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Abstract

Due to the domain shift, machine learning systems typi-
cally fail to generalize well to domains different from those
of training data, which is the problem that domain gener-
alization (DG) aims to address. However, most mainstream
DG algorithms lack interpretability and require domain la-
bels, which are not available in many real-world scenar-
ios. In this work, we propose a novel DG method, HMOE:
Hypernetwork-based Mixture of Experts (MoE), that does
not require domain labels and is more interpretable. We
use hypernetworks to generate the weights of experts, al-
lowing experts to share some useful meta-knowledge. MoE
has proven adept at detecting and identifying heterogeneous
patterns in data. For DG, heterogeneity exactly arises from
the domain shift. We compare HMOE with other DG al-
gorithms under a fair and unified benchmark-DomainBed.
Extensive experiments show that HMOE can perform latent
domain discovery from data of mixed domains and divide it
into distinct clusters that are surprisingly more consistent
with human intuition than original domain labels. Com-
pared to other DG methods, HMOE shows competitive per-
formance and achieves SOTA results in some cases without
using domain labels.

1. Introduction

Domain generalization (DG) aims to train models on
known domains that can generalize well to unseen do-
mains, which is of crucial importance for deploying mod-
els in safety-critical real-world applications. Over the past
decade, great efforts have been made to develop a variety of
DG algorithms [26, 82, 90], most of which have focused on
developing DG-specific data augmentation techniques and
learning domain-invariant representations on which to build
generalizable predictors. However, many high-performing
DG algorithms entail the knowledge of domain labels to
explicitly reduce domain discrepancy, which severely lim-
its their applicability in real-world scenarios where domain
annotation may be prohibitively expensive. In addition, cur-

rent algorithms fall short of interpretability and cannot pro-
vide insight into the causes of success or failure in general-
izing to new domains. Therefore, our work aims to propose
a novel DG algorithm that does not require domain labels
and has good interpretability.

We follow the nomenclature of [9], which refers to DG
with domain labels as vanilla DG and the more challenging
DG without domain labels as compound DG. It was shown
in [5, 12, 54] that domain information plays an important
role in obtaining better DG performance. Therefore, the key
to solving compound DG is how to infer domain informa-
tion from the data of mixed domains. To make the problem
tractable, we assume that latent domains are distinct and
separable.

In this work, we propose HMOE: Hypernetwork-based
Mixture of Experts (MoE). MoE is a well-established learn-
ing paradigm that combines several experts by calculating
the weighted sum of their predictions [33, 34], where the
aggregation weights, also known as gate values, add up to 1
and are determined by a routing mechanism. An innovation
of our work is to use a neural network, called a hypernet-
work [27], to generate the weights of expert networks. In
this way, the hypernetwork serves as a link between experts
and provides a platform for them to exchange information.

Our work leverages MoE’s divide and conquer property,
that is, the routing mechanism learns to route inputs to dif-
ferent experts in an unsupervised manner and softly parti-
tions the input space into subspaces [85], and each expert
becomes specialized in a subspace. This property makes
MoE a natural choice for discovering heterogeneous pat-
terns in data. We further expect that each subspace is as-
sociated with a latent domain, thus enabling latent domain
discovery. In addition, thanks to the probabilistic nature
of MoE, HMOE can be easily extended to support semi-
supervised learning on partial domain labels. During in-
ference, when faced with an unseen test domain, we can
compare the similarities between the test domain and the
inferred domains based on gate values, hence improving in-
terpretability.

However, MoE’s intrinsic soft partitioning is not always
effective and sometimes fails to maintain a consistent di-
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vision of the input space, especially when the distinction
between latent domains is not significant. Therefore, we
propose a differentiable dense-to-sparse Top-1 routing algo-
rithm, which forces gate values to become one-hot and con-
verges to hard partitioning. In this way, we achieve sparse
MoE and enhance and stabilize latent domain discovery. In
addition, we devise a novel method for calculating gate val-
ues to better incorporate hypernetworks into MoE.

We summarize our contributions as follows: (1) We
propose a principled and conceptually simple approach,
HMOE, for compound DG, which can discover latent do-
mains, has good interpretability, and is trained in an end–
to-end manner. (2) To our best knowledge, we are the first
to combine hypernetworks and MoE to solve the DG prob-
lem. (3) We undertake comprehensive experiments to com-
pare HMOE with other DG methods under a fair and unified
evaluation framework - DomainBed [26]. HMOE achieves
competitive performance and even state-of-the-art results in
some cases without requiring domain labels.

2. Related Work
2.1. Domain Generalization (DG)

The goal of DG is to train a predictor on known domains
that can generalize well to unseen domains.

Vanilla DG The first line of work is to design DG-specific
data augmentation techniques to increase the diversity and
quantity of training data to improve DG performance [48,
61, 66, 79, 84, 86, 91, 93]. Previous work learned domain-
invariant representations through invariant risk minimiza-
tion [1, 2, 38], kernel methods [5, 20, 23, 54], feature
alignment [24, 44, 52, 53, 57, 59, 70, 72, 81], and domain-
adversarial training [21, 22, 25, 44, 46]. Another approach
is to disentangle latent features into class-specific and
domain-specific representations [32,35,55,60,87]. General
machine learning paradigms were also applied to vanilla
DG, such as meta-learning [3, 15, 41, 43], self-supervised
learning [7,36], gradient manipulation [31,62,68], and dis-
tributionally robust optimization [38, 63].

