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The Impact of Green Feedback on Users’
Software Usage

Adel Noureddine, Martı́n Diéguez Lodeiro, Noëlle Bru, and Richard Chbeir

Abstract—The rise of the energy impact of software systems requires the need to optimize and reduce their energy consumption. One
area often neglected is the important role played by users to drive energy reductions. In this paper, we aim to reduce the energy impact
of software by pushing end users to change their software usage behavior, through raising awareness and providing software green
feedback. We present a comprehensive and detailed field study of the impact of green feedback on software usage by end users, and
the efficiency of green feedback on software behavioral change, using a distributed architecture aimed at providing accurate green
feedback in real time. We find that green feedback helps in raising awareness about software energy, and on the willingness of users to
apply energy-efficient changes. However, we also find that users lack the knowledge and tools to properly adopt lasting and
energy-effective behavioral changes.

Index Terms—Energy Consumption, Behavioral Change, Green Software, Field Experiment

✦

1 INTRODUCTION

With the widespread usage of smart devices, it is ex-
pected that 500 billion devices will be connected to the inter-
net by 2040 [Evans(2011)]. With this growth, the greenhouse
gas emissions (GHGE) of Information and Communication
Technologies (ICT) is expected to grow to up to 14% by 2040,
from their 2% levels in 2007 [Belkhir and Elmeligi(2018)].
In the European Union, ICT are responsible for 4% of
CO2 emission, and up to 10% of electricity consumption in
2015 [ICTFOOTPRINT.eu(2015)].

Therefore, the need to optimize the energy consumption
of software and devices, along with pushing users to reduce
the usage of ICT devices, is crucial for a sustainable future.
Today, most energy management approaches in comput-
ing, whether it is software systems, data centers, or cyber-
physical environments, focus on technological advance-
ments or optimizations. However, very few approaches
integrate end users into the energy optimization equation,
and most of these approaches target energy consumption
in buildings or smart homes, where energy reductions are
achieved in non-computing equipment (such as refrigera-
tors, lightning, HVAC systems, etc.).

We argue that the next major shift in energy reductions
needs to involve end users, for instance in relation with
reducing the usage of ICT or changing users’ behavior
regarding ICT devices. In particular, changing the behavior
of end users in using smart devices, and in particular
software running on these devices, might lead to important
energy savings. We decide to focus on software, such as
applications or operating systems, which are easier to up-
date than hardware devices. Also, any improvement to the
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source code of software can scale well and be deployed to
billions of devices. In addition, end users essentially interact
with software, and the smart part of smart devices is their
software.

In this paper, we aim to understand the impact of green
feedback on users’ software behavior. In particular, we want
to study and understand, through a field experiment:
• What do users know about energy consumption of soft-
ware?

• What perceptions do users have on software and en-
ergy?

• Will green feedback of software usage lead to behavioral
change and energy reductions?
Many other factors impact energy consumption and/or

users behavior. For instance, green feedback might raise
awareness for users and progressively change their behavior
over time. Users also may lack sufficient knowledge on what
to do when energy consumption is high, besides turning off
devices or stop using them. In our study, we decide to limit
our investigation on two areas:
• Study the short-term behavioral change of end users
after providing them with green feedback.

• Study the perception and user awareness in regard to
energy consumption of software.
Our research question is, therefore: can raising user

energy awareness, through live green feedback, drive
behavioral change in software energy consumption? In
particular, we want to understand if live green feedback
can drive short-term behavioral change, and what type of
change users think are appropriate.

Feedback is any information send by software systems
to end users, related to the state of software. Energy feed-
back is specific feedback related to the energy or power
consumption of software. An existing definition in [Karlin
et al.(2014)] explains the difficulties of proposing a clear
operational definition, and defines energy feedback as infor-
mation about actual energy use that is collected in some way and
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provided back to the energy consumer. We extend this definition
to cover other metrics and information than those of energy
and power, specifically ecological and sustainability metrics
(such as CO2 emissions, renewable energy usage, etc.).

In this paper, we conduct a field experiment on the
impact of green feedback on software usage. We build a dis-
tributed architecture to provide live green feedback for end
users, using web services to connect to electricity providers
to calculate and provide up-to-date and accurate feedback
on the power consumption of software and devices, and the
price of this consumption and its CO2 emissions.

The field study consists of a power-monitored workload,
along with a survey for end users. Our field study provides
promising results on the role of green feedback, but sheds
light on the challenges related to software behavioral change
and the limitations of current tools and feedback visuals. To
our knowledge, we believe our field experiment, conducted
with a control group, is novel in the green computing and
software engineering communities.

It is important to stress that our goal in this study is
not to provide guidance or alternative software for users,
nor do we aim to tell users what is the right course of
actions to reduce energy, nor the correct behavior to adopt.
Our study is an observation field experiment where we aim
to observe, analyze and understand what are the factors
impacting behavioral changes around software energy, and
if green feedback can trigger a behavioral change in users.

Although we have ideas of what can impact software
energy and user behaviors, and what users might do to
reduce their energy footprint, we have no existing scientific
data to back any assumption about end users’ behaviors
or to provide suggested recommendations for users in this
study. We aim to collect and build solid scientific data to
validate our research question and hypothesis, and that can
be used by the scientific community for future studies.

The remainder of this paper is organized as follows: in
Section 2, we explore existing approaches around energy-
aware behavioral change. Next, we detail our field experi-
ment in Section 3, describing our methodology in both the
experimental setup and the survey. In Section 4, we discuss
and analyze the results of our field study and provide rec-
ommendations on green feedback for software behavioral
change. Finally, we conclude in section 8.

2 RELATED WORKS

Driving behavioral change in software and smart environ-
ments comprises many diverse challenges and understand-
ings: from the inherent challenges of smart systems, to the
ambiguous nature of software and its energy impact, and
the challenging nature of human behaviors and understand-
ing the factors that guide it.

Researchers in these three domains have tried to tackle
energy consumption through various approaches. We out-
line the main related works in this section, and describe
how our approach aims to address these challenges across
software, devices and behavioral change.

