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Abstract: Although piezocomposite (PC) materials have increasingly attracted researchers, there is still a need to 

properly and easily derive their properties. We develop a generalized homogenization model (GHM) that accounts 

for Smith and Cha approaches to evaluate the equivalent characteristics of piezocomposites. This method could be 

applied to all connectivities patterns, but restricted herein to 2-2 and 1-3 piezocomposites for comparison with 

Smith (1-3) and Cha (2-2) analytical results. In the proposed GHM is a parameter θ, is changed for various 

connectivities. The 1-3 and 2-2 PZT-7A/Araldite D (PCs) data are used and equivalent characteristics of these Pcs 

are determined as function of volume fraction of PZT-7A piezoelectric. Results show that the electromechanical 

coefficients are well fitted by Voigt and Reuss models. Results obtained for some parameters show that the 

proposed GHM is consistent with the analytical existing models used for the 1-3 and 2-2 connectivities and is in 

line with measured values from Chan and Unsworth (1989). Based on the GHM 2-2 configuration results of 

piezocomposite materials, the electroacoustic responses of transducers having some of these properties are 

simulated using the KLM model. A performance trade-off was chosen, resulting in an improved thickness coupling 

coefficient and a lowered acoustical impedance, and a similar approach as that on a pure PZT-7A. 

Keywords: Piezoelectric materials, generalized homogenization models, material connectivity, ultrasonic 

transducers. 

 

1. Introduction 

The use of ultrasonic waves for inspection, control and material characterization is nowadays widely explored. 

Piezoelectric materials are the most used as active material for ultrasound applications and both their compositions 

and fabrication methods have known strong developments, especially in submarine detection systems and 

biomedical imaging [1–4]. In addition, the use of these materials is likely to expand to mobile and embedded 

electronics. Applications of piezoelectric materials require improvement of their characteristics. The 

electromechanical behavior study of composite materials necessarily involves multi scale methods [5–7] that are 

generally difficult to implement. Therefore, numerical modeling is preferred when studying their micro-macro 

mechanical behavior. 

Various works dealing with homogenization of PC properties are found in the literature. Especially, in linear 

elasticity, the upper and lower bounds of homogenization models are the sum of the stiffness coefficients (Voigt) 

[8] and the reciprocal compliance coefficients of the constituent phases (Reuss) [9]. Following this trend, 

Hashimoto and Yamaguchi [10] proposed an analytical method termed the matrix method for calculating 

equivalent composite elastic coefficients. Their method was further applied to the case of the 2-2 and 1-3 PC 

patterns, assuming that the stress and electric displacement are continuous in the perpendicular direction to the 

interface and that the strain and electric fields are continuous in the parallel direction to the interface. Levassort et 

al. [11] also focused on the matrix method; they described a generic formalism that can be easily transposed to 

other connectivities, the 0-3 PC pattern for instance was used for illustration purposes. The matrix method also 

used to evaluate all of the effective parameters of pure 0-3 and 3-3 piezocomposites, then it is used to obtain the 

effective properties of a 3-3(0-3) composite [12]. The model developed by Smith [13] is valid for a PC with a 

lateral spatial scale sufficiently fine for the material to be treated as a homogeneous continuum. To determine the 

elastic, piezoelectric and dielectric coefficients, Smith [13] proposed 3D relationships for the polymer matrix phase 
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and the piezoelectric ceramic phase . The assumption of an isostrain in 𝑥1  and 𝑥2  directions for the matrix and 

the piezoelectric phases was used (𝑆1
𝑝,𝑐
= 𝑆2

𝑝,𝑐
) (see Fig. 1 and 2 for the definition of axis). Cha [14] assumed that 

the 2 direction length of the 2-2 PC is infinite compared with that of the 𝑥1 direction. Likewise, the isostrain 

hypothesis about the 𝑥2  direction in the matrix and the piezoelectric phases are used. The said strain can be 

assumed null (𝑆2
𝑝
= 𝑆2

𝑐= 0). Levin et al. [15] analyzed the effective properties of electroelastic composites using 

the self-consistent and asymptotic homogenization methods. Their results are valid for high contrasts among all 

the physical parameters (ceramic fiber and polymer matrix), and to mention that the explicit self-consistent 

equations provided with the effective field hypothesis yields the same equations as the Mori-Tanaka method. Della 

et al. [6] studied the performance of 1-3 PC pattern that consist of an active and passive phases using the Mori-

Tanaka model (MTM) [16]. They reported that, electromechanical parameters obtained when an active polymer 

phase is used, can improve the performance of the studied hydrophone. For the 1-3 and 2-2 PCs, the electroacoustic 

responses of transducers having some of those properties are simulated using the KLM model [3], consisting in an 

electrical equivalent model which takes into account both the acoustic properties of the front and rear surrounding 

media, as well as the electrical environment. As a result, an optimal design of transducer aimed at ultrasound 

imaging applications is proposed as a dedicated imaging performance index, elaborated through a trade-off 

between sensitivity and bandwidth [17,18]. Topolov et al. [19,20] also applied the MTM, to derive the 0-3 PC type 

made up of a relaxor-ferroelectric single crystals, after they are evaluated the problems of piezocomposite 

sensitivity based on ferroelectric ceramics and figures of merit [21]. 

Wenkang Qi and Wenwu Cao [22], carried out the finite elements analysis (FEA) and experiments on resonance 

in thickness mode of the 2-2 PC sensors. It should be noted that the effective average theory (EAT) yields good 

results when the a / l aspect ratio (where “a’’ donates the dimension along the direction 𝑥3, and “l” is the 

piezoelectric rod dimension perpendicular to the direction 𝑥3) is lower than 0.4; but for aspect ratios higher than 

0.4, the predicted EAT resonance values will be larger than the natural frequencies of the transducers. 

