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Abstract

Kernel mean embeddings and maximum mean discrepancies (MMD) associated with posi-
tive semi-definite kernels are important tools in machine learning that allow to compare prob-
ability measures and sample distributions. Two kernels are said equivalent if their associated
MMDs are equal. We characterize the equivalence of kernels in terms of their variogram and
deduce that MMDs are in one to one correspondance with negative semi-definite functions.
As a consequence, we provide a full characterization of translation invariant MMDs on Rd

that are parametrized by a spectral measure and a semi-definite symmetric matrix. Further-
more, we investigate the connections between translation invariant MMDs and Wasserstein
distances on Rd. We show in particular that convergence with respect to the MMD asso-
ciated with the Energy Kernel of order α ∈ (0, 1) implies convergence with respect to the
Wasserstein distance of order β < α. We also provide examples of kernels metrizing the
Wasserstein space of order α ≥ 1.
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1 Introduction

Background. Many problems in statistics and machine learning require comparing several
probability measures and/or sample distributions: goodness-of-fit testing compares a sample
distribution to a reference distribution (Chwialkowski et al., 2016); two-sample testing com-
pares two sample distributions (Gretton et al., 2012); independence testing compares a joint
distribution to a product distribution (Gretton et al., 2005); generative model fitting compares
the distributions of real and fake data (Dziugaite et al., 2015; Sutherland et al., 2017). The
different methods proposed in these references all rely on the important notion of Minimum
Mean Discrepancy (MMD).
MMDs are semi-metrics between probability measures and their definition relies on the theory
of Reproducing Kernel Hilbert Spaces (RKHS) and Kernel Mean Embeddings (KME). Given
a symmetric positive semi-definite kernel k and its associated RKHS Hk, the KME is a map
µ 7→ K(µ) that assigns a function K(µ) ∈ Hk to each signed measure µ in a suitable subspace
Mk (defined in Equation (4) below). The corresponding MMD between two measures µ and ν
is defined as the RKHS distance between their embeddings, i.e. dk(µ, ν) := ∥K(µ)−K(ν)∥Hk

.
When the KME is injective, in which case the kernel is called characteristic, the MMD defines a
proper distance that can be used to compare probability measures and/or sample distributions.
Due to their theoretical tractability and computational efficiency, KMEs and MMDs are widely
used in many areas of machine learning. We refer to Smola et al. (2007) for an overview on
distribution Hilbert space embeddings and their applications in machine learning.

Related works. In the last decade, an important line of research has focused on theoretical
properties of KMEs and MMDs. Sriperumbudur et al. (2010) and Sriperumbudur et al. (2011)
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consider conditions ensuring that a kernel is characteristic, meaning that the associated kernel
mean embedding is injective. In the particular case of invariant kernels on Rd, the question can
be adressed thanks to Fourier analysis and the kernel is shown to be characteristic if and only
if the spectral measure has a full support on Rd \ {0} (Sriperumbudur et al., 2010, Theorem
9). Already considered in the latter references, the question of whether MMD can metrize weak
convergence of distributions has been fully addressed by Simon-Gabriel and Schölkopf (2018)
and Simon-Gabriel et al. (2021). The main result is that, for a continuous kernel with RKHS
included in the space of continuous functions vanishing at infinity, the MMD metrizes weak
convergence if and only if the kernel is characteristic.
Although weak convergence is an important concept and a minimal requirement, this notion of
convergence is very weak, as its name suggests. A stronger notion of convergence, which has
turned out to be very useful and successful in machine learning, is the convergence in Wasserstein
space. The Wasserstein distance is related to optimal transport (Villani, 2008) and has recently
been considered in several learning algorithms (Frogner et al., 2015). One of the main question
addressed in the present paper is whether a MMD can metrize the Wasserstein space. We show
that the answer is positive and that the use of unbounded kernels is needed. In a slightly different
perspective, Auricchio et al. (2020) and Vayer and Gribonval (2021) establish non-asymptotic
inequalities relating MMD and Wasserstein distances.

Main contributions. Our main findings are the following:

• The notion of equivalent kernels is introduced (Definition 2.4) and characterized via the
variogram (Proposition 2.6), showing that MMDs are in one-to-one correspondence with
negative semi-definite functions.

• The class of translation invariant MMD on Rd is characterized by a spectral measure
and a symmetric positive semi-definite matrix (Corollary 2.10). Extending the results of
Sriperumbudur et al. (2010), we provide an explicit formula for the MMD in terms of
Fourier transform (Proposition 2.13) and provide a necessary and sufficient condition for
the kernel to be characteristic over probability measures (Proposition 2.14).

• Strong connections between Energy kernels and Wasserstein distances are established
(Theorem 3.4). More precisely, for α ∈ (0, 1), we denote by dα the MMD associated
with the energy kernel of order α and by Wα the Wasserstein distance of order α; we
prove that convergence of probability measures with respect to Wα implies convergence
with respect to dβ for all 0 < β ≤ α and, conversely, that convergence with respect to dα
implies convergence with respect to Wβ for all 0 < β < α.

• We exhibit new families of kernels that metrize the Wasserstein spaces of order α ≥ 1
(Theorem 3.7).

• We provide non-asymptotic inequalities betweenWα and dα for tight subsets of probability
measures (Proposition 3.9).

Potential applications. Although our focus here is mostly on theoretical properties, we believe
that the present work advocates for further and possibly more applied research to connect MMD-
and Wasserstein-based learning. Due to its implicit definition has the minimum of the transport
cost, the computation of Wasserstein distances remains challenging, even if efficient algorithms
have been designed and surrogate distances have been considered to reduce the computational
burden (Kolouri et al., 2019; Bayraktar and Guo, 2021). Interestingly, in the framework of
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Generative Adversarial Networks (GAN) (Goodfellow et al., 2014), both MMD and Wasserstein
distances have been studied (Li et al., 2015; Arjovsky et al., 2017). Based on the relationships
between Wasserstein distances and Energy Kernel MMDs discussed in this paper, it would for
instance be interesting to compare Wasserstein-GAN and MMD-GAN based on the Energy
Kernel.

Structure of the paper. Section 2 gathers our main results on translation invariant MMD. We
first introduce some background on reproducing kernel Hilbert spaces, kernel mean embeddings
and maximum mean discrepancies in Section 2.1. The notion of equivalent kernels and its
characterization via variograms are the purpose of Section 2.2. Translation invariant MMDs
and their properties are studied in Section 2.3. Section 3 focuses on the connections between
MMDs and Wasserstein distances. Some background on Wasserstein spaces is presented in
Section 3.1 and some preliminary results in Section 3.2. The relationships between MMDs
associated with energy kernel of order α < 1 and Wasserstein distances of order α < 1 are
investigated in Section 3.3. New families of kernels metrizing the Wasserstein spaces of order
α ≥ 1 are studied in Section 3.4. Finally, some nonasymptotic inequalities relating MMDs and
Wasserstein distances are established in Section 3.5. All the proofs are postponed to Section 4.

Notation. In Sections 2.1 and 2.2, (X ,B) denotes a measurable space and M (resp. P) the
sets of signed measures (resp. probability measures) on (X ,B). The total variation measure of
a signed measure µ ∈ M is denoted by |µ|. In the rest of the paper, we take X = Rd endowed
with its Borel sigma-field and M (resp. P) denotes the space of Borel signed measures (resp.
probability measures) on Rd. We equip Rd with its canonical Euclidean structure and we write
∥x∥ and x · y respectively for the norm of x and the inner product between x and y. For α > 0,
we define

Mα =
{
µ ∈ M : :

∫
Rd

∥x∥α |µ|(dx) <∞
}

and Pα = Mα ∩ P (1)

the set of signed measures (resp. probability measures) with finite α-moment.

2 Kernel Mean Embedding and Maximum Mean Discrepancy

2.1 Hilbert space embedding of measures

We present some basic elements of the theory of Reproducing Kernel Hilbert Space (RKHS),
Kernel Mean Embedding (KME) and Maximum Mean Discrepancy (MMD). For more details,
the reader could refer to Berlinet and Thomas-Agnan (2004), Smola et al. (2007) or Steinwart
and Christmann (2008, Section 4).

Reproducing Kernel Hilbert Space (RKHS). Let X be an arbitrary space and F(X ,R)
denote the space of real valued function on X . A function k : X ×X → R is called a kernel if it
is symmetric and positive semi-definite. The latter conditions means that∑

1≤i,j≤n

aiajk(xi, xj) ≥ 0, for all n ≥ 1, x1, . . . , xn ∈ X , a1, . . . , an ∈ R.

Definition 2.1. A Hilbert space H ⊂ F(X ,R) is called a RKHS if, for all x ∈ X , the evaluation
map f 7→ f(x) is continuous.

By the Riesz representation theorem, there exists, for all x ∈ X , a unique representer K(x) ∈ H
such that

∀f ∈ H, f(x) = ⟨f,K(x)⟩.
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Then, the function k(x, y) = ⟨K(x),K(y)⟩ is a kernel and is called the reproducing kernel of H
because of the following reproducing property : for all x ∈ X , k(x, ·) ∈ H and

∀f ∈ H, f(x) = ⟨f, k(x, ·)⟩. (2)

In particular, we have K(x) = k(x, ·). The reproducing kernel characterizes the RKHS and
conversely, according to Aronszajn’s theorem, any kernel defines a unique RKHS.

Theorem 2.2 (Aronszajn’s theorem). For any kernel k on X×X , there exists an unique RKHS,
noted Hk, with reproducing kernel k.

Kernel Mean Embedding (KME). We assume that (X ,B) is a measurable space and the
kernel k is measurable on X × X . The space of signed finite measures (resp. probability
measures) µ on (X ,B) is denoted by M (resp. P) and the total variation measure of µ by
|µ|. The reproducing kernel property (2) readily implies that for any finite discrete measure
µ =

∑n
i=1 aiδxi , the function K(µ) =

∑n
i=1 aiK(xi) ∈ Hk satisfies

∀f ∈ Hk, ⟨f,K(µ)⟩ =
∫
X
f(x)µ(dx). (3)

The KME extends this property to the class of measures

Mk =
{
µ ∈ M :

∫
X

√
k(x, x) |µ|(dx) < +∞

}
. (4)

The following proposition defines the KME on Mk. See, e.g., Steinwart and Christmann (2008,
Theorem 4.26) for the proof – note that, the kernel k being measurable, all functions f ∈ Hk

are measurable (Steinwart and Christmann, 2008, Lemma 4.24).

Proposition 2.3. For all µ ∈ Mk, Hk ⊂ L1(µ) and there exists an unique K(µ) ∈ Hk satisfying
Equation (3).