In software, energy efficiency has been a rising concern
for software developers [Pinto and Castor(2017)], archi-
tects [Bashroush et al.(2016)], and practitioners [Manotas
et al.(2016)]. Existing approaches to manage the energy

consumption of software often involve source code opti-
mization or refactoring, including optimizing data input
and storage, memory usage, or network access [Ardito
et al.(2015)], [Jagroep(2017)], [Zhang et al.(2022)]. Beyond
the individual programs, software systems energy opti-
mizations often target the entire computing architecture,
from middleware [Noureddine et al.(2013b)], to servers and
equipment in data centers [Level(2015)], or optimizing the
workload in servers, virtual machines, and in distributed
environments [Orgerie et al.(2014)], [Colmant et al.(2018)].
In addition, software approaches have been proposed to
monitor the energy consumption of software [Noureddine
et al.(2013a)] allowing developers key insights on which
hardware component and which application is consuming
energy. Other approaches allow deep energy investiga-
tion of software, providing energy consumption per source
line of code, functions, or software modules [Noureddine
et al.(2015)]. However, most of the existing approaches and
solutions target computing experts, from software devel-
opers to system administrators, or automated systems and
tools. End users are rarely involved in energy optimization
strategies, and therefore little to no feedback is provided
to users about their energy consumption. This observation
holds true for IoT and embedded environments, where low-
power and low-battery equipment are often managed by
predefined algorithms or automated machine learning tools.
End users are even less involved in reducing the energy
consumption of smart connected devices, such as smart TVs,
smart speakers, or other IoT devices, such as alarms or home
security cameras.

In contrast, the literature is rich with approaches involv-
ing end users, and field studies on users behavior regarding
energy consumption in buildings or smart homes. In a re-
cent study, the authors reviewed the state-of-the art of meth-
ods and approaches to energy efficiency in buildings [Paone
and Bacher(2018)], and concluded that most solutions to
influence occupants’ behavior in buildings revolve around
three main approaches: eco-feedback, social interactions,
and gamification:

Eco-feedback focuses on providing occupants with rele-
vant information about their energy consumption, whether
this data is live or covers the occupants past consumption.
The form of this provided feedback varies from direct
energy consumption metrics, to prices or CO2 emissions,
or an abstraction of energy consumption with the use
of metaphors, such as the number of trees saved [Wood
and Newborough(2007)]. A large-scale study involving
2000 households showed saving of up to 15% with eco-
feedback [Vassileva et al.(2012)]. However, researchers warn
of the limited effects of eco-feedback on long-term energy
saving and behavioral change, as rebound effects might
happen [Buchanan et al.(2015)], and suggest employing
normative feedback for positive behavioral change in the
long run [Anderson and Lee(2016)].

Social interactions allow users to compare their energy
behavior and savings with other users in their household,
building or neighborhood, or even online through dedicated
platforms or social networks. Such interactions and social
implications can lead to important energy savings of up to
55% [Jain et al.(2013)].

Finally, gamification is seen as a new approach to motivate
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users to change behavior. It involves integrating users into
social or interactive gaming experiences, where the emo-
tional engagement of users helps push for new behaviors.
Example of such games might involve suggesting specific
actions for energy reductions, correcting bad energy us-
age, or motivations for tangible and social actions [Reeves
et al.(2015)].

Fischer [Fischer(2008)] reviewed 26 projects in 10 dif-
ferent countries (USA, Japan, and 8 European countries),
on the impact of feedback on household electricity. The
study found that feedback should be useful for end users
in order to achieve electricity conservation. This might be
through: actual energy consumption, be given frequently,
involves interaction with users and providing them with
choices, break down consumption to specific appliances and
equipment, be given for a long period of time, involve
historical or normative comparisons, and be presented in
an easy to understand and appealing way. However, the
author warns that these recommendations might fail for
certain demographics, such as heavy consuming users, or
elderly people with lower technical skills and interests.
Darby [Darby(2001)] studied feedback approaches in rela-
tion to household electricity, and found three main groups
of feedback: 1) direct feedback such as using smart me-
ters or displaying energy data on a display, 2) indirect
feedback, such as using historical data or normative feed-
back in electricity bills, and 3) inadvertent feedback where
knowledge is learned by association. More recently, smart
devices and equipment are more frequently used to collect
data in cyber-physical systems and environments, and assist
in providing green feedback to end users. For instance,
IoT devices were used in smart city trials with an aim to
building greener cities [Sánchez et al.(2014)]. Overall, these
approaches in regards to behavioral change follow the same
main techniques of building, such as using eco-feedback
or gamification [Lu(2018)], [Konstantakopoulos et al.(2019)],
[Francisco and Taylor(2019)], [Orland et al.(2014)].

3 FIELD EXPERIMENT

In this section, we describe the methodology we applied in
the experiments and user surveys. We want to understand
whether raising awareness through live green feedback of
the users’ energy consumption will help achieve short-term
behavioral change, and whether users’ general knowledge
of software is sufficient to help them make relevant behav-
ioral changes, if any.

As we aim to study the impact of green visual feedback
on user behavior, we set up a field experiment with two user
groups. Our field study consists of two steps: first, users
participate in a common experiment where their energy
consumption is monitored, then, they fill up a survey to
collect their feedback and knowledge on the experiment
and green computing. In the next sections, we detail the
methodology of our field study.

3.1 Participants

In June and July 2020, around a hundred students (95)
from computer science and engineering degrees in Lebanon,
participated in the field study and survey. They participated

in an optional course in their degree on the topic of Research
Methodologies (explaining how research is conducted, from
studying the state of the art to experimental studies). The
lecturer explained how user-centric experiments are con-
ducted and explained the goal of our experiment. Students
had the choice in participation, where many accepted but
some did not.

The field study was conducted for each student group
during one class session (2 hours), with similar protocols
for both control group and treatment group (where only the
software collecting the metrics was different). All students
were tasked for a similar workload, and every student
participated in the experiment during one class session. In
total, 5 class sessions were needed for the experiment, with
2 classes being the control group (A1), and 3 classes for
studying the impact of green visual feedback (A2), with
overall a similar number of students in groups A1 and
A2. Each class was either part of the control or treatment
group (we did not divide a class) in order to avoid students
influencing each other during the experiment and voiding
the validity of our control group.

Participants were split in two for experiment A1 and A2,
with 47 participants in group A1 answering the survey, and
48 for group A2. The majority of participants were males
(74.47% for the control group A1, and 83.33% for A2). The
average age is 22 years old (youngest at 21 and oldest
at 27 years). Participants were students from computer
science and engineering degree, with a minority having an
additional part or full-time job (18.9%). The majority of par-
ticipants, although studying in computing fields, have one
or two mobile devices: 33.70% have 1 device, 36.96% have
2 devices, 15.22% have 3 devices, while only 14.13% had
four or more devices. Overall, participants are interested in
ecology, with a majority of 71.58% choosing the answer that
”ecology is a major concern for our planet (pollution and
global warming)”, with 6.32% saying they are only inter-
ested in pollution but not global warming, and 22.11% say-
ing they are not interested in ecology. Finally, a majority of
participants (75.53%) think that radical (43.62%) or gradual
(31.91%) actions need to be implemented to reduce energy
consumption. 15.96% answer that some actions are needed
to maintain energy consumption at current levels, while
8.51% answer that no change is needed as the status quo
is fine. Overall, there are no significant differences between
participants in the control group A1 and the experiment
group A2.

