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The robusTest package: two-sample tests revisited

The R package robusTest offers corrected versions of several common tests in bivariate statistics. We point out the limitations of these tests in their classical versions, some of which are well known such as robustness or calibration problems, and provide simple alternatives that can be easily used instead. The classical tests and their robust alternatives are compared through a small simulation study. The latter emphasizes the superiority of robust versions of the test of interest. Finally, an illustration of correlation's tests on a real data set is also provided.

Introduction

In this article, we consider several usual tests in bivariate statistics, which are taught in many scientific courses at various levels.

Our first goal is to illustrate, with the help of mathematical considerations and simulations, that many of these tests are either not very robust (i.e. they do not work outside the very strict framework in which they have been defined), or badly calibrated (i.e. we can find simple examples for which the null hypothesis is true, but the type I error rate is not the one announced).

Of course, we are not the only ones or the first ones to have noticed this, and in some cases valid solutions have been proposed (see for example the famous article by Welch [START_REF] Welch | The generalization of "Student" problem when several different population variances are involved[END_REF] about the test of equality of two expectations in the case where the variances are unequal, the Welch test being (asymptotically) robust to non-normality).

Nevertheless, we felt it was important to return to these issues for at least two reasons: -First, these tests are not only mathematical objects on which students can discover the basic principles of statistical analysis, they are also very often used in practice (for example in biomedical research articles). It is therefore important to come back to the limits of these tests, which are not always well indicated (especially in the case of so-called "non-parametric" tests).

-Secondly, because it is often very easy to modify these tests in order to make them more robust or (asymptotically) well calibrated. The modification presented is each time based on the calculation of the limiting variance of the test statistic under the null hypothesis. Renormalizing by an estimator of the standard deviation, we obtain a robust or asymptotically well-calibrated version thanks to the central limit theorem. Of course, the justification is asymptotic, but we will illustrate that, on simulated examples, it is always interesting to correct these tests, even for relatively small sample sizes. It seems to us that these modified tests, which are easy to describe and to implement, should be systematically pointed out to the students, and also to researchers from other disciplines unfamiliar with these issues.

Our second objective is to present the robusTest package, which implements robust modifications of the usual bivariate statistics tests. As we will see, the functions of the robusTest package, as well as their syntax, are very close to the functions of the stats package, so that regular users of the R software can use and compare them easily. This package is already used at Université Paris Cité and Université d'Evry Val d'Essonne to illustrate second or third year postgraduate courses on bivariate statistics.

The article is organised as follows: in Section 2, we present the robust versions of the Pearson (see [START_REF] Fisher | Applications of "Student" Distribution[END_REF]), Kendall (see [START_REF] Kendall | A New Measure of Rank Correlation[END_REF]) and Spearman (see [START_REF] Hotelling | Rank correlation and test of significance involving no assumptions of normality[END_REF]) correlation tests. For completeness, we also provide in the same section the Kolmogorov-Smirnov type test of independence for continuous variables (see [START_REF] Blum | Distribution free tests of independence based on the sample distribution function[END_REF]). In Section 3, we describe the test of equality of conditional variances of X knowing Y , when Y is a categorical variable with several levels. This procedure is based on the James-Welch ANOVA which we briefly recall (see [START_REF] James | The Comparison of Several Groups of Observations When the Ratios of the Population Variances are Unknown[END_REF] and [START_REF] Welch | On the comparison of several mean values: an alternative approach[END_REF]). In Section 4, we present the robust version of the two sample Mann-Whitney test for stochastic dominance (see [START_REF] Mann | On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other[END_REF]). In Section 5, we describes several ways to test the stochastic dominance in the case of paired two samples (see [START_REF] Van Der | Asymptotic statistics[END_REF]). At the end of each section or subsection, we provide the R-functions of the robusTest package for each corrected test. Finally, in the last section, we illustrate on a real data set the functions of the robusTest package to test the correlation, and we compare the outputs to those of the usual tests.

Robust tests for testing correlation and independence

In the following four subsections we respectively focus on the correlation tests of Pearson, Kendall and Spearman, and on the independence test of Kolmogorov-Smirnov type.