The map K : Mk → Hk is the KME associated with k; the vector K(µ) represents the measure
µ in the same way as the vector K(x) represents the point x (identified with the Dirac measure
δx). One of the main argument in the proof of Proposition 2.3 is the continuity of the linear
form f ∈ Hk 7→

∫
f dµ for all µ ∈ Mk. It follows from the inequality

|f(x)| = |⟨f, k(x, .)⟩Hk
| ≤ ∥f∥Hk

∥k(x, ·)∥Hk
= ∥f∥Hk

√
k(x, x)

which entails ∣∣∣ ∫
X
f dµ

∣∣∣ ≤ ∥f∥Hk

∫
X

√
k(x, x) |µ|(dx).

Remark 1. One can find in the literature a different construction of the KME on an extended
space of measures in terms of the Pettis integral (Diestel and Uhl, 1977, Section 2.3). Using
the Closed Graph Theorem for Banach spaces, Steinwart and Ziegel (2021, Section 2) proves
the continuity of the linear form f ∈ Hk 7→

∫
X fdµ as soon as Hk ⊂ L1(µ). The KME is then

defined on the subspace M′
k = {µ ∈ M : Hk ⊂ L1(µ)}. This subspace always contains Mk and

the two constructions of the KME coincide there.
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Maximum Mean Discrepancy (MMD). To compare two measures in Mk, we compare their
images in Hk under the KME: the MMD is defined by

dk(µ, ν) = ∥K(µ)−K(ν)∥Hk
, µ, ν ∈ Mk.

The reproducing kernel property (3) - applied twice - implies

d2k(µ, ν) = ⟨K(µ− ν),K(µ− ν)⟩Hk

=

∫
X×X

k(x, y) (µ− ν)⊗ (µ− ν)(dxdy). (5)

For sample distributions µn = n−1
∑n

k=1 δxk
and νm = m−1

∑m
l=1 δyl , the MMD reduces to

d2k(µn, νm) = n−2
∑

1≤k,l≤n

k(xk, xl) +m−2
∑

1≤k,l≤m

k(yk, yl)− 2n−1m−1
∑

1≤k≤n

∑
1≤l≤m

k(xk, yl)

and is easily computed (for sample of reasonable size). Furthermore, using the dual representa-
tion of the Hilbert norm in Hk, the MMD can also be expressed as

dk(µ, ν) = sup
∥f∥Hk

≤1

∣∣∣∣∫
X
f dµ−

∫
X
f dν

∣∣∣∣ .
This form corresponds to an Integral Probability Metric (Müller, 1997) with test functions
belonging to the unit ball of the RKHS.

Example 1. When X = Rd, the Gaussian kernel is the most popular one in machine learning
and is defined by

k(x, y) = exp(−∥x− y∥22/2), x, y ∈ Rd.

This kernel being bounded, we have Mk = M and, using Fourier theory, the MMD can be
rewritten as

d2k(µ, ν) =

∫
Rd

|µ̂(t)− ν̂(t)|2 φ(t) dt,

where φ denotes the multivariate standard Gaussian density on Rd and µ̂ (resp. ν̂) the charac-
teristic function of µ (resp. ν). By Theorem 7 of Simon-Gabriel et al. (2021), the MMD metrizes
weak convergence on P.

2.2 Equivalent kernels and variograms

Given different measurable kernels on X × X , one can wonder in which case the associated
MMDs are equal. This gives rise to the following definition.

Definition 2.4. The measurable kernels k1 and k2 on X × X are said equivalent if

Mk1 = Mk2 and dk1(µ, ν) = dk2(µ, ν) for all µ, ν ∈ Mk1 ∩ P.

Let us stress that, in this definition, the equality of MMDs is required for probability measures
only.
Our characterization of equivalent kernel relies on the notion of variogram that we now define.
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Definition 2.5. We call variogram associated with a kernel k the function

ρ(x, y) =
1

2
k(x, x) +

1

2
k(y, y)− k(x, y), x, y ∈ X .

Clearly, the variogram ρ is a symmetric function on X × X and vanishes on the diagonal, i.e.

ρ(x, x) = 0 for all x ∈ X .

Furthermore, according to Berg et al. (1984, Lemma 2.1 p.74), the variogram is a conditionnally
negative definite function on X × X , meaning that∑

1≤i,j≤n

aiajρ(xi, xj) ≤ 0

for all x1, . . . , xn ∈ X and a1, . . . , an ∈ R such that
∑n

i=1 ai = 0. See Chapter 3 in Berg et al.
(1984) for more details on the strong relationships between positive definite and negative definite
functions.
Our main result in this section is the following simple, yet new to our best knowledge, charac-
terization of equivalent kernels.

Proposition 2.6. Two measurable kernels are equivalent if and only if they have the same
variogram.

In order to have a form of uniqueness, we consider the notion of normalized kernel. Fix an
arbitrary origin o ∈ X . A kernel k is said to be normalized (with origin o) if

k(x, o) = k(o, x) = 0 for all x ∈ X .

Proposition 2.7. For any kernel k on X×X , there exists a unique kernel k0 which is equivalent
to k and normalized (with origin o). It is given by

k0(x, y) = k(x, y)− k(x, o)− k(o, y) + k(o, o).

Denoting by ρ the common variogram of k and k0, one can easily check that k0 can be written
as

k0(x, y) = ρ(x, o) + ρ(o, y)− ρ(x, y).

Remark 2. The term variogram comes from the theory of stochastic processes and geostatistic
(Cressie, 1993). Let (B(x))x∈X be a square integrable stochastic process on X . The covariance
function is a symmetric and positive definite function on X × X , that is

k(x, y) = Cov(B(x), B(y))

is a kernel. The associated variogram

ρ(x, y) =
1

2
k(x, x) +

1

2
k(y, y)− k(x, y)

=
1

2
Var(B(y)−B(x))

7



corresponds to half the variance of the increment B(y) − B(x). Given an origin o ∈ X , the
process (B(x)−B(o))x∈X of increments at the origin has covariance

k0(x, y) = Cov(B(x)−B(o), B(y)−B(o))

= k(x, y)− k(x, o)− k(o, y) + k(o, o),

which is the unique normalized kernel with variogram ρ. We focus next on the class of Gaussian
process. If the process B is centered and Gaussian, then its distribution is fully characterized
by its covariance function. It follows that, given an origin o and a variogram ρ, there exists a
(unique in distribution) centered Gaussian process B = (B(x))x∈X such that

Var(B(y)−B(x)) = 2ρ(x, y) and B(o) = 0 a.s.

The process B is called the Gaussian process with variogram ρ and origin o.

2.3 Translation invariant MMD on Rd

In the rest of the paper, we consider X = Rd endowed with its Borel sigma-field. We study now
translation invariant MMDs as in the following definition. For h ∈ Rd, we note τh : Rd → Rd

the translation defined by τh(x) = x+ h.

Definition 2.8. The MMD associated with a kernel k on Rd ×Rd is said translation invariant
if, for all h ∈ Rd, µ ∈ Mk implies µ ◦ τ−1

h ∈ Mk and

dk(µ ◦ τ−1
h , ν ◦ τ−1

h ) = dk(µ, ν) for all µ, ν ∈ Mk. (6)

Clearly, if the kernel k is translation invariant, i.e. satisfies

k(x+ h, y + h) = k(x, y), for all x, y, h ∈ Rd,

then the associated MMD is invariant. Such kernels are of the form k(x, y) = ψ(x − y) with ψ
a positive definite function and were studied by Sriperumbudur et al. (2010, Section 3.2). Note
that a translation invariant kernel is always bounded since

|k(x, y)| ≤
√
k(x, x)

√
k(y, y) = ψ(0).

Interestingly, the class of translation invariant MMDs is much larger and is fully characterized
in the next theorem. A function γ : Rd → R is said negative definite if

n∑
i=1

aiajγ(xi − xj) ≤ 0

for all x1, . . . , xn ∈ Rd and a1, . . . , an ∈ R such that
∑n

i=1 ai = 0.

Theorem 2.9. The MMD associated with the kernel k is translation invariant if and only if
there exists a negative definite function γ : Rd → [0,∞) such that the variogram ρ associated
with k satisfies ρ(x, y) = γ(y − x).
Conversely, for all negative definite function γ : Rd → [0,∞) such that γ(0) = 0, the MMD
associated with the normalized kernel k0(x, y) = γ(x) + γ(y)− γ(y − x) is translation invariant
and its variogram is ρ(x, y) = γ(y − x).
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In other words, Theorem 2.9 establishes a one-to-one correspondence between translation in-
variant MMDs and negative definite functions.

Remark 3. As a continuation of Remark 2 relating kernels, variogram and stochastic processes,
one can relate translation invariant MMDs with stationary increment processes. A process
(B(x))x∈Rd is said to have stationary increments if for any x0, . . . , xn and h ∈ Rd, we have

(B(xi)−B(x0))1≤i≤n
d
= (B(xi + h)−B(x0 + h))1≤i≤n,

where
d
= stands for equality in distribution. We can reformulate Theorem 2.9 as follows: let k

be a kernel on Rd × Rd and ρ the associated variogram; then the MMD associated with k is
translation invariant if and only if the Gaussian process B with origin 0 and variogram ρ has
stationary increments.

Using the previous remark and the characterization of stationary increment Gaussian processes
by Yaglom and Silverman (1962) (see Formula (3.59) in Section 3.18), we can characterize all
normalized kernels associated with a translation invariant MMD.

Corollary 2.10. Let k be a normalized (with origin 0) and continuous kernel on Rd × Rd. If
the MMD associated to k is translation invariant, then there exists a symmetric Borel measure
Λ on Rd \ {0} satisfying ∫

Rd

(
∥ξ∥2 ∧ 1

)
Λ(dξ) <∞ (7)

and a d× d symmetric positive semi-definite matrix Σ such that

k(x, y) =

∫
Rd

(
1− eix·ξ

)(
1− e−iy·ξ)Λ(dξ) + xTΣy. (8)

Conversely, for any such Λ and Σ, the kernel k defined by (8) is continuous on Rd × Rd,
normalized, and the associated MMD is translation invariant.

Note that the integrability condition (7) ensures that the integral in Equation (8) is well-defined
because ∣∣∣(1− eix·ξ

)(
1− e−iy·ξ)∣∣∣ ≤ (∥x∥∥y∥∥ξ∥2) ∧ 4.

The symmetry condition implies that the kernel is real-valued and given by

k(x, y) =

∫
Rd

(
1− cos(x · ξ)− cos(y · ξ) + cos((x− y) · ξ)

)
Λ(dξ) + xTΣy. (9)

Clearly, in the case when Σ = 0 and Λ is finite, the kernel k is equivalent to

k̃(x, y) =

∫
Rd

ei(x−y)·ξ Λ(dξ).

This class of bounded translation invariant kernels is studied in Sriperumbudur et al. (2010,
Section 3.2). Most of the available literature on KME and MMD focuses on bounded kernels;
the following lemma characterizes the boundedness of k in terms of Λ and Σ.

