rd) =
{
µ ∈ P(Rd) : µ(Rd \B(0,K)) = 0

}
.
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Proposition 3.6. Let α ∈ (0, 1). For all µ, ν ∈ T∞,K(Rd),

W1(µ, ν) ≤ C dα(µ, ν)
1/(d+1+α)

with constant C = C(d,K, α) explicitly given in Equation (36).

Next we consider a similar result where the assumption of uniformly bounded support is relaxed.
We focus here on the case of uniformly bounded moment of order γ > 1 but what really matters is
to consider a relatively compact subspace T ⊂ W1(Rd). We recall that the relative compactness
of T in the Wasserstein space W1(Rd) is equivalent to

lim
K→∞

sup
µ∈T

∫
Rd

∥x∥1{∥x∥>K} µ(dx) = 0,

see e.g. Proposition 2.2.3 in Panaretos and Zemel (2020). For γ > 1 and S > 0, define

Tγ,S(Rd) =

{
µ ∈ P(Rd) :

∫
Rd

∥x∥γ µ(dx) < S

}
.

The upper bound ∫
Rd

∥x∥1{∥x∥>K} µ(dx) ≤
S

Kγ−1
, µ ∈ Tγ,S(Rd), (25)

implies that Tγ,S(Rd) is relatively compact in W1(Rd).

Proposition 3.7. Let α ∈ (0, 1). For all µ, ν ∈ Tγ,S(Rd),

W1(µ, ν) ≤ C dα(µ, ν)
ρ (26)

with exponent ρ = γ−1
γ(d+α+1)−α and constant C = C(d, γ, S, α) explicitly given in Equation (37).

Unfortunately, we can see that in Propositions 3.6 and 3.7, the exponent in the upper bound
depends on the dimension so that the upper bound gets worse as the dimension increases.

4 Application to the One Sample Test

We propose a simple numerical experiment illustrating the behaviour of the various MMDs
considered in this paper in the context of the One-Sample-Test. This simulation study is very
close to those for the Two-Sample-Test proposed in Sejdinovic et al. (2013, Section 8.1) or
Gretton et al. (2012, Section 8.1), except that we provide a comparison with the test based on
Wasserstein distance in order to illustrate Theorem 3.5 and support the idea that suitable MMDs
can be used as surrogate for the Wasserstein distance. We consider the One-Sample-Test rather
than the Two-Sample-Test merely for simplicity and our point is to illustrate the comparison
between MMD and Wasserstein distance in the simplest setting.

The One-Sample-Test problem is to determine whether a sample (X1, . . . , Xn) comes from a
reference distribution P0. The null assumption is thus

(H0) : (X1, . . . , Xn) is an independent sample from the distribution P0,

In the following, we always take the standard Gaussian distribution (in various dimensions) as
reference P0. We consider the alternative

(H1) : (X1, . . . , Xn) is an independent sample from the distribution P ̸= P0.
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The test relies on the empirical distribution Pn = n−1
∑n

i=1 δXi that we compare to the empirical
distribution P0,m = m−1

∑m
i=1 δZi of a simulated independent sample (Z1, . . . , Zm) from the

distribution P0. For this second sample, a large sample size m can be used to reduce the sample
fluctuations. The comparison between the two samples relies on the choice of a distance d
between probability measures. The quantity d(Pn, P0,n) is an approximation for d(P, P0) and
a small distance supports the null hypothesis (H0). In order to calibrate the test, we use
simulated samples (X⋆

1 , . . . , X
⋆
n) and (Z⋆

1 , . . . , Z
⋆
m) both with distribution P0 and compute the

distance between their empirical distributions P ⋆
n and P ⋆

0,m. Under the null hypothesis (H0),
d(P ⋆

n , P
⋆
m,0) is an independent copy of d(Pn, Pm,0). Similarly as in the parametric bootstrap, we

use multiples copies d(P ⋆b
n , P

⋆b
m,0), b = 1, . . . , B, and compute their empirical quantile q⋆1−α of

order 1 − α. Typically, B = 1000 and α = 5%. We define a (randomized) test with level α by
rejecting (H0) whenever d(Pn, Pn,0) > q⋆1−α.

In the following, we are interested by the impact of the choice of the distance d on the power
of the test and we consider various MMDs as well as the Wasserstein distance. In our numeri-
cal experiment, the reference distribution P0 is the standard Gaussian distribution (in various
dimension d), the sample size n = 100 is fixed and we consider two families of alternatives with
the following data generating process (DGP):

• DGP1: the sample (X1, . . . , Xn) comes from a standard Student distribution Td(df) in
dimension d with df degrees of freedom; we use the continuous parametrization df = 1/ε
with ε ∈ [0, 1] so that df ∈ [1,+∞] and the convention that the Student distribution with
df = +∞ is the standard normal Gaussian distribution;

• DGP2: the sample (X1, . . . , Xn) comes from the mixture distribution (1 − ε)Nd(0, 1) +
εTd(2); that is we have a contaminated standard Gaussian sample with each observations
replaced by a Student T (2) alternative with probability ε ∈ [0, 1].

For the two data generating processes, (H0) corresponds to ε = 0 and H1 to ε > 0, with larger
value of ε corresponding to stronger departure from the null assumption. We consider the tests
as described above with n = 100, m = 500, B = 1000 and α = 0.05 and the following distances:

• GK: the MMD associated with the Gaussian kernel with variance σ2 = d, i.e. k(x, y) =
exp(−∥x− y∥2/(2d)) (similar to Example 1);

• ESK1-ESK3: the MMD associated with energy score kernel with power α = 0.25, 0.5
and 0.75 respectively (see Example 4);

• MGK: the MMD associated with the modified Gaussian kernel k(x, y) = exp(−∥x −
y∥2/(2d)) + d−1x · y (see Example 6).

• W1: the Wasserstein distance of order 1.

We report in Figure 1 the rejection rates of the tests corresponding to these different distances for
DGP1 and DGP2 respectively. We use Monte-Carlo estimation based on N = 1000 replications
to estimate the probability of rejecting (H0). Recall that when ε = 0, we expect a rejection rate
equal to the nominal level α = 5%. When ε > 0, the rejection rate corresponds to the power of
the test under the alternative and a higher rejection rate indicates a better ability of the test to
discriminate between the null and alternative hypotheses.
As should be expected, for the 6 different tests, the rejection rate is roughly equal to 5% when
ε = 0 and it increases when ε increases. In both setting, one can see that higher dimension yields
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Figure 1: Rejection rates for the one-sample-test based on various distances with data gener-
ating process DGP1 (left) and DGP2 (right) in dimension d = 1 (top), 10 (middle) and 100
(bottom). The distances considered are the Wasserstein distance (W1) and the MMDs based on
the gaussian kernel (GK), various energy score kernels (ESK1-ESK3) and the modified gaussian
kernel (MGK).

higher rejection rate, which is due to an increased effective population size of order nd (note that
in our alternatives, all the marginal distributions are deviating from the normal distribution).
More importantly, one can compare the different tests. For DGP2, the results are similar in all
dimensions: the Gaussian kernel yields the lowest power; Energy Score kernels with increasing α
provide tests with increasing power; the Modified Gaussian kernel achieves the best power with
a performance very similar to the one of the Wasserstein distance in dimension 1 and slightly
lower in higher dimension. For DGP1 in dimension 1, the same comments still hold. However,
in higher dimension, the Energy Score Kernels and Gaussian Kernel yield similar performances
and only the Modified Gaussian Kernel stands out.