Compound DG There are some DG algorithms that do not
require domain labels by design [9, 31, 45, 52, 55, 87]. In
addition to improving DG performance, latent domain dis-
covery is also an important task in compound DG and con-
tributes to better interpretability. [9,52] can do this but have
two main limitations: (1) Their proposed methods proceed
in two phases: first discover potential domains, and then
deal with DG with the inferred domains, which is similar to
vanilla DG. The problem is that the second phase depends
on the first and cannot provide some feedback to correct
possible errors in domain discovery. (2) Their methods as-
sume that domain discrepancy arises from stylistic differ-
ences in order to identify latent domains, which does not
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Figure 1. (a) Mixture of Experts calculates the weighted sum of
experts’ outputs. (b) The aggregation weights, also known as gate
values, are calculated by the gate network on a per-example basis.

always hold.

In our work, all components are jointly optimized in an end-
to-end fashion. In addition, we leverage MoE to find latent
domains without an explicit induced bias on the cause of
domain discrepancy.

2.2. Hypernetworks

A hypernetwork is a neural network that generates the
weights of another target network. Hypernetworks were
initially proposed by [27] and then applied to optimization
problems [49, 56], meta-learning [89], continuous learn-
ing [6, 80], multi-task learning [47, 50, 71], few-shot learn-
ing [64], and federated learning [65].

2.3. Mixture of Experts (MoE)

Mixture of Experts (MoE), originally proposed by [33,
34], consists of two main components: experts and a gate
network, as shown in Fig. 1a. Its output is a weighted sum
of experts, and the gate network calculates gate values on
a per-example basis, as shown in Fig. 1b. In the past few
years, MoE has regained attention as a way to scale up deep
learning models without significantly increasing computa-
tional cost and to more effectively harness modern hard-
ware [16, 18, 19, 39, 67, 94]. In this case, sparse MoE is
used, which routes each example only to the experts with
Top-1 or Top-K gate values, instead of all of them.

2.4. Application of Hypernetworks and MoE in DG

To the best of our knowledge, no work has used hyper-
networks to solve DG in the field of computer vision. Re-
cently, [78] applied hypernetworks to DG in natural lan-
guage processing (NLP) and achieved state-of-the-art re-
sults on two NLP-related DG tasks. As for MoE, [40] pro-
posed replacing feed-forward network layer (FFN) of Vi-
sion Transformer (ViT) [14] with a sparse mixture of FFN
experts to improve DG performance. In addition, if we re-
gard MoE as a kind of ensemble method, there are some
work having the same spirit [13, 51, 92].
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3. Method
3.1. Problem Setting

Let X denote an input space and Y a target space. A
domain S is characterized by a joint distribution P s

XY on
X × Y . In vanilla DG setting, we have a training set
containing M known domains, i.e., DV

tr = {Ds}Ms=1 with
Ds = {(xs

i , y
s
i , d

s
i )}

Ns
i=1 where (xs

i , y
s
i ) ∼ P s

XY and dsi is
the domain index or label. Also consider a test dataset Dte

composed of unknown domains different from those of DV
tr.

Vanilla DG aims to train a robust predictor f : X → Y on
DV

tr with domain labels to achieve a minimum predictive er-
ror on Dte, i.e., minf E(x,y)∼Dte

[ℓ(f(x), y)], where ℓ(·, ·)
is the loss function.

Our work focuses on the more difficult compound DG,
for which the training set Dtr = {(xi, yi)}Ni=1 contains
mixed domains and therefore has no domain annotation.
However, as demonstrated in [26, 82, 90], intrinsic inter-
domain relationships play a key role in obtaining better gen-
eralization performance. Therefore, our proposed HMOE is
required to identify and discover latent domains by dividing
Dtr into clusters that match human intuition about visual
relationships between different domains.

3.2. Overall Architecture

An overview of the HMOE architecture is depicted in
Fig. 2a. It processes each input x through two paths:
the domain path, which aims at performing latent domain
discovery, and the classifier path, which aims at training
a classifier expert for each latent domain. The classifier
path starts with a featurizer hz to extract high-level fea-
tures from x, which can be a pretrained network, such as
VGG [69], ResNet [29], and ViT. We define a discrete
learnable embedding space E with K embedding vectors
{ek ∈ RD}Kk=1, which are fed into a hypernetwork fh to
generate a set of weights {θk}Kk=1. These weights further
form a set of classifiers {fc(:; θk)}Kk=1. The output of the
featurizer is passed to these K classifier experts to compute
their corresponding outputs yk = fc(z; θk).

The domain path starts with a Domain2Vec (D2V) en-
coder hv , which transforms x into the embedding space E
and outputs v ∈ RD. The output v is then compared with
the embedding vectors through a predefined gate function
g(v, E), as shown in Fig. 2b, to produce a set of probabili-
ties p = {pk}Kk=1. The final output y is the weighted sum
of experts’ outputs:

y =

K∑
k=1

pkyk = ⟨g(hv(x), E), [fc(hz(x); fh(ek))]
K
k=1⟩

(1)
In classical MoE, the gate network and experts have the

same input. On the contrary, in our work, the D2V encoder
takes images as input rather than the featurizer’s extracted

features, which mainly contain class-specific information
for classification. If we link the D2V encoder to the fea-
turizer, HMOE risks separating the input space based on
semantic categories rather than domain-wise distinction.

3.3. Hypernetworks

We use the hypernetwork fh taking as input a vector e to
generate the weights of the classifier fc. In our work, both
fh and fc are MLPs. In a sense, fc is just a placeholder com-
putational graph, e can be viewed as a conditioning signal,
and fh maps e into a function. In contrast to classical MoE
with a number of experts, we can use fh to generate many
experts without significantly increasing model parameters.
In classical MoE, there is no direct communication between
experts. In our work, experts are able to share some meta-
knowledge through fh. In addition, we use the hyperfan
method proposed by [8] to initialize fh.