Pearson's correlation test

Let (X1, Y1), . . . , (Xn, Yn) be independent and identically distributed (i.i.d) copies of the random pair (X, Y ), where X, Y are real-valued random variables. We suppose that Xi and Yi have finite moments of order 2 and we denote E(Xi) = µX and E(Yi) = µY . Our aim is to test the null hypothesis H0 : ρ = 0 against the alternative hypothesis H1 : ρ = 0 where ρ is the correlation coefficient between Xi and Yi. To this end we often use the Pearson test statistic (see for instance Fisher [START_REF] Fisher | Applications of "Student" Distribution[END_REF]):

Tn = ρn 1-ρ2 n n-2 where ρn = n k=1 (X k -Xn)(Yk -Ȳn) n k=1 (Y k -Ȳn) 2 n k=1 (X k -Xn) 2
is the empirical correlation coefficient and where Xn, Ȳn are the empirical means. The interest of this statistic being that, in the case where the couple (Xi, Yi) is Gaussian, its exact distribution under H0 is known: it is the Student St(n -2)-distribution. If the pair (Xi, Yi) is not Gaussian, we can also easily show that, if Xi is independent of Yi (and if Xi and Yi are not constants), then Tn converges in distribution to the standard normal distribution N (0, 1). Therefore, if Xi and Yi are independent, the rejection region Rn,α = {|Tn| > cα} where cα is the quantile of order 1 -(α/2) of the N (0, 1) distribution, is such that its probability tends to α as n → ∞. But this is not the case in general under H0, which of course does not imply independence of the variables.

We can therefore make the following conclusion: in a general context, the Pearson test is not well calibrated to test the null hypothesis ρ = 0. See also [START_REF] Edgell | Effect of violation of normality on the t test of the correlation coefficient[END_REF] for a similar observation. Outside the strict framework of the linear model (Gaussian or not), it is therefore preferable to use the intuitive statistic

T n = n k=1 (X k -Xn)(Yk -Ȳn) n k=1 (Z k -Zn) 2
where Zi = (Xi -Xn)(Yi -Ȳn).

Under the assumption 0 < E (Xi -µX ) 2 (Yi -µY ) 2 < ∞, a direct application of the central limit theorem and Slutsky's lemma provides the convergence in distribution of T n under H0 to the standard normal distribution. The rejection region of H0 is R n,α = {|T n | > cα} where cα is the quantile of order 1 -(α/2) of the N (0, 1) distribution, which provides a test asymptotically well calibrated.

Remark. It is easy to see that, in the Gaussian case and under H0, the distribution of the statistic T n does not depend on the expectation and variance parameters, and can therefore be tabulated. In practice, in the robusTest package, we use this table of quantiles for n < 130 and the quantiles of the Student St(n -2) distribution for n ≥ 130 (simulations show that the quantiles of the Student St(n -2) distribution are close to those of the distribution of the statistic T n under H0 in the Gaussian case).

The corresponding R function of the robusTest package is: cortest(,method="pearson").

Remark. Starting from the quantity

n k=1 (X k -Xn)(Yk -Ȳn) -nCov(X, Y ) n k=1 (Z k -Zn) 2
, which converges to the N (0, 1) distribution as n → ∞, we can easily obtain a confidence interval for Cov(X, Y ), the covariance between X and Y . As an output of the command cortest(,method="pearson"), we propose instead a confidence interval for Pearson's ρ coefficient. This confidence interval is based on the central limit theorem for the empirical estimator of (Cov(X, Y ), Var(X), Var(Y )) and the delta method applied to the function h(x, y, z) = x/ √ yz from R 3 to R. There may be a difference between the result based on the robust Pearson test and whether or not 0 is in the confidence interval of ρ. In this case, the test should be preferred since the confidence interval based on the central limit theorem + the delta method is a priori less precise.

Kendall's correlation test

The context is the same as in the previous paragraph (X1, Y1), . . . , (Xn, Yn) are i.i.d.copies of the pair (X, Y ), where X, Y are real-valued random variables. We assume moreover that the variables are continuous. We want to know if Xi and Yi tend to vary in the same direction or in the opposite direction. Let then τ = 2 (P((X2 -X1)(Y2 -Y1) > 0) -0.5) be Kendall's correlation coefficient [START_REF] Kendall | A New Measure of Rank Correlation[END_REF]. As for Pearson's correlation coefficient, τ is between -1 and 1. Xi and Yi are positively correlated in the sense of Kendall when τ > 0 and negatively if τ < 0. To test H0 : τ = 0 against H1 : τ = 0