3.2 Workload

Every participant had to perform a similar task in order to
have a similar workload for comparison. Participants were
asked to write a research document with heavy usage of
online resources. Participants had a specific scientific topic,
for example compression algorithms in IoT, and had to write
a state-of-art document of 3 to 4 pages about it, within an
hour and a half of class session. The produced document
includes an introduction, the description of the problem,
the existing works and solutions along with a comparative
study, and a conclusion.

Participants used two sets of software: cloud-based tools,
such as the online latex editor OverLeaf, and web browsers
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to search for research papers, documents, multimedia con-
tent, etc., and on-device tools, such as word processing
software, PDF or image viewers, etc. Participants had the
liberty to choose the software they wish, such as using
Google Chrome or Mozilla Firefox for the web browser.

3.3 Experimental Setup for power monitoring and feed-
back
All participants used a mobile device (a laptop) running
mostly Microsoft Windows, with a few using a Macintosh
device running macOS.

We built a power monitoring software, along with a
distributed architecture, that collects the following metrics,
every second:
• CPU power consumption of the user’s device, in watts.

This metric is obtained using Intel Power Gadget’s APIs,
and therefore participants had to install this software too.

• Name and path of software used by participants. Using
Windows and macOS APIs, we collect the name of the
software being actively used by users (the active win-
dow).

• Title of the active window. This also uses Windows
APIs, and helps in understanding which website or tab
the user is actually using. Therefore, it gives us insights on
the type of activity executed by participants (e.g., writing
Latex document, watching a video resource, etc.), as these
can have an impact on energy consumption.

• CO2 emissions in grams, which is based on the global
average CO2 emission of the electricity production in the
country of participants, and the actual power consump-
tion of the device.

• Cost of electricity in cents of euros, which is also based
on the average cost of electricity in the country of partici-
pants, and the actual power consumption of the device.
Our software uses a mashup architecture which orches-

trates different web services capable of collecting and ob-
taining: the current price of electricity, and the current CO2
emissions due to the generation of electricity. Our approach
first identifies the geographic location of end users, and
according to its region, obtains the relevant metrics. For
instance, for a user located in France, our architecture would
connect with the electricity providers (for instance, EDF) to
get the latest real-time prices and CO2 emissions. Therefore,
two users in different countries consuming the same amount
of power, would be provided different green feedback for
the price and CO2 categories. The approach could also
integrate specific user electricty contracts and prices, such as
peak hour prices, zero-carbon, enterprise or real-time priced
contracts. For the purpose of the experiment, CO2 and elec-
tricity data are collected once from the electricity providers,
and used throughout the experiment in order to minimize
the impact of network on energy consumption and mitigate
slow network connections for certain participants.

Current CO2 emissions and electricity price for the user
workload is calculated by multiplying the current real-time
power consumption (in watts) by the user location’s CO2
emissions (in grams per kWh), or by the price in cents per
kWh, and we then adjust the unit metrics.

In addition, we developed a visual feedback tool which
showed the power consumption, CO2 emissions and the

cost of electricity in real time in a small window. This
window, shown in Figure 1, cannot be minimized or resized
by participants, and stays on top of all other programs at
the bottom right of the screen. In addition to textual values
of the metrics, a graph is also shown which monitors in real
time the power consumption of the device.

Fig. 1: The green visual feedback tool used in our experi-
ments

End users will only see the green feedback provided in
the tool (e.g., ecological and power metrics, and the evolving
power chart). They will not know the power consumption
of specific software, nor, for example, which one is causing
a power spike. We designed our feedback to limit the
provided information as our aim in the study is also to
understand what users know about software energy and
their perception of energy-consuming software.

Participants in the control group (group A1) were asked
to install the power monitoring software and its depen-
dencies, and run it in the background. This software will
silently monitor power consumption of the device and
collect software usage. Participants in the experiment group
(group A2), were asked to install both software: the power
monitoring one (the same as the control group A1), and ad-
ditionally our green visual feedback tool which will display
green feedback in a persistent window on the desktop (cf.
Figure 1).

As lockdown for universities was still in place during the
experiments, participants were asked to send the generated
metric data (one CSV file and one TXT file) by email.
However, due to technical problems installing the tools,
or running and generating the data, and with issues with
mapping the collected data to the anonymous survey, we
ended up with 52 valid distinct power data files divided
into 26 for group A1 and 26 for group A2.

We did not scientifically measure the overhead of either
our power monitoring tool or our green feedback tool. The
former is a simple two C++ program with one class and
linking one external library (the Intel Power Gadget header),
while the latter only adds a Qt GUI that displays a chart
and 3 numerical values. We consider the overhead quite low
and negligible, as our tools use existing energy monitoring
approaches and APIs that has been shown to have low
overhead in the literature [Noureddine et al.(2012)], [Fieni
et al.(2020)].
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In contrast, the distributed nature of our architecture
might have an overall energy impact, as connecting to Inter-
net APIs to get electricity prices and CO2 emissions might
consume energy in the network equipment and servers.
However, these remote APIs are not accessed continuously
(ideally, once a day). We did not analyze the impact of the
general architecture on energy consumption, as our focus
are on end-user machines and on participants’ behavioral
changes.

Participants’ Hardware and Software Profiles
All participants who send valid monitoring data used a
Windows 10 laptop with 4 exceptions: three participants
with Windows 8.1, and one with Windows 7, all of which
were 64 bit devices. A few users had macOS laptops but
none provided valid power data for the experiment.

All laptops were using Intel Core processors: two i3
models, nine i5 models, and the remaining were i7 models.
The thermal design power (TDP) of these processors varied
from the lowest at 15 watts (for 42 laptops), to up to 95
watts for one laptop using an i7-6700K CPU at 4 GHz, with
18 laptops with a TDP at 45 watts.

In terms of applications, and as the workload is
document-oriented, participants mostly used a Internet
browser, and office software. In particular, the majority of
participants used Google Chrome with a few participants
using Mozilla Firefox, Microsoft Edge and Opera Browser.
The usage of the browser was extensive as participants use
it for online search, email and messaging, viewing PDF files,
and using the online Latex editor Overleaf. The majority also
used Microsoft Teams for the class.