Lemma 2.11. Let k be the kernel defined by (8). The following statements are equivalent:

i) k is bounded on Rd × Rd;
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ii) Λ is a finite measure and Σ = 0.

We next provide examples of translation MMD associated with unbounded kernel, the so-called
Energy Kernels, that will be the focus of Section 3.3.

Example 2. Brownian motion is a classical stationary increment process. In dimension 1, its
covariance function k(x, y) = min(x, y) for x, y ≥ 0 can be rewritten as

k(x, y) =
1

2
(|x|+ |y| − |x− y|).

The Energy Kernels can be seen as an extension of this formula. Let H ∈ (0, 1) and define, for
x, y ∈ Rd,

kH(x, y) = ∥x∥2H + ∥y∥2H − ∥x− y∥2H . (10)

This kernel corresponds to the covariance of so-called Fractional Brownian Motion, see Herbin
and Merzbach (2007) or Cohen and Istas (2013, Section 3). It is a well-studied family of kernels
in statistics and is connected with the α-distance correlation for independence test (Székely and
Rizzo, 2009, Section 4). Lemma 1 in Székely and Rizzo (2005) gives us the spectral representation
of these kernels, for H ∈ (0, 1), x ∈ Rd,

∥x∥2H2 =
1

C(d, 2H)

∫
Rd

1− cos(ξ · x)
∥ξ∥d+2H

dξ,

where C(d, 2H) is a constant depending only on d and H. Then by a direct computation with
Equation (9),

kH(x, y) =
1

C(d, 2H)Rd

∫
Rd

(
1− eix·ξ

) (
1− e−iy·ξ)

∥ξ∥d+2H
dξ. (11)

This shows that the Energy Kernel corresponds to the spectral measure

Λ(dξ) =
1

C(d, 2H)
∥ξ∥−d−2H dξ.

We next discuss the domain of definition Mk of the KME associated with k and the form of the
corresponding MMD dk. Since the kernel k decomposes into two terms

kΛ(x, y) =

∫
Rd

(
1− eix·ξ

)(
1− e−iy·ξ

)
Λ(dξ) (12)

kΣ(x, y) = xTΣy, (13)

the following lemma will be useful.

Lemma 2.12. Let k1, k2 be two kernels and k = k1 + k2. Then Mk = Mk1 ∩Mk2 and

d2k(µ, ν) = d2k1(µ, ν) + d2k2(µ, ν), for all µ, ν ∈ Mk.

Lemma 2.12 suggests that one can study kΛ and kΣ separately. For the sake of readability, we
use the short notation MΛ and dΛ (resp. MΣ and dΣ) instead of MkΛ and dkΛ (resp. MkΣ

and dkΣ). Recall the definition (1) of the set Mα of finite signed measures with a finite absolute
moment of order α > 0.

Proposition 2.13. Let kΛ and kΣ be the kernels defined by Equations (12) and (13) respectively.
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• If α > 0 is such that
∫
Rd(∥ξ∥α ∧ 1)Λ(dξ) < ∞, then Mα/2 ⊂ MΛ; in particular, Equa-

tion (7) implies that we always have M1 ⊂ MΛ. For µ, ν ∈ MΛ,

d2Λ(µ, ν) =

∫
Rd

∣∣µ̂(ξ)− ν̂(ξ)− µ(Rd) + ν(Rd)
∣∣2 Λ(dξ),

where µ̂(ξ) =
∫
Rd e

iξ·x µ(dx) (resp. ν̂) denotes the characteristic function of µ (resp. ν).

• The space MΣ is characterized by

MΣ =
{
µ ∈ M :

∫
Rd

|ej · x| |µ|(dx) <∞ for all 1 ≤ j ≤ r
}
,

where r denotes the rank of Σ and (e1, . . . , er) an orthonormal system of eigenvectors
associated with the positive eigenvalues λ1 ≤ . . . ≤ λr > 0. For µ, ν ∈ MΣ,

d2Σ(µ, ν) =
r∑

j=1

λj

∣∣∣ ∫
Rd

(ej · x)µ(dx)−
∫
Rd

(ej · x) ν(dx)
∣∣∣2.

Remark 4. The following special cases are important:

1. If Λ is finite, then MΛ = M; this corresponds exactly to the case when the kernel kΛ is
bounded and this case has been studied in Sriperumbudur et al. (2010, Section 3.2).

2. For µ, ν ∈ MΛ with the same total mass, in particular for probability measures,

d2Λ(µ, ν) =

∫
Rd

∣∣µ̂(ξ)− ν̂(ξ)
∣∣2 Λ(dξ) = ∥µ̂− ν̂∥2L2(Λ).

The MMD is equal to the norm in L2(Λ) distance between characteristic functions and
the spectral measure Λ puts more or less weight to the different frequencies in the spectral
domain.

3. If Σ is strictly positive definite, then MΣ = M1 and, for µ, ν ∈ M1,

d2Σ(µ, ν) = ∥e(µ)− e(ν)∥2Σ
where e(µ) =

∫
Rd xµ(dx) is the expectation of µ and ∥x∥2Σ = xTΣx the squared norm

associated with Σ. This quadratic kernel has been considered in Sriperumbudur et al.
(2010, Example 2).

Example 3. As a continuation of Example 2, consider the Energy Kernel with index H ∈ (0, 1)
defined in Equation (10). We have Σ = 0 and Λ(dξ) = C(d, 2H)−1∥ξ∥−d−2H dξ. The equality
k(x, x) = 2∥x∥H implies MΛ = MH . For probability measures µ, ν ∈ MH ∩ P,

d2H(µ, ν) =
1

C(d, 2H)

∫
Rd

|µ̂(ξ)− ν̂(ξ)|2

∥ξ∥d+2H
dξ. (14)

We finally focus on conditions ensuring that the kernel k is characteristic over probability mea-
sures, meaning that dk defines a proper distance (and not only a semi-metric) on Mk ∩ P.
This happens exactly when the KME K : Mk ∩ P → Hk is injective. The following Theorem
generalizes Theorem 9 in Sriperumbudur et al. (2010) which considers bounded kernels only.
Proposition 3.6 states a similar result and we will prove only this latter one.

Proposition 2.14. The MMD dk is a distance on Mk ∩ P if and only if supp(Λ) = Rd.

Note that the kernel k is not characteristic on Mk – i.e. the KME is not injective on Mk –
because d2k(µ, µ+ αδ0) = 0 for all µ ∈ Mk and α ∈ R.
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3 Metrizing the Wasserstein space with MMD

The MMD associated with a characteristic kernel defines a distance on the space of probability
measures. Understanding the notion of convergence, or equivalently the topology, associated
with this distance is an important question which has been investigated in particular by Sripe-
rumbudur et al. (2010) and Simon-Gabriel and Schölkopf (2018). Most of the results in this
line of research show the equivalence between weak convergence and convergence in MMD for
bounded kernels. In this section, we investigate whether convergence in Wasserstein spaces can
be metrized by a MMD.

3.1 Background on Wasserstein spaces

We first provide the necessary background on Wasserstein spaces. For the purpose of this paper,
the underlying space will always be Rd and we therefore restrict our presentation to this case.
More general results as well as proofs can be found in (Villani, 2003, Section 7).
Recall from Equation (1) the notation Mα (resp. Pα) for the set of signed measures (resp.
probability measures) with a finite absolute moment of order α > 0. Given two probability
measures µ, ν on Rd, we denote by Γ(µ, ν) the set of coupling between µ and ν, that is the set
of probability measures γ on Rd × Rd such that

γ(B × R) = µ(B) and γ(R×B) = ν(B),

for all Borel set B ⊂ Rd. The Wasserstein distance of order α is defined, for α ≥ 1, by

Wα(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
Rd

∥x− y∥α γ(dx, dy)
)1/α

, µ, ν ∈ Pα.

For α ∈ (0, 1), it is defined by

Wα(µ, ν) = inf
γ∈Γ(µ,ν)

∫
Rd

∥x− y∥α γ(dx, dy).

For all α > 0, the Wasserstein space (Pα,Wα) is a complete and separable metric space. The
case α < 1 is somewhat less usual and we stress that the Wasserstein distance Wα is then equal
to the Wasserstein distance of order 1 on the metric space (Rd, ρα) with the alternative distance
ρα(x, y) = ∥x− y∥α.
An important result in the theory of Wasserstein space is the Kantorovitch-Rubinstein duality
which states that

W1(µ, ν) = sup
{∫

Rd

φd(µ− ν) : φ : Rd → R 1-Lipschitz
}
.

In the case α > 1, a more involved duality theory, called Kantorovitch duality, holds but it will
not be needed here. In the case α < 1, we have

Wα(µ, ν) = sup
{∫

Rd

φd(µ− ν) : φ : Rd → R (α, 1)-Hölder
}
, (15)

where a function φ is said (α, 1)-Hölder if |φ(x)− φ(y)| ≤ ∥x− y∥α for all x, y ∈ Rd. Note that
the set of (α, 1)-Hölder functions is equal to the set of 1-Lipschitz functions on Rd equipped with
the distance ρα, so that the duality in the case α < 1 is a straightforward consequence from the
Kantorovitch-Rubinstein duality.
We finally discuss the notion of convergence in Wasserstein spaces. Let α > 0 and (µn)n≥1, µ ∈
Pα. According to (Villani, 2003, Theorem 7.12), the following statements are equivalent:
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i) Wα(µn, µ) → 0;

ii) the sequence (µn)n≥1 converges weakly to µ and∫
Rd

∥x∥α µn(dx) →
∫
Rd

∥x∥α µ(dx);

iii) for each continuous function φ : Rd → R satisfying |φ(x)| = Ox→∞(∥x∥α), we have∫
Rd

φ(x)µn(dx) →
∫
Rd

φ(x)µ(dx).

Note that the convergence in Pα is stronger for larger values of α. More precisely, β < α implies
Pα ⊂ Pβ, and for all (µn)n≥1, µ ∈ Pα,

Wα(µn, µ) → 0 implies Wβ(µn, µ) → 0. (16)

Equivalently, the injection (Pα,Wα) → (Pβ,Wβ) is continuous.

3.2 Some negative answers

Our main question is whether a MMD can metrize the Wasserstein distance according to the
following definition.

Definition 3.1. Let k be a kernel on Rd and α > 0. We say that the MMD dk associated with the
kernel k metrizes the Wasserstein space of order α if P∩Mk = Pα and, for all (µn)n≥1, µ ∈ Pα,

dk(µn, µ) → 0 if and only if Wα(µn, µ) → 0.

The following proposition is elementary but it emphasizes the need for unbounded kernels.

Proposition 3.2. Assume the kernel k metrizes the Wasserstein space of order α > 0. Then k
is unbounded on Rd × Rd.

Another negative result focuses on translation invariant MMD associated with kernels of the
form (8). According to Proposition 2.13, such kernels satisfy P1 ⊂ Mk so that it is natural to
ask whether dk can metrize the Wasserstein space of order 1.