In this simulation framework where deviation from normality arise with heavy tailed Student
distribution, our numerical experiments reveals that the Gaussian MMD has a low expressivity
compared to the Wasserstein distance; furthermore, the MMD based on the modified Gaussian
kernel almost reaches the same level of expressivity as the Wasserstein distance. Furthermore,
these results seem remarkably stable across dimension.

Finally, we compare our findings with similar experiments from the literature.

• Fukumizu et al. (2009, Section 5) study a two sample test and the use of generalized MMD
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defined as the maximum MMD over a family of kernel; the alternative to the Gaussian
distribution is a sinusoidal perturbation interpreted as a high frequency perturbation. The
focus is on kernel hyperparameter selection (e.g. bandwidth in the Gaussian kernel). Only
bounded kernels are considered with a different alternative distribution from our, making
comparison with our result difficult.

• Gretton et al. (2012, Section 8.1) propose a study of the two kernel test with Gaussian
distributions with a shift in mean or variance; the Gaussian kernel test, t-test, Kolmogorov-
Smirnov test or Hall test are considered among others. Here again only bounded kernels
are considered and the emphasis is put on the calibration of the test (based on universal
bound, limiting distribution or bootstrap for instance), making comparison with our result
difficult.

• To our best knowledge, Sejdinovic et al. (2013, Section 8.1) is the only reference where un-
bounded kernels are considered for the two-sample-test problem. Power distances (equiv-
alent to our Energy Score Kernel MMD) are compared with the Gaussian MMD in three
different settings: shift in mean, shift in variance or sinusoidal perturbation of a Gaussian
distribution. The Gaussian MMD exhibits good performance in the first two cases, while
the energy score kernel with a small power α = 1/3 performs best in the case of a sinusoidal
perturbation.

This last reference allows us to compare the use of energy score kernel in two different settings:
sinusoidal perturbation (high frequency perturbation) or heavy-tail perturbation (low frequency
perturbation). It appears that smaller α in the energy score kernel yield better performance in
the former situation, whereas larger α perfom better in the latter situation. This suggests that
the expressivity of kernels strongly depends on the alternative considered. As a final remark, let
us emphasize that the framework of heavy-tail perturbation has received little attention so far
and that we could see that the Wasserstein distance offers the best performance in this setting,
followed by the Modified Gaussian Kernel test.

5 Conclusion

Summary. Our main contributions provide new insight into the theory of MMDs associated
with unbounded kernels. First, we show that the class of translation invariant MMDs is not
restricted to translation invariant kernels (well studied in the literature) but is characterized
by translation invariant variograms that can be specified with a spectral measure Λ and a
symmetric semidefinite matrix Σ. Second, we consider the relationships between such MMDs
and Wasserstein distances: we prove that the Wasserstein distance of order 1 cannot be metrized
by a bounded MMD; we prove that the MMDs associated with energy kernels of order α ∈ (0, 1)
almost metrizes the Wasserstein distance of order α; finally, for all α ≥ 1, we propose a class
of kernels metrizing the Wasserstein distance of order α ≥ 1 (without the translation invariant
constraint). A short simulation based on the one-sample-test illustrates the good properties of
this last class of MMDs that achieves the closest performances to the Wasserstein distance in
the framework proposed with a reduced computational cost.
Potential applications. Although our focus was mostly on theoretical properties, we believe
that the present work advocates for further and possibly more applied research to connect MMD-
and Wasserstein-based learning. Due to its implicit definition as the minimum of the transport
cost, the computation of Wasserstein distances remains challenging, even if efficient algorithms

18



have been designed and surrogate distances have been considered to reduce the computational
burden (Kolouri et al., 2019; Bayraktar and Guo, 2021). Interestingly, in the framework of
Generative Adversarial Networks (GAN) (Goodfellow et al., 2014), both MMD and Wasserstein
distances have been studied (Li et al., 2015; Arjovsky et al., 2017; Li et al., 2021). For instance,
based on the relationships between Wasserstein distances and MMDs discussed in this paper, it
would be interesting to compare the performances and computational costs between Wasserstein-
GANs and MMD-GANs.
Acknowledgments : The authors acknowledge the support of the French Agence Nationale
de la Recherche (ANR) under reference ANR-20-CE40-0025-01 (TREX project). They are
grateful to the Associate Editor and anonymous referees for their numerous suggestions that
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6 Proofs

6.1 Proofs related to Section 2

Proof. of Corollary 2.3. Assume the MMD associated with k is translation invariant. For
h ∈ Rd, define the translated kernel kh(x, y) = k(x+ h, y + h). Clearly, we have

dk(τh#µ, τh#ν) = dkh(µ, ν)

and Equation (9) implies that the kernel k and kh are equivalent (in the sense of Definition 6).
Proposition 2.1 implies that kh and k have the same variogram, which implies

ρ(x, y) = ρ(x+ h, y + h), for all x, y ∈ Rd.

Since h is arbitrary, we can take h = y − x and define the function γ(h) = ρ(0, h) so as to
obtain ρ(x, y) = ρ(0, y−x) = γ(y−x). The function γ is negative definite because ρ is negative
definite. Furthermore, γ(0) = ρ(0, 0) = 0.
Conversely, given a negative definite function γ : Rd → [0,∞) such that γ(0) = 0, the function
ρ(x, y) = γ(y − x) is negative definite on Rd × Rd and

k0(x, y) = ρ(x, 0) + ρ(0, y)− ρ(x, y)− ρ(0, 0)

is positive definite, see Berg et al. (1984, Lemma 2.1 p.74). One can easily check that k0(x, y) =
γ(x) + γ(y)− γ(y − x). Furthermore, the translated kernel

kh(x, y) = k0(x+ h, y + h) = γ(x+ h) + γ(y + h)− γ(y − x)

has variogram

ρh(x, y) =
1

2
kh(x, x) +

1

2
kh(y, y)− kh(x, y) = γ(y − x).

The kernels kh and k have the same variogram and are thus equivalent, which proves that the
MMD is translation invariant.