Madhusudhana [23] carried out numerical and analytical studies on the 1-3 PZT 7A/Araldite D PC. It was found 

that the effective properties are sensitive to a / l only for high volume fraction. It was also reported that the relative 

permittivity is almost independent on a / l no matter the volume fraction. Mai Pham Thi et al. [1] conducted a 

surface study of a single crystal PMN-PT 0-3 and 1-3 PC used as a transducer. They reported that the predicted 

coupling coefficient in thickness mode is twofold that of the standard PZT material. Yanjun Zhang et al., [24] had 

proposed a theoretical model which can reproduce the effective parameters of 1-3 piezoelectric composites with a 

sandwich polymer in the thickness mode, and theirs assumptions are made on the basis of uniform field theories 

and the rule of mixtures. The measured electromechanical coupling factor was improved by more than 9.8% over 

the PZT/resin 1-3 piezoelectric composite. Sakthivel et al. [25] carried out a parametric study, to investigate the 

effects of variations in the poling characteristics of the fiber and matrix phase on the overall thermo-electro-

mechanical behavior of a 1-3 piezocomposite. In their study, an analytical method accounting for the “parallel” 

and “series” theory was introduced for the 1-3 PC. They showed that the variations of the elastic, piezoelectric and 

dielectric constant with the volume fraction of the ceramic rod are nonlinear. 

Electromechanical coupling coefficient directly reflects the electromechanical energy conversion capability of a 

piezoelectric device. It is an important parameter for the performance of piezoelectric transducers, thus Wang et 

al. [7] established a unified formula to test the effect of the “kerf filler” (which is the polymer matrix phase of the 

piezocomposite in this case) on the electromechanical coupling coefficient of the 1-3 PCs. With regard to the 

influence of the “kerf filler” on the electromechanical coupling coefficient, only the 2-2 PC was studied. As a 

general rule, they concluded that the coupling coefficient increases with the decrease in the elastic coefficient of 

the “kerf filler”. Wang extended the modified series and parallel model to 1-3-2 PC type and calculated the 

effective parameters of the 1-3-2 composites [26], [27]. Zhou et al. [4], worked on a single piezoelectric crystal of 

the 1-3 PCs  without lead material for ultrasonic sensor. A comparison of these results and their corresponding 

finite element estimates was further done by Martinez et al. [28]. Geers et al. [29] worked on multi-scale 

computational homogenization. The effective electromechanical coefficients have been calculated by Berger et 

al., [30] using the asymptotic homogenization method (AHM) for six different fiber volume fractions. Avellaneda 

et al. [31] proposed an approach using an effective medium to evaluate the performance of 1-3 

polymer/piezoelectric ceramic composites for hydrophone applications. He shows that the composite was treated 

as an equivalent homogeneous continuum or effective medium, and its effective properties were computed from 

the effective response tensor. Dunn and Taya [26, 27] made an analysis of piezoelectric composite materials 

containing ellipsoidal inhomogeneities. Some authors focused on various other problems such as the elastic 
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properties of reinforced solids: the determination of the elastic field of an ellipsoidal inclusion and related problems 

[34], some theoretical principles [35], the average stress in matrix and average elastic materials energy with 

imperfect inclusions [36]. Pakam et al. [37] developed an analytical model based on a theoretical model of 1-3-2 

piezocomposites and studied the effect of the ceramic base volume fraction on the overall 1-3-2 magneto-electro-

elastic composite behavior;  in their study, the simulated results compared with the results from finite element 

methods. 

For each PC pattern there exists a specific model to compute the PCs effective coefficients. In our study, we are 

interested in having a GHM that can be applied to all connectivity patterns by replacing a parameter, say θ, specific 

to each PC pattern. Numerical simulations based on the new model are to be implemented for validation purposes. 

 

2. Connectivity 

To define how phases are coupled, Newnham et al. [38] introduced the concept of connectivity. The 

piezocomposites are classified according to their connectivity (such as 2-2, 1-3, 0-3, 3-3 etc…), the first phase is 

by convention the piezoelectric phase. Connectivity is defined as the number of dimensions through which the 

material is continuous. For the 2-2 piezocomposites, two representations (fig.1a, fig.1b) are possible and in this 

paper, we have homogenized the 2-2 parallel model (fig.1b) whose piezoelectric phase is poled in its longitudinal 

direction (direction 𝑥3). 

 

 

 

(a) (b) 

Figure 1 – Basic piezocomposite cell for the 2-2 (a) series and (b) parallel connectivities. 

 

The 1-3 piezocomposites consist of the active piezoelectric rods (continuous connectivity in one dimension) 

which are embedded into the passive matrix that has continuous connectivity along all three dimensions. This 

configuration is illustrated in fig. 2 and the piezoelectric phase is poled along its a longitudinal direction 

(direction 𝑥3). 

 

 
Figure 2 – Schematic representation of 1-3 piezocomposite made from PZT rods in a polymer matrix. 
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3. Development of generalized homogenization model 

3.1. Constitutive equations 

For an infinitesimal strain, the components of the second order strain tensor are defined by the following equation: 

𝑆𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) with 𝑢𝑖,𝑗 = 

𝜕𝑢𝑖

𝜕𝑥𝑗
     (1) 

where 𝑆𝑖𝑗  are the strain tensor components, the indices i and j are equal to 1, 2 or 3, 𝑢𝑖 is a component of the 

displacement vector 𝑢(𝑥) along the 𝑥𝑖 axis. 

In a piezoelectric material, electrical and mechanical phenomena interact, resulting in electromechanical effects. 