3.4. Routing Mechanism

3.4.1 Gate Function

We need to calculate gate values p to quantify the respon-
sibilities of experts for each input example and to aggregate
experts’ outputs. Based on the output of the D2V encoder
v and the embedding space E , we define a gate function
g(v, E) to calculate p as follows (Fig. 2b):

dk = ∥v − ek∥2 (2a)

sk = − log(d2k + ϵ) (2b)

pk =
exp(sk)∑K
j=1 exp(sj)

(2c)

where ϵ is a small value. The negative logarithm in Eq. (2b)
is used to establish a negative correlation between dk and
pk (i.e., the smaller dk, the larger pk) and to nonlinearly
rescale the distance d (i.e., stretch small d and squeeze great
d), which makes p less sensitive to large d.

3.4.2 Differentiable Dense-to-Sparse Top-1 Routing

Based on gate values p, the routing algorithm determines
where and how to route input examples. A consistent and
cohesive routing is essential for the training stability and
convergence of MoE [10]. To enhance and stabilize latent
domain discovery to capture less obvious domain differ-
ences, we would like to realize sparse MoE. However, the
commonly used Top-1 or Top-K functions are not differen-
tiable and cause oscillatory behavior of gate values during
training [28]. Therefore, we propose a differentiable dense-
to-sparse Top-1 routing algorithm by introducing an entropy
loss on p:

Len = E(x,y)∼Dtr
[H(g(hv(x), E))] (3)
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Figure 2. (a) An overview of HMOE. In the upper branch, the input is transformed into the embedding space through the D2V encoder
and gate values are calculated by a predefined gate function. In the lower branch, the hypernetwork takes as input embedding vectors to
create a set of classifiers. The output is the weighted sum of classifiers’ predictions. (b) The gate function calculates gate values based on
the distances between the output of the D2V encoder and the embedding vectors. The smaller the distance, the greater the gate value.

where H(·) denotes the entropy of a distribution. In prac-
tice, we multiply Len by γen that linearly increases from
0 to 1 in the first half of training and remains at 1 in the
second. Early on, γen is small, and the distances between
v and the embedding vectors are almost the same, leading
to a uniform p. Therefore, all experts can be fully trained
and gradually become specialized. In the later stages, Len

forces p to become one-hot based on specialized experts.
Due to the negative logarithm in Eq. (2b), the D2V en-

coder has to move towards one of the embedding vectors
rather than away from the others in order to minimize Len.
Therefore, the output of the D2V encoder will converge to
E and become quantized during training.

3.4.3 Expert Load Balancing

Sparse MoE may suffer from an unbalanced expert load,
which is problematic if only a small subset of experts are
used while the others are left idle. To alleviate this prob-
lem, a widely used approach is to introduce an auxiliary
importance loss CV (I(X))2 [67], where X represents a
single batch, I(X) = [I1(X), · · · , IK(X)] denotes the
importance of experts, for which Ik(X) is defined as the
sum of gate values assigned to the kth expert (i.e., sum
the gate value matrix in Fig. 1b along the example dimen-
sion), and CV is the coefficient of variation. However, [58]
showed that this importance loss over-penalizes unbalanced
expert utilization and may be counter-productive, since in
most cases the expert load is naturally unbalanced. In this
case, [58] defined a distribution P = I(X)/

∑
I(X) and

used the KL-divergence between P and the uniform distri-
bution U to balance the expert load, which is also used in

our work:

Lkl = DKL(P∥U) = DKL

(
I(X)∑
I(X)

∥U
)

(4)

Compared to the importance loss, Lkl achieves a better
trade-off between expert specialization and load balancing.

3.5. Embedding Space

The embedding space E plays a key role in HMOE. As
we can see, embedding vectors have an effect on both the
generation of expert weights and the routing mechanism,
thus serving as a bridge to balance these two parts. In addi-
tion, these embedding vectors are learnable like the weights
and biases of neural networks and attract the D2V encoder
during training under the influence of Len. This may be
reminiscent of VQ-VAE [74], which also has an embedding
space and makes its encoder output discrete latent codes.

3.6. Class-Adversarial Training on D2V

We would like to make the D2V encoder hv less infor-
mative for classes, which ensures that HMOE partitions the
input space based on domain-wise distinction rather than se-
mantic categories. Inspired by Domain-Adversarial Neural
Networks [22], we define an adversarial classifier fad

c tak-
ing v as input and add the following loss to perform class-
adversarial training on hv:

Lad = E(x,y)∼Dtr

[
ℓce(f

ad
c (GRL(hv(x), λgrl)), y)

]
(5)

where ℓce denotes the cross-entropy loss and GRL repre-
sents the gradient reversal layer, which acts as an identity
function in the forward pass and multiplies the gradient by
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−λgrl in the backward pass. As suggested in [22], we de-
fine λgrl as:

λgrl = 2/(1 + exp(−10× pcttr))− 1 (6)

where pcttr denotes the training percentage varying linearly
from 0 to 1.

