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Abstract

In this article, we adapted five recent SSL methods
to the task of audio classification. The first two
methods, namely Deep Co-Training (DCT) and
Mean Teacher (MT), involve two collaborative
neural networks. The three other algorithms, called
MixMatch (MM), ReMixMatch (RMM), and
FixMatch (FM), are single-model methods that
rely primarily on data augmentation strategies.
Using the Wide-ResNet-28-2 architecture in all our
experiments, 10% of labeled data and the
remaining 90% as unlabeled data for training, we
first compare the error rates of the five methods on
three standard benchmark audio datasets:
Environmental Sound Classification (ESC-10),
UrbanSound8K (UBS8K), and Google Speech
Commands (GSC). In all but one cases, MM,
RMM, and FM outperformed MT and DCT
significantly, MM and RMM being the best
methods in most experiments. On UBS8K and
GSC, MM achieved 18.02% and 3.25% error rate
(ER) respectively, outperforming models trained
with 100% of the available labeled data, which
reached 23.29% and 4.94%, respectively. RMM
achieved the best results on ESC-10 (12.00% ER),
followed by FM which reached 13.33%. Second, we
explored adding the mixup augmentation, used in
MM and RMM, to DCT, MT and FM. In almost
all cases, mixup brought consistent gains. For
instance, on GSC, FM reached 4.44% and 3.31%
ER without and with mixup. Our PyTorch code
will be made available upon paper acceptance at
https://github.com/Labbeti/SSLH.
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1 Introduction
Semi-supervised learning (SSL) aims to reduce the de-
pendency of deep learning systems on labeled data by
integrating unlabeled data during the learning phase.
It is essential since the conception of a large labeled
dataset is expensive, dependent on the task to be
learned, and time-consuming. On the contrary, the ac-
quisition of unlabeled data is cheaper and quicker re-
gardless of the task to perform. Using unlabeled data
while maintaining high performance can be done in
three different ways: i) consistency regularization [1,2],
which encourages a model to produce consistent pre-
diction whereas the input is perturbed, ii) entropy
minimization [3–5], which encourages the model to
output high confidence predictions on unlabeled files,
and iii) standard regularization by using weight de-
cay [6, 7], mixup [8] or adversarial examples [9]. The
most direct approach for SSL is pseudo-labeling [5],
but since then, many new and better approaches
came out such as Mean Teacher (MT) [10], Deep Co-
Training (DCT) [11], MixMatch (MM) [12], ReMix-
Match (RMM) [13], and FixMatch (FM) [14].
In previous work [15], we compared MT and DCT

for the task of audio tagging (AT), a classification task
that consists of automatically assigning an audio event
label to an audio recording. Both approaches use two
neural networks during training. In the present arti-
cle, we extend our comparison by adapting to AT the
three single-model SSL methods MM, RMM and FM.
One difficulty lies in choosing which audio data aug-
mentation techniques to use, that work for different
types of sound events and spoken words [16]. The aug-
mentations used on images for object recognition, such
as flips and rotations, are most often not relevant for
audio data. We compare the error rates on three au-
dio datasets with different scopes and sizes: i) Envi-
ronmental Sound Classification 10 (ESC-10) [17], with
audio event categories such as dog barking and heli-
copter, ii) UrbanSound8k (UBS8K) [18], more specific
to urban noises such as car horns, sirens and street mu-
sic, and iii) Google Speech Commands v2 (GSC) [19],
containing spoken words exclusively.
In MM and RMM, a successful data augmentation

technique called mixup [8] is used. It consists of mixing
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pairs of samples, both the data samples and the labels
with a random coefficient. We propose to add mixup
to the three other SSL approaches, namely MT, DCT
and FM, which do not already use it. The results re-
ported in this article will highlight the positive impact
of mixup in almost all our experiments.
The article contributions are mainly two-fold: i)

the application and comparison of several recent SSL
methods for audio tagging on three different datasets,
ii) the modification of these methods with the inte-
gration of mixup, which resulted in systematic error
rate reductions. We shall see that in most cases, MM
outperformed the other methods, closely followed by
FixMatch+mixup.
The structure of the paper is as follows. Section 3

describes the augmentations we used and the mixup
mechanism at the core of the present work. Section 4
describes the five SSL methods, Section 5 presents the
experimental settings, and finally, Section 6 presents
and discusses the results.

2 Related work
Semi-supervised learning (SSL) is a well-known ma-
chine learning setting, for which a lot of research has
been conducted, before the rise in popularity of deep
learning [20, 21]. In this work, we explore recent SSL
approaches that were proposed in the framework of
deep learning, since we use deep neural networks as
state-of-the-art classifiers for audio tagging. These new
approaches, as we shall see, were driven by the simplic-
ity of incorporating unsupervised loss terms into the
cost functions of neural networks [22].

Semi-supervised deep learning taxonomy
In their SSL survey [22], Van Engelen and colleagues
proposed a detailed taxonomy for SSL methods in
the framework in deep learning. The algorithms ex-
plored in the present article fit in the intrinsically
semi-supervised inductive methods category, meaning
methods that attempt to construct a classifier by di-
rectly optimizing an objective function for labeled and
unlabeled samples. Most semi-supervised neural net-
works make use of perturbation-based learning meth-
ods, where the training data samples (labeled or unla-
beled or both) are perturbed with data augmentation
techniques. This is meant to incorporate the so-called
smoothness assumption in SSL, which states that a
classifier should be robust to local perturbations in its
input. This is the case of the five methods explored
in our work: MT, DCT, MM, RMM, and FM. If we
follow Van Engelen et al.’s taxonomy, MT is a consis-
tency regularization method, in which predictions of
a teacher and a student models are penalized when
being different. DCT is described as a pseudo-labeling

method, based on the disagreement between two mod-
els trained on two different views of the same data.
As we shall see in the DCT description, the second
view is automatically created by deriving adversarial
examples of the original data samples. Finally, MM,
RMM and FM are considered as hybrid methods, in
that they combine pseudo-labeling, consistency regu-
larization and entropy minimization for performance
improvement. Entropy minimization refers to methods
that artificially lower the uncertainty of the predictions
made on the unlabeled data. We will see, for instance,
the use of a sharpening function in MM.