Neglecting the pyroelectric effect, the constitutive equation of piezoelectricity can be written as a generalized 

Hooke’s law: 

(𝑇
𝐷
) = [ 𝑐

𝐸 −𝑒𝑡

 𝑒 𝜖𝑆
] (𝑆

𝐸
)       (2) 

where the contracted symmetric matrix notation is used. Two suffixes are abbreviated in to single one according 

to the following scheme: 

Tensor notation 11 22 33 23 (or 32) 13 (or 31) 12 (or 21) 

Matrix notation 1 2 3 4 5 6 

𝑇 is the stress vector which includes all the components of the stress tensor 𝑇 = (𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5, 𝑇6) (see Eqs. 3-

11). In the same way, the strain vector is 𝑆 = (𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6), the electrical field vector is 𝐸 = (𝐸1, 𝐸2, 𝐸3) 

and the electrical displacement field vector is 𝐷 = (𝐷1, 𝐷2, 𝐷3). 𝑐
𝐸 the stiffness components at constant electrical 

field, e the piezoelectric components (where 𝑒𝑡 is the transpose of the piezoelectric components), and 𝜖𝑆 the 

dielectric components at constant strain, and the parameters of the homogenized material are noted with an over-

stricke. In the MKS system, the variables of the different properties have the following units [32]: 

[𝑇] is in N m2⁄ ,  [𝑆] is inm m⁄ ,   [𝐷] is in N (Vm)⁄ , [𝐸] is in V m⁄ , 

[𝑐𝐸] is in N m2⁄ ,  [𝑒] is in N (Vm)⁄ = C m2⁄ , [𝜖𝑆] is inN V2 =⁄ C2 (Nm2)⁄ . 

 

3.2. Model formulation 
 

A generalized homogenization model (GHM) developed here is based on the Smith and Cha models. Whereas 

the uniform field theories developed by Y. Benveniste and G. J. Dvorak [39] are made on the basis of the rule of 

mixtures of Voigt and Reuss. The constitutive relations for the components phases give the stress and electric 

displacement at every point (𝑥1, 𝑥2, 𝑥3) within the plate. To apply boundary conditions and the conditions of 

continuity between the two phases, the constitutive equations of Smith and Cha models are considered when one 

use the two concerned connectivities. The polymer phase is an isotropic homogeneous medium that is 

piezoelectrically inactive, thus for (𝑥1, 𝑥2, 𝑥3) within the polymer phase we have: 

  

[
 
 
 
 
 
 
 
 
 
 
𝑇1
𝑝

𝑇2
𝑝

𝑇3
𝑝

𝑇4
𝑝

𝑇5
𝑝

𝑇6
𝑝

𝐷1
𝑝

𝐷2
𝑝

𝐷3
𝑝
]
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
𝑐11 𝑐12 𝑐13
𝑐12 𝑐11 𝑐13
𝑐13
0
0
0
0
0
0

𝑐13
0
0
0
0
0
0

𝑐33
0
0
0
0
0
0

   

0 0 0
0 0 0
0
𝑐44
0
0
0
0
0

0
0
𝑐44
0
0
0
0

0
0
0
𝑐66
0
0
0

   

0 0 0
0 0 0
0
0
0
0
𝜖11
0
0

0
0
0
0
0
𝜖11
0

0
0
0
0
0
0
𝜖33]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
𝑆1
𝑝

𝑆2
𝑝

𝑆3
𝑝

𝑆4
𝑝

𝑆5
𝑝

𝑆6
𝑝

𝐸1
𝑝

𝐸2
𝑝

𝐸3
𝑝
]
 
 
 
 
 
 
 
 
 
 

    (3a-i) 
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We consider the piezoelectric ceramics to be poled along the rods perpendicular to the plate, hence for (𝑥1, 𝑥2, 𝑥3) 

in the ceramic phase we have: 

  

[
 
 
 
 
 
 
 
 
 
𝑇1
𝑐

𝑇2
𝑐

𝑇3
𝑐

𝑇4
𝑐

𝑇5
𝑐

𝑇6
𝑐

𝐷1
𝑐

𝐷2
𝑐

𝐷3
𝑐]
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
𝑐11
𝐸 𝑐12

𝐸 𝑐13
𝐸

𝑐12
𝐸 𝑐11

𝐸 𝑐13
𝐸

𝑐13
𝐸

0
0
0
0
0
𝑒31

𝑐13
𝐸

0
0
0
0
0
𝑒31

𝑐33
𝐸

0
0
0
0
0
𝑒33

   

0 0 0
0 0 0
0
𝑐44
𝐸

0
0
0
𝑒15
0

0
0
𝑐44
𝐸

0
𝑒15
0
0

0
0
0
𝑐66
𝐸

0
0
0

   

0 0 −𝑒31
0 0 −𝑒31
0
0

−𝑒15
0
𝜖11
𝑆

0
0

0
−𝑒15
0
0
0
𝜖11
𝑆

0

−𝑒31
0
0
0
0
0
𝜖33
𝑆
]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
𝑆1
𝑐

𝑆2
𝑐

𝑆3
𝑐

𝑆4
𝑐

𝑆5
𝑐

𝑆6
𝑐

𝐸1
𝑐

𝐸2
𝑐

𝐸3
𝑐]
 
 
 
 
 
 
 
 
 

   (4a-i) 

Solving Eqs (4a-4i) for material properties necessitates several approximations used for the derivation of the 

thickness-mode oscillations in 1-3 PC [13]. In particular, it is assumed that the strain and electric fields are 

independent of the individual ceramic and polymer phases, and the electric field is applied only to the 𝑥3  direction 

in thickness mode oscillations. These approximations are as follows [13,14]: 

* Based on the subsequent approximation in which the ceramic and the polymer move together in a uniform 

thickness oscillation, the vertical strains are the same in both phases, i.e., 

𝑆3
𝑝
= 𝑆3

𝑐 = 𝑆3̅        (5) 