3.7. Semi-/supervised Learning on Domains

Due to the probabilistic nature of MoE, given an input
x and the corresponding gate values p = {pk}Kk=1, we can
interpret pk as the probability of selecting the kth expert
Ek given x, i.e., p(Ek|x). In addition, Ek is thought to be
associated with a specific domain Sm. Therefore, we get
pk = p(Ek|x) = p(Sm|x). Consider a dataset with domain
labels Dd = {(xi, di)}Nd

i=1 (class labels are not necessary)
with di ∈ {1, · · · ,Md}, we can make use of Dd as follows:

Ld = E(x,d)∼Dd
[ℓce(p, d)] (7)

Note that Md may be smaller than K, but this has no bearing
on the calculation of Ld. In this case, we assume that the
first Md experts are assigned to Md domains, and the other
experts do not have domain information and learn from the
data by themselves. If all domain labels are available in the
training data, Ld becomes supervised learning on domains.

3.8. Training and Inference

In addition to the above losses, the supervised loss on
targets is:

Ly = E(x,y)∼Dtr
[ℓce(ŷ, y)] (8)

where ŷ is the prediction of HMOE, as calculated in Eq. (1).
The final training loss is:

L = λyLy + λenLen + λklLkl + λadLad + λdLd (9)

where λ are trade-off hyper-parameters to balance losses.
For inference, we provide three ways: MIX, MAX,

and OOD. MIX means the mixture of experts, MAX uses
the output of the expert with the highest gate value, and
OOD1 (Out of Domain) uses the output of a classifier whose
weights are generated by the hypernetwork taking the D2V
encoder as input.

4. Experiments
4.1. Toy Regression Problem

Although this work focuses on image classification, we
start with a toy regression problem to gain some insight into
the learning dynamics of HMOE, such as how gate values
evolve and how experts become specialized gradually.

1The OOD inference can be efficiently implemented using PyTorch-
based JAX-like library, functorch.

We use the function y = sin(4πx) to generate 10, 20,
and 30 data points uniformly in three intervals: [0, 0.5],
[1, 1.5] and [2, 2.5], respectively. Unequal data points are
used to simulate a naturally unbalanced expert load. All net-
works of HMOE are MLPs, and we create three embedding
vectors of dimension D = 8. We employ Ly (use MSE as
the loss function), Len, and Lkl with λy = λen = λkl = 1,
and train HMOE using Adam [37] with learning rate 0.001
over 20, 000 epochs. More details are presented in the sup-
plementary material.

The evolution of the experts’ outputs and gates values
w.r.t. training epochs is shown in Fig. 3a. We can see that
three experts compete with each other and gradually locate
their positions, and HMOE manages to identify three inter-
vals even with imbalanced data. After training, we compare
three modes of inference, as shown in Fig. 3b. They all
coincide well with the training points. MIX seems to gen-
eralize best to the zones between intervals, while MAX has
discontinuities due to hard switching between experts and
OOD has an unexpected spike. Overall, HMOE demon-
strates an ability to detect heterogeneous patterns in data.
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Figure 3. A toy regression problem. We generate some data points
using the function y = sin(4πx) in three intervals and fit HMOE
with three embedding vectors to these points. HMOE well identi-
fies three intervals and experts also become specialized.

4.2. DomainBed

4.2.1 Datasets and Model Evaluation

DomainBed [26] provides a unified codebase to implement
and train DG algorithms and integrates some commonly
used DG-related datasets. In this section, we experiment on
Colored MNIST with 3 domains [2], Rotated MNIST with
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6 domains [24], PACS with 4 domains [42], VLCS with 4
domains [17], OfficeHome with 4 domains [77], and Ter-
raIncognita with 4 domains [4]. In the supplementary ma-
terial, we give detailed statistics and visualize some sam-
ples for each domain of each dataset.

To select models and tune hyper-parameters, Do-
mainBed gives three options, of which we choose the
training-domain validation that randomly draws 80% from
the data of each training domain to form the training set
and uses the remaining as the validation set. This option
best matches the setting of compound DG without domain
labels and access to test domains.

4.2.2 Implementation Details

For Colored and Rotated MNIST, following [26], we use
as the featurizer a four-layer ConvNet (refer to Appendix
D.1 of [26]). The D2V encoder consists of two conv layers
(32 units, 3 × 3 kernels, ReLU), followed by global aver-
age pooling and a fully-connected (fc) layer to map to the
embedding dimension D.

For other datasets, we use ResNet502 pretrained on Ima-
geNet [11] as the featurizer and freeze all batch normaliza-
tion layers. The D2V encoder cascades 3 conv layers (64-
128-256 units, stride 2, 4 × 4 kernels, ReLU), two residual
blocks (each has 2 conv layers with 256 units, 3×3 kernels,
ReLU), and a 3 × 3 conv layer with D units followed by
global average pooling. In addition, we use Instance Nor-
malization [73] with learnable affine parameters before all
ReLU of the D2V encoder.

For all datasets, the classifier is a fc layer whose input
size is the output size of the featurizer (128 for ConvNet
and 2048 for ResNet50) and output size is the number of
classes per dataset. The hypernetwork is a five-layer MLP
with 256-128-64-32 hidden units and SiLU [30] except the
output layer, and its input size is D and output size is the to-
tal number of learnable parameters (i.e., weights and biases)
of the classifier. If Lad is used, the adversarial classifier is
a three-layer MLP with 256 hidden units and ReLU except
the output layer, and its input size is D and output size is the
number of classes. In addition, we set D = 32 and initialize
embedding vectors using the standard normal distribution.

We define three HMOE variants based on the number of
embedding vectors K and whether domain labels are used:
(1) HMOE-DL: Domain labels of Dtr are provided. In this
case, we only use Ly and Ld with λy = λd = 1 and discard
other losses, and K is the number of training domains per
dataset. (2) HMOE-DN: Domain numbers are known but
domain labels. In this case, K is the number of training
domains per dataset. We use Ly , Len, Lkl, and Lad with
λy = λen = λkl = 1 and λad = 0.01. (3) HMOE-ND: No

2For a fair comparison with other DG algorithms, we use the pretrained
ResNet50 of IMAGENET1K-V1 in PyTorch, although V2 is better.

domain information is available and we use a fixed K = 5.
The setting of losses is the same as in HMOE-DN.