Proposition 3.3. There exists no kernel k of the form (8) such that dk metrizes the Wasserstein
space of order 1.

More generally, as a straightforward adaptation of the proof of Proposition 3.3 shows, there
exists no translation invariant MMD metrizing the Wasserstein space of order α ≥ 1.

3.3 Energy kernels and Wasserstein spaces of order α < 1

We focus in this section on the special class of Energy Kernels, see Example 2. We recall that,
for α ∈ (0, 1), the Energy Kernel is defined by

kα(x, y) = ∥x∥2α + ∥y∥2α − ∥x− y∥2α, x, y ∈ Rd,

and that the associated MMD is defined on Mα and translation invariant. For the clarity of
notation, we denote by dα = dkα the MMD associated with kα. The following theorem links
Energy Kernels and Wasserstein distances.

13



Theorem 3.4. Let α ∈ (0, 1) and (µn)n≥1, µ ∈ Pα.

i) Wα(µn, µ) → 0 implies dα(µn, µ) → 0.

ii) dα(µn, µ) → 0 implies Wβ(µn, µ) → 0 for all β < α.

The theorem reveals the close relationship between the Wasserstein distance Wα and the MMD
dα. The first point states that Wα is stronger than dα, while the second point states that dα is
stronger than Wβ for all β < α. Since Wα can be seen as the limit of Wβ as β ↑ α, this suggests
that dα and Wα are almost equivalent. However, we conjecture that the two distances are not
equivalent on Pα.

Conjecture 1. Let α ∈ (0, 1). There exist (µn)n≥1, µ ∈ Pα such that

dα(µn, µ) → 0 and Wα(µn, µ) ↛ 0.

Remark 5. It is easy to show that, for β < α < 1, there exist (µn)n≥1, µ ∈ Pα such that

Wβ(µn, µ) → 0 and dα(µn, µ) ↛ 0, (17)

or, similarly,
dβ(µn, µ) → 0 and Wα(µn, µ) ↛ 0. (18)

We construct simple examples by considering

µn = (1− pn)δ0 + pnδnx and µ = δ0,

where x ∈ Rd \ {0} and pn ∈ (0, 1) is suitably chosen. We easily compute

dα(µn, µ) =
√
2pnn

α∥x∥α and Wα(µn, µ) = pnn
α∥x∥α.

Similar equations hold for dβ and Wβ. Taking pn = 1/nα, we obtain an example for Equa-
tion (17). Taking pn = 1/(nβ log n), we obtain an example for Equation (18).

3.4 MMD metrizing the Wasserstein space for α ≥ 1

In view of the negative result from Proposition 3.3, we wish to exhibit a MMD that metrizes
the Wasserstein space of order 1, or more generally, of order α ≥ 1. The issue evidenced in the
proof of Proposition 3.3 is that the matrix part dΣ controls the expectation and not the absolute
moment, suggesting the following modification of Equation (8).
Consider the symmetric positive definite kernel

k(x, y) =

∫
Rd

(
1− eix·ξ

)(
1− e−iy·ξ

)
Λ(dξ) + |x|αTΣ|y|α, (19)

where Λ is a symmetric measure on Rd \ {0} satisfying condition (7), Σ is a d × d symmetric
positive semi-definite matrix, α ≥ 1 and |x|α = (|x1|α, . . . , |x1|α) denotes the componentwise
absolute α-power. Note that the introduction of this absolute power breaks the translation
invariance of the associated MMD.
We first consider the domain of definition.

Lemma 3.5. Let k be the kernel defined by Equation (19).
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1. Mk contains the set of measures Mα that have a finite moment of order α.

2. If kerΣ ∩ (R+)
d
= {0} then Mk = Mα.

Lemma 2.12 and similar arguments as in the proof of Proposition 2.13 show that, for µ, ν ∈ Mk,

d2k(µ, ν) =

∫
Rd

|µ̂(ξ)− ν̂(ξ)− µ(Rd) + ν(Rd)|2 Λ(dξ) + ∥mα(µ)−mα(ν)∥2Σ, (20)

where mα(µ) =
∫
Rd |x|α µ(dx) ∈ Rd is absolute α-moment of µ. Similarly as in Proposition 2.14,

one can easily characterize characteristic kernels in this class.

Proposition 3.6. Let k be the kernel defined by Equation (19). Then the MMD dk is a distance
on Mk ∩ P if and only if supp(Λ) = Rd.

Remark 6. The condition on the support is not sufficient even for metrizing the weak conver-
gence. Indeed, consider

Λ =
+∞∑
n=1

1

n2
δxn and Σ = 0,

where (xn)n≥1 is an enumeration of countable set{
±2a+ 1

2b
π | a, b ∈ N

}
.

This set is dense in R but for µn := δ2n , one notes that for all j ∈ N, µ̂n(xj) = 1 for n large
enough. Then ξ 7→ 1− µ̂n(ξ) converges Λ− ae to 0. Then by Dominated Convergence Theorem
dΛ(µn, δ0) → 0, but the sequence (µn)n≥1 does not converge weakly to δ0. Note that this kernel
verifies all the assumptions of Theorem 7 of Simon-Gabriel et al. (2021), expected Hk ⊂ C0
where C0 is the subspace of functions that vanish at infinity.

The following theorem is the main result of this section. It provides an example of MMD that
metrizes the Wasserstein space of order α ≥ 1.

Theorem 3.7. Let k be the kernel defined by Equation (19). Then the MMD dk metrizes the

Wasserstein space of order α if and only if supp(Λ) = Rd and kerΣ ∩ (R+)
d
= {0}.

Example 4. The Gaussian Kernel, Example 1, is generalizable in this way by considering

k(x, y) = exp(−∥x− y∥22/2) + |x| · |y|, x, y ∈ Rd.

The previous theorem states that this kernel metrizes the convergence in Wasserstein W1.

3.5 Non asymptotic inequalities for the control of Wasserstein distances

The translation invariant MMD a L2-distance of Fourier Transform. The link between the
Wasserstein distance and this L2-distance, for a measure Λ, has already been established in
Auricchio et al. (2020) for discrete measures on a regular grid of [0, 1]d. But the problem of the
Wasserstein distance is its computational cost. That’s why a strong equivalence with another
distance could be more useful than a topological equivalence. The current equivalences, present
in the literature, do not allow us to conclude in our case, as we do not want to consider a
specific class of probability measures. We pay the cost of the lack of assumption on the form
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of our measure by the uniformly integrability assumption. Moreover, we do not prove a strong
equivalence, ie an upper bound of a distance by another but only a partial upper bound. This
type of inequality has already been introduced and obtained for the MMD in the Section 4
of Vayer and Gribonval (2021). The authors treat the case where the kernel k is bounded
and especially the case where the kernel k is translation invariant. Our results concern only
the Energy Kernels, Equation (10). The first proposition concerns the Fortet-Mourier distance
dFM , ie a distance which metrizes the weak convergence, defined by

dFM (µ, ν) = sup
{∫

Rd

φd(µ− ν) : φ : Rd → R 1-Lipschitz and ∥f∥∞ ≤ 1
}
.

We recall the dual formulation of W1

W1(µ, ν) = sup
{∫

Rd

φd(µ− ν) : φ : Rd → R 1-Lipschitz
}
.

Proposition 3.8. Let α ∈ (0, 1) and T ⊂ Pα(Rd) be a tight subset, i.e.

∀ε > 0, ∃K ⊂ Rd compact, ∀µ ∈ T , µ(Kc) ≤ ε.

Then, for all ε > 0, there exists C > 0 such that

∀µ, ν ∈ T , dFM (µ, ν) ≤ Cdα(µ, ν) + ε.

With a stronger assumption, we can get a similar result for the Wasserstein distance W1.

Proposition 3.9. Let α ∈ (0, 1) and T ⊂ P1(Rd) be an uniformly integrable subset, i.e.

∀ε > 0, ∃K ⊂ Rd compact, ∀µ ∈ T ,
∫
Kc

∥x∥ µ(dx) ≤ ε.

Then, for all ε > 0, there exists C > 0 such that

∀µ, ν ∈ T , W1(µ, ν) ≤ Cdα(µ, ν) + ε.

Remark 7. For both propositions, the constant C depends on ε and on the set T . If we assume
that the absolute moment of order β > 1 are bounded by a constant M , we can give an explicit
form to the constant C only in terms of ε. Indeed, Markov’s and Hölder’s inequality allow
to quantify the tighness and the uniform integrability of the set T , i.e. one has an explicit
expression of the compact K in function of ε.

Acknowledgments : The authors acknowledge the support of the French Agence Nationale
de la Recherche (ANR) under reference ANR-20-CE40-0025-01 (TREX project).

4 Proofs

4.1 Proofs related to Section 2

Proof of Proposition 2.6. For a kernel k, Equation (5) implies that

d2k(δx, δy) = k(x, x) + k(y, y)− 2k(x, y) = 2ρ(x, y),
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for all x, y ∈ X . It follows that if k1 and k2 are equivalent kernels, then they have the same
variogram.
Conversely, we prove that kernels with the same variograms are equivalent. Let k be a kernel
with variogram ρ. We fix an origin o ∈ X and consider the kernel

k0(x, y) = k(x, y)− k(x, o)− k(o, y) + k(o, o) = ρ(x, o) + ρ(o, y)− ρ(x, y)

which has the same variogram ρ. The application k0 is indeed a kernel by the Lemma 2.1 of
Berg et al. (1984) cause −k is negative definite. We show that Mk = Mk0 and dk = dk0 on
Mk ∩P. Since k0 depends only on the variogram ρ, this implies that two kernels with the same
variogram are equivalent.
The inequality

k(x, x)− 2|k(x, o)|+ k(o, o) ≤ k0(x, x) ≤ k(x, x) + 2|k(x, o)|+ k(o, o)

together with the Cauchy Schwarz inequality entail(√
k(x, x)−

√
k(o, o)

)2
≤ k0(x, x) ≤

(√
k(x, x) +

√
k(o, o)

)2
.

It follows that
∫
X
√
k(x, x) |µ|(dx) <∞ if and only if

∫
X
√
k0(x, x) |µ|(dx) <∞ so that Mk0 =

Mk. Let µ and ν be probability measures in Mk. By Equation (5),

d2k0(µ, ν) =

∫
X×X

(
k(x, y)− k(x, o)− k(o, y) + k(o, o)

)
(µ− ν)⊗ (µ− ν)(dx, dy)

=

∫
X×X

k(x, y) (µ− ν)⊗ (µ− ν)(dx,dy)

= d2k(µ, ν).