Semi-supervised deep learning in audio classification
In the seminal articles in which the five SSL meth-
ods were proposed, the experiments were carried out
on image classification tasks only, not on audio related
tasks. If we focus on SSL applied to sound event detec-
tion (SED), the most used technique in the literature is
MT. In particular, the system ranked first in the Detec-
tion and Classification of Acoustic Scenes and Events
(DCASE) task 4 2018 challenge (Large-scale weakly
labeled semi-supervised sound event detection in do-
mestic environments) used MT with convolutional re-
current neural networks trained on a small labeled sub-
set and a larger unlabeled one [23]. Since then, MT
was used in the baseline system provided by the chal-
lenge organizers, and most of the systems proposed
by the participants [24, 25]. Also in the framework of
DCASE Task 4, Shi and colleagues adapted MM for
the task [26]. Their MM method outperformed their
solution based on MT[1]. SED is a task consisting of
segmenting an audio recording in possibly overlapping
audio events. It is slightly different from audio classifi-
cation, the target task of the present work, in which we
more simply aim to tag audio recordings globally with
a single audio event category per recording. Outside
DCASE, MT has been favorably compared to super-
vised learning in [27] for audio classification. The au-
thors show the importance of using diverse collections
of noise as perturbations in MT. They also used MixUp
successfully, as we will in the present article. Although
they used two datasets in common with us (Google
Speech Commands and UrbanSound8k), their results
cannot be compared to ours because of differences
in the evaluation strategies: train/test splits different
from the official ones and no cross-validation on Ur-
banSound8k, and a different number of target classes
with Google Speech Commands. Finally, recently, FM
and MT were compared on music, industrial sounds,
and acoustic scenes classification data sets. FM outper-
formed MT and supervised learning in all cases [16].

[1]http://dcase.community/challenge2019/task-sound-
event-detection-in-domestic-environments-results
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An extension of our previous work
In previous work, we already compared two SSL meth-
ods for AT, namely MT and DCT, and we showed that
DCT was consistently better than MT [15]. We build
on this preliminary work to consider three simpler SSL
methods, based on a single neural network instead of
two models: MM, RMM and FM. Although some of
these SSL methods were applied (in modified forms)
to audio data in the context of audio classification be-
fore, as we just saw, the present work is among the first
ones to compare a number of them in a systematic way.
As we shall see in their technical description, a key

aspect in these three “hollistic” methods is the exten-
sive use of data augmentation techniques both on the
labeled and unlabeled data subsets. In the results that
we will report, we used the same augmentation tech-
niques to train our fully-supervised baselines, which
gave much stronger baselines than in our previous
work [15]. Finally, another novelty of the present work
is the addition of the mixup [8] augmentation to the
SSL methods MT, DCT and FM.

3 Audio data augmentation
Augmentations are at the heart of most recent semi-
supervised learning mechanisms. In this section, we
begin by describing the mixup mechanism, which we
extensively use in this work, and the other audio data
augmentations used in some of the training settings.

3.1 Mixup
Mixup [8] is a successful data augmentation/regulari-
zation technique, that proposes to mix pairs of sam-
ples (images, audio clips, etc.). If x1 and x2 are two
different input samples (spectrograms in our case) and
y1, y2 their respective one-hot encoded labels, then the
mixed sample and target are obtained by a simple con-
vex combination:

xmix = λx1 + (1− λ)x2 (1)

ymix = λy1 + (1− λ)y2

where λ is a scalar sampled from a symmetric Beta
distribution at each mini-batch generation:

λ ∼ Beta(α, α) (2)

where α is a real-valued hyper-parameter to tune (al-
ways smaller than 1.0 in our case).
In the original MM algorithm, an “asymmetric” ver-

sion of mixup is used, in which the maximum value
between λ and 1− λ is retrieved:

λ = max(λ, 1− λ) (3)

This makes the λ values either close to one, allowing
the resulting mixed batches to be closer to x1. This
may be useful when the method mixes labeled and
unlabeled samples, when only slight perturbations are
wanted.

3.2 Audio signal augmentation methods
We tested several audio augmentation techniques and
retained three of them: Occlusion, CutOut [28], and
Speed Perturbation [29]. In addition to the three se-
lected augmentations described below, we also tried to
add uniform noise on the log-mel spectrograms, invert
the mel frequency axis and the time axis, but no gains
were observed with these techniques.

• Occlusion: applied to the raw audio signal, Oc-
clusion consists of setting a segment of the wave-
form to zero. The size of the segment is randomly
chosen up to a user-defined maximum size. The
position of the segment is also chosen randomly.

• CutOut : applied to the log-mel spectrograms,
CutOut sets the values within a random rectan-
gle area with the -80 dB value, which corresponds
to the silence energy level in our spectrograms.
The length and width of the removed sections are
randomly chosen from a predefined interval and
depend on the spectrogram size.

• Speed Perturbation: we resample the raw audio
signal up (nearest-neighbor upsampling) or down
(decimation) according to a rate chosen randomly
within a predefined interval. The resulting wave-
form is either shorter or longer. Padding or crop-
ping is randomly applied at the start and the end
of the stretched signal to keep the signal duration
constant.

The difference between Occlusion and CutOut is that
CutOut sets a time-frequency rectangle to the -80 dB
value, whereas Occlusion sets to zero a whole portion
of the waveform.
We used Occlusion, CutOut and Speed Perturbation

in augmented supervised learning settings, and in MM,
RMM, and FM. During training, one of those is ran-
domly applied to each audio sample.
RMM and FM make use of so-called “weak” and

“strong” augmentations. The difference between the
two lies in the strength and randomness with which
an augmentation is applied. A “weak” augmentation
has a 50% chance to be applied, and a“strong” one is
always applied.

Table 1 Augmentation hyperparameters.

Param. Weak range Strong range

Occlusion max size [0.25, 0.25] [0.75, 0.75]
CutOut scale [0.10, 0.50] [0.50, 1.00]
Speed perturb. rate [0.50, 1.50] [0.25, 1.75]
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In order to tune these augmentations, we performed
a grid-search on their hyperparameters, training Wide-
Resnet28-2 models on the Google Speech Commands
dataset (this architecture and dataset will be described
here-after). The resulting hyperparameters are listed
in Table 1.
No augmentation was used in DCT nor in MT, ex-

cept Gaussian noise in MT.