DomainBed trains all DG algorithms with Adam for
5,000 iterations. For Colored and Rotated MNIST / other
datasets, the learning rate is 0.001 / 5e-5, the batch size
is 64 / 32 × number of training domains, and models are
evaluated on the validation set every 100 / 300 iterations.
Each experiment uses one domain of a dataset as the test
domain and trains algorithms on the others, which is re-
peated 3 times with different random seeds. The average
accuracy over 3 replicates is reported. In addition, we do
not tune hyper-parameters and use the settings mentioned
above consistently. Other DG algorithms also use the de-
fault settings predefined in DomainBed. All experiments
are performed on PyTorch using a A5000 GPU.

4.2.3 Results

We use the up-to-date domain generalization benchmark on
DomainBed, and the comparison of our proposed HMOE (3
variants and 3 inference modes) with other DG algorithms
is shown in Tab. 1, where the best results are underlined.
ERM means the vanilla supervised learning that just fine-
tunes ResNet50 on mixed domains, also called DeepAll in
some papers and serving as a performance baseline. We list
the average accuracy of all test domains for each dataset.
Refer to the supplementary material for detailed results.

For Colored and Rotated MNIST, the performance of all
algorithms is almost the same, except for the impressive
results of ARM. Our proposed HMOE achieves SOTA re-
sults on PACS and TerraIncognita, which well demonstrates
the effectiveness of HMOE. However, ERM outperforms
HMOE and most DG algorithms for VLCS and Office-
Home. VLCS contains real camera photos, and its domain
shift is mainly caused by changes in scene and perspective.
We find that the visual differences between various domains
of VLCS are subtle. In this case, forcing to reduce or model
domain discrepancy may cause or aggravate overfitting. For
OfficeHome, this is also the case.

0 2000 4000
# iterations

0.00

0.25

0.50

0.75

1.00

d

OfficeHome
VLCS
Terra Incognita
PACS

Figure 4. Avg. Ld per dataset

Interestingly, HMOE-DL
is inferior to HMOE-
DN/ND in most cases,
which implies that HMOE
works better using its own
learned domain information
than using given domain
labels. We find that latent
domains discovered by
HMOE are more human-
intuitive than original
domain labels (See Sec. 4.2.4).

Fig. 4 shows the supervised loss on domains of HMOE-
DL Ld w.r.t. iterations, which fails to decrease quickly for
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Algorithm ColoredMNIST RotatedMNIST VLCS PACS OfficeHome TerraIncognita
w/ Domain Labels

IRM [2] 52.0 97.7 78.5 83.5 64.3 47.6
GroupDRO [63] 52.1 98.0 76.7 84.4 66.0 43.2

Mixup [83] 52.1 98.0 77.4 84.6 68.1 47.9
MLDG [41] 51.5 97.9 77.2 84.9 66.8 47.7
CORAL [70] 51.5 98.0 78.8 86.2 68.7 47.6
MMD [44] 51.5 97.9 77.5 84.6 66.3 42.2
DANN [22] 51.5 97.8 78.6 83.6 65.9 46.7

CDANN [46] 51.7 97.9 77.5 82.6 65.8 45.8
MTL [5] 51.4 97.9 77.2 84.6 66.4 45.6

ARM [88] 56.2 98.2 77.6 85.1 64.8 45.5
VREx [38] 51.8 97.9 78.3 84.9 66.4 46.4

HMOE-DL
MIX 51.6 97.3 76.7 83.5 64.7 45.0
MAX 51.7 97.0 77.6 83.9 63.2 43.2
OOD 51.7 97.4 76.8 84.5 63.7 44.0

w/o Domain Labels
ERM [76] 51.5 98.0 77.5 85.5 66.5 46.1
RSC [31] 51.7 97.6 77.1 85.2 65.5 46.6

SagNet [55] 51.7 98.0 77.8 86.3 68.1 48.6

HMOE-DN
MIX 51.9 97.5 76.8 84.8 65.4 48.7
MAX 51.9 97.4 76.6 85.1 65.4 49.5
OOD 51.9 97.5 75.8 84.9 65.3 48.4

HMOE-ND
MIX 51.6 97.5 76.6 84.5 65.5 48.4
MAX 51.7 97.4 76.8 86.6 65.5 45.0
OOD 51.7 97.5 76.7 87.0 65.6 47.1

Table 1. Domain generalization results on DomainBed

OfficeHome and VLCS. This means that the information
of domain labels is not well absorbed and seems to be in-
compatible with HMOE. In addition, HMOE-DN / ND are
basically tied in terms of performance. For the three modes
of inference, MAX and OOD achieve competitive or better
performance compared to MIX. Therefore, we can safely
employ MAX and OOD in practice, which are more compu-
tationally efficient without computing all experts like MIX.