The second equality uses that µ− ν has total mass 0 (since µ and ν are probability measures)
so that only k(x, y) yields a non null integral. Interestingly, a similar computation shows that
the MMD can be directly written in terms of the variogram: for µ, ν ∈ Mk with the same mass,

d2k(µ, ν) = d2k0(µ, ν)

=

∫
X×X

(
ρ(x, o) + ρ(o, y)− ρ(x, y)

)
(µ− ν)⊗ (µ− ν)(dx, dy)

= −
∫
X×X

ρ(x, y) (µ− ν)⊗ (µ− ν)(dx,dy).

Proof of Proposition 2.7. Let k be a kernel and o ∈ X an arbitrary origin. The kernel k0 is
naturally normalized with origin o. It is easy to check that k0 has the same variogram than k,
then these two kernels are equivalent by Proposition 2.6. Conversely, let K0 be another kernel
equivalent to k normalized, then K0 and k0 have the same variogram then for x ∈ X ,

k0(x, x) = 2ρ(o, x) = K0(x, x).

So for any x, y ∈ X , the equality of the variogram implies K0(x, y) = k0(x, y), then this kernel
is unique.
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Proof of Theorem 2.9. Assume the MMD associated with k is translation invariant. For h ∈ Rd,
define the translated kernel kh(x, y) = k(x+ h, y + h). Clearly, we have

dk(µ ◦ τ−1
h , ν ◦ τ−1

h ) = dkh(µ, ν)

and Equation (6) implies that the kernel k and kh are equivalent (in the sense of Definition 2.4).
Proposition 2.6 implies that kh and k have the same variogram, which implies

ρ(x, y) = ρ(x+ h, y + h), for all x, y ∈ Rd.

Since h is arbitrary, we can take h = y − x and define the function γ(h) = ρ(0, h) so as to
obtain ρ(x, y) = ρ(0, y−x) = γ(y−x). The function γ is negative definite because ρ is negative
definite. Furthermore, γ(0) = ρ(0, 0) = 0.
Conversely, given a negative definite function γ : Rd → [0,∞) such that γ(0) = 0, the function
ρ(x, y) = γ(y − x) is negative definite on Rd × Rd and

k0(x, y) = ρ(x, 0) + ρ(0, y)− ρ(x, y)− ρ(0, 0)

is positive definite, see Berg et al. (1984, Lemma 2.1 p.74). One can easily check that k0(x, y) =
γ(x) + γ(y)− γ(y − x). Furthermore, the translated kernel

kh(x, y) = k0(x+ h, y + h) = γ(x+ h) + γ(y + h)− γ(y − x)

has variogram

ρh(x, y) =
1

2
kh(x, x) +

1

2
kh(y, y)− kh(x, y) = γ(y − x).

The kernels kh and k have the same variogram and are thus equivalent, which proves that the
MMD is translation invariant.

Proof of Lemma 2.11. If Λ is finite then kΛ is bounded. Now, assume that Λ is not finite. Let
R > 0, we denote by BR the ball with center 0 and radius R in Rd and by λR its volume for the
Lebesgue measure λ. By Fubini-Tonelli Theorem

1

λR

∫
BR

kΛ(x, x)λ(dx) =
1

λR

∫
Rd

∫
BR

|1− eix·ξ|2 λ(dx)Λ(dξ).

We consider

fR(ξ) =
1

λR

∫
BR

|1− eix·ξ|2 λ(dx) = 1

λR

∫
BR

(
2− 2 cos(x · ξ)

)
λ(dx).

By Fatou’s Lemma, as R→ +∞,

lim inf
1

λR

∫
BR

kΛ(x, x)λ(dx) = lim inf

∫
Rd

fR(ξ) Λ(dξ) ≥
∫
Rd

lim inf fR(ξ) Λ(dξ).

If ξ ̸= 0, Riemann-Lebesgue Lemma entails, as R→ +∞,

lim fR(ξ) = lim
1

λR

∫
BR

(
2− 2 cos(x · ξ)

)
λ(dx) = 2,

whence we deduce

lim inf
1

λR

∫
BR

kΛ(x, x)λ(dx) ≥ 2Λ(Rd) = +∞.

This shows that kΛ is not bounded. We have proven that kΛ is bounded if and only if Λ is
bounded. The condition on k = kΛ + kΣ follows easily.
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Proof of Lemma 2.12. The proof of Mk = Mk1 ∩Mk2 relies on the inequality

max
(√

k1(x, x),
√
k2(x, x)

)
≤

√
k1(x, x) + k2(x, x) ≤

√
k1(x, x) +

√
k2(x, x),

which implies that
√
k1(x, x) + k2(x, x) is |µ|(dx)-integrable if and only if both

√
k1(x, x) and√

k2(x, x) are. Then, for µ, ν ∈ Mk, we can compute d2k(µ, ν) according to Equation (5) with k
replaced by k1 and k2; since µ, ν ∈ Mk1 ∩Mk2 , the integral can be slit into two integrals, one
for k1 and one for k2, and we obtain d2k(µ, ν) = d2k1(µ, ν) + d2k2(µ, ν).

The following Lemma gives an upper bound on the growth of the kernel kΛ and will be useful
in the proof of Proposition 2.13.

Lemma 4.1. Let kΛ be a kernel of the form (12) and assume that, for some 0 < α ≤ 2, we
have

∫
Rd(∥ξ∥α ∧ 1)Λ(dξ) < +∞ . Then kΛ(x, x) = o(∥x∥α), as ∥x∥ → +∞, and Mα/2 ⊂ MΛ.

Proof of Lemma 4.1. Assume
∫
Rd(∥ξ∥α ∧ 1)Λ(dξ) < ∞ with 0 < α ≤ 2. We show that for all

ε > 0, there exists C > 0 such that

|kΛ(x, x)| ≤ C + ε∥x∥α, x ∈ Rd. (21)

Since ε can be chosen arbitrary small, this shows kΛ(x, x) = o(∥x∥α) as ∥x∥ → +∞.
We compute

kΛ(x, x) =

∫
Rd

∣∣∣1− eix·ξ
∣∣∣2 Λ(dξ) ≤ 4

∫
Rd

(
(∥x∥∥ξ∥)2 ∧ 1

)
Λ(dξ)

and divide the integral into two parts, depending whether ∥ξ∥ is larger or smaller than some
η > 0 that will be fixed later. The inequality u2 ∧ 1 ≤ 1 implies∫

{∥ξ∥≥η}

(
(∥x∥∥ξ∥)2 ∧ 1

)
Λ(dξ) ≤ Λ(∥ξ∥ ≥ η).

For 0 < α ≤ 2, the inequality u2 ∧ 1 ≤ |u|α implies∫
{∥ξ∥<η}

(
(∥x∥∥ξ∥)2 ∧ 1

)
Λ(dξ) ≤

∫
{∥ξ∥<η}

(∥x∥∥ξ∥)α Λ(dξ) ≤ ∥x∥α
∫
{∥ξ∥<η}

∥ξ∥α Λ(dξ).

Since
∫
Rd(∥ξ∥α ∧ 1)Λ(dξ) < ∞, for any fixed ε > 0, one can find η > 0 small enough such that∫

{∥ξ∥<η} ∥ξ∥
α Λ(dξ) < ε/4. Setting C = 4Λ(∥ξ∥ ≥ η), the upper bounds for the two terms above

entail Equation (21).
As a direct consequence of Equation (21), any measure µ ∈ M satisfying

∫
Rd ∥x∥α |µ|(dx) <∞

satisfies also
∫
Rd

√
kΛ(x, x) |µ|(dx) < ∞. In other words, Mα ⊂ MΛ and this concludes the

proof of the Lemma.

Proof of Proposition 2.13. • The inclusionMα/2 ⊂ MΛ is proven in Lemma 4.1. Assumption ??
implies thatM1 ⊂ MΛ. The computation of the MMD in terms of characteristic function follows
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the lines Sriperumbudur et al. (2010, Corollary 4 and its proof). For µ, ν ∈ MΛ,

d2Λ(µ, ν) =

∫
Rd×Rd

kΛ(x, y) (µ− ν)⊗ (µ− ν)(dxdy)

=

∫
Rd×Rd

∫
Rd

(
1− eix·ξ

)(
1− e−iy·ξ)Λ(dξ)(µ− ν)⊗ (µ− ν)(dxdy)

=

∫
Rd

[∫
Rd

(
1− eix·ξ

)
(µ− ν)(dx)

∫
Rd

(
1− e−iy·ξ) (µ− ν)(dy)

]
Λ(dξ)

=

∫
Rd

(
µ(Rd)− ν(Rd)− µ̂(ξ) + ν̂(ξ)

)(
µ(Rd)− ν(Rd)− µ̂(ξ) + ν̂(ξ)

)
Λ(dξ)

=

∫
Rd

∣∣µ(Rd)− ν(Rd)− µ̂(ξ) + ν̂(ξ)
∣∣2 Λ(dξ).

In these lines, we have used successively Equations (5) and (12), Fubini’s theorem and the
definition of the characteristic function.
• The Spectral Theorem for the symmetric positive semidefinite matrix Σ implies

kΣ(x, y) = xTΣy =

r∑
j=1

λjx
T eje

T
j y, x, y ∈ Rd,

where λ1 ≥ . . . ≥ λr > 0 are the positive eigenvalues of Σ associated with the orthonormal
eigenvectors (e1, . . . , er). Together with the elementary inequality

√
a+ b ≤

√
a+

√
b, for a, b ≥ 0,

we deduce √
λl

∣∣eTl x∣∣ ≤ √
kΣ(x, x) ≤

r∑
j=1

√
λr

∣∣eTj x∣∣ , l = 1, . . . , r.

We deduce that
∫
Rd

√
kΣ(x, x) |µ|(dx) is finite if and only if

∫
Rd |eTj x| |µ|(dx) is finite for all

j = 1, . . . , r. This proves the characterization of MΣ. On the other hand, a direct computation
gives, for µ, ν ∈ MΣ,

d2Σ(µ, ν) =

∫
Rd×Rd

kΛ(x, y) (µ− ν)⊗ (µ− ν)(dxdy)

=

r∑
j=1

λj

∫
Rd×Rd

(
xT eje

T
j y

)
(µ− ν)⊗ (µ− ν)(dxdy)

=

r∑
j=1

λj

∣∣∣ ∫
Rd

(eTj x)µ(dx)−
∫
Rd

(eTj x)µ(dx)
∣∣∣2.

4.2 Proofs related to Section 3

4.2.1 Proofs of Subection 3.2

Proof of Proposition 3.2. The proof is done by contraposition. Assume that the kernel k is
bounded and let α > 0. We prove that dk does not metrize the Wasserstein space of order α.
The assumption that k is bounded implies Mk = M. For x ∈ Rd \ {0} and n ≥ 1, we consider
the probability measures

µn =
n− 1

n
δ0 +

1

n
δn1/αx and µ = δ0.
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Then, since k is bounded,

d2k(µn, µ) =
1

n2

(
k(0, 0) + k(n1/αx, nn1/αx)− 2k(n1/αx, 0)

)
→ 0.