Kendall [START_REF] Kendall | A New Measure of Rank Correlation[END_REF] therefore proposed to count the number of concordant pairs (i.e. for which the product (Xi -Xj)(Yi -Yj) is strictly positive), which leads to the statistic

Tn = 1 n(n -1) n i=1 n j=1,j =i 1 (X i -X j )(Y i -Y j )>0 -0.5 .
It is quite easy to see that, if Xi and Yi are independent, then the distribution of Tn is distribution-free (i.e. does not depend on the distribution of (Xi,Yi)), by reducing to two independent sequences U1, . . . , Un and V1, . . . , Vn of i.i.d. random variables with standard uniform distribution U([0, 1]). Consequently, if Xi and Yi are independent, Tn is distributed according to a known and tabulated distribution. Kendall's test is constructed from the quantiles of this distribution. However if Xi and Yi are not independent, the distribution of the statistic Tn has no reason to be distribution free under H0 (it depends on the joint distribution of (Xi, Yi)). We can therefore make the following conclusion: in a general context, Kendall's test is not well calibrated to test τ = 0.

We can nevertheless solve (asymptotically) this problem, by considering the limiting distribution of √ nTn under H0. Starting from the Hoeffding decomposition of the U -statistic Tn (see [START_REF] Hoeffding | A class of statistics with asymptotically normal distribution[END_REF] or [START_REF] Van Der | Asymptotic statistics[END_REF], example 12.5), we see that, under H0, √ nTn converges in distribution to the N (0, V ) distribution, with V = 4Var(F (Xi, Yi) + H(Xi, Yi)) ,

where F (x, y) = P(Xi < x, Yi < y) and H(x, y) = P(Xi > x, Yi > y). The empirical estimator of V is then

Vn = 4 n -1 n k=1 Fn(X k , Y k ) + Hn(X k , Y k ) -Fn -Hn 2 where Fn(x, y) = 1 n n k=1 1X k <x,Y k <y , Hn(x, y) = 1 n n k=1 1X k >x,Y k >y Fn = 1 n n k=1 Fn(X k , Y k ) , Hn = 1 n n k=1 Hn(X k , Y k ) .
Finally, under H0,

Kn = √ nTn √ Vn converges in distribution to the N (0, 1) distribution.
The rejection region of the corrected Kendall test is then Rn,α = {|Kn| > cα} where cα is the quantile 1 -(α/2) of the N (0, 1) distribution, which provides a test asymptotically well calibrated (see [START_REF] Ammous | Testing Kendall's τ for a large class of dependent sequences[END_REF] for more details).

The corresponding R function of the robusTest package is: cortest(,method="kendall").

Spearman's correlation test

In the same context as for the Kendal test statistic of the previous paragraph, we can also correct Spearman's correlation test (as described by Hotelling and Pabst [START_REF] Hotelling | Rank correlation and test of significance involving no assumptions of normality[END_REF]), which tests

H0 : ρS = 0 against H1 : ρS = 0
where ρS is the correlation coefficient between the variables FX (Xi) and FY (Yi) uniformly distributed over [0, 1] (here FX (x) = P(X ≤ x) and FY (y) = P(Y ≤ y)). Like the Kendall and Pearson tests, this test is not well calibrated if the variables Xi and Yi are not independent.

As with Kendall's test, Hoeffding [START_REF] Hoeffding | A class of statistics with asymptotically normal distribution[END_REF] showed that Spearman's test statistic can be expressed using a U -statistic, from which he deduced à central limit theorem for the normalized statistic, with an exact expression of the limiting variance. As in the previous paragraph we can estimate this limit variance (by taking the empirical estimator), and then obtain a corrected test which is asymptotically well calibrated. The expression of the limit variance being more complicated than that of Kendall's statistic, we do not give all the details here.

The corresponding R function of the robusTest package is: cortest(,method="spearman").