The following proof may potentially exist in the literature but we were not able to find a reference
with the precise form required. The literature in the field of IRF-n is often quite general and the
purpose of this proof is to simplify the form of the characterization of the generalized covariance
of IRF-n for the specific case n = 0.
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Proof. of Corollary 2.4. Let k be a normalized kernel such that its MMD is translation
invariant. By Corollary 2.3, there exists a negative definite function γ such that ρ(x, y) = γ(x−y)
for all x, y ∈ Rd. Property (12) corresponds to −γ being conditionally positive definite of order
0 (Matheron, 1973, Section 2.1) and therefore according to Theorem 2.1 in the same reference,
for h ∈ Rd,

−γ(h) =
∫
Rd

(cos(h · ξ)− 1B(ξ))
χ(dξ)

∥ξ∥2
+Q(h),

where Q is an even conditionally positive definite of order 0 polynomial of degree ≤ 2 , B is an
arbitrary neighborhood of 0 and χ is a positive symmetric measure with no atom at the origin
and satisfying ∫

Rd

χ(dξ)

1 + 4π2∥ξ∥2
<∞. (27)

We define Λ(dξ) = χ(dξ)/∥ξ∥2 and Equation (27) implies∫
Rd

(1 ∧ ∥ξ∥2) Λ(dξ) <∞.

The neighborhood can be chosen B = Rd, which amounts to changing the constant term in
the polynomial Q. Moreover, as γ(0) = 0, the constant term of Q is null and then by parity
of Q, for h ∈ Rd, Q(h) = hTMh where M ∈ Md(R). We can assume that M is symmetric
because for an asymmetric matrix A, hTAh = 0 and any matrix M is the sum of a symmetric
and antisymmetric matrix. As Q is conditionally positive definite of order 0 polynomial, for any
h ∈ Rd,

Q(h− h) + (−1)2Q(0− 0)− 2Q(h) ≥ 0,

then M is a symmetric negative semi-definite matrix.
Equation (8) gives for x, y ∈ Rd,

k(x, y) = γ(x) + γ(−y)− γ(x− y)

=

∫
Rd

(1− cos(x · ξ)− cos(−y · ξ) + cos((x− y) · ξ)) Λ(dξ)− 2xTMy

=

∫
Rd

(
1− eix·ξ

)(
1− e−iy·ξ)Λ(dξ) + xTΣy,

where Σ = −2M . The last equality comes from the symmetry of Λ.

Proof. of Proposition 2.5. If Λ is finite then kΛ is bounded. Now, assume that Λ is not finite.
Let R > 0, we denote by BR the ball with center 0 and radius R in Rd and by λR its volume
for the Lebesgue measure λ. By Fubini-Tonelli Theorem

1

λR

∫
BR

kΛ(x, x)λ(dx) =
1

λR

∫
Rd

∫
BR

|1− eix·ξ|2 λ(dx)Λ(dξ).

We consider

fR(ξ) =
1

λR

∫
BR

|1− eix·ξ|2 λ(dx) = 1

λR

∫
BR

(
2− 2 cos(x · ξ)

)
λ(dx).

By Fatou’s Lemma, as R→ +∞,

lim inf
1

λR

∫
BR

kΛ(x, x)λ(dx) = lim inf

∫
Rd

fR(ξ) Λ(dξ) ≥
∫
Rd

lim inf fR(ξ) Λ(dξ).
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If ξ ̸= 0, Riemann-Lebesgue Lemma entails, as R→ +∞,

lim fR(ξ) = lim
1

λR

∫
BR

(
2− 2 cos(x · ξ)

)
λ(dx) = 2,

whence we deduce

lim inf
1

λR

∫
BR

kΛ(x, x)λ(dx) ≥ 2Λ(Rd) = +∞.

This shows that kΛ is not bounded. We have proven that kΛ is bounded if and only if Λ is
bounded. The condition on k = kΛ + kΣ follows easily.

The following Lemma gives an upper bound on the growth of the kernel kΛ and will be useful
in the proof of Proposition 2.6.

Lemma 6.1. Let kΛ be a kernel of the form (16) and assume that, for some 0 < α ≤ 2, we
have

∫
Rd(∥ξ∥α ∧ 1)Λ(dξ) < +∞ . Then kΛ(x, x) = o(∥x∥α), as ∥x∥ → +∞, and Mα/2 ⊂ MΛ.

Proof. Assume
∫
Rd(∥ξ∥α ∧ 1)Λ(dξ) < ∞ with 0 < α ≤ 2. We show that for all ε > 0, there

exists C > 0 such that
|kΛ(x, x)| ≤ C + ε∥x∥α, x ∈ Rd. (28)

Since ε can be chosen arbitrary small, this shows kΛ(x, x) = o(∥x∥α) as ∥x∥ → +∞.
We compute

kΛ(x, x) =

∫
Rd

∣∣∣1− eix·ξ
∣∣∣2 Λ(dξ) ≤ 4

∫
Rd

(
(∥x∥∥ξ∥)2 ∧ 1

)
Λ(dξ)

and divide the integral into two parts, depending whether ∥ξ∥ is larger or smaller than some
η > 0 that will be fixed later. The inequality u2 ∧ 1 ≤ 1 implies∫

{∥ξ∥≥η}

(
(∥x∥∥ξ∥)2 ∧ 1

)
Λ(dξ) ≤ Λ(∥ξ∥ ≥ η).

For 0 < α ≤ 2, the inequality u2 ∧ 1 ≤ |u|α implies∫
{∥ξ∥<η}

(
(∥x∥∥ξ∥)2 ∧ 1

)
Λ(dξ) ≤

∫
{∥ξ∥<η}

(∥x∥∥ξ∥)α Λ(dξ) ≤ ∥x∥α
∫
{∥ξ∥<η}

∥ξ∥α Λ(dξ).

Since
∫
Rd(∥ξ∥α ∧ 1)Λ(dξ) < ∞, for any fixed ε > 0, one can find η > 0 small enough such that∫

{∥ξ∥<η} ∥ξ∥
α Λ(dξ) < ε/4. Setting C = 4Λ(∥ξ∥ ≥ η), the upper bounds for the two terms above

entail Equation (28).
As a direct consequence of Equation (28), any measure µ ∈ M satisfying

∫
Rd ∥x∥α |µ|(dx) <∞

satisfies also
∫
Rd

√
kΛ(x, x) |µ|(dx) <∞. In other words, Mα ⊂ MΛ and this concludes the

proof of the Lemma.

Proof. of Proposition 2.6. The inclusion Mα/2 ⊂ MΛ is proven in Lemma 6.1. Equation (13)
implies thatM1 ⊂ MΛ. The computation of the MMD in terms of characteristic function follows
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the lines Sriperumbudur et al. (2010, Corollary 4 and its proof). For µ, ν ∈ MΛ,

d2Λ(µ, ν) =

∫
Rd×Rd

kΛ(x, y) (µ− ν)⊗ (µ− ν)(dxdy)

=

∫
Rd×Rd

∫
Rd

(
1− eix·ξ

)(
1− e−iy·ξ)Λ(dξ)(µ− ν)⊗ (µ− ν)(dxdy)

=

∫
Rd

[∫
Rd

(
1− eix·ξ

)
(µ− ν)(dx)

∫
Rd

(
1− e−iy·ξ) (µ− ν)(dy)

]
Λ(dξ)

=

∫
Rd

(
µ(Rd)− ν(Rd)− µ̂(ξ) + ν̂(ξ)

)(
µ(Rd)− ν(Rd)− µ̂(ξ) + ν̂(ξ)

)
Λ(dξ)

=

∫
Rd

∣∣µ(Rd)− ν(Rd)− µ̂(ξ) + ν̂(ξ)
∣∣2 Λ(dξ).