4 Semi-supervised deep learning
algorithms

This section provides a detailed description of the
five SSL approaches we compare for audio classifica-
tion. We chose them for their high performance re-
ported for object recognition in images. Two of these
approaches, Mean Teacher (MT) [10], and Deep Co-
Training (DCT) [11] use the principle of consistency
regularization between the outputs of two models.
The other methods, MixMatch (MM) [12], ReMix-
Match (RMM) [13], and FixMatch (FM) [14], use a
single model and combine the three SSL mechanisms
described in the introduction.
We provide a figure to illustrate each of the five

methods. In Section 4.6, we explain how we add mixup
to MT, DCT and FM, since MM and RMM already
use it. We included a blue box in the method work-
flow figures, to show where mixup is optionally in-
tegrated. We will refer to the modified methods as
“method+mixup”, for instance, FM+mixup.

4.1 Mean Teacher (MT)

Figure 1 MT workflow. Both models receive as input labeled
xs and unlabeled files xu. A supervised loss Ls is computed
between the ground truth and the student model predictions,
whereas a consistency cost Lcc is computed between the
student and teacher model predictions.

MT uses two neural networks: a “student” f and a
“teacher” g, which share the same architecture. The
weights ω of the student model are updated using
the standard gradient descent algorithm, whereas the
weights W of the teacher model are the Exponential

Moving Average (EMA) of the student weights. The
teacher weights are computed at every mini-batch it-
eration t, as the convex combination of its weights at
t 9 1 and the student weights, with a smoothing con-
stant αema:

Wt = αema ·Wt91 + (1− αema) · ωt (4)

There are two loss functions applied either on the
labeled or unlabeled data subsets. On the labeled data
xs, the usual cross-entropy (CE) is used between the
student model’s predictions and the ground-truth ys.

Ls = CE(f(xs), ys) (5)

The consistency cost is computed from the student
predictions f(xs) and f(xu), and from the teacher pre-
diction g(x′

s) and g(x′
u), where x′

s and x′
u correspond

to the same samples but slightly perturbed with Gaus-
sian noise with a 15 dB signal-to-noise ratio [24]. This
cost is a Mean Square Error (MSE) loss:

Lcc = MSE(f(xs),⊥ g(x′
s))

+ MSE(f(xu),⊥ g(x′
u)) (6)

The symbol ⊥ denotes the stop gradient operator,
meaning that the teacher weights Wt are a constant
with respect to optimization.
The final loss function is the sum of the supervised

loss function and the consistency cost weighted by a
factor λcc which controls its influence.

Ltotal = Ls + λcc · Lcc (7)

4.2 Deep Co-Training (DCT)
DCT has been recently proposed by Qiao et al. [11].

It is based on Co-Training (CT), the well-known
generic framework for SSL proposed by Blum and col-
leagues in 1998 [30]. The main idea of Co-Training is
based on the assumption that two independent views
on a training dataset are available to train two mod-
els separately. Ideally, the two views are conditionally
independent given the class. The two models are then
used to make predictions on the unlabeled data sub-
set. The most confident predictions are selected and
added to the labeled subset. This process is iterative,
like pseudo-labeling.
DCT is an adaptation of CT in the context of deep

learning. Instead of relying on views of the data that
are different, DCT makes use of adversarial examples
to ensure the independence in the “view” presented to
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Figure 2 DCT workflow. Each model is trained on its own
labeled samples xi, unlabeled samples xu and the adversarial
examples generated by the other model. Model f makes

predictions on x1 and xg
4, and model g on x2 and xf

3 . In our
DCT+mixup variant, mixup is used on the unlabeled samples
only.

the models. Each batch is composed of a supervised
and an unsupervised part. Thus, the unlabeled data
are directly used, and the iterative aspect of the algo-
rithm is removed.
Let S and U be the subsets of labeled and unlabeled

data, respectively, and let f and g be the two neural
networks that are expected to collaborate.
The DCT loss function is comprised of three terms,

as shown in Eq. (8). These terms correspond to loss
functions estimated either on S, U , or both. Note
that during training, a mini-batch is comprised of la-
beled and unlabeled samples in a fixed proportion. Fur-
thermore, in a given mini-batch, the labeled examples
given to each of the two models are sampled indepen-
dently.

L = Ls + λcotLcot + λdiffLdiff (8)

The first term, Ls, given in Eq. (9), corresponds to
the standard supervised classification loss function for
the two models f and g, estimated on examples x1 and
x2 respectively, which are sampled from S.
In our case, we use categorical Cross-Entropy (CE),

the standard loss function used in classification tasks
with mutually exclusive classes.

Ls = CE(f(x1), y1) + CE(g(x2), y2) (9)

As in MT, a consistency cost on the unlabeled exam-
ples is used in DCT. It takes the form of the Jensen-
Shannon (JS) divergence between the two sets of pre-
dictions on examples xu sampled from the unlabeled
subset U , given by:

Lcot = H
(1
2
(f(xu) + g(xu))

)
− 1

2

(
H(f(xu)) +H(g(xu))

)
(10)

where H denotes the entropy.
For DCT to work, the two models need to be com-

plementary: on a subset different from S ∪ U , exam-
ples misclassified by one model should be correctly
classified by the other model [31]. In DCT, this is
achieved by generating adversarial examples with one
model and training the other model to be robust to
these adversarial samples. To generate adversarial ex-
amples, we used the Fast Gradient Signed Method
(FGSM, [32]), as in Qiao’s work. The Ldiff loss term
(Eq. (11)) is the sum of the Cross-Entropy losses be-

tween the predictions f(x3) and g(xf
3 ), where x3 is

sampled from S ∪U and xf
3 is the adversarial example

generated with the model f from x3 taken as input.
The second term is the symmetric term for model g,
with x4 sampled from S ∪ U and xg

4 the adversarial
example generated with g from x4.

Ldiff = CE(f(x3), g(x
f
3 ))

+ CE(g(x4), f(x
g
4)) (11)

For more in-depth details on the technical aspects of
DCT, the reader may refer to [11]. We implemented
DCT as precisely as described in Qiao’s article, using
PyTorch, and made sure to accurately reproduce their
results on CIFAR-10: about 90% accuracy when using
only 10% of the training data as labeled data (5000
images).