Kolmogorov-Smirnov statistic for testing independence

The context is the same as in the previous subsection: (X1, Y1), . . . , (Xn, Yn) are independent copies of a couple (X, Y ) of real-valued random variables, and we assume that the variables X and Y are continuous. We want to test H0 : X and Y are independent against H1 : X and Y are not independent To answer this question, one can use the Kolmogorov-Smirnov statistic (as described for instance in Blum, Kiefer and Rosenblatt [START_REF] Blum | Distribution free tests of independence based on the sample distribution function[END_REF])

KSn = sup s,t∈R √ n 1 n n i=1 1 X i ≤t,Y i ≤s -Fn,X (t)Fn,Y (s) ,
where

Fn,X (t) = 1 n n i=1 1 X i ≤t , Fn,Y (s) = 1 n n i=1 1 Y i ≤s .
It is clear that, under the hypothesis H0: Xi is independent of Yi, the statistic KSn is distribution-free (since the variables are continuous, one can go back to the case where Xi and Yi are uniformly distributed over [0, 1]). On another hand, one can easily check that KSn is asymptotically equivalent to

KS n = sup s,t∈R √ n 1 n n i=1 (1 X i ≤t -FX (t))(1 Y i ≤s -FY (s)) .
Now, as proved in [START_REF] Blum | Distribution free tests of independence based on the sample distribution function[END_REF], KS n (and hence KSn) converges in distribution under H0 to the supremum of a Gaussian process. The rejection region of the Kolmogorov-Smirnov test of independence is then Rn,α = {KSn > cα} where cα is the exact quantile of order 1-α of the distribution of KSn under H0 (note that, for small n, the quantity PH 0 (Rn,α) is in general not exactly equal to α, because the distribution of KSn under H0 is a discrete distribution). These quantiles (or the p-value of the test) can be easily estimated via a basic Monte-Carlo procedure.

The corresponding R function of the robusTest package is: indeptest().

Remark: When the continuous variables Xi and Yi are observed with too rough a rounding, the statistics of Kendall, Spearman or Kolmogorov-Smirnov can behave badly (because they involve quantities of the type 1X i >Y j ). In the robusTest package, we add the possibility to correct this problem by a simple randomization procedure (if there is a tie, we toss heads to see if the indicator is 0 or 1); to do so, it suffices to use the argument ties.break="random". This remark is also valid for the Mann-Whitney test which will be presented in one of the following sections.

In order to highlight the differences between the classicals tests and the corrected tests, we will consider in the next section two simulation scenarios.

Simulation study

First scenario: we simulate, for different values of n, i.i.d. pairs (Xi, Yi) 1≤i≤n according to the model

Yi = X 2 i + 0.3εi (1) 
where the (Xi) 1≤i≤n and the (εi) 1≤i≤n are two independent sequences of i.i.d variables with N (0, 1) distribution (see Figure 1). One can easily see that, for this model, ρ = τ = ρS = 0. q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q -2 -1 0 1 2 Hence Xi and Yi are not correlated in the sense of Pearson, Kendall or Spearman; but of course, they are not independent. We simulate N = 3000 samples of size n according to model [START_REF] Ammous | Testing Kendall's τ for a large class of dependent sequences[END_REF], and for each test we indicate the frequency of rejection of H0 at level 5%. We consider seven tests : the usual Pearson (usual P), Kendall (usual K) and Spearman (usual S), and the Robust Pearson (robust P), Kendall (robust K) and Spearman (robust S), to test H0 : ρ = 0, H0 : τ = 0 and H0 : ρS = 0 respectively; the Kolmogorv-Smirnov independence test (KS indep) to test H0 : X and Y are independent. The results are given in Table 1 (level α = 5%).

From Table 1, we can notice that the three usual correlation tests are poorly calibrated, with rejection frequencies of H0 around 37% for usual P, 19% for usual K, and 13% for usual S, instead of the expected 5%. We can also remark on this set of simulations, that it is always preferable to use robust tests, whose rejection frequencies are always lower than those of the usual tests, and close to 5% for n ≥ 100. In fact, for robust P, the frequencies of rejection are always between 4.7% and 5.5% for n ≥ 30; for robust K, the frequencies of rejection are always between 5% and 7% for n ≥ 40; for robust S, the frequencies of rejection are always between 5% and 7% for n ≥ 90. The fact that the rejection frequencies of robust S converge more slowly towards 5% can perhaps be explained by the fact that the asymptotic variance term of the Spearman statistic is quite complicated, and is therefore more difficult to estimate. To conclude, unsurprisingly, the independence test detects very well the non-independence of X and Y , systematically as soon as n ≥ 70.