4.2.4 Latent Domain Discovery

We use t-SNE [75] to visualize the output of the D2V en-
coder, as shown in Fig. 5. We can see that HMOE suc-
ceeds in partitioning the mixed data into a number of clus-
ters, each around an embedding vector. The output of the
D2V encoder converges to embedding vectors, which is as
expected. For PACS (Fig. 5a), training domains are well
separated. Some cartoon images look quite artistic and are
classified as art. In addition, test photo samples are pro-
jected into the art cluster, which suggests that the D2V en-
coder should capture some semantics about latent domains
since photo is closest to art. When we increases the number
of embedding vectors K to 5, cartoon and sketch clusters
are split into two sub-parts, as shown in Fig. 5b. For Ter-
raIncognita (Fig. 5c), the dots of the same color are largely
clustered together, and training domains are to some extent

separated, although L38 and L43 are partially mixed. The
test domain L46 seems to be more similar to L100. For
OfficeHome (Fig. 5d), training domains are mixed in each
cluster, which indicates a conflict between domain labels
and inferred domains, and also explains why Ld cannot be
reduced significantly for OfficeHome in Fig. 4.

To understand more intuitively how HMOE distin-
guishes between different domains, we visualize some sam-
ples to compare domain labels and HMOE clusters, as
shown in Fig. 6. HMOE seemingly partitions TerraIncog-
nita based on illumination and OfficeHome based on back-
ground complexity, which is more in line with human intu-
ition about different domains than original domain labels.

After the above analysis, we conclude that the success
of HMOE, e.g., SOTA on PACS and TerraIncognita, is at-
tributed to its ability to self-learn more reasonable and in-
formative domain knowledge and use it efficiently.

4.2.5 More Empirical Analysis

Ablation study We conduct an ablation study to analyze
the contribution of class-adversarial learning. The results
are shown in Tab. 2, which reports the average accuracy
of three inference modes. As we can see, class-adversarial
learning helps significantly improve performance in most
cases, which validates its use and verifies the importance
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Figure 5. The t-SNE visualization of the output of the D2V encoder. The suffixes in captions (DN and ND) represent HMOE-DN / ND, red
squares are embedding vectors, black triangles are 20 samples randomly drawn from the test domain, and other dots are training domains.
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Figure 6. Comparison between domain labels and HMOE clusters

and necessity of removing class-specific information from
the D2V encoder.

Lad VLCS PACS OfficeHome TerraIncognita

HMOE-DN
- 76.0 84.0 64.2 47.0
✓ 76.4 84.9 65.4 48.9

HMOE-ND
- 76.9 84.5 64.4 47.4
✓ 76.7 86.0 65.5 46.8

Table 2. Ablation study on class-adversarial learning

More embedding vectors We further increase K to 8,
and we find that HMOE suffers from the learning collapse
problem, i.e., some embedding vectors collapse together
and the D2V encoder outputs similar values, as shown in
Fig. 7. When embedding vectors are much more than
needed, HMOE encounters difficulties in how to assign the
data to different experts and ends up with a large Lkl. In this
case, increasing λkl may alleviate the learning collapse.

Only supervised loss on targets Using only Ly , we train
HMOE with K = 3 on OfficeHome. In the absence of
the entropy loss Len forcing gate values to become one-hot,
HMOE performs soft partitioning on the input space. The
t-SNE visualization is shown in Fig. 8, which is obviously
not comparable to Fig. 5d, for which clusters are distinctly
separated. This demonstrates that the dense-to-sparse Top-1
routing algorithm works as expected and largely improves
latent domain discovery compared to soft partitioning.

Art
Cartoon

Sketch
Photo

Figure 7. PACS-ND (K = 8)
and learning collapse

Art
Clipart

Product
Real

Figure 8. OfficeHome for
HMOE (K = 3 and only Ly)

5. Conclusion
This paper presents a novel method, HMOE, for com-

pound DG without the need for domain labels. Com-
pared to other methods requiring domain labels, HMOE
shows competitive performance and achieves SOTA results
on PACS and TerraIncognita datasets. In addition, HMOE
exhibits the distinctive property of latent domain discovery.
It is worth mentioning that the discovery and utilization of
domain information are jointly undertaken rather than in
stages like other related work. The key to our work is to
use Mixture of Experts (MoE) and leverage its divide and
conquer ability. In addition, we leverage hypernetworks to
generate the weights of expert networks.

However, it remains unclear how to effectively determine
an appropriate number of experts or embedding vectors to
fully explore domain information while avoiding the learn-
ing collapse. A promising but challenging solution that we
will explore in future work is to use tree-structured hier-
archical MoE to discover hierarchical domain knowledge,
where each level contains only a number of experts but
the number of multi-level inferred domains grows exponen-
tially. Moreover, our proposed HMOE is versatile and scal-
able, and it should also be applicable to a wide range of
problems beyond the scope of DG that are troubled by het-
erogeneous patterns.
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HMOE: Hypernetwork-based Mixture of Experts for Domain Generalization

Supplementary Material

A. Toy Regression Problem
For the toy regression problem, HMOE uses three embedding vectors of dimension D = 8, which are initialized using the

standard normal distribution. All networks of HMOE are MLPs. The featurizer is a three-layer MLP with 32 hidden units,
and its input size is 1 and output size is 32. The encoder is a three-layer MLP with 32 hidden units, and its input size is 1
and output size is D. The classifier is a two-layer MLP with 32 hidden units, and its input size is 32 and output size is 1.
The hypernetwork is a four-layer MLP with 32 hidden units, and its input size is D and output size is the total number of
learnable parameters (i.e., weights and biases) of the classifier. In addition, all MLPs use SiLU [30] except the output layers.