On the other hand,

Wα(µn, µ) =

∫
Rd

∥y∥α µn(dy) = ∥x∥ ↛ 0.

This shows that dk does not metrize the Wasserstein space of order α.

Proof of Proposition 3.3. For x ∈ Rd \ {0} and n ≥ 2, we consider the probability measures

µn =
n− 2

n
δ0 +

1

n
δ−nx +

1

n
δnx and µ = δ0.

On the one hand, the measures µn and µ are symmetric and thus have expectation 0. It follows
that e(µ) = e(µn) = 0 and dΣ(µn, δ0) = 0 according to Proposition 2.13. Furthermore, we
compute

d2Λ(µn, µ) =
1

n2
(
kΛ(nx, nx) + kΛ(−nx,−nx) + 2kΛ(nx,−nx)

)
and, according to Lemma 4.1, |kΛ(nx, nx)| = o(n2), |kΛ(−nx,−nx)| = o(n2) and

|kΛ(−nx, nx)| ≤
√
kΛ(nx, nx)

√
kΛ(−nx,−nx) = o(n2).

We deduce dk(µn, µ) = dΛ(µn, µ) → 0. On the other hand,

W1(µn, µ) =

∫
Rd

∥y∥µn(dy) = ∥x∥ ↛ 0.

This proves that no kernel of the form (8) can metrize the Wasserstein space of order 1.

4.2.2 Proof of Theorem 3.4

For α ∈ (0, 1), we recall that the Energy Kernel is defined by

kα(x, y) = ∥x∥2α + ∥y∥2α − ∥x− y∥2α

and we denote by Hα = Hkα and dα = dkα the associated RKHS and the MMD. We recall that
Mkα = Mα. The kernel mean embedding is denoted by Kα : Mα → Hα and is defined by

Kα(µ)(x) =

∫
Rd

kα(x, y)µ(dy), x ∈ Rd.

For the sake of clarity, we divide the proof of Theorem 3.4 into two parts. The next two lemma
will be useful for the first part.

Lemma 4.2. For all µ ∈ Mα, the kernel mean embedding Kα(µ) is α-Hölder continuous with
constant cα(µ) = 2

∫
Rd ∥y∥α |µ|(dy), i.e.

|Kα(µ)(x)−Kα(µ)(x
′)| ≤ cα(µ)∥x− x′∥α, x, x′ ∈ Rd.
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Proof of Lemma 4.2. We have, for x, x′ ∈ Rd,

|Kα(µ)(x)−Kα(µ)(x
′)| =

∣∣∣ ∫
Rd

kα(x, y)µ(dy)−
∫
Rd

kα(x
′, y)µ(dy)

∣∣∣
≤

∫
Rd

∣∣kα(x, y)− kα(x
′, y)

∣∣ |µ|(dy).
Using the reproducing kernel property and Cauchy-Schwartz inequality, the integrand satisfies

|kα(x, y)− kα(x
′, y)| = |⟨Kα(x),Kα(y)⟩ − ⟨Kα(x

′),Kα(y)⟩|
= |⟨Kα(x)−Kα(x

′),Kα(y)|
≤ ∥Kα(x)−Kα(x

′)∥∥Kα(y)∥

=
√
kα(x, x) + kα(x′, x′)− 2kα(x, x′)

√
kα(y, y)

= 2∥x− x′∥α∥y∥α.

Integrating with respect to |µ|(dy), we deduce

|Kα(µ)(x)−Kα(µ)(x
′)| ≤ 2∥x− x′∥α

∫
Rd

∥y∥α |µ|(dy),

whence the function Kα(µ) is Hölder-continuous with exponent α.

Lemma 4.3. For all µ, ν ∈ Pα, we have

d2α(µ, ν) ≤
(
cα(µ) + cα(ν)

)
Wα(µ, ν).

Proof of Lemma 4.3. We recall that, for α ∈ (0, 1), the Kantorovitch-Rubinstein duality implies
that

Wα(µ, ν) = sup
∣∣ ∫

Rd

φ(x) (µ− ν)(dx)
∣∣∣ (22)

with the supremum taken over the set of Hölder-continuous function with exponent α and
constant 1.
Starting from Equation (5) and integrating with respect to y, we get

d2α(µ, ν) =

∫
Rd×Rd

kα(x, y) (µ− ν)⊗ (µ− ν)(dxdy)

=

∫
Rd

Kα(µ− ν)(x) (µ− ν)(dx).

According to Lemma 4.2, the function Kα(µ − ν) is Hölder continuous with exponent α and
constant cα(µ− ν). Then, Equation (22) implies

d2α(µ, ν) =

∫
Rd

Kα(µ− ν)(x) (µ− ν)(dx)

≤ cα(µ− ν)Wα(µ, ν).

We conclude by using the fact that

cα(µ− ν) = 2

∫
Rd

∥y∥α|µ− ν|(dy)

≤ 2

∫
Rd

∥y∥αµ(dy) + 2

∫
Rd

∥y∥αν(dy)

= cα(µ) + cα(ν).
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Proof of Theorem 3.4 (first point). Let (µn)n≥1, µ ∈ Pα be such that Wα(µn, µ) → 0. By
Lemma 4.3,

d2α(µn, µ) ≤
(
cα(µn) + cα(µ)

)
Wα(µn, µ).

It is enough to prove that the sequence (cα(µn))n≥1 remains bounded in order to conclude
dα(µn, µ) → 0. This is indeed the case since the convergence µn → µ in Wasserstein space of
order α implies the convergence of absolute moments∫

Rd

∥x∥α µn(dx) −→
∫
Rd

∥x∥α µ(dx),

which yields cα(µn) → cα(µ). Being convergent, the sequence (cα(µn))n≥1 is bounded.

We next consider the proof of the second point in Theorem 3.4. The following lemma is the key
of the proof.

Lemma 4.4. For r > 0, we define the measure µr(ds) = (1 + ∥s∥)−d−rds. Then, for r > α,
µr ∈ Mα. Furthermore, for α < r < 1 ∧ 2α, the kernel mean embedding satisfies

Kα(µr)(x) ∼ d(α, r)∥x∥2α−r, as ∥x∥ → +∞,

with d(α, r) > 0.

Proof of Lemma 4.4. As r > α, the function
√
kα(x, x) =

√
2∥x∥α is µr-integrable and hence

µr ∈ Mα. The KME Kα(µr) ∈ Hα is defined by

K(µr)(x) =

∫
Rd

kα(x, y)µr(dy)

=

∫
Rd

(
∥x∥2α + ∥y∥2α − ∥x− y∥2α

)(
1 + ∥y∥

)−(d+r)
dy.

The change of variable z = y/∥x∥ yields

K(µr)(x) = ∥x∥2α+d

∫
Rd

(
1 + ∥z∥2α − ∥x/∥x∥ − z∥2α

)(
1 + ∥x∥∥z∥

)−(d+r)
dz.

By the rotationnal invariance of the Euclidean norm and the Lebesgue measure, the integral
does not change if we replace the unit vector x/∥x∥ by e1 = (1, 0, . . . , 0). This yields

K(µr)(x) = ∥x∥2α+d

∫
Rd

(
1 + ∥z∥2α − ∥e1 − z∥2α

)(
1 + ∥x∥∥z∥

)−(d+r)
dz.

Note that Kα(µr)(x) is rotation invariant and depends only on ∥x∥. We next consider the
asymptotic as ∥x∥ → +∞. In order to ease the analysis, we use the following form

K(µr)(x) = ∥x∥2α−r

∫
Rd

(
∥x∥∥z∥

1 + ∥x∥∥z∥

)d+r 1 + ∥z∥2α − ∥e1 − z∥2α

∥z∥d+r
dz.

Using this expression, the proof of the Lemma is reduced to the proof of the convergence∫
Rd

(
u∥z∥

1 + u∥z∥

)d+r 1 + ∥z∥2α − ∥e1 − z∥2α

∥z∥d+r
dz → d(α, r) > 0, as u→ +∞. (23)
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We observe that, for all z ∈ Rd \ {0},(
u∥z∥

1 + u∥z∥

)d+r

−→ 1, as u→ ∞,

suggesting the convergence with limit

d(α, r) =

∫
Rd

1 + ∥z∥2α − ∥e1 − z∥2α

∥z∥d+r
dz.

This is justified by Lebesgue dominated convergence Theorem, since(
u∥z∥

1 + u∥z∥

)d+r

≤ 1

and

g(z) =
1 + ∥z∥2α − ∥e1 − z∥2α

∥z∥d+r
is integrable.

This last claim holds because:

- for ∥z∥ > 1/2, the upper bound

|g(z)| = ∥z∥−(d+r)|kα(e1, z)| ≤ ∥z∥−(d+r)
√
kα(e1, e1)

√
kα(z, z) = 2∥z∥α−d−r,

implies integrability on {z : ∥z∥ > 1/2} since r > α;

- for ∥z∥ ≤ 1/2, the function z 7→ 1−∥e1−u∥2α is continuously differentiable on the compact
ball {z : ∥z∥ ≤ 1/2} and vanishes at 0 so that

∣∣1−∥e1− z∥2α
∣∣ ≤ C∥z∥ for some C > 0; we

deduce
|g(z)| ≤ ∥z∥2α−d−r + C∥z∥1−d−r

which implies integrability on {z : ∥z∥ ≤ 1/2} since r < 1 ∧ 2α.

The convergence (23) is proved and it remains to show that the limit is positive. By rotation
invariance,

d(α, r) =

∫
Rd

1 + ∥z∥2α − ∥z − e1∥2α

∥z∥d+r
dz =

∫
Rd

1 + ∥z∥2α − ∥z + e1∥2α

∥z∥d+r
dz.

Then, taking the mean of the two expressions,we get

d(α, r) =

∫
Rd

∥z∥−(d+r)
(
1 + ∥z∥2α − ∥z − e1∥2α + ∥z + e1∥2α

2

)
dz

≥
∫
Rd

∥z∥−(d+r)
(
1 + ∥z∥2α −

[∥z − e1∥2 + ∥z + e1∥2

2

]α)
dz

=

∫
Rd

∥z∥−(d+r)
(
1 + ∥z∥2α −

(
1 + ∥z∥2

)α)
dz

>

∫
Rd

∥z∥−(d+r)
(
1 + ∥z∥2α − 1− ∥z∥2α

)
dz

= 0.

The first inequality uses the concavity of the function u 7→ uα on (0,+∞) and the second
inequality uses (1 + u)α < 1 + uα for u > 0. Both properties hold because α ∈ (0, 1).
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In the proof of this second point, one will also need this technical lemma. It is a generalization
of the classical characterization of the Wasserstein convergence (Theorem 7.12, Villani (2003)).