Other applications were used occasionally for specific
tasks, such as Microsoft Office software (in particular, Word,
Excel and PowerPoint), Windows Notepad for note taking,
Adobe Acrobat Reader to view PDFs, Windows Mail for
emails, WhatsApp Desktop for messaging between some
participants, and the Windows Snipping Tool to take screen-
shots for the assignment.

3.4 Survey to collect user feedback
At the end of each experiment, participants were asked to
fill in an anonymous online survey. In addition to the power
data filename (which we collected to map the survey results
to the power consumption data), participants had to answer
a set of question regarding sustainability, green computing,
and the experiment they are participating in.

We built our survey questionnaire with 4 main blocs
around the following themes: behavior (what we do), opinion
(what we think), motives (why we do), and identity (gender,
etc.). We first asked identity questions, then factual ques-
tions, and finally motivation and opinion questions. We
privileged closed questions as they are easier to answer by
participants and to process by us, and to avoid ambiguities.
We also avoided tendentious and emotionally charged ques-
tions in order to keep the questionnaire neutral. We built
our multiple-choice questions to be as precise as possible
by asking participants to classify their answers. In order to
appreciate an impact of an answer and force a positioning,
we built our questionnaire using a Likert-type scale without
a midpoint (i.e., without the *Neither agree nor disagree*
answer).

We first asked participants questions about their identity:
gender, age, education, and work status. These questions
aim to understand whether age, gender or education levels
have an impact on their opinion or behavior regarding
energy consumption and sustainability in general. We then
asked participants on how many mobile devices they own,
and their interests in ecology and their view on global
warming and if any action needs to be done for energy
reductions.

Participants were then asked a few questions on the ex-
periment they participated in. Participants in groups A1 and
A2, answered questions on their perception of the energy
cost of their experiment. They also had to rate the energy
costs (from very low to very high) on a set of software
categories (office programs, internet browsers, scientific or
programming software, and the operating system itself),
and then rank the most consuming categories and individ-
ual software.

Participants in group A2, had additional questions about
the green visual feedback. In particular, we want to know
if the visual tool was helpful or distracting, which form
of feedback was most helpful (visual graph or textual
numbers), and which metric was most useful (power con-
sumption, CO2 or price). We then asked participants if they
changed their software behavior based on the visual tool
feedback, and if so, how they changed behavior.

Overall, for a participant, the process to participate in
our field study is as follows:

1) The lecturer explains the experiment and its goals,
2) Students accept to participate or not,
3) Those who accept are provided with a written guide

about the experiment and how to install the relevant
monitoring software,

4) Participants in the control group install the moni-
toring software, while those in the treatment group
install both monitoring software and the visual feed-
back tool,

5) After the experiment ends, all participants answer
the survey questionnaire (with additional questions
for the treatment group),

6) Finally, participants send back all data files from the
monitoring software by email.

4 RESULTS AND ANALYSIS

In this section, we outline the results of our experiments,
including both the energy monitoring data and the survey
answers.

4.1 Perception of energy consumption
This part of the survey was answered by participants from
both group A1 and group A2. We first asked our participants
to rate the energy consumption of their experiment. To the
question ”How do you rate the energy consumption of the session
you just participated in?”, a majority of participants rated
their session low (49.47%) or very low (11.58%), with 36.84%
rating it as high, and only 2.11% rating it as very high.
However, these numbers vary between the control group
(A1) and the experiment group (A2), as seen in Table 1.
Participants who had our live green feedback window, rated
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their energy session higher with 50% answering high, in
comparison to only 27.66% in group A1 answering high or
very high. In contrast, none in group A2 answered very
high, and a bigger percentage (14.58%) stated very low,
in comparison to 8.51% giving the same answer in the
control group A1. Statistically, the difference in answers
between groups A1 and A2, is significant. This shows that
participants have a different point of view of their power
consumption when shown live green feedback.

This initial finding suggests that users, even computer
savvy ones such as computer science and engineering stu-
dents, have a difficulty in judging how much their devices
and software actually consume in terms of energy. We
observe that our participants tend to minimize their power
consumption (nearly three quarters in the control group),
unless shown their actual power consumption (such as our
live green feedback tool). In this latter case, the perception
of participants shifted massively into the high consumption,
and, to a lower extent, to very low. For instance, users of the
control group A1 with a laptop having a CPU with a TDP
(Thermal Design Power) of 15 watts, massively rated their
session as low (77.78%), while participants with the same
TDP in group A2 were 42.85% to answer high (cf. Table 2).
The numbers are even clearer for higher TDPs. For instance,
for participants at 45 watts TDP, 80% of group A1 rated their
session low or very low, compared to 77.78% rating it high
in group A2.

We then asked participants to rate their perception of
the energy consumption of four main software categories:
office programs, internet browsers, scientific or program-
ming software, and the operating system. Participants in
both groups A1 and A2 has similar answers. Overall, the
operating system had the most very high ratings (26.09%),
and an important majority (77.17%) rating it high or very
high (cf. Table 3). These numbers are similar for scientific
or programming software (typically, IDEs, compilers, La-
tex, Matlab, etc.), with 75.79% rating it high or very high.
Surprisingly, internet browsers were also rated high, with
66.32% rating it high or very high, albeit a lower number
rated it very high (10.53%). In contrast, office programs
were the ones least seen as high energy consumers, with
38.79% rating them as high or very high. Even better, office
programs had the highest percentage of participants rating
them very low (12.63%), while no one rated the operating
system very low.

These numbers might suggest that users, regardless of
having green feedback, have some perception of which
software might consume more. Office programs are seen
less consuming as they mostly use textual input, with
limited graphs or figures. In contrast, internet browsers
today handle rich and complex multimedia websites, and
are known to use higher amount of RAM memory and CPU
cycles compared to word processing programs. Scientific
and programming software, for our computer and engineers
participants, can also be perceived as sluggy and memory or
CPU-intensive. However, the surprising finding is that the
majority of participants consider the operating system as the
one having a high or very high energy consumption.

In order to investigate more this perception, participants
were asked to classify the most energy-consuming software
from a list of proposed ones (cf. Table 4): internet browser,

word processor, presentation program, email client, file or
pdf viewer, IDE, and communication software. Most partic-
ipants rated three software in the first spot: IDE (Eclipse,
Visual Studio, etc.) at 33.33% of participants, Communica-
tion (Skype, Teams, Discord, etc.) at 28.89%, and Browser
(Chrome, Firefox, Edge, etc.) at 25.56%. The other software
didn’t pass 7% and no one rated email clients (Outlook,
Thunderbird, etc.) at the first spot.