4.3 MixMatch
MixMatch [12] (MM) uses entropy minimization and

standard regularization, namely pseudo-labeling [5],
mixup, and weak data augmentation, to leverage the
unlabeled data and provide better generalization capa-
bilities. Unlike MT and DCT, this approach uses only
one model. The different steps are shown in Fig. 3 and
detailed in the following paragraphs.
During the learning phase, each minibatch is com-

posed of labeled xs and unlabeled xu samples in equiv-
alent proportions. The first step consists of applying
an augmentation to the labeled part of the mini-batch
and K augmentations to the unlabeled part in par-
allel. These K augmentations are sampled from the
three augmentations (weak) described in Section 3. In
the second step, pseudo-labels yu are generated for the
unlabeled files using the model’s prediction averaged
on these K variants as shown in Eq. (12), where x′

u,i
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Figure 3 MM workflow. K augmentations are applied to the
unlabeled data xu, and the averaged model predictions are
used as pseudo labels ŷu. The labeled and augmented
unlabeled data are mixed up and used to compute the
supervised and unsupervised loss values.

denotes the i-th variant of an unlabeled augmented
file.

ŷu =
1

k

k∑
i=1

f(x′
u,i) (12)

For encouraging the model to produce confident pre-
dictions, a post-processing step is necessary to decrease
the output’s entropy. To do so, the highest probability
is increased and the other ones decreased. This process
is called ”sharpening” by the method authors, and it
is defined as:

sharpen(p, T )i := p
1/T
i

/ |p|∑
j=1

p
1/T
j (13)

The sharpen function is applied on to the pseudo-
labels p = ŷu. The parameter T , called Temperature,
controls the strength of the sharpen function. When
T tends towards zero, the entropy of the distribution
produced is lowered.
Finally, the labeled and unlabeled augmented sam-

ples are concatenated and shuffled into a W set then
used as a pool of training samples used by the asym-
metric mixup function. Asymmetric mixup is applied
separately on the labeled and unlabeled parts of the
mini-batch, as formulated here:

x′mix
s = mixup(xs|W1...Bs) (14)

x′mix
u = mixup(xu|W|xs|+1...|W |) (15)

where Bs and |W | are the number of labeled sam-
ples and of the whole W set. The W set and the cor-
responding labels are shuffled in the same order. Each
labeled sample is then perturbed by a second labeled
or unlabeled sample. Mixing the two is done so that
the original labeled sample remains the main compo-
nent of the resulting sample. The operation has been
detailed in Section 3.1. The same procedure is applied
onto the unlabeled files using the remaining samples
from W.
The original MixMatch loss function is composed of

the standard CE cost for the supervised loss Ls, and
the MSE for the unsupervised loss Lu. We replace MSE
with CE in all our experiments, as proposed in the
ReMixMatch paper. Indeed, it seems that CE performs
better than MSE in our experiments.

Ls =
1

Bs

∑
(x′mix

s ,ymix
s )

CE(f(x′mix
s ), ymix

s ) (16)

Lu =
1

K ·Bu

∑
(x′mix

u ,ŷmix
u )

CE(f(x′mix
u ), ŷmix

u ) (17)

where Bs and Bu are the number of examples in the
labeled and unlabeled mini-batches.
The final loss is the sum of the two components, with

a hyper-parameter λu :

L = Ls + λu · Lu (18)

4.4 ReMixMatch (RMM)
ReMixMatch (RMM) [13] was presented as an im-

provement of MixMatch and introduced the concept
of strong and weak augmentations and a so-called dis-
tribution alignment mechanism.
At every iteration, the batch is composed of labeled

xs and unlabeled xu samples. One weak augmenta-
tion and K strong augmentations are applied on xu.
The weakly-augmented sample is used to compute the
pseudo-label vectors ŷu of the unlabeled examples.

ŷu = f
(
weak(xu)

)
(19)

A distribution alignment mechanism modifies the
pseudo-labels to make them follow the class distribu-
tion of the labeled subset. Two “distributions” ps and
pu are estimated in the form of vectors, which are re-
spectively the averages of the true labels ys and of the
pseudo-labels ŷu, calculated over the samples of the
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Figure 4 RMM workflow. One weak and K strong
augmentations are applied to the unlabeled data xu. The
weakly augmented unlabeled data x′

u are used to create
pseudo labels ŷu. The first batch of strongly augmented
unlabeled data x′

ui
, i = 1 is used in the unsupervised loss

component Lu1 (using the pseudo-labels ŷu).

N previous batches. Then, distribution alignment is
applied to ŷu with this equation:

ŷu = Normalize(ŷu · ps
pu

) (20)

Finally, we apply the sharpen function from Eq. (13) to
the pseudo-labels ŷu, as done in MixMatch. The labels
ŷu will be used as targets for the weakly and strongly
augmented batches. Like in MixMatch, we concatenate
the labeled and unlabeled batches to a set W for the
mixup augmentation, and the labeled and unlabeled
loss Ls and Lu remain the same.
ReMixMatch also introduced a strong-augmentation

loss component for increasing stability and accu-
racy. This component will be computed with the first
strongly-augmented version of xu, called x′

u1
:

Lu1
=

1

Bu

∑
(x′

u1 ,ŷu)

CE(f(x′
u1
), ŷu) (21)

In the original ReMixMatch, the authors added an-
other loss term, a self-supervised learning component
that predicts which transformation is applied to the
x′

u1
batch. The transformation used was a rotation of

0, 90, 180, or 270 degrees, and the model had to guess
which angle the image had been rotated by (a four-
class classification task). In some configurations, it was
supposed to help the model to avoid collapsing during
training. This component was removed because it did
not show any positive impact on our experiments, and

using rotations or flips on audio spectrograms is diffi-
cult to justify in terms of audio semantics.
In our experiments, the final loss is the sum of the

three different components:

L = Ls + λu · Lu + λu1 · Lu1 (22)

4.5 FixMatch

Figure 5 FixMatch workflow. A weakly augmented version of
xu is used to compute a pseudo-label ŷu and a mask. The
strongly augmented variant is used to compute the unlabeled
loss term. The mixup component is used on a concatenated
set of labeled and unlabeled samples (FixMatch+mixup).