Lemma 4.5. Let f ∈ C0(Rd,R) and β ∈ (0, 1) such that

f(x) ∼ C∥x∥β, as ∥x∥ → +∞,

with C > 0. Let (µn)n≥1 be a sequence of probability measures and µ ∈ Pβ. If the sequence
(µn)n≥1 converges weakly to µ and

∫
Rd f(x) µn(dx) →

∫
Rd f(x) µ(dx) then Wβ(µn, µ) → 0.

Proof of Lemma 4.5. The purpose of this proof is to show a kind of Wasserstein tigntness as
stated in point (ii) of (Theorem 7.12, Villani (2003)),

lim
R→+∞

lim sup
n→+∞

∫
∥x∥≥R

∥x∥β µn(dx) = 0.

By this theorem, this condition will imply the Wasserstein convergence. Let R > 1 such that
∥x∥β ≤ 2Cf(x) for all ∥x∥ ≥ R− 1. Let χR : Rd → R be the continuous function defined by

χR(x) = 1∥x∥2≤R−1 + (R− ∥x∥2)1R−1<∥x∥2<R, for x ∈ Rd.

Let n ≥ 1, noting that 1− χR(x) = 1 for ∥x∥ ≥ R and f(x) ≥ 0 for ∥x∥ ≥ R− 1,∫
∥x∥≥R

∥x∥β µn(dx) ≤ 2C

∫
Rd

(1− χR(x))f(x) µn(dx)

= 2C

∫
Rd

f(x) µn(dx)− 2C

∫
Rd

χR(x)f(x) µn(dx).

The function χRf is continuous and bounded then by the weak convergence

lim sup
n→+∞

∫
∥x∥≥R

∥x∥β µn(dx) ≤ 2C

∫
Rd

f(x) µ(dx)− 2C

∫
Rd

χR(x)f(x) µ(dx).

As f is integrable, the Dominated Convergence Theorem gives

lim
R→+∞

lim sup
n→+∞

∫
∥x∥≥R

∥x∥β µn(dx) = 0.

This tightness condition implies Wβ(µn, µ) → 0.

Proof of Theorem 3.4 (second point). Let (µn)n≥1 and µ be probability measures such that
dα(µn, µ) → 0. Then the sequence of KME (K(µn))n≥1 converges weakly (in Hilbert sense)
to K(µ), ie

∀f ∈ Hα, ⟨f,K(µn)⟩ =
∫
Rd

f dµn →
∫
Rd

f dµ,

in particular, for any fonctions K(µr) of Lemma 4.4 with α < r < 1∧2α. For β ∈ (2α−1∨0, α),
let’s consider r := 2α− β ∈ (α, 1 ∧ 2α). Again by the Lemma 4.4,

K(µr)(x) ∼ d(α, r)∥x∥β, as ∥x∥ → +∞.
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Hence there exists a constant C > 0 such that ∥x∥β ≤ C(K(µr)(x)+1) for all x ∈ Rd. Then the
sequence (mβ(µn))n≥1 of β-moment is bounded. The Markov Inequality ensures the tightness
of the sequence (µn)n≥1. Let us recall the Equation (14) which gives the form of d2α

d2α(µn, µ) =
1

C(d, 2α)

∫
Rd

|µ̂n(ξ)− µ̂(ξ)|2

∥ξ∥d+2α
dξ.

As the convergence L1 implies the converges almost everywhere to a sub-sequence and the
characteristic function is continuous, the probability measure µ is the unique adherent point of
the tight sequence (µn)n≥1, then by the Prokorhov Theorem, the sequence converges weakly to
the measure µ.

The kernel kα is continuous in its 2 variables, so it is separately continuous and locally bounded.
Thus by the Corollary 3 of Simon-Gabriel and Schölkopf (2018), all functions f ∈ Hα are
continuous, including the function K(µr).

The assumptions of Lemma 4.5 are therefore satisfied, so Wβ(µn, µ) → 0. The continuity of the
injection, recalled in formula (16), generalizes this convergence for any β ∈ (0, α).

4.2.3 Proof of Subsection 3.4

Proof of Lemma 3.5. We first state a simple property that will be useful for the proof : there
exists M ≥ 0 such that

xTΣx ≤M∥x∥2 for all x ∈ (R+)
d, (24)

and, if Ker(Σ) ∩ (R+)
d) = {0}, there exists also m > 0 such that

xTΣx ≥ m∥x∥2 for all x ∈ (R+)
d. (25)

To prove this, we consider K = {x ∈ (R+)d : ∥x∥ = 1} and we set

m = min
x∈K

xTΣx and M = max
x∈K

xTΣx.

The min and max are well defined because x 7→ xTΣx is continuous on K compact. Inequali-
ties (24) and (25) are clearly satisfied for all x ∈ K, and, by a standard homogeneity argument,
they also holds for all x ∈ (R+)

d. Finally, m and M are non negative because Σ is positive
semi-definite and the conditions Ker(Σ) ∩ (R+)

d = ∅ implies that m and M are positive.
We now prove Lemma 3.5. The kernel k defined by Equation (19) is the sum of two kernels

k(x, y) = kΛ(x, y) + kΣ,α(x, y) (26)

with kΛ defined in Equation (12) and kΣ,α(x, y) = |x|αTΣ|y|α. Therefore Lemma 2.12 implies -
with straightforward notation - Mk = MΛ ∩MΣ,α. According to Proposition 2.13, M1 ⊂ MΛ.
According to Equation (24),

0 ≤ kΣ,α(x, x) = |x|αTΣ|x|α ≤M∥x∥2α,

which implies Mα ⊂ MΣ,α. Then, for α ≥ 1, the inclusion Mα ⊂ M1 implies

Mα = M1 ∩Mα ⊂ MΛ ∩MΣ,α = Mk.

When Ker(Σ) ∩ (R+)
d = {0}, Equations (24) and (25) together imply

m∥x∥2α ≤ kΣ,α(x, x) ≤M∥x∥2α,
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and MΣ,α = Mα. Then, for α ≥ 1, the inclusions MΣ,α = Mα ⊂ M1 ⊂ MΛ imply

Mk = MΛ ∩MΣ,α = Mα.

The key ingredient of the Proposition 3.6 is this following lemma. Our proof is largely inspired
by the proof of Theorem 9 of Sriperumbudur et al. (2010).

Lemma 4.6. Let U ⊂ Rd \ {0} be a symmetric open set and α ≥ 1. There exists a real-valued
Schwartz function θ ̸= 0 which has a non null Fourier transform outside U and satisfies∫

Rd

θ(x) dx = 0 and

∫
Rd

|xi|αθ(x) dx = 0, 1 ≤ i ≤ d.

Proof. For w ∈ Rd and ε ∈ (0,+∞)d, we define the function

fw,ε(ξ) =
d∏

i=1

e
− ε2i

ε2
i
−(ξi−wi)

2
1[−εi,εi](ξi − wi), ξ ∈ Rd.

Clearly, fw,ε is a Schwartz function with support equal to the hypercube [w−ε, w+ε]. Because U
is open and symmetric, there exist w1, . . . , wd+1 ∈ U and ε ∈ (0,+∞)d such that the symmetric
sets [wj − ε, wj + ε] ∪ [−wj − ε,−wj + ε], 1 ≤ j ≤ d + 1, are all included in U and pairwise
disjoint. Then the Schwartz functions

θ̂j = fwj ,ε + f−wj ,ε, 1 ≤ j ≤ d+ 1,

are symmetric with disjoint support included in U . As the Fourier Transform is a bijection on the
Schwartz class, there is a unique Schwartz function θj with Fourier transform θ̂j , 1 ≤ j ≤ d+1.
Note that the functions θ1, . . . , θd+1 are linearly independent because their Fourier transforms
θ̂1, . . . , θ̂d+1 have disjoint support and thus are linearly independent. Furthermore, θj is real-

valued because θ̂j is symmetric and its integral vanishes because the condition 0 /∈ U implies∫
Rd

θi(x) dx = θ̂i(0) = 0.

The d+ 1 vectors in dimension d(∫
Rd

|xi|αθj(x) dx
)

1≤i≤d

∈ Rd, 1 ≤ j ≤ d+ 1,

are not linearly independent so that there exist u1, . . . , ud+1 ∈ R, non all zero, such that

d+1∑
j=1

uj

∫
Rd

|xi|αθj(x) dx = 0 for all 1 ≤ i ≤ d.

Then the function θ =
∑d

j=1 ujθj satisfies the required properties. It is non null because the
functions θ1, . . . , θd+1 are linearly independent.
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Proof of Proposition 3.6. Recall the decompostion k = kΛ + kΣ,α in Equation (26).
If supp(Λ) = Rd, we prove that the kernel kΛ is characteristic over probability measures and
hence k is also characteristic. The proof is similar to the proof of Theorem 9 in Sriperumbudur
et al. (2010) and we recall only the key arguments. By Proposition 2.13, as µ(Rd) = ν(Rd) = 1

d2Λ(µ, ν) = 0 if and only if

∫
Rd

|µ̂(ξ)− ν̂(ξ)|2 Λ(dξ) = 0.

Since Λ has a full support and the integrand is continuous, we must have

µ̂(ξ)− ν̂(ξ) = 0 for all ξ ∈ Rd.

We deduce µ = ν, showing that kΛ is characteristic over probability measures.
Conversely, we now suppose that supp(Λ) ̸= Rd and show that k = kΛ+kΣ,α is not characteristic.
Let U ⊂ Rd \ {0} be a symmetric open set such that Λ(U) = 0. By Lemma 4.6, there exists a
Schwartz function θ ̸= 0 such that∫

Rd

θ(x) dx = 0,

∫
Rd

|xi|αθ(x) dx = 0, 1 ≤ i ≤ d,

and θ̂(x) = 0 for x /∈ U . Let n ≥ 1 and C > 0, such that the measure

µ(dx) =
C

1 + ∥x∥n
dx

is a probability measure with a finite absolute moment of order p. As θ is continuous and with
a fast decay at infinity, there exists u > 0, such that the function C(1+ ∥x∥)−n+uθ(x) remains
positive on Rd. Then the measure

ν(dx) =

(
C

1 + ∥x∥n
+ uθ(x)

)
dx

is probability measure (recall that θ has a vanishing integral on Rd). By the properties of θ, the
measures µ and ν have the same absolute moment of order p:∫

Rd

|xi|α µ(dx) =
∫
Rd

|xi|α ν(dx), 1 ≤ i ≤ d,

so that mα(µ) = mα(ν) and d2Σ,α(µ, ν) = 0 (see Equation (20)). Furthermore, they have the
same Fourier transforms outside U , and together with Λ(U) = 0, this entails

d2Λ(µ, ν) =

∫
Rd

|µ̂(ξ)− ν̂(ξ)|2 Λ(dξ) = 0.

We conclude that d2k(µ, ν) = d2Λ(µ, ν) + d2Σ,α(µ, ν) = 0, so that the MMD is not a distance on
Mk ∩ P and k is not characteristic.