In these lines, we have used successively Equations (4) and (16), Fubini’s theorem and the
definition of the characteristic function.

Proof. of Proposition 2.7. The Spectral Theorem for the symmetric positive semidefinite
matrix Σ implies

kΣ(x, y) = xTΣy =

r∑
j=1

λjx
T eje

T
j y, x, y ∈ Rd,

where λ1 ≥ . . . ≥ λr > 0 are the positive eigenvalues of Σ associated with the orthonormal
eigenvectors (e1, . . . , er). Together with the elementary inequality

√
a+ b ≤

√
a+

√
b, for a, b ≥ 0,

we deduce √
λl
∣∣eTl x∣∣ ≤√kΣ(x, x) ≤ r∑

j=1

√
λr
∣∣eTj x∣∣ , l = 1, . . . , r.

We deduce that
∫
Rd

√
kΣ(x, x) |µ|(dx) is finite if and only if

∫
Rd |eTj x| |µ|(dx) is finite for all

j = 1, . . . , r. This proves the characterization of MΣ. On the other hand, a direct computation
gives, for µ, ν ∈ MΣ,

d2Σ(µ, ν) =

∫
Rd×Rd

kΛ(x, y) (µ− ν)⊗ (µ− ν)(dxdy)

=
r∑

j=1

λj

∫
Rd×Rd

(
xT eje

T
j y
)
(µ− ν)⊗ (µ− ν)(dxdy)

=
r∑

j=1

λj

∣∣∣ ∫
Rd

(eTj x)µ(dx)−
∫
Rd

(eTj x)µ(dx)
∣∣∣2.

6.2 Proofs related to Section 3

6.2.1 Proofs of Subection 3.2

Proof. of Proposition 3.2. The proof is done by contraposition. Assume that the kernel k is
bounded and let α > 0. We prove that dk does not metrize the Wasserstein space of order α.
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The assumption that k is bounded implies Mk = M. For x ∈ Rd \ {0} and n ≥ 1, we consider
the probability measures

µn =
n− 1

n
δ0 +

1

n
δn1/αx and µ = δ0.

Then, since k is bounded,

d2k(µn, µ) =
1

n2

(
k(0, 0) + k(n1/αx, nn1/αx)− 2k(n1/αx, 0)

)
→ 0.

On the other hand,

Wα(µn, µ) =

∫
Rd

∥y∥α µn(dy) = ∥x∥ ↛ 0.

This shows that dk does not metrize the Wasserstein space of order α.

Proof. of Proposition 3.3. For x ∈ Rd \ {0} and n ≥ 2, we consider the probability measures

µn =
n− 2

n
δ0 +

1

n
δ−nx +

1

n
δnx and µ = δ0.

On the one hand, the measures µn and µ are symmetric and thus have expectation 0. It follows
that e(µ) = e(µn) = 0 and dΣ(µn, δ0) = 0 according to Proposition 2.6. Furthermore, we
compute

d2Λ(µn, µ) =
1

n2
(
kΛ(nx, nx) + kΛ(−nx,−nx) + 2kΛ(nx,−nx)

)
and, according to Lemma 6.1, |kΛ(nx, nx)| = o(n2), |kΛ(−nx,−nx)| = o(n2) and

|kΛ(−nx, nx)| ≤
√
kΛ(nx, nx)

√
kΛ(−nx,−nx) = o(n2).

We deduce dk(µn, µ) = dΛ(µn, µ) → 0. On the other hand,

W1(µn, µ) =

∫
Rd

∥y∥µn(dy) = ∥x∥ ↛ 0.

This proves that no kernel of the form (14) can metrize the Wasserstein space of order 1.

6.2.2 Proof of Theorem 3.4

For α ∈ (0, 1), we recall that the Energy Kernel is defined by

kα(x, y) = ∥x∥2α + ∥y∥2α − ∥x− y∥2α

and we denote by Hα = Hkα and dα = dkα the associated RKHS and the MMD. We recall that
Mkα = Mα. The kernel mean embedding is denoted by Kα : Mα → Hα and is defined by

Kα(µ)(x) =

∫
Rd

kα(x, y)µ(dy), x ∈ Rd.

For the sake of clarity, we divide the proof of Theorem 3.4 into two parts. The next two lemma
will be useful for the first part.
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Lemma 6.2. For all µ ∈ Mα, the kernel mean embedding Kα(µ) is α-Hölder continuous with
constant cα(µ) = 2

∫
Rd ∥y∥α |µ|(dy), i.e.

|Kα(µ)(x)−Kα(µ)(x
′)| ≤ cα(µ)∥x− x′∥α, x, x′ ∈ Rd.

Proof. We have, for x, x′ ∈ Rd,

|Kα(µ)(x)−Kα(µ)(x
′)| =

∣∣∣ ∫
Rd

kα(x, y)µ(dy)−
∫
Rd

kα(x
′, y)µ(dy)

∣∣∣
≤
∫
Rd

∣∣kα(x, y)− kα(x
′, y)

∣∣ |µ|(dy).
Using the reproducing kernel property and Cauchy-Schwartz inequality, the integrand satisfies

|kα(x, y)− kα(x
′, y)| = |⟨Kα(x),Kα(y)⟩ − ⟨Kα(x

′),Kα(y)⟩|
= |⟨Kα(x)−Kα(x

′),Kα(y)|
≤ ∥Kα(x)−Kα(x

′)∥∥Kα(y)∥

=
√
kα(x, x) + kα(x′, x′)− 2kα(x, x′)

√
kα(y, y)

= 2∥x− x′∥α∥y∥α.

Integrating with respect to |µ|(dy), we deduce

|Kα(µ)(x)−Kα(µ)(x
′)| ≤ 2∥x− x′∥α

∫
Rd

∥y∥α |µ|(dy),

whence the function Kα(µ) is Hölder-continuous with exponent α.

Lemma 6.3. For all µ, ν ∈ Pα, we have

d2α(µ, ν) ≤
(
cα(µ) + cα(ν)

)
Wα(µ, ν).

Proof. We recall that, for α ∈ (0, 1), the Kantorovitch-Rubinstein duality implies that

Wα(µ, ν) = sup
∣∣ ∫

Rd

φ(x) (µ− ν)(dx)
∣∣∣ (29)

with the supremum taken over the set of Hölder-continuous function with exponent α and
constant 1.
Starting from Equation (4) and integrating with respect to y, we get

d2α(µ, ν) =

∫
Rd×Rd

kα(x, y) (µ− ν)⊗ (µ− ν)(dxdy)

=

∫
Rd

Kα(µ− ν)(x) (µ− ν)(dx).