Second scenario: we simulate, for different values of n, i.i.d. pairs (Xi, Yi) 1≤i≤n according to the model

Yi = (Xi • 2(εi -0.5)) 3 (2) 
where (Xi) 1≤i≤n and (εi) 1≤i≤n are two independent sequences, the Xi's being i.i.d. random variables with U([0, 1]) distribution, the εi's being i.i.d. random variables with a B(0.5) Bernoulli distribution (see Figure 2). Here, again, one can easily see that ρ = τ = ρS = 0. Hence Xi and Yi are not correlated in the sense of Pearson, Kendall or Spearman; but of course, they are not independent.
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From Table 2 we can make much the same comments and observations as for scenario 1 (although models (1) and ( 2) are quite different). The correlation tests are all poorly calibrated. Robust tests always have a lower rejection frequency than usual tests. In fact, for robust P, the frequencies of rejection are always between 5% and 6% for n ≥ 50; for robust K, the frequencies of rejection are always between 5% and 7% for n ≥ 50; for robust S, the frequencies of rejection Remark: Concerning the particular case of Pearson's test of correlation: if we know that the couple (X, Y ) is Gaussian, then the usual test will be well calibrated, and more powerful than the robust version. Note however that, to our knowledge, there is no practical way to test whether the pair (X, Y ) is Gaussian (which is a much stronger assumption than assuming that X and Y are Gaussian).

Robust test for the equality of variances

Let (X1, Y1), . . . , (Xn, Yn) be independent and identically distributed (i.i.d) copies of the random pair (X, Y ), where X is real-valued random variable and Y is a categorical random variable with p different levels L1, . . . , Lp. Assume that E(X 2 ) < ∞, and let µi = E(X|Y = Li) and Vi = Var(X|Y = Li). The problem of testing the hypothesis H0 : µ1 = • • • = µp is called ANOVA (Analysis of Variance) in the literature. If we do not assume that the variances Vi are all equal, this problem has been solved satisfactorily by James [START_REF] James | The Comparison of Several Groups of Observations When the Ratios of the Population Variances are Unknown[END_REF] and Welch [START_REF] Welch | On the comparison of several mean values: an alternative approach[END_REF]. The procedure proposed by James and Welch works for any sample size n when the conditional distribution of X knowing Y is Gaussian, but also without any additional assumptions when n is large enough (the test is asymptotically well calibrated). More precisely, denoting by JWn the James-Welch test statistic, we know that : under H0, (p -1)JWn converges in distribution as n → ∞ to a χ 2 (p -1) distribution. For the ANOVA test of James-Welch (not assuming equal variances), the corresponding R function of the stats package is: oneway.test().

Consider now the problem of testing the equality of conditional variances, that is

H0 : V1 = • • • = Vp against H1 : ∃ i, j such that Vi = Vj
We will need some notations in order to proceed. Denote by L(Yi) the level of the random variable Yi, by n(L k ) the number of variables Yi for which L(Yi) = L k , and by

XL k = 1 n(L k ) n i=1 Xi1Y i =L k .
If p = 2, to test the equality of conditional variances, one often uses the Fisher statistic

F n(L 1 ),n(L 2 ) = S 2 n(L 1 ) S 2 n(L 2 )
, where

S 2 n(L k ) = 1 n(L k ) -1 n i=1 (Xi -XL k ) 2 1Y i =L k .
The interest of this statistic being that, in the case where the conditional distribution of X knowing Y is Gaussian, its exact conditional distribution given (n(L1), n(L2)) under H0 is known: it is the Fisher distribution F (n(L1)-1, n(L2)-1). Fisher's test for equality of variances is constructed from the quantiles of this distribution. But if the conditional distribution of X knowing Y is not Gaussian, the distribution of F n(L 1 ),n(L 2 ) under H0 is not known. For p ≥ 2, one can use Bartlett's test for equality of variances [START_REF] Bartlett | Properties of sufficiency and statistical tests[END_REF], but again this test (based on the Gaussian likelihood) is not robust to non normality. We can therefore make the following conclusion: in a general context, Fisher's and Bartlett's tests are not well calibrated to test the equality of variances. See also [START_REF] Box | Non-Normality and Tests on Variances[END_REF] for a similar observation.