The second spot was also taken by IDE (29.47%) and
Communication (28.42%). However, only 5.26% placed
Browser, while word processor was ranked second for
18.92% of participants. The third place was taken by
Browser (30.53%) and, surprisingly, file or PDF viewer at
20%, with presentation program at 16.84%. The next two
spots were shared between word processor and presentation
program (21.62% then 29.73% for the former, and 21.05%
then 22.11% for the latter). Finally, most people ranked file
or PDF viewer as the least consuming with 35.79% ranking
it last.

Finally, most participants consider cloud computing or
data centers the most consuming part of the computing
industry at 62.11%, with network equipment second at
12.84%, desktop computers third at 12.63%, and finally mo-
bile computing last with 8.42%. This shows that computer-
savvy participants are aware of the energy weight of cloud
infrastructure (data centers and networking). However, it
also shows that the energy consumption of mobile and IoT
devices are still being considered individually, therefore,
participants have a perception that these devices have a low
impact on global energy consumption.

4.2 Perception of green feedback

Participants in the experiment group A2, had to answer an
additional set of questions in the survey, in particular about
their perception of the green feedback tool and their usage
behavior of software and their devices.

We first asked participants what is their opinion and
perception of the visual energy feedback (cf. Table 5). A
majority of participants agree (58.33%) or strongly agree
(33.33%) that the visual feedback was helpful to know when
energy consumption is spiking. A similar majority agrees
(59.57%) or strongly agree (14.89%) that energy consump-
tion was higher than they thought, while a quarter (25.53%)
disagreed. When we asked the opposite question (if energy
consumption was lower than what they thought), 39.58%
of participants agreed and 15.58% strongly agreed, while
35.42% disagreed and 10.42% strongly disagreed. These
numbers show that, overall, participants thought they con-
sumed more or less than their initial perception, therefore
showing the importance of feedback in raising awareness.
In contrast, around half of participants (47.92%) did not
understand what each metric relates to. Finally, a majority
of participants saw the window of our green feedback tool
as distracting (57.78%).

We then asked users which energy metric in our feed-
back tool was the most helpful (cf. Table 6). 41.67% of
participants answered that the power consumption met-
ric in watts was the most helpful in understanding the
green impact of their software and devices. Around a fifth
(22.92%) answered that all 3 metrics were helpful (power,
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Group Very low or negligible Low High Very High

Control group A1 8.51% 63.83% 23.40% 4.26%
Experiment group A2 14.58% 35.42% 50% -

TABLE 1: Answers, per group, to the question: ”How do you rate the energy consumption of the session you just participated in?”

Group/TDP Very low or negligible Low High Very High

Control group A1
15 watts 5.555% 77.78% 11.11% 5.555%
17, 28, 35 watts - 100% - -
⩾ 45 watts 50% 33.33% 16.67% -

Experiment group A2
15 watts 19.04 % 38.09% 42.85% -
⩾ 45 watts 14.28% 14.28% 71.42% -

TABLE 2: Answers, per group and per CPU TDP, to the question: ”How do you rate the energy consumption of the session you
just participated in?”

Software category Very low Low High Very High

Office programs 12.63% 51.58% 32.63% 3.16%
Internet browsers 4.21% 29.47% 55.79% 10.53%
Scientific or programming software 4.21% 20% 50.53% 25.26%
The operating system (Windows, macOS) 0% 22.82% 51.09% 26.09%

TABLE 3: Answers, per software category, to the question: ”How do you rate the energy consumption of the following category
of software?”

Ranking Software 1 Software 2 Software 3

1st IDE (33.33%) Communication
(28.89%)

Browser
(25.56%)

2nd IDE (29.47%) Communication
(28.42%)

Word processor
(18.92%)

3rd Browser
(30.53%) IDE (20%)

Presentation
program
(16.84%)

4th Email client
(43.2%)

Presentation
program
(18.95%)

Browser
(11.58%)

5th Word processor
(21.62%)

Presentation
program
(21.05)%

File or PDF
viewer (15.79%)

6th Word processor
(29.73%)

Presentation
program
(22.11%)

IDE (14.74%)

7th File or PDF
viewer (35.79%) IDE (11.58%) Word processor

(10.81%)

TABLE 4: Answers to the question: ”Rank the energy con-
sumption of the following software”

price and CO2 emissions), of which a majority (42.86%)
stated that power was more helpful than the other two.
The price was selected for 16.67%, and 12.5% of participants
didn’t find any of these metrics helpful. Surprisingly, only
6.25% of participants found CO2 emissions metric helpful.

These numbers indicate that participants better associate
power metrics to energy-related issues. Other metrics might
add a layer of reasoning and comparison, therefore might
render them less useful.

In contrast, participants were more attentive to the visual
chart rather than the numerical metrics (cf. Table 7). 25.58%
of participants considered the visual chart of our tool more
helpful, in comparison to 16.28% for the metrics, while a
majority of 58.14% answered both. Of the latter, when asked

to choose one of the two, a majority of 59.46% preferred the
visual chart over the metrics (40.54%).

Participants also overwhelmingly agreed or strongly
agreed (91.67%) that the power consumption graphs and
metrics correlate to what they think their energy consump-
tion is. However, this agreement does not translate with
behavioral change in using software. When asked ”How
often did you change your software usage?”, a majority of
participants (62.5%) answered that they did not change their
software usage. In addition, a fifth (20.83%) only changed
their software usage when they were doing less important
tasks (in relation to the workload). Only 16.67% of partici-
pants applied some sort of behavior change when they saw
a power spike in our visual feedback tool.

However, when participants changed their behavior on
every spike or temporarily, the applied actions were limited,
mostly to a lack of knowledge of what to do (cf. Table 8).
54.17% answered that they switched software to reduce
energy consumption, while 62.5% decided to reduce their
usage time of some programs. In addition, 58.33% stated
that they wanted to reduce their energy consumption but
didn’t know how.

These numbers indicate that participants know, essen-
tially, only two ways to reducing their energy consumption:
change software or reducing usage time. Both of these
dimensions, tooling and temporal, imply that users must
be armed with the knowledge of which software to go to,
and for how long should a temporal reduction be applied.