B. DomainBed
B.1. Description and visualization of datasets

Dataset Domains # of classes # of samples Image size
+90% +80% -90%

ColoredMNIST [2] 2 70,000 (2, 28, 28)

(degree of correlation between color and label)
0◦ 15◦ 30◦ 45◦ 60◦ 75◦

RotatedMNIST [24] 10 70,000 (1, 28, 28)

Caltech101 LabelMe SUN09 VOC2007

VLCS [17] 5 10,729 (3, 224, 224)

Art Cartoon Photo Sketch

PACS [42] 7 9,991 (3, 224, 224)

Art Clipart Product Photo

OfficeHome [77] 65 15,588 (3, 224, 224)

L100 L38 L43 L46

TerraIncognita [4] 10 24,788 (3, 224, 224)

(camera trap location)

Table 3. Description and visualization of datasets used in our experiments (Adapted from [26])

B.2. Detailed domain generalization results

We provide the domain generalization results of each test domain for each dataset, and the best results are underlined.
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Algorithm +90% +80% -90% Avg
w/ Domain Labels

IRM [2] 72.5 73.3 10.2 52.0
GroupDRO [63] 73.1 73.2 10.0 52.1

Mixup [83] 72.7 73.4 10.1 52.1
MLDG [41] 71.5 73.1 9.8 51.5
CORAL [70] 71.6 73.1 9.9 51.5
MMD [44] 71.4 73.1 9.9 51.5
DANN [22] 71.4 73.1 10.0 51.5

CDANN [46] 72.0 73.0 10.2 51.7
MTL [5] 70.9 72.8 10.5 51.4

ARM [88] 82.0 76.5 10.2 56.2
VREx [38] 72.4 72.9 10.2 51.8

HMOE-DL
MIX 71.8 72.9 10.1 51.6
MAX 71.9 73.1 10.1 51.7
OOD 71.9 73.2 10.1 51.7
w/o Domain Labels

ERM [76] 71.7 72.9 10.0 51.5
RSC [31] 71.9 73.1 10.0 51.7

SagNet [55] 71.8 73.0 10.3 51.7

HMOE-DN
MIX 72.0 73.0 10.7 51.9
MAX 72.0 73.0 10.7 51.9
OOD 72.0 73.0 10.7 51.9

HMOE-ND
MIX 71.6 73.2 10.1 51.6
MAX 71.9 73.2 10.2 51.7
OOD 71.6 73.5 10.1 51.7

Table 4. Domain generalization results on ColoredMNIST

Algorithm 0 15 30 45 60 75 Avg
w/ Domain Labels

IRM [2] 95.5 98.8 98.7 98.6 98.7 95.9 97.7
GroupDRO [63] 95.6 98.9 98.9 99.0 98.9 96.5 98.0

Mixup [83] 95.8 98.9 98.9 98.9 98.8 96.5 98.0
MLDG [41] 95.8 98.9 99.0 98.9 99.0 95.8 97.9
CORAL [70] 95.8 98.8 98.9 99.0 98.9 96.4 98.0
MMD [44] 95.6 98.9 99.0 99.0 98.9 96.0 97.9
DANN [22] 95.0 98.9 99.0 99.0 98.9 96.3 97.8

CDANN [46] 95.7 98.8 98.9 98.9 98.9 96.1 97.9
MTL [5] 95.6 99.0 99.0 98.9 99.0 95.8 97.9

ARM [88] 96.7 99.1 99.0 99.0 99.1 96.5 98.2
VREx [38] 95.9 99.0 98.9 98.9 98.7 96.2 97.9

HMOE-DL
MIX 94.5 97.7 98.8 98.7 99.0 94.9 97.3
MAX 94.1 97.9 98.5 98.5 98.6 94.7 97.0
OOD 95.0 97.9 98.6 98.9 99.1 94.7 97.4

w/o Domain Labels
ERM [76] 95.9 98.9 98.8 98.9 98.9 96.4 98.0
RSC [31] 94.8 98.7 98.8 98.8 98.9 95.9 97.6

SagNet [55] 95.9 98.9 99.0 99.1 99.0 96.3 98.0

HMOE-DN
MIX 94.1 98.6 98.7 98.6 99.0 95.9 97.5
MAX 94.0 98.6 98.7 98.6 98.8 95.9 97.4
OOD 94.0 98.6 98.7 98.6 99.0 95.9 97.5

HMOE-ND
MIX 94.1 98.6 98.7 98.6 99.0 95.9 97.5
MAX 94.0 98.6 98.7 98.6 98.8 95.9 97.4
OOD 94.0 98.6 98.7 98.6 99.0 95.9 97.5

Table 5. Domain generalization results on RotatedMNIST
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Algorithm Caltech101 LabelMe SUN09 VOC2007 Avg
w/ Domain Labels

IRM [2] 98.6 64.9 73.4 77.3 78.5
GroupDRO [63] 97.3 63.4 69.5 76.7 76.7

Mixup [83] 98.3 64.8 72.1 74.3 77.4
MLDG [41] 97.4 65.2 71.0 75.3 77.2
CORAL [70] 98.3 66.1 73.4 77.5 78.8
MMD [44] 97.7 64.0 72.8 75.3 77.5
DANN [22] 99.0 65.1 73.1 77.2 78.6

CDANN [46] 97.1 65.1 70.7 77.1 77.5
MTL [5] 97.8 64.3 71.5 75.3 77.2

ARM [88] 98.7 63.6 71.3 76.7 77.6
VREx [38] 98.4 64.4 74.1 76.2 78.3

HMOE-DL
MIX 97.7 62.3 72.0 74.8 76.7
MAX 97.0 63.6 73.2 76.7 77.6
OOD 97.0 63.4 72.0 74.9 76.8

w/o Domain Labels
ERM [76] 97.7 64.3 73.4 74.6 77.5
RSC [31] 97.9 62.5 72.3 75.6 77.1