* In addition, since the faces of the composite plates are electroded and thus equipotentials, the electric field is 

assumed to be the same in both phases, i.e., 

𝐸3
𝑝
= 𝐸3

𝑐 = �̅�3        (6) 

* It is also assumed that the lateral stress (the stress on the lateral faces) is the same in both phases. Also, the 

ceramic’s lateral strain is compensated by a complementary strain of the polymer, so that the composite as a whole 

is laterally clamped. Therefore, 

𝑇𝑖
𝑝
= 𝑇𝑖

𝑐 = �̅�𝑖, 𝑖 = 1, or   2      (7) 

𝑆�̅� = 𝜈𝑆𝑖
𝑐 + �̅�𝑆𝑖

𝑝
= 0, 𝑖 = 1, or   2      (8) 

where 𝜈 is the ceramic volume fraction, and �̅� = 1 − 𝜈 is the volume fraction of polymer. It can also be assumed 

that the total stress and electric displacement are obtained by averaging the above contributions of the constituent 

phases. Since the lateral periodicity is sufficiently fine, we find the effective total stress and electric displacement 

by averaging over the contributions of the constituent phases. Hence we have: 

�̅�3 = 𝜈𝑇3
𝑐 + �̅�𝑇3

𝑝
,        (9) 

�̅�3 = 𝜈𝐷3
𝑐 + �̅�𝐷3

𝑝
.       (10) 

From Eq (7), 𝑇1
𝑝
= 𝑇1

𝑐 we can deduce: 

𝑐11𝑆1
𝑝
+ 𝑐12𝑆2

𝑝
+ 𝑐12𝑆3

𝑝
= 𝑐11

𝐸 𝑆1
𝑐 + 𝑐12

𝐸 𝑆2
𝑐 + 𝑐13

𝐸 𝑆3
𝑐 − 𝑒31𝐸3

𝑐   (11) 

From Eq (8), we have: 

𝑆𝑖
𝑝
= −

𝜈

�̅�
𝑆𝑖
𝑐        (12) 

Using Eq (12) in (11) we have: 
𝜈

�̅�
(𝑐11 + 𝑐11

𝐸 )𝑆1
𝑐 + (

𝜈

�̅�
𝑐12 + 𝑐12

𝐸 ) 𝑆2
𝑐 = (𝑐12 − 𝑐13

𝐸 )𝑆3̅ + 𝑒31�̅�3   (13) 

In the same way, 

𝑐12𝑆1
𝑝
+ 𝑐11𝑆2

𝑝
+ 𝑐12𝑆3̅ = 𝑐12

𝐸 𝑆1
𝑐 + 𝑐11

𝐸 𝑆2
𝑐 + 𝑐13

𝐸 𝑆3̅ − 𝑒31�̅�3   (14) 

(
𝜈

�̅�
𝑐12 + 𝑐12

𝐸 ) 𝑆1
𝑐 + (

𝜈

�̅�
𝑐11 + 𝑐11

𝐸 ) 𝑆2
𝑐 = (𝑐12 − 𝑐13

𝐸 )𝑆3̅ + 𝑒31�̅�3   (15) 

After some calculation, by combining Eqs (13) and (15), we obtain: 

[
𝑆1
𝑐

𝑆2
𝑐] = [

𝛼(𝑐12 − 𝑐13
𝐸 ) −𝛽(𝑐12 − 𝑐13

𝐸 )

−𝛽(𝑐12 − 𝑐13
𝐸 ) 𝛼(𝑐12 − 𝑐13

𝐸 )
] [
𝑆3̅
𝑆3̅
] + [

𝛼(𝑒31) −𝛽(𝑒31)
−𝛽(𝑒31) 𝛼(𝑒31)

] [
�̅�3
�̅�3
]  (16) 

As a result, the displacement components 𝑆1
𝑐 = 𝑆2

𝑐 are identified as equal along the axis 1 and axis 2. 

Combining Eqs (16) and (4c) gives: 

𝑇3
𝑐 = 𝑐13

𝐸 [(𝛼 − 𝛽)(𝑐12 − 𝑐13
𝐸 )𝑆3̅ + (𝛼 − 𝛽)𝑒31�̅�3] + 𝑐13

𝐸 [(𝛼 − 𝛽)(𝑐12 − 𝑐13
𝐸 )𝑆3̅ 

+(𝛼 − 𝛽)𝑒31�̅�3] + 𝑐33
𝐸 𝑆3̅ − 𝑒33�̅�3      (17) 

𝑇3
𝑐 = [2𝑐13

𝐸 (𝛼 − 𝛽)(𝑐12 − 𝑐13
𝐸 ) + 𝑐33

𝐸 ]�̅�3 + [2𝑐13
𝐸 (𝛼 − 𝛽)𝑒31 − 𝑒33]�̅�3   (18) 

𝑇3
𝑝
= 𝑐12𝑆1

𝑝
+ 𝑐12𝑆2

𝑝
+ 𝑐11𝑆3

𝑝
       (19) 
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Combining Eqs (12) and (19) gives: 

𝑇3
𝑝
= −

𝜈

�̅�
𝑐12𝑆1

𝑐 −
𝜈

�̅�
𝑐12𝑆2

𝑐 + 𝑐11𝑆3̅       (20) 

Combining Eqs (16) and (20) gives: 

𝑇3
𝑝
= [−2

𝜈

�̅�
𝑐12(𝛼 − 𝛽)(𝑐12 − 𝑐13

𝐸 ) + 𝑐11]𝑆3̅ − 2
𝜈

�̅�
𝑐12(𝛼 − 𝛽)𝑒31�̅�3   (21) 

Combining Eqs (18) and (21) gives the final system: 