FixMatch [14] (FM) is another SSL method which
proposes a simplification of MM and ReMixMatch.
The method also uses one model, removes mixup
and replaces the sharpen function by binary pseudo-
labels. FM uses both weak augmentations (weak) and
strong augmentations (strong). The strong augmenta-
tions can mislead the model predictions by disrupting
too much the training data. Figure 5 shows the main
pipeline of FixMatch. As in the other method illus-
trations, we added a mixup box in blue, to indicate
where we add it to the algorithm in our modified FM
algorithm, thus called FM+mixup.
The supervised loss component is the standard cross-

entropy applied to the weakly-augmented data :

Ls = CE
(
f
(
weak(xs)

)
, ys

)
(23)

Then, we guess the labels of the weakly augmented
unlabeled data and apply a binarization (argmax) of
these predictions to have a one-hot encoded label.
This label is used as target for training the model
with strongly augmented unlabeled data. It allows the
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model to generalize with weak and strong augmenta-
tions and it also uses the guessed label to improve the
model accuracy with unlabeled data:

ŷu = f
(
weak(xu)

)
(24)

To avoid training on incorrect guessed labels, FM
uses a threshold τ that ensures that the unsupervised
cost function can only be applied to predictions made
with high confidence, i.e., above this threshold. This
can be easily implemented in the form of a mask:

mask = 1
(
max(ŷu) > τ

)
(25)

Lu = mask · CE
(
f
(
strong(xu)

)
, argmax(ŷu)

)
As in MixMatch, we sum the loss components to

compute the final loss:

L = Ls + λu · Lu (26)

4.6 Adding mixup to MT, DCT and FM
As we described here-above, MM and RMM already
uses mixup in its workflow. In order to measure the im-
pact of mixup, we will report results when we remove
mixup from MM and RMM. On the contrary, the three
other SSL methods explored in our work (MT, DCT,
FM) do not use mixup in their original version. We
explored several ways to add mixup to them, and re-
tained the best one for each of the three methods. Note
that we illustrate where the mixup operation has been
added in the figures describing the different methods
in the previous section.
Since the labeled and unlabeled data flow is very

similar in MM and FM, we added mixup to FM at
the same place as in MM: both labeled and unlabeled
samples are mixed up. Similarly, it is also the asym-
metric mixup variant that we used in MM and FM
since mixup is applied to labeled and unlabeled sam-
ples together, as in the original MM method. Using
mixup on labeled and unlabeled examples separately
seems to hurt performance with these two methods.
In MT, mixup is applied on labeled and unlabeled

samples separately and only for the teacher model. The
perturbation with Gaussian noise applied to the unla-
beled samples is removed, since no gain was observed
when mixup is used instead.
For DCT, mixup is applied on the unlabeled sam-

ples only, common to both models in each minibatch
during training. Applying mixup on the labeled sam-
ples, which are sampled differently for the two models

at each training step, lead yo worse results. It is then,
not necessary to use the asymmetrical variant for MT
and DCT.
Finally, in all cases, we apply mixup on the log-mel

spectrograms, which are the input features given to our
deep neural networks (feature extraction is detailed in
the experiment section).

5 Experiments
In this section, we describe our experimental setup.
We give a brief description of the datasets and met-
rics, describe the Wide ResNet architecture we used,
together with the training strategy details.

5.1 Datasets and evaluation metrics
Environmental Sound Classification 10 (ESC-
10) [17] is a selection of 400 five-second-long record-
ings of audio events separated into ten balanced cat-
egories. The dataset is provided with five uniformly
sized cross-validation folds that will be used to per-
form the evaluation. The files are sampled at 44 kHz
and are converted into 431× 64 log-mel spectrograms.
UrbanSound8k (UBS8K) [18] is a dataset com-

posed of 8742 files between 1 and 4 seconds long, sepa-
rated into ten balanced categories. The dataset is pro-
vided with ten cross-validation folds of uniform size
that will be used to perform the evaluation. The files
are zero-padded to 4 seconds, resampled to 22 kHz,
and converted to 173× 64 log-mel spectrograms.
Google Speech Commands Dataset v2 (GSC)

[19] is an audio dataset of spoken words designed to
evaluate keyword spotting systems. The dataset is split
into 85511 training files, 10102 validation files, and
4890 testing files. The latter is used for the evalua-
tion of our systems. We ran the task of classifying the
35 word categories of this dataset. The files are zero-
padded to 1 second if needed and sampled at 16 kHz
before being converted into 32 × 64 log -mel spectro-
gram.
In all cases, the 64 mel-coefficients were extracted

using a window size of 2048 samples and a hop length
of 512 samples. For ESC-10 and UBS8K, we used the
official cross-validation folds. We report the average
classification Error Rate (ER) along with standard de-
viations. ER is defined as the number of errors divided
by the total number of samples.

5.2 Models
We used the Wide-ResNet-28-2 [33] architecture in all
our experiments. This model is very efficient, achieving
SOTA performance on the three datasets when trained
in a 100% supervised setting. Moreover, its small size,
comprised of about 1.4 Million parameters, allows to
experiment quickly. Its structure consists of an initial
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Layer Architecture

input Log mel spectrogram

conv1 BasicBlock(32)

Max pool

block1
[

BasicBlock(32)
]
× 4

BasicBlock(32)

block2
[

BasicBlock(64)
]
× 4

BasicBlock(64)

block3
[

BasicBlock(128)
]
× 4

BasicBlock(128)

Avg pool

ReLU

Linear

Table 2 Architecture of Wide ResNet28-2. Downsampling is
performed by the first layers in block2 and block3.

convolutional layer (conv1) followed by three groups of
residual blocks (block1, block2, and block3). Finally,
an average pooling and a linear layer act as a classifier.
The residual blocks, composed of two BasicBlock, are
repeated three times and their structure is defined in
Eq. (27). The number of channels of the convolution
layers is referred as l, BN stands for Batch Normal-
ization and ReLU [34] for the Rectified Linear Unit
activation function. We used the official implementa-
tion available in PyTorch [35].