According to Lemma 6.2, the function Kα(µ − ν) is Hölder continuous with exponent α and
constant cα(µ− ν). Then, Equation (29) implies

d2α(µ, ν) =

∫
Rd

Kα(µ− ν)(x) (µ− ν)(dx)

≤ cα(µ− ν)Wα(µ, ν).
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We conclude by using the fact that

cα(µ− ν) = 2

∫
Rd

∥y∥α|µ− ν|(dy)

≤ 2

∫
Rd

∥y∥αµ(dy) + 2

∫
Rd

∥y∥αν(dy)

= cα(µ) + cα(ν).

Proof. of Theorem 3.4 (first point). Let (µn)n≥1, µ ∈ Pα be such that Wα(µn, µ) → 0. By
Lemma 6.3,

d2α(µn, µ) ≤
(
cα(µn) + cα(µ)

)
Wα(µn, µ).

It is enough to prove that the sequence (cα(µn))n≥1 remains bounded in order to conclude
dα(µn, µ) → 0. This is indeed the case since the convergence µn → µ in Wasserstein space of
order α implies the convergence of absolute moments∫

Rd

∥x∥α µn(dx) −→
∫
Rd

∥x∥α µ(dx),

which yields cα(µn) → cα(µ). Being convergent, the sequence (cα(µn))n≥1 is bounded.

We next consider the proof of the second point in Theorem 3.4. The following lemma is the key
of the proof.

Lemma 6.4. For r > 0, we define the measure µr(ds) = (1 + ∥s∥)−d−rds. Then, for r > α,
µr ∈ Mα. Furthermore, for α < r < 1 ∧ 2α, the kernel mean embedding satisfies

Kα(µr)(x) ∼ d(α, r)∥x∥2α−r, as ∥x∥ → +∞,

with d(α, r) > 0.

Proof. As r > α, the function
√
kα(x, x) =

√
2∥x∥α is µr-integrable and hence µr ∈ Mα. The

KME Kα(µr) ∈ Hα is defined by

K(µr)(x) =

∫
Rd

kα(x, y)µr(dy)

=

∫
Rd

(
∥x∥2α + ∥y∥2α − ∥x− y∥2α

)(
1 + ∥y∥

)−(d+r)
dy.

The change of variable z = y/∥x∥ yields

K(µr)(x) = ∥x∥2α+d

∫
Rd

(
1 + ∥z∥2α − ∥x/∥x∥ − z∥2α

)(
1 + ∥x∥∥z∥

)−(d+r)
dz.

By the rotational invariance of the Euclidean norm and the Lebesgue measure, the integral does
not change if we replace the unit vector x/∥x∥ by e1 = (1, 0, . . . , 0). This yields

K(µr)(x) = ∥x∥2α+d

∫
Rd

(
1 + ∥z∥2α − ∥e1 − z∥2α

)(
1 + ∥x∥∥z∥

)−(d+r)
dz.

25



Note that Kα(µr)(x) is rotation invariant and depends only on ∥x∥. We next consider the
asymptotic as ∥x∥ → +∞. In order to ease the analysis, we use the following form

K(µr)(x) = ∥x∥2α−r

∫
Rd

(
∥x∥∥z∥

1 + ∥x∥∥z∥

)d+r 1 + ∥z∥2α − ∥e1 − z∥2α

∥z∥d+r
dz.

Using this expression, the proof of the Lemma is reduced to the proof of the convergence∫
Rd

(
u∥z∥

1 + u∥z∥

)d+r 1 + ∥z∥2α − ∥e1 − z∥2α

∥z∥d+r
dz → d(α, r) > 0, as u→ +∞. (30)

We observe that, for all z ∈ Rd \ {0}, (u∥z∥/(1 + u∥z∥))d+r → 1, as u → ∞, suggesting the
convergence with limit

d(α, r) =

∫
Rd

1 + ∥z∥2α − ∥e1 − z∥2α

∥z∥d+r
dz.

This is justified by Lebesgue dominated convergence Theorem, since (u∥z∥/(1 + u∥z∥))d+r ≤ 1
and g(z) = (1 + ∥z∥2α − ∥e1 − z∥2α)/∥z∥d+r is integrable. Indeed:

- for ∥z∥ > 1/2, the upper bound

|g(z)| = ∥z∥−(d+r)|kα(e1, z)| ≤ ∥z∥−(d+r)
√
kα(e1, e1)

√
kα(z, z) = 2∥z∥α−d−r,

implies integrability on {z : ∥z∥ > 1/2} since r > α;

- for ∥z∥ ≤ 1/2, the function z 7→ 1−∥e1−u∥2α is continuously differentiable on the compact
ball {z : ∥z∥ ≤ 1/2} and vanishes at 0 so that

∣∣1−∥e1− z∥2α
∣∣ ≤ C∥z∥ for some C > 0; we

deduce
|g(z)| ≤ ∥z∥2α−d−r + C∥z∥1−d−r

which implies integrability on {z : ∥z∥ ≤ 1/2} since r < 1 ∧ 2α.

The convergence (30) is proved and it remains to show that the limit is positive. By rotation
invariance,

d(α, r) =

∫
Rd

1 + ∥z∥2α − ∥z − e1∥2α

∥z∥d+r
dz =

∫
Rd

1 + ∥z∥2α − ∥z + e1∥2α

∥z∥d+r
dz.

Then, taking the mean of the two expressions,we get

d(α, r) =

∫
Rd

∥z∥−(d+r)
(
1 + ∥z∥2α − ∥z − e1∥2α + ∥z + e1∥2α

2

)
dz

≥
∫
Rd

∥z∥−(d+r)
(
1 + ∥z∥2α −

[∥z − e1∥2 + ∥z + e1∥2

2

]α)
dz

=

∫
Rd

∥z∥−(d+r)
(
1 + ∥z∥2α −

(
1 + ∥z∥2

)α)
dz

>

∫
Rd

∥z∥−(d+r)
(
1 + ∥z∥2α − 1− ∥z∥2α

)
dz

= 0.

The first inequality uses the concavity of the function u 7→ uα on (0,+∞) and the second
inequality uses (1 + u)α < 1 + uα for u > 0. Both properties hold because α ∈ (0, 1).
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The following lemma is a generalization of the classical characterization of the Wasserstein
convergence (Theorem 7.12, Villani 2003). The proof is easily adapted and omitted for the sake
of brevity.

Lemma 6.5. Let f : Rd → R be a continuous function satisfying f(x) ∼ C∥x∥β as ∥x∥ → +∞
for some C > 0 and β > 0. For measures µ, (µn)n≥1 ∈ Pβ, the weak convergence µn → µ together
with the convergence of integrals

∫
Rd f(x) µn(dx) →

∫
Rd f(x) µ(dx) implies the Wasserstein

convergence Wβ(µn, µ) → 0.

Proof. of Theorem 3.4 (second point). Let µ, (µn)n≥1 ∈ Pα such that dα(µn, µ) → 0. Then
K(µn) → K(µ) in Hα and it follows

∀f ∈ Hα, ⟨f,K(µn)⟩ =
∫
Rd

f dµn −→ ⟨f,K(µ)⟩ =
∫
Rd

f dµ.