{
𝑇3
𝑐 = [2𝑐13

𝐸 (𝛼 − 𝛽)(𝑐12 − 𝑐13
𝐸 ) + 𝑐33

𝐸 ]𝑆3̅ + [2𝑐13
𝐸 (𝛼 − 𝛽)𝑒31 − 𝑒33

𝐸 ]�̅�3

𝑇3
𝑝
= [−2

𝜈

�̅�
𝑐12(𝛼 − 𝛽)(𝑐12 − 𝑐13

𝐸 ) + 𝑐11] 𝑆3̅ − 2
𝜈

�̅�
𝑐12(𝛼 − 𝛽)𝑒31�̅�3   

  (22) 

Combining Eqs (22) and (9) gives: 

�̅�3 = 𝜈([2𝑐13
𝐸 (𝛼 − 𝛽)(𝑐12 − 𝑐13

𝐸 ) + 𝑐33
𝐸 ]𝑆3̅ + [2𝑐13

𝐸 (𝛼 − 𝛽)𝑒31 − 𝑒33]�̅�3) 

+�̅�([−2
𝜈

�̅�
𝑐12(𝛼 − 𝛽)(𝑐12 − 𝑐13

𝐸 ) + 𝑐11] 𝑆3̅ − 2
𝜈

�̅�
𝑐12(𝛼 − 𝛽)𝑒31�̅�3)  (23) 

�̅�3 = [−2𝜈(𝛼 − 𝛽)(𝑐13
𝐸 − 𝑐12)

2 + 𝜈𝑐33
𝐸 + �̅�𝑐11]𝑆3̅ 

+[2𝜈(𝛼 − 𝛽)(𝑐13
𝐸 − 𝑐12)𝑒31 − 𝜈𝑒33]�̅�3     (24) 

Combining Eqs (3i) and (4i) gives the system: 

{
𝐷3
𝑝
= 𝜖11𝐸3

𝑝
= 𝜖11�̅�3

𝐷3
𝑐 = 𝑒31𝑆1

𝑐 + 𝑒31𝑆2
𝑐 + 𝑒33𝑆3

𝑐 + 𝜖33
𝑆 𝐸3

𝑐
      (25) 

Combining Eqs (16) and (4i): 

𝐷3
𝑐 = [2𝑒31(𝛼 − 𝛽)(𝑐12 − 𝑐13

𝐸 ) + 𝑒33]𝑆3̅ + [2(𝛼 − 𝛽)𝑒31
2 + 𝜖33

𝑆 ]�̅�3   (26) 

Replacing 𝐷3
𝐶  of Eq (26), by its final expression, Eq (25) rewrites: 

{
𝐷3
𝑝
= 𝜖11�̅�3

𝐷3
𝑐 = [2𝑒31(𝛼 − 𝛽)(𝑐12 − 𝑐13

𝐸 ) + 𝑒33]𝑆3̅ + [2(𝛼 − 𝛽)𝑒31
2 + 𝜖33

𝑆 ]�̅�3
   (27) 

Combining Eqs (27) and (10) gives: 

�̅�3 = [2𝜈𝑒31(𝛼 − 𝛽)(𝑐12 − 𝑐13
𝐸 ) + 𝜈𝑒33𝑆3̅ + [2𝜈(𝛼 − 𝛽)𝑒31

2 + 𝜈𝜖33
𝑆 + �̅�𝜖11]�̅�3  (28) 

Thus the constitutive piezoelectricity relationship gives: 

�̅�3 = 𝑐3̅3
𝐸 𝑆3̅ − �̅�33�̅�3        (29) 

�̅�3 = �̅�33𝑆3̅ + 𝜖3̅3
𝑆 �̅�3        (30) 

By identification, we have: 

𝑐3̅3
𝐸 = 𝜈[𝑐33

𝐸 − 2(𝛼 − 𝛽)(𝑐13
𝐸 − 𝑐12)

2] + �̅�𝑐11     (31) 

�̅�33 = 𝜈[𝑒33 − 2𝑒31(𝛼 − 𝛽)(𝑐13
𝐸 − 𝑐12)]      (32) 

𝜖3̅3
𝑆 = 𝜈[𝜖33

𝑆 − 2(𝛼 − 𝛽)𝑒31
2 ] + �̅�𝑐11      (33) 

Let’s denote 𝜃 = 𝛼 − 𝛽, and Eqs (31), (32) and (33) become: 

𝑐3̅3
𝐸 = 𝜈[𝑐33

𝐸 − 2𝜃(𝑐13
𝐸 − 𝑐12)

2] + �̅�𝑐11      (34) 

�̅�33 = 𝜈[𝑒33 − 2𝑒31𝜃(𝑐13
𝐸 − 𝑐12)]       (35) 

𝜖3̅3
𝑆 = 𝜈[𝜖33

𝑆 − 2𝜃𝑒31
2 ] + �̅�𝑐11       (36) 

Eventually, the generalized homogenization approach described above is applicable for the moment to the 1-3 and 

2-2 PC connectivities. The proposed model enables to study the influence of the volume fraction of the two 

connectivities 1-3 and 2-2. The   (𝜃 = 𝛼 − 𝛽 ), parameter even makes it possible to study the continuous variation 

from the 1-3 connectivity to the 2-2 connectivity, when the rods of the 1-3 configuration start to be in contact along 

only one given direction. As a result, a rule of mixture with a weighing coefficient x, can be defined between the 

 parameter of the two connectivity patterns considered herein. It could be defined as:  = x.1-3 + (1–x).2-2. This 

parameter is to be further established for various connectivity patterns, taking into account their specific boundary 

conditions. Therefore, expressions of θ are given as: 

 

– For the 1-3 PCs 

𝜃 = �̅�/[𝜈(𝑐11 + 𝑐12) + �̅�(𝑐11
𝐸 + 𝑐12

𝐸 )] = 𝜃1−3 (37) 