An alternative to Bartlett's test often mentioned in the literature is Levene's test (modified by Brown and Forsythe [START_REF] Brown | Robust Tests for the equality of Variances[END_REF]), valid for any p ≥ 2. This test consists of performing a classic ANOVA on the variables |Xi -Medn(X|L(Yi))|, where Medn(X|L k ) is the empirical estimator of the conditional median of X given Y = L k . It is quite easy to see that this procedure does not test the equality of conditional variances, but the equality of absolute deviations from the conditional medians (as it is clearly indicated in the R documentation of the package lawstat).

Assume now that the random variable X has a finite moment of order 4. In order to test

H0 : V1 = • • • = Vp against H1 : ∃ i, j such that Vi = Vj
we propose to perform a James-Welch ANOVA on the variables Zi = (Xi -XL(Y i ) ) 2 . Let Tn be the test statistic that we obtain by proceeding in this way. It is then easy to deduce from the James-Welch test statistic that, under H0, (p -1)Tn converges in distribution as n → ∞ to a χ 2 (p -1) distribution.

The corresponding R function of the robusTest package is: vartest().

Remark: The procedure described above still works within the framework of the "fixed design" ANOVA, i.e. when we observe p independent sequences (Xi,1) 1≤i≤n 1 , . . . , (Xi,p) 1≤i≤np of i.i.d. variables (in this case Vj = Var(X1,j)), provided that all ni are large enough.

In the next subsection, we will illustrate the differences between the classical test for the equality of variance and the corrected test by a small simulation study.

Simulation study

We simulate, for different values of n, i.i.d. pairs (Xi, Yi) 1≤i≤n according to the following model:

Yi ∼ B(2/3), (3) 
where the conditional distribution of Xi given Yi = 0 is the N (0, 1) distribution and the conditional distribution of Xi given Yi = 1 is the χ 2 (2)/2 distribution. The boxplots of the conditional distributions of (xi) given (yi) based on 180 observations drawn according to model (3) are shown in Figure 3. q q q q q q q q q 0 1 -2 0 2 4 6

Figure 3: Boxplots of the conditional distributions of (x i ) given (y i ) based on 180 observations drawn according to model [START_REF] Blum | Distribution free tests of independence based on the sample distribution function[END_REF].

Note that the conditional variances of X given Y = 0 or Y = 1 are equal; that is, with the notations above, V1 = V2 = 1 and the hypothesis H0 : V1 = V2 is satisfied.

We simulate N = 3000 samples of size n according to model ( 3), and for each test we indicate the frequency of rejection of H0 : V1 = V2 at level 5%. We consider four tests : Fisher's test, Bartlett's test, Levene's test, and our test based on the James-Welch procedure (VWelch). The results are given in 

)
From Table 3, our first observation is that, for this two-sample scenario, Fisher's test and Bartlett's test behave similarly, with much too high rejection frequencies hovering around 15%. The frequencies of rejection of Levene's test increases with n, from 8% when n = 60 to 19.6% when n = 300. This is not surprising, because for model (3), the absolute deviations from the conditional medians are slightly different, depending on whether Y = 0 or Y = 1. The test VWelch, based on the James-Welch procedure is well calibrated, with frequencies of rejection between 5% and 6% as soon as n ≥ 60.

Conclusion:

We have seen that Fisher's and Bartlett's tests of equality of variances are not robust to non normality. Levene's test is well suited to test equality of absolute deviations from the median, but not to test the equality of variances. For testing equality of variances, it is then preferable to use the function vartest() of the robusTest package.

Robust test for testing stochastic dominance

Let (X1, . . . , Xn 1 ) and (Y1, . . . , Yn 2 ) be two independent sequences of i.i.d. real-valued random variables (the Xi's are independent copies of X, and the Yi's are independent copies of Y , the variables X and Y being independent). Assume moreover that the variables X and Y are continuous. We want to know if the variables Y tend to take larger or smaller values than the variables Let Med(Y -X) be the median of X -Y . To answer the question, one can for example test the hypothesis

H0 : Med(Y -X) = 0 against H1 : Med(Y -X) = 0 .
Mann and Whitney [START_REF] Mann | On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other[END_REF] proposed the test statistic