In particular, the result holds for the functions from Lemma 6.4: for β ∈ (2α − 1 ∨ 0, α),
r = 2α− β ∈ (α, 1 ∧ 2α) and f = K(µr) ∈ Hα, we have f(x) ∼ d(α, r)∥x∥β as ∥x∥ → +∞. The
function f ∈ Hkα is continuous because the kernel kα is continuous in its two variables so that
all functions in the RKHS are continuous (Simon-Gabriel and Schölkopf, 2018, Corollary 3).
In order to apply Lemma 6.5 and conclude to the convergence Wβ(µn, µ) → 0, it remains to
prove the weak convergence µn → µ. By the discussion above, the moments of order β of the
measures (µn) are uniformly bounded (note that ∥x∥β ≤ C(f(x)+1) for some C > 0) and hence
the sequence (µn) is tight. By Equation (20),

d2α(µn, µ) =
1

c(d, 2α)

∫
Rd

|µ̂n(ξ)− µ̂(ξ)|2

∥ξ∥d+2α
dξ −→ 0.

This implies that µ is the only possible adherent point of the sequence (µn). Tightness and
uniqueness of adherent point implies the weak convergence µn → µ.

6.2.3 Proof of Subsection 3.4

The key ingredient of the first point of Theorem 3.5 is this following lemma. Our proof is largely
inspired by the proof of Theorem 9 of Sriperumbudur et al. (2010).

Lemma 6.6. Let U ⊂ Rd \ {0} be a symmetric open set and α ≥ 1. There exists a real-valued
Schwartz function θ ̸= 0 which has a non null Fourier transform outside U and satisfies∫

Rd

θ(x) dx = 0 and

∫
Rd

|xi|αθ(x) dx = 0, 1 ≤ i ≤ d.

Proof. For w ∈ Rd and ε ∈ (0,+∞)d, we define the function

fw,ε(ξ) =
d∏

i=1

e
− ε2i

ε2
i
−(ξi−wi)

2
1[−εi,εi](ξi − wi), ξ ∈ Rd.

Clearly, fw,ε is a Schwartz function with support equal to the hypercube [w−ε, w+ε]. Because U
is open and symmetric, there exist w1, . . . , wd+1 ∈ U and ε ∈ (0,+∞)d such that the symmetric
sets [wj − ε, wj + ε] ∪ [−wj − ε,−wj + ε], 1 ≤ j ≤ d + 1, are all included in U and pairwise
disjoint. Then the Schwartz functions

θ̂j = fwj ,ε + f−wj ,ε, 1 ≤ j ≤ d+ 1,
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are symmetric with disjoint support included in U . As the Fourier Transform is a bijection on the
Schwartz class, there is a unique Schwartz function θj with Fourier transform θ̂j , 1 ≤ j ≤ d+1.
Note that the functions θ1, . . . , θd+1 are linearly independent because their Fourier transforms
θ̂1, . . . , θ̂d+1 have disjoint support and thus are linearly independent. Furthermore, θj is real-

valued because θ̂j is symmetric and its integral vanishes because the condition 0 /∈ U implies∫
Rd

θi(x) dx = θ̂i(0) = 0.

The d+ 1 vectors in dimension d(∫
Rd

|xi|αθj(x) dx
)

1≤i≤d

∈ Rd, 1 ≤ j ≤ d+ 1,

are not linearly independent so that there exist u1, . . . , ud+1 ∈ R, non all zero, such that

d+1∑
j=1

uj

∫
Rd

|xi|αθj(x) dx = 0 for all 1 ≤ i ≤ d.

Then the function θ =
∑d

j=1 ujθj satisfies the required properties. It is non null because the
functions θ1, . . . , θd+1 are linearly independent.

Proof. of Theorem 3.5 (first point). Consider the decomposition

k(x, y) = kΛ(x, y) + kΣ,α(x, y) (31)

with kΛ defined in Equation (16) and kΣ,α(x, y) = |x|αTΣ|y|α.
If supp(Λ) = Rd, we prove that the kernel kΛ is characteristic over probability measures and
hence k is also characteristic. The proof is similar to the proof of Theorem 9 in Sriperumbudur
et al. (2010) and we recall only the key arguments. By Proposition 2.6, as µ(Rd) = ν(Rd) = 1

d2Λ(µ, ν) = 0 if and only if

∫
Rd

|µ̂(ξ)− ν̂(ξ)|2 Λ(dξ) = 0.

Since Λ has a full support and the integrand is continuous, we must have µ̂(ξ) = ν̂(ξ) for all
ξ ∈ Rd. We deduce µ = ν, showing that kΛ is characteristic over probability measures.
Conversely, we now suppose that supp(Λ) ̸= Rd and show that k = kΛ+kΣ,α is not characteristic.
Let U ⊂ Rd \ {0} be a symmetric open set such that Λ(U) = 0. By Lemma 6.6, there exists a
Schwartz function θ ̸= 0 such that∫

Rd

θ(x) dx = 0,

∫
Rd

|xi|αθ(x) dx = 0, 1 ≤ i ≤ d,

and θ̂(x) = 0 for x /∈ U . Let n ≥ 1 and C > 0, such that the measure

µ(dx) =
C

1 + ∥x∥n
dx

is a probability measure with a finite absolute moment of order p. As θ is continuous and with
a fast decay at infinity, there exists u > 0, such that the function C(1+ ∥x∥)−n+uθ(x) remains
positive on Rd. Then the measure

ν(dx) =

(
C

1 + ∥x∥n
+ uθ(x)

)
dx
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is probability measure (recall that θ has a vanishing integral on Rd). By the properties of θ, the
measures µ and ν have the same absolute moment of order p:∫

Rd

|xi|α µ(dx) =
∫
Rd

|xi|α ν(dx), 1 ≤ i ≤ d,

so that mα(µ) = mα(ν) and d
2
Σ,α(µ, ν) = 0, see Equation (24). Furthermore, they have the same

Fourier transforms outside U , and together with Λ(U) = 0, this entails

d2Λ(µ, ν) =

∫
Rd

|µ̂(ξ)− ν̂(ξ)|2 Λ(dξ) = 0.

We conclude that d2k(µ, ν) = d2Λ(µ, ν) + d2Σ,α(µ, ν) = 0, so that the MMD is not a distance on
Mk ∩ P and k is not characteristic.

Proof. of Theorem 3.5 (second point).
Assume that dk metrizes the Wasserstein space Pα. Then dk is a distance, and, by the first point
of the theorem, supp(Λ) = Rd. We next prove that kerΣ ∩ Rd

+ ̸= {0} leads to a contradiction.
If x ∈ Rd

+ is non zero and such that |x|α ∈ KerΣ, we consider the sequence µn = n−1
n δ0 +

1
nδnx.

ClearlyWα(µn, δ0) ̸→ 0 because the α-moment of µn does not converge to 0. On the other hand,
d2k(µn, δ0) =

1
n2kΛ(nx, nx) because |x|p ∈ kerΣ. Then Lemma 6.1, implies d2k(µn, δ0) → 0. This

shows that dk does not metrize Pα and leads to a contradiction, whence kerΣ ∩ Rd
+ = {0}.