– For the 2-2 PCs 

 

𝜃 = �̅�/[2�̅�𝑐11
𝐸 + 𝜈𝑐11] = 𝜃2−2 (38) 
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For transducer applications, exact expressions for several key parameters are usually introduced, i.e. the for the 

acoustical impedance �̅�𝐿, the longitudinal velocity 𝑐�̅� and the electromechanical coupling factor �̅�𝑡, are expressed 

as: 

{
 
 

 
 �̅�𝐿 = (𝑐3̅3

𝐷 �̅�)
1

2

𝑐�̅� = (𝑐3̅3
𝐷 /�̅�)

1

2

�̅�𝑡 = ℎ̅33/(𝑐3̅3
𝐷 �̅�33

𝑆 )
1

2 = �̅�33/(𝑐3̅3
𝐷 𝜖3̅3

𝑆 )
1

2

       (39) 

with 

{
�̅� = 𝜈𝜌𝑐 + (1 − 𝜈)𝜌𝑝

𝑐3̅3
𝐷 = 𝑐3̅3

𝐸 + (�̅�33)
2/ 𝜖3̅3

𝑆  (40) 

 

4 Results and discussion 

The PZT-7A/Araldite D PC is used herein for numerical calculations. Table 1 summarizes its electromechanical 

characteristics [40]. 

 

Table 1 – Electromechanical characteristics of the PZT-7A/Araldite D PCs. 

 

Materials PZT-7A Araldite D 

𝑐11
𝐸 (GPa) 148.0 8.0 

𝑐12
𝐸 (GPa) 76.2 4.4 

𝑐13
𝐸 (GPa) 74.2 4.4 

𝑐33
𝐸 (GPa) 131.0 8.0 

𝑐13
𝐷 (GPa) 073.0 - 

𝑐33
𝐷 (GPa) 175.0 - 

𝜖33
𝑆 𝜖0⁄  235 4.0 

𝜖33
𝑇 𝜖0⁄  425 4.0 

𝑒33(C/m
2) 9.50 0 

𝑒31(C/m
2) –2.10 0 

𝜌(kg m3⁄ ) 7600 1150 

𝜖0 = 8.854.10
−12C2/(Nm2) 

 

In the previous section, we homogenized the 1-3 and 2-2 PZT-7A/Araldite D PCs properties. The homogenized 

characteristics of these PCs are plotted as a function of volume fraction of piezoelectric ceramics PZT-7A, for the 

1-3 and 2-2 connectivities. The PZT-7A/Araldite D is chosen for comparison purposes with Chan’s experimental 

data. The Voigt, and Reuss, models’ results that give the upper and lower limits are used for comparison and 

validation. Figure 3a and Figure 3b show variations of the elastic constant 𝑐33
𝐸,𝑒𝑓𝑓

and the piezoelectric constant 

𝑒33
𝑒𝑓𝑓
. The elastic constant ranges from 0 to 13 GPa. For the elastic constant, the upper limit is actually that of the 

Voigt model, and the lower limit is occupied by Reuss model. While for the piezoelectric constant, these two 

models are below 1-3 and 2-2 GHM. This result is in accordance with predictions found in the literature [17,41]. 

The two intermediate curves (i.e., between the Voigt and Reuss models) of fig3a, represent the proposed 

generalized homogenization plot for both patterns 1-3 and 2-2. Compared to various existing methods, the method 

proposed here can be used for different connectivities. For PZT-7A volume fractions lower than 10%, both curves 

coincide and evolve linearly. 

For PZT-7A volume fractions ranging between 10% and 90% both curves also evolve linearly, but the results of 

the 2-2 Pcs are above that of 1-3. However, a sharp increase is observed in both curves. For the piezoelectric 

coefficients (fig3b), we observe that the Voigt model is inconsistent with either rule applied in the case of the 

elastic coefficients to obtain the upper limits, in the case of the 2-2 connectivity, but both models rather yield the 

lower limit of the piezoelectric coefficient. For the volume fractions lower than 10%, the curves obtained applying 

the generalized approach and the Reuss model are superimposed and evolve linearly. For volume fractions between 

10 and 90% these curves also evolve linearly, and the results of the 1-3 PCs is above that of 2-2. With regard to 

the dielectric coefficients (fig3c), the curves are practically linear and coincide through the entire volume fraction 

range, while the Voigt model represents its lower limit. The PC electromechanical coupling coefficient, (fig3d) 

associated to the output of the transducer, should be carefully examined. 
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(a) (b) 

  
(c) (d) 

 
 

(e) (f) 

Figure 3 – Homogenized 1-3 and 2-2 Pcs with generalized model, made of PZT-7A/Araldite D as a function of volume fraction 

𝑉𝑓 of PZT-7A ceramics: (a) elastic constant 𝑐3̅3
𝐸 , (b) piezoelectric constant �̅�33, (c) relative dielectric constant 𝜖3̅3

𝑆 /𝜖0, (d) 

electromechanical coupling constant �̅�𝑡, (e) longitudinal wave velocity 𝑐�̅� and (f) longitudinal acoustic impedance �̅�𝐿. 