In the next section, we discuss our findings and propose
recommendations for a more effective behavioral change
when using software.
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Question Strongly disagree Disagree Agree Strongly agree

Helpful to know when energy consumption is spiking - 8.33% 58.33% 33.33%
Energy consumption was higher than I thought - 25.53% 59.57% 14.89%
Energy consumption was lower than I thought 10.42% 35.42% 39.58% 14.58%
The window was distracting 11.11% 31.11% 57.78% -
I did not understand what each metric relates to 16.67% 35.42% 35.42% 13%

TABLE 5: Answers of participants in group A2 on how they rate the visual energy feedback.

Answer Percentage

Power consumption in watts 41.67%
CO2 emissions 6.25%
Price in euros 16.67%

All of the above
22.92% (of which 42.86% for
power, 28.57% for price, and

28.57% for CO2)
None 12.5%

TABLE 6: Answers of participants in group A2 to the ques-
tion Which energy metric was the most helpful?

Answer Percentage

Both 58.14% (of which, 59.46% for the chart,
and 40.54% for the metrics)

The visual chart 25.58%
The numbered metrics 16.28%

TABLE 7: Answers of participants in group A2 to the ques-
tion Which type of feedback was the most helpful?

Strongly disagree Disagree Agree Strongly agree

I switched software to reduce my energy consumption
2.08% 43.75% 39.58% 14.58%

I reduced the usage time of some programs to reduce energy
consumption

2.08% 35.42% 54.17% 8.33%

I wanted to reduce my energy consumption, but I did not know
how

6.25% 35.42% 43.75% 14.58%

TABLE 8: Answers of participants in group A2 to statements
on software usage changes

5 DISCUSSIONS

5.1 Perception of energy consumption

Software power consumption in mobile devices vary de-
pending on the device itself. A mobile phone running a
cloud-based Latex editor will not have the same power
consumption as a Raspberry Pi or a laptop, even for the
exact same workload. As users tend to use multiple devices
(two thirds of participants state having 2 or more mobile
devices), we argue that raw metrics may not be the best
approach to raise awareness or drive behavioral change.
As applied in buildings [Wood and Newborough(2007)],
metaphors may provide better understanding for users
about their energy consumption. Such metaphors might be
metric-based, such as trees saved or nuclear plants required
for electricity production, or might be traffic-light style, such
as showing a red symbol or phrase if energy consumption is
deemed high. The latter classification of what is high or low
energy consumption, is a challenging task for the software

research community. Some suggestions may include having
a database of average energy consumption per workload, or
per category of software, and can be used by an intelligent
tool to show warnings to users based on their consumption
and the importance of the workload.

From the results, there is a clear majority of participants
ranking IDEs as the most consuming software. This finding
may be biased to the fact that participants were computer
science and engineering students using IDEs very often on
not optimal laptop devices. Their perception of energy con-
sumption might be influenced by the perception of slowness
of IDEs, their rich feature set, or compilation time of pro-
grams. It would be interesting for the research community
to extend our study to further understand this perception
and what software developers can do to improve it, or to
optimize their IDEs. In contrast, communication software
was seen even more consuming than internet browsers. In
the context of the experiment (during lockdown in June and
July 2020), videoconference software were extensively used,
and running audio and video streams requires many CPU
cycles and memory usage. Therefore, participants might
be biased as they used these programs in addition to per-
forming their class workloads, in comparison to the general
public who may use communication software sparsely and
with limited multitasking. These software are known to
have a high energy impact on energy consumption [Zhang
et al.(2009)]. Therefore, we recommend better optimization
for communication software, and switching to less machine-
intensive encoding/decoding algorithms to alleviate the
load and energy consumption on mobile and computing
devices.

Finally, as the dependencies of mobile devices towards
cloud computing is rising, the energy consumption of either
is therefore close and inseparable. Most mobile devices use
cloud-based services to perform their intended features: a
smart speaker depends on cloud services to provide accu-
rate and relevant answers to users, or a smart fridge might
use cloud services to provide an up-to-date shopping list of
missing items, and similar arguments for other devices such
as smart TVs or connected security cameras. We recommend
outlining this dependency in green feedback tools, in order
to show the impact of the entire chain of software and
hardware when users interact with their devices.

5.2 Perception of green feedback

Our first observation of the reaction of users to our green
feedback tool is that it helps in raising awareness of the
actual power consumption of devices and software. Partici-
pants either exaggerated or minimized the energy costs, and
nearly half of them did not understand what the metrics
mean. Our recommendation follows what we observed in
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the first part of the survey, that metaphors, such as a traffic-
light system, might be more relevant to users.

In addition, participants thought that power metrics
were most useful to understand the impact of energy.
Without more in-depth investigation with participants, it
is not straightforward to conclude that power metrics are
easier to understand, and contradicts with a study from
2009 on the usage of energy meters in homes [Kelsey and
Gonzalez(2009)], that indicated users are more interested in
the price metric rather than the power one. However, as
our participants were computer savvy (computer science
and engineering students) and young, the power metric
might actually be more relevant for them, as this metric
is common for overclocking, gaming or other hardware-
related studies and activities. In contrast, a small minority
of participants, 6.25%, placed the CO2 emissions metric as
the most helpful one. We argue that CO2 emissions are seen
as an abstract measure, and it is hard for users to grasp
how many grams of CO2 emissions is dangerous for global
warming. Instead, we recommend abstracting much of these
metrics, and use green-related or sustainability metrics. For
instance, the number of trees saved, or the estimated degrees
lowered or raised by the energy consumption or savings,
might have a better effect on users.

Participants were also more impacted by the visual chart
than the metrics themselves. The charts in our visual feed-
back tool is plotted in real time and its Y axis scales to show
the maximum plot value, and therefore might had an impact
of the users’ perception of power consumption. Charts
provide a short-term historical view, and most importantly,
a comparative indication of an increase or decrease of power
consumption. We argue it is important to keep such visual
charts as it provides an immediate feedback of whether the
actions of users have a positive or negative impact on energy
consumption.

Our most interesting finding is that a majority of par-
ticipants did not change their software usage behavior.
And from the few who stated a change, a majority of
changes happened when doing less important tasks, and
only a minority changed behavior when a spike of energy
consumption was seen in the feedback tool. This might
be explained by the given workload, and the identity of
participants: university students working on a project. We
plan on conducting a long-term experiment with diverse
profiles, in order to confirm our initial findings.

Participants also miss the tools and the knowledge of
what to do to change their behavior, even if they want to. In
particular, participants know two dimensions of actions:
• Temporal: by reducing the usage time of software,
which was the most declared action. However, this an-
swer should be put in perspective of the majority of
users who did not change their behavior, or state that
the change was not for important tasks. Concretely, we
argue that users will rarely reduce the usage of programs
or devices, unless they’re using them for time-passing
entertainment.