We now assume that supp(Λ) = Rd and kerΣ∩Rd
+ = {0}. It must be shown that, for (µn)n≥1, µ ∈

Pα, Wα(µn, µ) → 0 if and only if dk(µn, µ) → 0.

• If Wα(µn, µ) → 0, then mα(µn) → mα(µ) and dΣ(µn, µ) = ∥mα(µn) − mα(µ)∥Σ → 0.
Moreover, as α ≥ 1, m1(µn) → m1(µ) and hence these moments are uniformly bounded
by some constant C. This implies that the the Fourier transforms (µ̂n)n≥1, µ̂ are all
C-Lipschitz continuous and hence

|µ̂n(ξ)− µ̂(ξ)|2 ≤ 4(1 ∧ C2∥ξ∥2) ∈ L1(Λ).

Also, Wasserstein convergence implying weak convergence, µ̂n → µ̂ pointwise. The Domi-
nated Convergence Theorem then implies,

d2Λ(µn, µ) =

∫
Rd

|µ̂n(ξ)− µ̂(ξ)|2 Λ(dξ) → 0,

and we deduce d2k(µn, µ) = d2Λ(µn, µ) + d2Σ(µn, µ) → 0.

• Conversely, if dk(µn, µ) → 0, then dΣ(µn, µ) = ∥mα(µn) − mα(µ)∥Σ → 0. This implies
mα(µn) → mα(µ). Indeed, the condition KerΣ ∩ Rd

+ = {0} implies the existence of c > 0
such that ∥x∥Σ ≥ c∥x∥ for all x ∈ Rd

+ (take c has the minimum of the positive continuous
function x 7→ xTΣx on the compact {x ∈ Rd

+ : ∥x∥ = 1}).
Since the moment mα(µn) converge, the sequence µn is tight. Moreover, the convergence

d2Λ(µn, µ) =

∫
Rd

|µ̂n(ξ)− µ̂(ξ)|2 Λ(dξ) → 0

implies that the measure µ is the unique adherent point of the sequence (µn)n≥1 and hence
(µn)n≥1 converges weakly to µ. Together with the convergence of the absolute moment of
order α, this implies the convergence in Wasserstein space Pα.
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6.2.4 Proof of Subsection 3.5

The proof of Proposition 3.6 is based on the following lemma, where ∗ denotes the convolution
product and hσ the Gaussian density defined by

hσ(x) = (σ
√
2π)−d exp(−∥x∥22/2σ2), x ∈ Rd. (32)

Lemma 6.7. For φ ∈ C0(Rd,R) and F a probability measure on Rd, we have∫
Rd

φ ∗ hσ dF = (
√
2π)−d

∫
Rd

φ(y)

∫
Rd

f̂(t)h1(σt) exp(−iy · t) dtdy,

where f̂ is the characteristic function of F .

Proof. The proof of this lemma can be found in Ouvrard (2004). By definition of the convolution
product and Fubini Theorem, we have∫

Rd

φ ∗ hσ dF =

∫
Rd

∫
Rd

φ(y)hσ(t− y) dyF (dt) =

∫
Rd

φ(y)

∫
Rd

hσ(t− y) F (dt)dy.

By a standard result of Fourier theory (see also Ouvrard (2004) lemma 12.5),∫
Rd

hσ(t− y) F (dt) = (
√
2π)−d

∫
Rd

f̂(t)h1(σt) exp(−iy · t) dt,

whence the Lemma follows.

Lemma 6.8. For all a, b > 0 and p, q > 0,

inf
σ>0

(
aσp + bσ−q

)
= Cp,qa

q
p+q b

p
p+q ,

with Cp,q =
(
p
q

) q
p+q

+
(
q
p

) p
p+q

.

Proof. A straightforward analysis of the function σ 7→ aσp + bσ−q shows that its derivative

vanishes at σ =
(

bq
ap

) 1
p+q

where the minimum is reached.

In the following, we note µ(f) =
∫
Rd φ(x) µ(dx) the integral of a function φ with respect to a

measure µ.

Lemma 6.9. Consider a function φ : Rd → R that is Lipschitz continuous with Lipschitz con-
stant L, bounded by a constant M and with support included in the ball B(0,K). Then, for all
probability measures µ, ν on Rd, and α ∈ (0, 1), we have

|µ(φ)− ν(φ)| ≤ Cdα(µ, ν)
1/(d+α+1)

with constant C depending only on d, α,K,L,M and given explicitly by Equation (34).

of Lemma 6.9. The proof relies on Fourier theory and on an approximation argument using the
Gaussian kernel hσ defined by (32). Since φ is L-Lipschitz continuous, the convolution φ ∗ hσ
satisfies

∥φ− φ ∗ hσ∥∞ ≤ L

∫
Rd

∥y∥2hσ(y) dy = Lmdσ, (33)
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with md =
∫
Rd ∥y∥2h1(y) dy the absolute moment the d-dimensional standard Gaussian distri-

bution. By the triangle inequality, we have

|µ(φ)− ν(φ)| ≤ |µ(φ)− µ(φ ∗ hσ)|+ |µ(φ ∗ hσ)− ν(φ ∗ hσ)|+ |ν(φ ∗ hσ)− ν(φ)|
≤ 2Lmdσ + |µ(φ ∗ hσ)− ν(φ ∗ hσ)|.

The last term is controlled thanks to Fourier analysis and Lemma 6.7 which implies∣∣µ(φ ∗ hσ)− ν(φ ∗ hσ)
∣∣ = (2π)−d/2

∣∣∣ ∫
Rd

φ(y)

∫
Rd

(
µ̂(t)− ν̂(t)

)
h1(σt)e

−iy·t dtdy
∣∣∣

≤ (2π)−d/2Mλ(B(0,K))

∫
Rd

∣∣µ̂(t)− ν̂(t)
∣∣h1(σt) dt,

where µ̂ and ν̂ denote the characteristic functions of µ and ν respectively and the last line uses
the fact that φ is supported by B(0,K) and bounded by M . Note that the volume of the ball
is equal to λ(B(0,K)) = Kdvd with vd = λ(B(0, 1)) the volume of the unit ball in dimension d.
Furthermore, Equation (20) together with the Cauchy-Schwarz inequality implies∫

Rd

∣∣µ̂(t)− ν̂(t)
∣∣h1(σt) dt ≤ (∫

Rd

∥t∥d+2αh21(σt) dt×
∫
Rd

|µ̂(t)− ν̂(t)|2

∥t∥d+2α
dt

)1/2

=
(
I(α, d)σ−2d−2α × c(d, 2α)d2α(µ, ν)

)1/2
with I(α, d) =

∫
Rd ∥t∥d+2αh21(t) dt. Collecting the different terms, we get

|µ(φ)− ν(φ)| ≤ 2Lmdσ + (2π)−d/2MKdvd
√
I(α, d)

√
c(d, 2α)dα(µ, ν)σ

−d−α.