 

For the 2-2 connectivity, applying the GHM, yields an electromechanical coupling greater than 50%. Whereas for 

the 1-3 connectivity, applying the GHM yields a value of 60%. As generally reported, the values of the 

electromechanical coupling of the 1-3 connectivity are above those of the 2-2 connectivity for volume fractions 

included between 5% and 90 %. This justifies the wide use of 1-3 PCs in manufacturing transducers. It should also 

be observed that the Reuss and Voigt models respectively represent the upper and lower limits. The acoustic 

impedances (fig3f) for the 2-2 connectivity obtained with the Voigt model represent the lower limit. 
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Likewise, the impedances obtained with the Reuss model for the 1-3 connectivity represents the lower limit. The 

acoustical impedance of 1-3 PC is lower than 2-2 PC due to its low elastic characteristics (1-3 PC is more elastic 

than 2-2 PC). As regards to the longitudinal velocity (fig3e) of 2-2 connectivity, we observe that the lower limit is 

the one of Voigt model derived velocity. Likewise, for 1-3 connectivity, the lower limit is the one of Reuss model 

derived velocity. These variations of the longitudinal acoustic wave velocity should not be neglected because it is 

important for the determination of the resonance frequency of the piezoelectric transducer made up of PCs of this 

work. The curves also suggest that the homogenized characteristics of the PCs depend on the models used as well 

as on the connectivity pattern of the PCs. 

 

5. Comparison of the models 

The GHM has been applied to the 1-3 and 2-2 PCs. Comparison is now made with the specific Smith’s model for 

the 1-3 connectivity and Cha’s model for the 2-2 connectivity. We compare results of various actual parameters 

of the PCs obtained using the GHM with the analytical models from Smith and Cha and with the experimental 

measurement extracted from the published work of Chan and Unsworth [40]. For the elastic coefficients with 

constant electric field (fig4a and fig4b) and piezoelectric coefficients (fig5a and fig5b), we notice that for 1-3 

connectivity the generalized model is above that of the Smith model and that of the Cha model for the 2-2 

connectivity. For the dielectric coefficients (fig6a and fig6b), we notice here that all the curves resulting from 1-3 

and 2-2 connectivities are identical and evolve linearly. This explains why both connectivity patterns and even 

different methods used do not affect the dielectric coefficients. As illustrated by the thickness electromechanical 

coupling coefficient (fig.7a and fig7b), the GHM result is above that of the two specific Smith and Cha models. 

 

  
(a) (b) 

Figure 4 – The GHM and analytical Smith and Cha models (a) 𝑐3̅3
𝐸  elastic constant of 1-3 connectivity, (b) 𝑐3̅3

𝐸  elastic constant 

of 2-2 connectivity. 

 

For the 1-3 connectivity, the GHM result is above that of Smith and Cha models. As a result, in the case of 1-3 

connectivities, the effective thickness coupling coefficient �̅�𝑡 (<50% for most of the ceramics) tends towards the 

𝑘33 electromechanical coupling factor (>70% for optimized volume fractions). Eventually, unknown 

electroacoustic parameters of the transducer are: the longitudinal acoustic wave velocity (fig8a and fig8b) and the 

acoustical impedance (fig9a and fig9b). As illustrated, for 1-3 connectivity the generalized model is above that of 

Smith and Cha models of 2-2 connectivity. 

For the elastic coefficients (fig4a and fig4b), for volume fractions lower than 15%, the model proposed here is 

linear and coincides with the Smith and Cha models. 
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(a) (b) 

Figure 5 – The GHM versus analytical Smith and Cha models (a) �̅�33 piezoelectric constant of 1-3 connectivity, (b) �̅�33 

piezoelectric constant of 2-2 connectivity. 

 

For volume fractions included between 15% and 80%, this model is linear and coincides with the Smith model 

whereas Cha model is above.  

 
 

(a) (b) 

Figure 6 – The GHM versus analytical Smith and Cha models (a) dielectric constant of 1-3 connectivity 𝜖3̅3
𝑆 /𝜖0, (b) dielectric 

constant of 2-2 connectivity 𝜖3̅3
𝑆 /𝜖0. The measured values are from Chan and Unsworth (1989). 

  

(a) (b) 

Figure 7 – The GHM versus analytical Smith and Cha models (a) �̅�𝑡 electromechanical coupling coefficient of 1-3 connectivity, 

(b) �̅�𝑡 electromechanical coupling coefficient of 2-2 connectivity. The measured values are from Chan and Unsworth (1989). 
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This can be explained by the effect of the piezoelectric reinforcements on the stiffness of the material. For the 

piezoelectric coefficients (fig5a and fig5b), with volume fractions lower than 40%, this model is linear and 

coincides with the Smith and Cha models; between 40% and 90% the generalized model is always identical to that 

of Smith and higher than the Cha model. Dielectric coefficients curves (fig6a and fig6b), are linear and coincide 

for all the volume fractions. This can also be explained by the fact that dielectric coefficients are independent of 

connectivity pattern. 

The thickness electromechanical coupling coefficient (figs7a-b), being related to the output of the transducer, it is 

observed that for small volume fraction values, this coefficient grows suddenly and coincide. For volume fractions 

included between 10% and 90%, this model is almost constant and coincide with the Smith model and both are 

above the Cha model. Eventually, for the longitudinal acoustic wave velocity (fig8a-b), and for volume fractions 

higher than 10%, this model shows an increase and coincide with the Smith model and both are below the Cha 

model, as also observed in the acoustical impedance plots (fig9a and fig9b). For the 1-3 connectivity and some 

parameters such as effective dielectric constant, longitudinal acoustical impedance and longitudinal wave velocity, 

we see that the generalized model result is in good agreement with experimental data extracted from Chan and 

Unsworth (1989), as well as other analytical results of Smith and Cha. For the electromechanical coupling factor, 

we notice that the measured values follow the pace of analytical curves, but these values are between the upper 

limit by Reuss parallel model and the GHM. 

 

  
(a) (b) 

Figure 8 – The GHM versus analytical Smith and Cha models (a) longitudinal wave velocity of 1-3 connectivity 𝑐�̅� and (b) 

longitudinal wave velocity of 2-2 connectivity 𝑐�̅�.The measured values are from Chan and Unsworth (1989). 