BasicBlock(l) = (conv 3× 3 @ l,BN,ReLU) (27)

5.3 Training configurations
Each model was trained using the ADAM [36] opti-
mizer. Table 3 shows the hyper-parameter values used
for each method, such as the learning rate lr, the mini-
batches’ size bs, the warmup length wl if used, and the
number of epochs e. These parameters are identical re-
gardless of the dataset used, unless otherwise specified.
They were obtained by performing a reasonable short
grid-search using UBS8K dataset first validation fold.
For supervised training, MM and FM, the learning

rate remains constant throughout training. For MT
and DCT, the learning rate is weighted by a descend-
ing cosine rule, function of the learning epoch t:

lr = 0.5
(
1.0 + cos

(
(t 9 1)

π

Ne

))
(28)

where Ne denote the number of epochs.
All the SSL approaches, but FixMatch, introduce

one or more subsidiary terms to the loss. To alleviate
their impact at the beginning of the training, these

Table 3 Training parameters used on the datasets. Bs: batch size,
lr: learning rate, wl: warm-up length in epochs, Ne: number of
epochs, α: mixup Beta param.

bs lr wl Ne α

Supervised 256 0.001 - 300 -
mixup 256 0.001 - 300 0.40
MT 64 0.001 50 200 -
MT+mixup 64 0.001 50 200 0.40
DCT 64 0.0005 160 300 -
DCT+mixup 64 0.0005 160 300 0.40
MM-mixup 256 0.001 - 300 -
MM 256 0.001 - 300 0.75
RMM-mixup 256 0.001 - 300 -
RMM 256 0.001 - 300 0.75
FM 256 0.001 - 300 -
FM+mixup 256 0.001 - 300 0.75

terms are weighted by a lambda λ ratio, which ramps
up to its maximum value within a warmup length wl.
The ramp-up strategy is defined in Eq. (29) for MT
and DCT, and is linear in MM during the first 16k
learning iterations.

λ = λmax × e−5×(1−(t/wl))2 (29)

In MT, the maximum value of λcc is 1 and αema is
set to 0.999. In DCT, the maximum values of λcot and
λdiff are 1 and 0.5, respectively. In MM the maximum
value of λu is 1. FM and RMM do not use a ramp
up strategy. In FM, the value of λu is set to 1 and in
RMM the values of λu, λu1

and λr are set to 1.5, 0.5
and 0.5, respectively.
In MM and RMM, we use two augmentations (k =

2), the sharpening temperature T is set to 0.5. In
FM, we use a threshold τ = 0.8 on ESC-10 and GSC
datasets, and τ = 0.95 for UBS8K. In RMM, the num-
ber of labels N kept for distribution alignment is set
to 128.
For MM, FM and RMM, on ESC-10, the batch size

is 60 because ESC-10 is a small dataset of 400 files
only. During training, only four folders are used, that
is, 320 files. In a 10% configuration and due to the
whole division’s restrictions, this represents only 30
supervised files in total. Each mini-batch must contain
as many labeled as unlabeled files, hence the batch size
of 60. Moreover, because of this small number of files,
the training phase only lasts for 2700 iterations, and
therefore, warm-up ends prematurely.
For our proposed variants, which include mixup, we

kept the same configurations and parameter values.

6 Results
We first report the results obtained in a supervised
setting, with and without the same data augmentation
methods used in the SSL algorithms, including mixup.
We compare the error rates obtained by the five SSL
methods and then show that adding mixup is almost
in all cases beneficial.
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Table 4 Supervised learning Error Rates (%) on ESC-10, UBS8K and GSC.

Dataset ESC-10 UBS8K GSC

Labeled fraction 10% 100% 10% 100% 10% 100%

CNN models (literature) - 3.00 [37] - 14.50 [38] - 3.00 [39]

Supervised 32.00 ± 6.17 8.00 ± 5.06 33.80 ± 4.82 23.29 ± 5.80 10.01 4.94
+mixup 36.00 ± 5.22 8.33 ± 4.56 31.41 ± 5.56 22.04 ± 5.99 8.83 3.86
+weak 22.67 ± 3.46 4.67 ± 3.43 27.08 ± 4.58 20.09 ± 5.50 7.62 3.90
+weak+mixup 24.67 ± 4.92 4.67 ± 1.39 23.75 ± 4.73 17.96 ± 3.64 6.58 3.00
+strong 23.00 ± 5.19 5.00 ± 2.64 25.58 ± 4.15 20.69 ± 4.92 7.60 3.27
+strong+mixup 24.00 ± 8.71 5.00 ± 4.25 24.73 ± 4.42 18.52 ± 4.38 6.86 2.98

6.1 Supervised learning
This section presents the results obtained with super-
vised learning in different settings while using either
10% or 100% of the labeled data available. MM, RMM
and FM use augmentations as their core mechanism.
RMM and FM use weak and strong augmentations,
while MM uses a combination of weak augmentations
and mixup. Therefore, it seems essential for fair com-
parisons to use the same augmentations in the super-
vised settings too.
We trained models without any augmentation (Su-

pervised), using mixup alone (mixup), weak augmen-
tations alone (Weak), a combination of weak augmen-
tations and mixup (Weak+mixup), strong augmen-
tations alone (Strong), and to finish, a combination
of strong augmentations with mixup (Strong+mixup).
Table 4 presents the results on ESC-10, UBS8K, and
GSC. In order to give an idea of how our results com-
pare to the literature, we reported three results from
the literature, in the “CNN models (literature)” row
in the table. We chose to report results from works in
which the models are primarily based on a CNN ar-
chitecture, to be fair with the Wide-ResNet we used
in our case. There are better results from the recent
literature, but that involved large transformer mod-
els, sometimes pretrained on AudioSet. For instance,
the state-of-the-art result on UBS8K is 10.0% ER, ob-
tained with a 25-M parameter transformer, pre-trained
on AudioSet [40].
ESC-10. In the 10% setting, the supervised model

reached an ER of 32.00%. The use of Weak yielded the
best performance with 22.67% ER, outperforming the
supervised model by 9.3 points (29.16% relative). In
the 100% setting, the supervised model reached an ER
of 8.00%, and the best ER of 4.67% was achieved when
using Weak+mixup. The gain is 3.33 points (41.62%
relative).
UBS8K. In a 10% setting, the supervised model

reached 33.80% ER, and the best supervised result
was obtained with Weak+mixup, with a 23.75% ER. It
represents an improvement of 10.05 points, 29.73% rel-
ative improvement. In the 100% setting, the same aug-
mentation combination reached an ER of 17.96%, out-

performing the 23.29% ER from the supervised model
by 5.33 points, 22.88% relative improvement.
GSC. In a 10% setting, the supervised model

reached 10.01% ER, and Weak+mixup yielded the
best ER of 6.58% It represents an augmentation of 3.43
points, 34.26% relative improvement. In the 100% set-
ting, the Strong+mixup reached an ER of 2.98%, out-
performing the 4.94% ER from the supervised model
by 1.96 point, 39.68% relative improvement.
Overall, we observe that in a supervised setting, the

combination of mixup with a weak or a strong aug-
mentation is systematically better than using a single
augmentation, except in the ESC-10 dataset.