The following Lemma is the sequential version of the Equations (24) and (25).

Lemma 4.7. Let F be a non empty closed linear cone and Σ ∈ Sd(R) be a non negative matrix,

kerΣ ∩ F = {0} ⇐⇒
[
∀(xn)n ∈ FN, (xTnΣxn → 0 =⇒ xn → 0)

]
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Proof. ⇐ This implication is proved by contraposition. If kerΣ∩F ̸= {0} then let y ̸= 0 in this
intersection. Let (xn)n be te constant sequence equal to y. This sequence checks xTnΣxn → 0
but xn ̸→ 0.
⇒ Let (xn)n ∈ FN such that xTnΣxn → 0 then by the Equation (25),

0 ≤ m∥xn∥22 ≤ xTnΣxn → 0,

where m > 0 then xn → 0.

Proof of Theorem 3.7. ⇒ This implication is proved by contraposition. If supp(Λ) ̸= Rd,
then by the Proposition 3.6, the MMD dk is not a distance So the MMD cannot metrize the
Wasserstein space.

If kerΣ∩(R+)
d ̸= {0}, let x ∈ (R+)

d
be a non null vector such that (|x|p)TΣ|x|p = 0. Let’s define

the sequence of probabilty measures µn = n−1
n δ0 +

1
nδnx. It is easy to see that Wp(µn, δ0) ̸→ 0

since the moment of order p does not coverge. But d2k(µn, δ0) =
1
n2kΛ(nx, nx) cause |x|p ∈ kerΣ

and |x| = x. Then by Lemma 4.1,

d2k(µn, δ0) = on(1),

then it vanishes. So the MMD does not metrize the Wasserstein space of order p.

⇐ First of all, by the Lemma 3.5, Mk ∩ P = Pp. Let (µn)n≥1, µ ∈ Pp, it must be shown that
Wp(µn, µ) → 0 if and only if dk(µn, µ) → 0.

• if Wp(µn, µ) → 0, then mp(µn) → mp(µ). Then by the Equation (24),

dΣ(µn, µ) = ∥mp(µn)−mp(µ)∥Σ → 0.

Moreover, as (µn)n≥1 (resp. µ) have a first moment, their Fourier Transforms are ∥m1(µn)∥2
(resp. ∥m1(µ)∥2)-Lipschitz continuous and as the convergence for Wp implies the conver-
gence of W1,

∥m1(µn)∥2 → ∥m1(µ)∥2.
Then these Fourier Transforms are C-Lipschitz continuous with C := sup(∥m1(µn)∥2).
Then

|µ̂n(ξ)− µ̂(ξ)|2 ≤ 4(1 ∧ C2∥ξ∥2) ∈ L1(Λ). (27)

As (µn)n≥1 converges weakly to µ, their Fourier transforms converge to µ̂. By (27) and
Dominated Convergence Theorem,

d2Λ(µn, µ) =

∫
Rd

|µ̂n(ξ)− µ̂(ξ)|2 Λ(dξ) → 0.

Then d2k(µn, µ) = d2Λ(µn, µ) + d2Σ(µn, µ) → 0.

• if dk(µn, µ) → 0, then dΣ(µn, µ) = ∥mp(µn)−mp(µ)∥Σ → 0 so by the Lemma 4.7

mp(µn) → mp(µ).

Then the sequence (µn)n≥1 is tight by the Markov Inequality. Moreover as

d2Λ(µn, µ) =

∫
Rd

|µ̂n(ξ)− µ̂(ξ)|2 Λ(dξ) → 0,

the measure µ is the unique adherent value of the sequence (µn)n≥1 then by the Prokhorov’s
theorem, (µn)n≥1 converges weakly to µ. However, the weak convergence and the conver-
gence of the absolute moment of order p implies the Wp convergence, then Wp(µn, µ) → 0.
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4.2.4 Proof of Subsection 3.5

The proof of the Proposition 3.8 is based on this lemma. We denote by ∗ the convolution
product.

Lemma 4.8. For φ ∈ C0(Rd,R) with ∥φ∥Lip and let F be a probability on Rd, we have∫
Rd

φ ∗ hσ dF = (
√
2π)−d

∫
Rd

φ(y)

∫
Rd

f̂(t)h1(σt) exp(−iy · t) dtdy,

where f̂ is the characteristic function of F and hσ(x) = (σ
√
2π)−d exp(−∥x∥22/2σ2).

Proof. The proof of this lemma is present in Ouvrard (2004). This equality is not directly
written. So we will quickly prove the equality. One has∫

Rd

φ ∗ hσ dF =

∫
Rd

∫
Rd

φ(y)hσ(t− y) dyF (dt)

=

∫
Rd

φ(y)

∫
Rd

hσ(t− y) F (dt)dy,

by the Fubini Theorem. The lemma 12.5 of this reference states∫
Rd

hσ(t− y) F (dt) = (
√
2π)−d

∫
Rd

f̂(t)h1(σt) exp(−iy · t) dt.

And so using this last equality, we get the desired result.

Proof of Proposition 3.8. Let φ : Rd → [−1, 1] be a 1-Lipschitz continuous function bounded by
the constant 1. Let µ, ν ∈ T , we define

µ(φ) =

∫
Rd

φ(x) µ(dx) and ν(φ) =

∫
Rd

φ(x) ν(dx).

Let hσ(x) = (σ
√
2π)−d exp(−∥x∥22/2σ2) denote the multivariate Gaussian density function with

standard deviation σ > 0. We use an approximation argument and consider, for a sequence
σn → 0, the approximations

µn(φ) =

∫
Rd

φ ∗ hσn dµ and νn(φ) =

∫
Rd

φ ∗ hσn dν.

Note that the convolution is well-defined because φ is bounded and hσn is integrable. Since the
function φ is 1-Lipschitz continuous, we have

∥φ− φ ∗ hσn∥∞ ≤
∫
Rd

∥y∥2hσn(y) dy = σn ×md → 0, (28)

where md is the absolute moment of a d dimensional standard gaussian. Let ε > 0 and N ∈ N
be such that ∥φ− φ ∗ hσN ∥∞ < ε then∣∣µ(φ)− µN (φ)

∣∣ ≤ ε and
∣∣ν(φ)− νN (φ)

∣∣ ≤ ε,

whence we deduce ∣∣µ(φ)− ν(φ)
∣∣ ≤ ∣∣µN (φ)− νN (φ)

∣∣+ 2ε. (29)
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Next, we introduce the characteristic function µ̂ (resp. ν̂) of µ (resp. ν). By Lemma 4.8

µN (φ) = (
√
2π)−d

∫
Rd

φ(y)

∫
Rd

µ̂(t)h1(σN t)e
−iy·t dtdy,

and the same equality holds for νN (φ) with µ̂ replaced by ν̂. Taking the difference, we get∣∣µN (φ)− νN (φ)
∣∣ = ∣∣∣ (√2π

)−d
∫
Rd

φ(y)

∫
Rd

(
µ̂(t)− ν̂(t)

)
h1(σN t)e

−iy·t dtdy
∣∣∣.

Assuming that φ has compact support included in the ball B(0,K) with center 0 and radius K,
noted shortly supp(φ) ⊂ B(0,K), we deduce∣∣µN (φ)− νN (φ)

∣∣2 ≤ (2π)−dλd(B(0,K))2
[ ∫

Rd

∣∣µ̂(t)− ν̂(t)
∣∣h1(σN t) dt]2

≤ (2π)−dλd(B(0,K))2 ×
∫
Rd

∥t∥d+2αh21(σN t) dt×
∫
Rd

|µ̂(t)− ν̂(t)|2

∥t∥d+2α
dt

= C2 × d2α(µ, ν), (30)

where C does not depend to µ and ν. In order to prove the result for the Fortet-Mourier distance,
we have to remove the support constraint. The tightness of the subset T will be useful for this
purpose. For any ε > 0, we can choose K > 1 such that µ(B(0,K)c) < ε for all µ ∈ T . Let
χ : Rd → R be the 1-Lipschitz continuous function defined as in Lemma 4.5,

χ(x) = 1∥x∥2≤K−1 + (K − ∥x∥2)1K−1<∥x∥2<K .

The decomposition φ = χφ+ (1− χφ) implies

|µ(φ)− ν(φ)| ≤ |µ(χφ)− ν(χφ)|+ |µ((1− χ)φ)− ν((1− χ)φ)|
≤ 2|µ(χφ/2)− ν(χφ/2)|+ 2ε.

where χφ/2 is 1-Lipschitz continuous with values in [−1, 1] and support included in B(0,K).
Taking the supremum over the 1-Lipschitz continuous function φ : Rd → [−1, 1], we get

dFM (µ, ν) ≤ 2 sup
supp(φ)⊂B(0,K)

|µ(φ)− ν(φ)|+ 2ε. (31)

By combining, the Equation (29) to (31),

dFM (µ, ν) ≤ 2Cdα(µ, ν) + 4ε

Proof of the Proposition 3.9. Note that by the dual representation of the Wasserstein distance
W1, we can consider the supremum over 1-Lipschitz function φ : Rd → R and φ(0) = 0. Such
functions satisfy |φ(x)| ≤ ∥x∥. Let ε > 0. By the definition of uniformly integrability, there is
K > 1 such that ∫

B(0,K)c
∥x∥ µ(dx) < ε for all µ ∈ T .

Recall the function χ from the proof of Proposition 3.8 which is 1-Lipschitz continuous and such
that

supp(χ) ⊂ B(0,K + 1), 0 ≤ χ ≤ 1 and χ ≡ 1 on B(0,K).
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Then, in the decomposition φ = χφ + (1 − χ)φ, the function χφ is uniformly bounded and
(K + 2)−Lipschitz with ∥χφ∥∞ ≤ K + 1. We deduce∣∣∣ ∫

Rd

χφ dµ−
∫
Rd

χφ dν
∣∣∣ ≤ (K + 2)dFM (µ, ν).

On the other hand, since (1−χ)φ vanishes on B(0,K) and is bounded from above by the norm
of x, ∣∣∣ ∫

Rd

(1− χ)φ dµ−
∫
Rd

(1− χ)φ dν
∣∣∣ ≤ ε.

We deduce
W1(µ, ν) ≤ (K + 2)dFM (µ, ν) + ε.

Finally, Proposition 3.8 implies the desired inequality.
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E., and Garnett, R., editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc.

Li, Y., Swersky, K., and Zemel, R. (2015). Generative moment matching networks. In Proceedings
of the 32nd International Conference on International Conference on Machine Learning -
Volume 37, ICML’15, page 1718–1727. JMLR.org.

Müller, A. (1997). Integral probability metrics and their generating classes of functions. Advances
in Applied Probability, 29(2):429–443.

Ouvrard, J.-Y. (2004). Probabilité 2. Cassini.
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