This inequality holds for all σ > 0 and, minimizing with respect to σ > 0 according to Lemma 6.8,
we get

|µ(φ)− ν(φ)| ≤ Cdα(µ, ν)
1/(d+α+1),

where the constant is given by

C = DL(d+α)/(d+α+1)(MKd)1/(d+α+1) (34)

with D depending only on d and α and given by

D =
d+ α+ 1

d+ α
(2md)

(d+α)/(d+α+1)

(
(d+ α)vd

√
I(α, d)

√
c(d, 2α)

(2π)d/2

)1/(d+α+1)

. (35)

of Proposition 3.6. Let φ be a Lipschitz continuous function with Lipschitz constant L = 1 and
µ, ν probability measures with support included in B(0,K). Because the quantity µ(φ)− ν(φ)
does not change if φ is replaced by φ − φ(0), we can assume without loss of generality that
φ(0) = 0. Then, because of the Lipschitz property, φ is bounded by K on B(0,K). Therefore,
one can easily construct a function φ̃ which is 1-Lipschitz on Rd, equal to φ on B(0,K) and equal
to 0 on Rd \B(0, 2K). Since µ, ν have their support included in B(0,K), it holds µ(φ)− ν(φ) =
µ(φ̃) − ν(φ̃) and one can apply Lemma 6.9 to the function φ̃ (with L = 1, M = K and K
replaced by 2K) and deduce

|µ(φ)− ν(φ)| ≤ Cdα(µ, ν)
1/(d+α+1)
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with constant
C = 2d/(d+α+1)DK(d+1)/(d+α+1) (36)

and D given in Equation (35).

of Proposition 3.7. We now remove the support condition and replace it by a weaker moment
assumption. For γ > 1 and S > 0, we consider the set Tγ,S of measures µ satisfying∫

Rd

∥x∥γµ(dx) ≤ S.

This moment condition implies that, for all K > 0,∫
Rd

∥x∥1{∥x∥>K} µ(dx) ≤ SK1−γ .

Consider now probability measures µ, ν ∈ Tγ,S and a Lipschitz continuous function φ with
Lipschitz constant L = 1 and such that φ(0) = 0. Note that |φ(x)| ≤ ∥x∥. For K > 0, consider
the function χ : Rd → [0, 1] defined by

χ(x) = 1∥x∥≤K +
2K − ∥x∥

K
1K<∥x∥<2K .

Clearly, χ is Lipschtiz continuous with constant 1/K, is equal to 1 on B(0,K) and to 0 on
Rd \B(0, 2K). We introduce the decomposition φ = χφ+ (1− χ)φ and the bound

|µ(φ)− ν(φ)| ≤ |µ(χφ)− ν(χφ)|+ |µ((1− χ)φ)− ν((1− χ)φ)|.

For the first term, we note that χφ is supported by B(0, 2K), bounded by 2K and with Lipschitz
constant 2 so that Lemma 6.9 implies

|µ(χφ)− ν(χφ)| ≤ 21+d/(d+α+1)DK(d+1)/(d+α+1)dα(µ, ν)
1/(d+α+1)

with D given by (35). For the second term, we note that (1 − χ)φ vanishes on B(0,K) and is
bounded by ∥x∥, so that Equation (25) implies

|µ((1− χ)φ)− ν((1− χ)φ)| ≤
∫
Rd

∥x∥1{∥x∥>K} µ(dx) +

∫
Rd

∥x∥1{∥x∥>K} ν(dx)

≤ 2SK1−γ .

Collecting the two terms, we get

|µ(φ)− ν(φ)| ≤ 21+d/(d+α+1)Ddα(µ, ν)
1/(d+α+1)K(d+1)/(d+α+1) + 2SK1−γ .

Minimizing the right hand side with respect to K > 0 according to Lemma 6.8, we deduce

|µ(φ)− ν(φ)| ≤ Cdα(µ, ν)
ρ

with exponent

ρ =
γ − 1

γ(d+ 1) + (γ − 1)α

and constant

C = 2γ(d+1)/(γ(d+1)+α(γ−1))C d+1
d+α+1

,γ−1D
(d+α+1)ρS(d+1)/(γ(d+1)+α(γ−1)) (37)

with D given in Equation (35). Because the 1-Lipschitz function φ in the left hand side is
arbitrary, this yields an upper bound for the Wasserstein distance W1(µ, ν).
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Panaretos, V. M. and Zemel, Y. (2020). An invitation to statistics in Wasserstein space.
SpringerBriefs in Probability and Mathematical Statistics. Springer, Cham.

Sejdinovic, D., Sriperumbudur, B., Gretton, A., and Fukumizu, K. (2013). Equivalence of
distance-based and rkhs-based statistics in hypothesis testing. The Annals of Statistics, 41(5).

34



Shen, J., Stoev, S., and Hsing, T. (2022). Tangent fields, intrinsic stationarity, and self similarity.
Electronic Journal of Probability, 27(none):1 – 56.

Si, N., Murthy, K., Blanchet, J., and Nguyen, V. A. (2021). Testing group fairness via optimal
transport projections. In Meila, M. and Zhang, T., editors, Proceedings of the 38th Inter-
national Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pages 9649–9659. PMLR.

Simon-Gabriel, C.-J., Barp, A., Schölkopf, B., and Mackey, L. (2023). Metrizing weak conver-
gence with maximum mean discrepancies. Journal of Machine Learning Research, 24(184):1–
20.

Simon-Gabriel, C.-J. and Schölkopf, B. (2018). Kernel distribution embeddings: Universal ker-
nels, characteristic kernels and kernel metrics on distributions. Journal of Machine Learning
Research, 19(44):1–29.

Smola, A., Gretton, A., Song, L., and Schölkopf, B. (2007). A hilbert space embedding for
distributions. In Hutter, M., Servedio, R. A., and Takimoto, E., editors, Algorithmic Learning
Theory, pages 13–31, Berlin, Heidelberg. Springer Berlin Heidelberg.

Sriperumbudur, B. K., Fukumizu, K., and Lanckriet, G. R. (2011). Universality, characteristic
kernels and rkhs embedding of measures. Journal of Machine Learning Research, 12:2389–
2410.

Sriperumbudur, B. K., Gretton, A., Fukumizu, K., Schölkopf, B., and Lanckriet, G. R. (2010).
Hilbert space embeddings and metrics on probability measures. Journal of Machine Learning
Research, 11(50):1517–1561.

Steinwart, I. and Christmann, A. (2008). Support Vector Machines. Information Science and
Statistics. Springer, New York.

Steinwart, I. and Ziegel, J. F. (2021). Strictly proper kernel scores and characteristic kernels on
compact spaces. Applied and Computational Harmonic Analysis, 51:510–542.

Sutherland, D. J., Tung, H.-Y., Strathmann, H., De, S., Ramdas, A., Smola, A., and Gretton,
A. (2017). Generative models and model criticism via optimized maximum mean discrepancy.
In International Conference on Learning Representations.
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