• Tooling: by switching to a different equivalent program.
The main challenge in switching software, is the availabil-
ity of quality and functionally equivalent ones. Users need
to know whether switching to a different program will
lead to energy reductions. We argue that energy-related

software labeling is crucial, and that such labeling needs
to be provided when installing software, and on every run
(for example, in the form of a sign on software icons).
However, when we compared the actual power readings

of the participants who stated they changed their behavior,
we observe little or no variation in the energy consumption.
In Figures 2 and 3, we outline the power consumption of
some participants who stated they changed their behavior
when they saw a spike in power consumption, or when
doing less important tasks, respectively. The figures show
the power consumption data and a cubic spline interpola-
tion (with a smoothing parameter of 0.5). When applying
a simple linear model over these numbers, we obtain the
intercept and slope numbers seen in Table 9.

Participant Intercept Slope

Every time I saw a spike in energy consumption in
the visual feedback window
A 9.96 -0.001
B 6.58 0.0003
C 13.44 -0.00009
D 11.22 -0.0022

Only when I was doing less important tasks
E 15.23 -0.0029
F 27.12 -0.0041
G 21.92 -0.0046

TABLE 9: Intercept and slope for the power consumption of
participants in group A2

Overall, the slope in the linear model, although mostly
negative (meaning a reduction of power consumption), is
negligible. The only exception was with participant C who
had a small reduction after a spike in the middle of the
experiment. After checking the program logs, we find that
when the spike happened, power consumption rose for a
few seconds to 21 then 29 watts, far beyond the average TDP
of the CPU model (an Intel i7-6500U). During this event, the
participant was using Google Chrome and working on the
workload in the online latex editor, Overleaf. As soon as the
spike happened, we observe a gradual drop in consumption
over the next five seconds, to around 7 watts. This coincides
with a switch in software, where the participant opened
our monitoring tool for a second, then opened Windows
File Explorer, and kept using it for three minutes before
switching back to Google Chrome.

Other participants did not apply behavioral changes, or
did little changes in software usage with no lasting impact
on power consumption. For example, participant A did
adopt monitored behavioral changes in software usage (i.e.,
did not change software, switch tabs, or change the active
window). The biggest energy spike (between seconds 1500
and 1700) is associated with using Google Chrome (Overleaf
and Google searches), which might be a more intensive
work session. Participant B had one major spike around
second 500 which is a direct result of accessing a specific
web page on the course topic that contained text, images, a
video and ads. The spike spanned for around 30 seconds,
which might be due to the video auto-play. We did not
observe any change in behavior specific to our feedback
tool, as the user switched to Overleaf website (as expected
from the course workflow) after the end of the power spike.
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Fig. 2: Power consumption and cubic spline interpolation (red line) of participants in group A2 who stated a software
change every time they saw a spike in energy consumption in the visual feedback window.

Participant D power spike is explained by opening a PDF
thesis online for around 10 seconds, then participant closed
the tab which resulted in a minor reduction of energy, and
finally switched back to Windows Explorer.

In contrast, users who stated to change behavior when
doing less important tasks, did not translate into power
reductions. For instance, participant 3 has a consistent us-
age of software and that translates with consistent power
consumption with few spikes. Participant F had a more
intensive and diverse usage of his computer (including for
checking email and WhatsApp), but we did not observe
any behavioral change when not working on the course
assignment. Some of the power spikes actually amounts
to personal usage of the laptop, with spikes when using
WhatsApp desktop application. Finally, participant G also
has a consistent power consumption which is due to a
continuous intensive usage of software for the assignment
and for personal usage (desktop email client, WhatsApp on
Google Chrome).

From these findings, we can conclude that participants,
even when trying to change their behavior, fail to reduce
their energy consumption. This might be due to little knowl-
edge of what to do (which 58.33% of participants who
wanted to change behavior didn’t know how to do so).
Or due to the actions applied, such as changing software
or reducing usage time, didn’t have the expected effect by
users. Even users who changed behavior, did not correctly

or sufficiently apply the changes they state they did. For
instance, participant D stated a change in software every
time the tool showed a spike. However we did not observe
any reasonable switch in software in the log data beyond
the normal changes in the workload.

We argue that green feedback needs to be accompanied
by runtime propositions of change, along with a sustainabil-
ity guide. For instance, an up-to-date sustainability guide or
documentation might propose a list of equivalent software
for the most important tasks on a device (e.g., internet
browser, word processing, popular applications such as
weather or music), along with an energy-related label or
classification. In addition, the green feedback tool needs to
propose, on the fly, recommendations on what do to reduce
energy usage. These recommendations would be based on
the user historical usage, the energy label of software, and
the current energy consumption and/or price and CO2
emissions. Recommendations would be clear and optional,
and if the user accepts the proposition, the system must
apply a smooth, low-energy, and low-latency transition of
software without data loss.

6 LESSONS LEARNED

From the field study and the survey, and our analysis, we
draw the following lessons:
• Users underestimate the energy consumption of their
devices and software. As we observed in our survey,



11

0 1000 2000 3000 4000 5000

0
1
0

3
0

5
0

Time (seconds)

P
o
w

e
r 

C
o

n
s
u

m
p

ti
o

n
 (

W
a

tt
s
)

F

0 1000 2000 3000 4000

0
1
0

3
0

5
0

Time (seconds)

P
o
w

e
r 

C
o

n
s
u

m
p

ti
o

n
 (

W
a

tt
s
)

G

0 500 1000 1500 2000

0
1

0
3

0
5

0

Time (seconds)

P
o
w

e
r 

C
o
n
s
u
m

p
ti
o
n
 (

W
a
tt
s
)

E

Fig. 3: Power consumption and cubic spline interpolation (red line) of participants in group A2 who stated a software
change only when doing less important tasks.

users in the control group rated their energy session lower
than users who saw their actual power consumption
through our green feedback tool.

• Users perceive the operating system as the most con-
suming software. The OS is seen as the most power-
consuming software in our experiments, for both the con-
trol and experiment groups. High or constant idle power
consumption might explain this perception. But also how
slow or sluggy systems can be, even though it might be
because of other software, most notably background ones.

• Programming and communication programs are per-
ceived as high-consuming software. For computing sci-
ence and engineering students, sometimes using older
devices, heavy-duty IDEs can be seen as slow and con-
suming resources, including power. The same applies for
communication software, in particular videoconference
programs that might stress the CPU and the device’s
resources.