 

  
(a) (b) 

Figure 9 – The GHM versus analytical Smith and Cha models (a) longitudinal acoustical impedance of 1-3 connectivity �̅�𝐿 and 

(b) longitudinal acoustical impedance of 2-2 connectivity �̅�𝐿.The measured values are from Chan and Unsworth (1989). 
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6. Transducer for medical imaging 

Based on the GHM results of piezocomposite materials, the electroacoustic responses of transducers having some 

of these properties are simulated using the KLM model ([3], eq. (25)). The acoustic load is influencing the 

piezoelectric resonance, as well as the electrical environment. A three-port model is resulting from this approach, 

where two are acoustical ports (rear and front surrounding media) and one is an electrical port (electrical 

environment). In order to fix the parameter study, two of the three ports have been specified for an application in 

medical imaging. In this view, the design requirements are a front medium which is water with an acoustical 

impedance Zf = 1.5 MRa, and an electrical environment fixed at Zg = Zr = 50 Ω. The first thickness mode of the 

piezoelectric layer was chosen at f0 = 40 MHz, with an active surface S = 50 mm2. A specific trade-off between 

damping and sensitivity is obtained with the acoustical impedance of the backing Zb relatively to that of the 

piezoelectric layer Zp. Its effect is illustrated with a PZT-7A piezoelectric material, with zb = Zb / Zp varying from 

0 to 1.5. As it can be observed, the bandwidth Urg is broadened of the spectrum (fig10a) when the pulse-echo 

response is damped and shortened (fig10b). 

  
(a) (b) 

Figure 10 – Pulse-echo (a) spectrum and (b) response resulting from a normalized backing impedance zb = Zb / Zp 

varying from 0 to 1.5, based on a PZT-7A piezoelectric material, with a thickness mode at f0 = 40 MHz and an 

active surface S = 50 mm2 radiating in water Zf = 1.5 MRa, with an electrical environment fixed at Zg = Zr = 50 Ω. 

 

  

(a) (b) 

Figure 11 – Pulse-echo (a) spectrum and (b) response resulting from a normalized backing impedance zb = Zb / Zp 

varying from 0 to 1.5, based on a GHM 2-2 piezocomposite material, with a thickness mode at f0 = 40 MHz and 

an active surface S = 50 mm2 radiating in water Zf = 1.5 MRa, with an electrical environment fixed at 

Zg = Zr = 50 Ω. 

 

On the basis of the results from the GHM 2-2 configuration (fig4b to fig9b), a performance trade-off was chosen 

a vf = 60%, resulting in an improved thickness coupling coefficient kt = 57% and a lowered acoustical impedance 

Zp,2-2 = 21.8 MRa. A similar approach as that on a pure PZT-7A shows a significant improvement of the transducer 

performance, which is illustrated both on the spectrum (fig11a) and the pulse-echo response (fig11b). 
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Tanks to the reduced acoustic mismatch between the piezocomposite and the front medium (Zf / Zp,2-2 = 0.069 

versus Zf / Zp,PZT-7A = 0.041), the sensitivity was increased by more than a factor 2 relatively to the same 

configuration with a PZT-7A piezoelectric element (fig11b) whatever the backing impedance. A specific trade-off 

between damping and sensitivity is to be fixed with a chosen normalized backing impedance. This choice can be 

assisted with the use of a performance index which has to be simple, stable and smooth, to be used as a fitting 

parameter in an optimization procedure [3]. Recently, the BWA product described in [18], was shown to fill those 

requirements. This BWA estimator results in the product of the relative bandwidth BW6,r by the relative amplitude 

ampr, both extracted from the pulse-echo spectrum Urg(f) : 

BWA = BW6,r.ampr, (41) 

This comparison would also to be carried out with the GHM 1-3 piezocomposite optimum composition, which is 

also found at vf = 60%. Nevertheless, this is not mandatory nor relevant, since the effective properties for both 

connectivities are very close. As a perspective, a new composition is to be determined is view to highlight the 

interest of combining the 1-3 and 2-2 compositions. A mixing law between the GHM results is to be discussed for 

the two studied 2-2 and 1-3 configurations, with a θ parameter which can be set with intermediate values between 

θ1-3 (eq. (37)) and θ2-2 (eq. (38)) when the PC connectivity evolves between 1-3 and 2-2. 

 

 

7. Conclusion 

In this paper, a thorough review of existing homogenizations methods usually applied to PCs was carried out. It 

was observed that these models are essentially connectivity-oriented in computing effective characteristics. 

Therefore, we have developed a generalized homogenization method that accounts for Smith (1991) and Cha 

(2014) approaches to evaluate the equivalent characteristics of the piezocomposite. The proposed model can be 

applied to all connectivity patterns. However, this model has been only applied to 2-2 and 1-3 PCs herein. The 

GHM was used to compute the electromechanical coefficients of both the 1-3 and 2-2 connectivities when a 

parameter θ is changed to account for the pattern considered. Results obtained for some parameters show that the 

proposed GHM is consistent with the analytical existing models used for the 1-3 and 2-2 connectivities and is in 

line with measured values from Chan and Unsworth (1989). Based on the GHM 2-2 configuration results of 

piezocomposite materials, the electroacoustic responses of transducers having some of these properties are 

simulated using the KLM model. A performance trade-off was chosen, resulting in an improved thickness coupling 

coefficient and a lowered acoustical impedance, and a similar approach as that on a pure PZT-7A. Also, a specific 

trade-off between damping and sensitivity is obtained with the acoustical impedance of the backing relatively to 

that of the piezoelectric layer. Further work aiming to extend the applicability of the proposed model to other PCs 

connectivities patterns is anticipated. Accounting for the Smith homogenization approach θ expressions will be 

proposed for the remaining connectivities. 
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