6.2 Semi-supervised learning
We report in Table 5 the results of the SSL meth-
ods. For MM and RMM, mixup is already used in the
original methods, thus, we compare MM to MM with-
out mixup (MM-mixup) and RMM to RMM without
mixup (RMM-mixup). For the three other methods,
we denote for instance FM+mixup the FM algorithm
augmented with mixup.
In all the three datasets, the five SSL methods

brought ER decreases compared to the 10% super-
vised learning setup, when no augmentation is per-
formed. Only MM, RMM, and FM performed bet-
ter than the best supervised training result, that used
the weak augmentations. Furthermore, they also sig-
nificantly outperformed MT and DCT in all but one
cases (DCT better than RMM on UBS8K), showing
that using single-model SSL methods is more efficient
than two-model-based methods, at least on these three
datasets and among the five methods that were com-
pared.
For ESC-10, in the 10% setting, the lowest ER was

achieved by RMM with a 12.00% value, compared to
a 22.67% for a weakly augmented supervised training.
It represents a 10.67 points improvement, 47.1% rel-
ative. The difference with a fully supervised training
using weak augmentations reaching a 4.67% ER is still
notable with a 7.33 points difference.
On UBS8K, the best ER was achieved using MM

with an 18.02% ER, very closely followed by FM+mixup
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Table 5 Semi-supervised learning Error Rates (%) on ESC-10, UBS8K and GSC.

Dataset ESC-10 UBS8K GSC
Labeled fraction 10% 100% 10% 100% 10% 100%

Supervised 32.00 ± 6.17 8.00 ± 5.06 33.80 ± 4.82 23.29 ± 5.80 10.01 4.94
Best Supervised 22.67 ± 3.46 4.67 ± 1.39 23.75 ± 4.73 17.96 ± 3.64 6.58 2.98

MT 28.28 ± 5.28 - 32.80 ± 4.21 - 8.92 -
MT+mixup 27.81 ± 2.25 - 32.00 ± 5.80 - 9.32 -
DCT 25.16 ± 4.42 - 27.85 ± 4.29 - 6.90 -
DCT+mixup 23.75 ± 2.36 - 25.77 ± 4.73 - 5.94 -
MM-mixup 17.33 ± 3.84 - 20.42 ± 4.88 - 4.49 -
MM 15.33 ± 5.58 - 18.02 ± 4.00 - 3.25 -
RMM-mixup 32.50 ± 11.71 - 38.23 ± 6.15 - 5.15 -
RMM 12.00 ± 5.55 - 28.41 ± 6.54 - 3.54 -
FM 13.33 ± 2.89 - 21.44 ± 4.16 - 4.44 -
FM+mixup 14.67 ± 7.21 - 18.27 ± 3.80 - 3.31 -

with 18.27%. The difference with the best supervised
training Weak+mixup, reaching 23.75%, represents a
difference of 5.73 points (24.13% relative). The perfor-
mance of MM is also very close to the best fully super-
vised training Weak+mixup, which reached a 17.96%
ER. The difference is only 0.06 points. Similarly to
ESC-10, if MT and DCT outperformed the supervised
training methods, they performed worse than super-
vised learning with augmentation. UBS8K is the only
dataset for which RMM performed worse than DCT.
The GSC dataset results confirm the previous ob-

servations. The MM method is the best method with
an ER of 3.25%, representing a relative gain of 6.76
(67.53%) or 3.33 points (50.61%) compared to super-
vised training without and with Weak+mixup aug-
mentations, respectively. RMM and FM+mixup ob-
tained results very similar to MM: 3.54% and 3.31%
ER, respectively.

6.3 Impact of mixup
Given that the best SSL methods so far were MM and
RMM, and that mixup is used in these approaches,
we decided to try to add mixup to MT, DCT, and
FM, in different ways for each method as explained
in Section 4.6. In [14], Appendix D.2, mixup on the
entries (not on the labels) was added to FM, removing
all the other image augmentations. In this setting, FM
was shown to reach an accuracy very close to that of
MM on CIFAR-10.
In Table 5, we reported the results when adding

mixup to MT, DCT and FM, (MT+mixup, DCT+mix-
up, FM+mixup). We also give the ER when removing
mixup from MM and RMM, in the row named MM-
mixup amd RMM-mixup.
As a first comment, MM-mixup and RMM-mixup

are always worse than with mixup. For instance, with
MM on USB8K, ER increased from 18.02% to 20.42%.
This is particularly visible with RMM on ESC-10 and
UBS8K. Moreover, adding mixup to the other SSL
methods brought performance improvements on all the

datasets tested. The only counter-example observed is
FM on ESC-10, which went from 13.33% to 14.67%
ER. The standard deviation value also increased sig-
nificantly from 2.89% to 7.21%.
Similarly, FM on UBS8K went from 21.44% ER with-

out mixup to 18.24% with mixup. On GSC, RMM pre-
sented the largest gap between 5.15% and 3.54% ER
without and with mixup, respectively.
It is also important to note that using mixup allowed

to get ER values very close to the ones obtained with
fully (100% setting) supervised training using augmen-
tations, on UBS8K and GSC. This is observable with
MM, RMM, and FM+mixup. For instance, compared
to Weak+mixup 100% supervised, MM has only 0.06
point difference on UBS8K, and 0.27 point difference
on GSC.
When we look at our supervised training perfor-

mance, we can observe that an improvement does not
systematically follow the use of weak or strong aug-
mentations. However, when combined with mixup, ER
is frequently improved. This can be partly explained
by the fact that audio augmentations are often difficult
to choose and that their impact is often dependent on
the dataset and the task at hand [27]. With this in
mind, mixup seems to be beneficial regardless of the
dataset used.