SagNet [55] 97.9 64.5 71.4 77.5 77.8

HMOE-DN
MIX 97.1 63.8 71.2 75.1 76.8
MAX 97.4 63.4 70.9 74.8 76.6
OOD 96.4 62.9 69.3 74.7 75.8

HMOE-ND
MIX 95.8 65.7 72.4 72.5 76.6
MAX 97.3 61.7 72.1 76.1 76.8
OOD 96.9 61.8 72.0 76.0 76.7

Table 6. Domain generalization results on VLCS

Algorithm Art Cartoon Photo Sketch Avg
w/ Domain Labels

IRM [2] 84.8 76.4 96.7 76.1 83.5
GroupDRO [63] 83.5 79.1 96.7 78.3 84.4

Mixup [83] 86.1 78.9 97.6 75.8 84.6
MLDG [41] 85.5 80.1 97.4 76.6 84.9
CORAL [70] 88.3 80.0 97.5 78.8 86.2
MMD [44] 86.1 79.4 96.6 76.5 84.6
DANN [22] 86.4 77.4 97.3 73.5 83.6

CDANN [46] 84.6 75.5 96.8 73.5 82.6
MTL [5] 87.5 77.1 96.4 77.3 84.6

ARM [88] 86.8 76.8 97.4 79.3 85.1
VREx [38] 86.0 79.1 96.9 77.7 84.9

HMOE-DL
MIX 84.1 77.3 96.3 76.4 83.5
MAX 82.9 78.6 95.9 78.1 83.9
OOD 85.0 78.3 95.3 79.4 84.5

w/o Domain Labels
ERM [76] 84.7 80.8 97.2 79.3 85.5
RSC [31] 85.4 79.7 97.6 78.2 85.2

SagNet [55] 87.4 80.7 97.1 80.0 86.3

HMOE-DN
MIX 83.9 82.3 95.0 77.9 84.8
MAX 84.7 82.4 96.4 76.9 85.1
OOD 83.9 80.2 95.6 80.1 84.9

HMOE-ND
MIX 88.8 78.9 96.6 73.9 84.5
MAX 88.8 82.7 95.7 79.1 86.6
OOD 88.9 84.3 95.7 79.0 87.0

Table 7. Domain generalization results on PACS
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Algorithm Art Clipart Product Real Avg
w/ Domain Labels

IRM [2] 58.9 52.2 72.1 74.0 64.3
GroupDRO [63] 60.4 52.7 75.0 76.0 66.0

Mixup [83] 62.4 54.8 76.9 78.3 68.1
MLDG [41] 61.5 53.2 75.0 77.5 66.8
CORAL [70] 65.3 54.4 76.5 78.4 68.7
MMD [44] 60.4 53.3 74.3 77.4 66.3
DANN [22] 59.9 53.0 73.6 76.9 65.9

CDANN [46] 61.5 50.4 74.4 76.6 65.8
MTL [5] 61.5 52.4 74.9 76.8 66.4

ARM [88] 58.9 51.0 74.1 75.2 64.8
VREx [38] 60.7 53.0 75.3 76.6 66.4

HMOE-DL
MIX 59.5 50.5 73.6 75.2 64.7
MAX 58.5 47.7 72.5 74.1 63.2
OOD 58.6 49.9 72.8 73.7 63.7

w/o Domain Labels
ERM [76] 61.3 52.4 75.8 76.6 66.5
RSC [31] 60.7 51.4 74.8 75.1 65.5

SagNet [55] 63.4 54.8 75.8 78.3 68.1

HMOE-DN
MIX 59.4 52.9 74.6 74.7 65.4
MAX 60.0 52.1 74.6 74.9 65.4
OOD 60.2 52.5 73.6 74.7 65.3

HMOE-ND
MIX 60.0 52.4 74.3 75.1 65.5
MAX 60.0 52.4 73.3 76.3 65.5
OOD 60.0 54.1 72.8 75.6 65.6

Table 8. Domain generalization results on OfficeHome

Algorithm L100 L38 L43 L46 Avg
w/ Domain Labels

IRM [2] 54.6 39.8 56.2 39.6 47.6
GroupDRO [63] 41.2 38.6 56.7 36.4 43.2

Mixup [83] 59.6 42.2 55.9 33.9 47.9
MLDG [41] 54.2 44.3 55.6 36.9 47.7
CORAL [70] 51.6 42.2 57.0 39.8 47.6
MMD [44] 41.9 34.8 57.0 35.2 42.2
DANN [22] 51.1 40.6 57.4 37.7 46.7

CDANN [46] 47.0 41.3 54.9 39.8 45.8
MTL [5] 49.3 39.6 55.6 37.8 45.6

ARM [88] 49.3 38.3 55.8 38.7 45.5
VREx [38] 48.2 41.7 56.8 38.7 46.4

HMOE-DL
MIX 43.1 44.9 55.8 36.1 45.0
MAX 42.2 38.1 55.0 37.4 43.2
OOD 43.0 42.2 54.6 36.3 44.0

w/o Domain Labels
ERM [76] 49.8 42.1 56.9 35.7 46.1
RSC [31] 50.2 39.2 56.3 40.8 46.6

SagNet [55] 53.0 43.0 57.9 40.4 48.6

HMOE-DN
MIX 54.0 43.6 58.3 38.8 48.7
MAX 54.0 47.0 58.3 38.8 49.5
OOD 54.1 42.1 58.3 39.0 48.4

HMOE-ND
MIX 58.8 41.8 56.1 36.8 48.4
MAX 44.7 41.8 56.5 36.8 45.0
OOD 53.4 41.8 55.6 37.5 47.1

Table 9. Domain generalization results on TerraIncognita
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