• Technical-savvy users understand the energy weight
of the cloud infrastructure. Most participants in our
field study, acknowledge the bigger impact of the cloud
infrastructure (e.g., data centers, network) compared to
individual end-user devices. However user awareness of
the chain of impacts of these devices and software services
towards the cloud infrastructure is yet to be properly
understood.

• Live green feedback helps in raising awareness of en-
ergy consumption. Although we did not observe notice-

able changes in the overall power consumption between
the control group A1 and the experiment group A2, we
observed tentative behavioral changes for users in group
A2 (with our green feedback tool). Participants wanted to
change their behavior but had a few obstacles to do so.

• Green feedback tools must be minimal and seamlessly
integrated to avoid being distracted. The majority of par-
ticipants saw our green feedback window as distracting
due to its nature (always on top of other windows, and
could not be minimized or resized, even though it was
small and only covered a limited space in the lower right-
end of the screen). The distraction nature of the feedback
window could not be scientifically assessed until after
we conducted the experiments and collected participants’
answers. We argue that green feedback needs to be trans-
parently integrated into the operating system or software
systems of end-user devices.

• Metaphors and evolving charts are more useful than
green metrics. Specific green metrics, such as power con-
sumption, electricity price, or CO2 emissions, do not seem
to have an effect on end users. However, charts indicating
the evolution of power consumption had a better impact
(participants changed behavior following power spikes in
the chart). We also argue that metaphors, such as a traffic-
light system or the number of trees saved, might lead to
better awareness and behavioral change.

• Users resist behavioral change when the workload is
important, or the energy consumption is perceived as
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low. Many participants who tried to change their energy
behavior, did so when doing less important tasks, or
only when an important spike in energy occurred. This
indicates that, depending on the workload, users will
prioritize the tasks they’re doing, over non-functional
energy requirements. This might be due to the lack of
knowledge of the cost of changing software or reducing
usage, or other energy-efficiency actions.

• Users lack the knowledge and tools to apply soft-
ware behavioral changes. A majority of participants who
wanted to change their behavior failed to do so because
they didn’t know what to do. And the remainder who
reduced software usage or switched software, did not
apply those actions correctly or long enough for any
noticeable energy savings. We argue that users need guid-
ance and recommendations in order to know what actions
are effective and simple to implement.

7 LIMITATIONS AND THREATS TO VALIDITY

We acknowledge there are several limitations and threats to
validity to our field study. First, our sample included more
educated (university students) and more technology savvy
(computer science and engineering) participants. This limits
the validity of our analysis and results as they only apply
on this specific demographics (i.e., computer professionals).
However, as a first of its kind large field study, we argue the
results show promising trends in end users, and can be the
basis for wider scale studies on more demographic groups.

Second, our sample is mostly composed of males (79%),
but the proportions are balanced between the control group
A1 and the experiment group A2. Third, our workload,
although representative of typical cloud-based usage of
most software today, was executed in a classroom scenario.
Participants (who agreed to participate to the experiment as
it was not mandatory) had to work on a document that was
later marked but the mark did not count on their course final
grades. We did not apply random assignment or pre-test to
construct our control and treatment groups (we assigned
whole classes to either group). However, there are no major
differences between our groups (A1 and A2), with a similar
number of participants, average age, gender distribution
and job profiles.

Then, as stated in the previous sections, we observe
the need for more in-depth field studies, with additional
software data to collect, a more comprehensive survey, and
the need for one-to-one interviews with participants. In
particular, we would like to conduct additional field studies
to understand why participants who wanted, or stated, a
behavioral change, failed to do so correctly or efficiently.
In addition, the implementation of the architecture is lim-
ited to measuring CPU energy consumption (i.e., no other
hardware components were measured), and we used the
standard electricity price of the public company of the
users’ geographic location (i.e., electricity price was only
tailored for the user’s region and main utility provider, and
not for the user specific contract or a different competing
utility provider). As for future experiments, our tool can
be extended to monitor the power consumption of addi-
tional hardware components, such as the RAM memory,
the graphic card GPU, or the storage unit (hard disk, SSD).

The tool can also monitor the power consumption per ap-
plication and monitor background processes and operating
system services. Although we are aiming for monitoring
additional components and software in future work, it is
important to stress that end users might not find techni-
cally detailed energy data relevant or useful for behavioral
changes. Users interact with active windows of software and
might have difficulties associating energy consumption of
an OS routine to their actions in using software. For our
study in this paper, we limited data collection to a few com-
ponents (the CPU) and software (applications running and
active window), in order to focus on user behavior. How-
ever, additional field experiments and studies are necessary
to fully analyze user understanding of software and energy
consumption, including for other hardware components or
background software services.

Furthermore, our study is limited to a specific workload
environment (a class environment with a given assign-
ment). We did not cover other software usages, such as
entertainment usages (e.g., watching a movie, or playing a
video game), nor a work environment. Finally, our study
focuses on individual energy consumption and behaviors,
rather than a group of users, or a group of devices. For
instance, software energy consumption is also a concern for
industrial setups or factories. Although we think important
energy saving could be achieved in these environments, our
study do not cover them. Our study shows an interesting
potential in raising awareness of the cost of software energy
in users’ devices, and a sizable number of participants were
willing or tried to apply actions to mitigate their energy and
ecological impact.

8 CONCLUSION

In this paper, we presented the results of a field study
and survey we conducted in order to understand what
users know about energy in devices and software, and
how can green feedback raise their awareness and push for
behavioral changes. We also outlined our recommendations
and lessons learned. We studied the impact of awareness
through live visual feedback using green metrics (power
consumption, electricity price and CO2 emissions), and real-
time evolving charts. Our main conclusion is that green
feedback helps in raising awareness, but users lack the
knowledge and tools to apply software behavioral changes.
Therefore, short-term behavioral changes require previous
awareness and guidance so users can change behavior
seamlessly. In addition, we observe the importance of the
workload, and the tasks when using connected devices and
software, as users resist software behavioral change unless
the task was less important or its perceived energy is low.

For future work, we intend to further investigate the im-
pact of green feedback through additional forms and indica-
tors, in particular using metaphors. We also aim to produce
guides, listing of alternative software, and energy-related
classifications and labels, and study their impact, along with
green feedback, on software behavioral change. Finally, we
intend to enrich our architecture with a machine-learning
recommendation-based green feedback tool, to help users
choose the best energy-efficient actions and drive behavioral
change in their software usage. For instance, the tool would
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automatically provide guidance and recommendations on
alternative software to use for a specific task (e.g., switch
to a different word processor, among the installed ones), or
tweak the options of the same software, or other learned
recommendations.
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