6.4 Training time
The normalized training duration means for all the
five methods are shown in Fig. 6. The values were
computed on the three datasets using the following
equation:

mean =
d

Nf ·Ne · bs
(30)

Where d is the total duration,Nf the number of folds
in the dataset, Ne the number of epochs, and bs the
batch size used in each method. We compute the three
means for each dataset then we report the average of
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the three values. Finally, we use the supervised 100%
execution time as the reference (training duration of
one). We also assessed the impact of adding mixup,
but it had a negligible impact of about 0.5%.
Among the SSL approaches, the fastest one is MT,

which has a training time 4.5 times longer that the
fully supervised training. Then, FM and MM follow
with are 6 times longer. DCT, with its high complexity
and use of adversarial data, took up to 7.6 times longer,
and finally the longest of all is RMM, 11.6 times longer,
due to the large number of augmentations involved.
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Figure 6 Normalized mean training duration for all methods
without mixup.

7 Discussion
Why are MM, RMM and FM better than MT and DCT?
This question remains open. Several key components
may explain this gap in performance. First, data aug-
mentation is extensively used in these methods (weak
and strong ones), both on the labeled data and on
the unlabeled subset to satisfy the consistency crite-
rion of SSL. No data augmentation is used in the DCT
nor MT basic methods, except the addition of noise in
MT, on the unlabeled subset at the input of the teacher
model. Nevertheless, when mixup was added to MT,
no significant gain was observed. Thus, other augmen-
tations should be explored for MT. Second, MM, RMM

and FM use pseudo-labeling, with either explicit en-
tropy minimization (sharpening in MM and RMM) or
threshold-based selection (confidence masking in FM).
In DCT and MT, no entropy minimization is used, the
predictions on the unlabeled part of the data are used
as is for a consistency criterion between the two col-
laborating networks.

Which augmentations?
We used three augmentations (besides mixup): Occlu-
sion, CutOut and Speed perturbation. An advantage of
those is that they are task-agnostic. We tuned their hy-
perparameters once on GSC, and then, we used them
on ESC-10 and UBS8K as is, bringing performance im-
provements. Exploring more audio-specific augmenta-
tions is an avenue still to be explored. For instance, we
did not try pitch shifting nor dynamic range compres-
sion [41]. Those would need careful parameter tuning
depending on the audio event types and on the dataset
involved in the experiments.

Finally, Occlusion and CutOut could be replaced by
SpecAugment [42], originally proposed in automatic
speech recognition and very often used nowadays in
audio processing tasks, such as audio tagging. There is
two small differences, though, in using SpecAugment,
since it drops out one or several vertical and horizon-
tal stripes from the spectrograms, while CutOut drops
out a single rectangle of random shape. Another differ-
ence is that we applied randomly either Occlusion or
CutOut, but not a combination of the two. To evaluate
the effect of SpecAugment, we ran supervised learn-
ing experiments on GSC, using Speed Perturbation
and mixup, and SpecAugment instead of Occlusion
and CutOut, in the 100% of the labeled training data
setting. We tested several configurations for SpecAug-
ment. Our best setting was zero, one or two frequency
stripes of width between 0 and 7 bins, and zero or one
stripe of width also between 0 and 7 bins in time. This
setting led to a 2.51% ER, which is better than the
2.98% value of our best supervised baseline method.
This confirms experimentally that SpecAugment could
replace Occlusion and CutOut, as a combination of the
two. We did not rerun all the SSL experiments with
SpecAugment, but one might expect slightly better re-
sults than those obtained with Occlusion and CutOut.

8 Conclusions
In this article, we reported audio classification ex-
periments in a semi-supervised setting on three stan-
dard datasets of different sizes and content, the very
small-sized ESC-10 with generic audio events, urban
noises with UrbanSound8K, and speech with Google
Speech Commands. We used only 10% of the labeled



Cances et al. Page 13 of 14

training data samples and the remaining 90% as un-
labeled samples. We adapted and compared five SSL
algorithms for this task, two methods that use two
neural networks in parallel: Mean Teacher and Deep
Co-Training, and the three single-model methods Mix-
Match, ReMixMatch and FixMatch, that strongly rely
on data augmentation.
All the five methods brought significant gains com-

pared to a supervised training setting using 10%
of labeled data. They performed better than super-
vised learning without augmentation. On UBS8K,
MixMatch and FixMatch were very close to fully su-
pervised learning with augmentation (100% of labeled
training data). On ESC-10, ReMixMatch reached the
best Error Rate of 12.00%. The relative gains were 62%
and 47%, when compared to a supervised training us-
ing 10% of labeled data, without and with augmenta-
tion, respectively. On UrbanSound8K, MixMatch ob-
tained the best results, reaching 18.02% Error Rate.
Compared to a 10% supervised training without and
with augmentation, the respective relative improve-
ments were 47% and 24%. On Google Speech Com-
mands, MixMatch again reached the best Error Rate
of 3.25%. The relative improvement was 68% and 51%,
compared to a 10% supervised training without and
with augmentation, respectively. Mixup is an efficient
regularization technique that is at the heart of the Mix-
Match and ReMixMatch algorithms. Its consistent im-
pact in MM and RMM encouraged us to add it to the
other SSL approaches. In almost all the experiments,
adding mixup brought consistent improvements, which
allowed us to get closer to the best supervised learning
settings using 100% of the labeled data available. For
instance, adding mixup to FixMatch reduced the er-
ror rates on UrbanSound8K from 21.4% to 18.3%, and
from 4.4% to 3.3% on Google Speech Commands, to be
compared with 17.9% and 3.0% respectively, obtained
in the best supervised learning settings.
In conclusion, if we were to recommend a method

out of the ones tested in our work, we would rec-
ommend MixMatch, and FixMatch+mixup also, with
very similar performances. Their good results are con-
sistent across the three datasets. The gains brought
by these methods is worth their training time, about
six times the 100% supervised setting training time.
ReMixMatch obtained the best results on ESC-10, but
this method is more demanding in training time.
Many questions remain open, though. The fact that

MM and RMM were slightly better than FM needs
to be further investigated, in particular the use of au-
dio augmentations different in nature for the weak and
the strong ones may be a direction to explore. MT and
DCT do not use augmentations in their original ver-
sion. It would be interesting, though, to try the weak

augmentations used in the holistic methods with them.
We also plan to adapt the SSL methods to multi-
label audio tagging, for instance on Audioset [43] or
FSD50K [44]. In particular, we would have to adapt
the sharpen method in MixMatch, and the threshold-
ing operations in FixMatch. Finally, new SSL meth-
ods have been very recently proposed and could be
added to our list, such as Unsupervised Data Augmen-
tation (UDA) [45], and the recent Meta Pseudo Labels
method [46].
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