Tn 1 ,n 2 = 1 n1n2 n 1 i=1 n 2 j=1 1X i <Y j -0.5 .
It is quite easy to see, that if Xi and Yi have the same distribution, then the distribution of Tn 1 ,n 2 is distribution-free (i.e. does not depend on the common distribution of Xi and Yi): it suffices to reduce to two independent sequences U1, . . . , Un 1 and V1, . . . , Vn 2 of i.i.d. random variables with U([0, 1]) distributions. Consequently, if Xi and Yi have the same distribution, Tn 1 ,n 2 follows a known and tabulated distribution. The Mann-Whitney test is constructed from the quantiles of this distribution. It is well known that this test is in fact equivalent to Wilcoxon rank-sum test (see [START_REF] Wilcoxon | Individual comparisons by ranking methods[END_REF]). But if Xi and Yi are not identically distributed, the distribution of statistics Tn 1 ,n 2 has no reason to be distribution-free under H0. We can therefore make the following conclusion: in a general context, the Mann-Whitney test is not well calibrated to test Med(Y -X) = 0.

We can nevertheless solve (asymptotically) this problem, by considering the limiting distribution of an 1 ,n 2 Tn 1 ,n 2 under H0, for a suitable normalisation an 1 ,n 2 . Starting from Hoeffding's decomposition of the U -statistic Tn 1 ,n 2 (see for instance [START_REF] Van Der | Asymptotic statistics[END_REF], example 12.7), we see that, under H0, where FX (x) = P(X1 < x) and HY (x) = P(Y1 > x). The empirical estimators of V1 and V2 are then

Tn 1 ,n 2 V 1 n 1 + V 2
V1,n 1 ,n 2 = 1 n1 -1 n 1 k=1 (Hn 2 (X k ) -Hn 2 ) 2 and V2,n 1 ,n 2 = 1 n2 -1 n 2 k=1 (Fn 1 (Y k ) -Fn 1 ) 2 where Fn 1 (x) = 1 n1 n 1 k=1 1X k <x Hn 2 (y) = 1 n2 n 2 k=1 1Y k >y Fn 1 = 1 n2 n 2 k=1 Fn 1 (Y k ) Hn 2 = 1 n1 n 1 k=1
Hn 2 (X k ) .

Finally, under H0,

M Wn 1 ,n 2 = Tn 1 ,n 2 V 1,n 1 ,n 2 n 1 + V 2,n 1 ,n 2 n 2
converges in distribution as n1, n2 → ∞ to the N (0, 1) distribution.

The rejection region of H0 of the corrected Mann-Whitney test is therefore of the form Rn 1 ,n 2 ,α = {|M Wn 1 ,n 2 | > cα} where cα is the quantile of order 1 -(α/2) of the N (0, 1) distribution, which provides a test asymptotically well calibrated.

The corresponding R function of the robusTest package is: wilcoxtest(,paired=FALSE).

Remark: The procedure described above still works when both samples are obtained from n i.i.d random variables (Xi, Yi) 1≤i≤n , where the Xi's are continuous random variables and the Yi's are categorical variables with two levels L1, L2, considering the two sub-samples of continuous variables obtained by conditioning with respect to Yi = L1 or Yi = L2.

In the next subsection, we will illustrate the differences between the classical test for testing stochastic dominance and the corrected test by a small simulation study.

Simulations

We simulate N = 3000 samples of size n1 according to the distribution U([-0.5, 0.5]), and 3000 samples of size n2 according to the distribution N (0, (0.04) 2 ) (with standard deviation equal to 0.04), with n2 = 3n1 (see Figure 4). For each test, we indicate the frequency of rejection of H0 at level 5%. We consider here 4 tests: the robust Mann-Whitney (robust M-W) test based on the M Wn 1 ,n 2 statistic, the uncorrected Mann-Whitney (M-W) test (both for testing H0 : Med(Y -X) = 0, which is satisfied here), Welch's test (which tests the equality of the expectations without assuming the equality of the variances, see the previous section), and the two-sample Kolmogorov-Smirnov (K-S) test for testing the equality of distributions (see for instance [START_REF] Conover | Practical Nonparametric Statistics[END_REF], pages 309-314). The results are given in On this set of simulations (Table 4), we see that, for the robust M-W test and all the proposed sample sizes, the rejection frequency of H0 is below 7%. It is between 5% and 6% as soon as n1 ≥ 40, n2 ≥ 120. Welch's test is also well calibrated, with rejection frequencies all between 4.8% and 5.7%. The uncorrected Mann-Whitney test is poorly calibrated, with rejection frequencies around 17%. As expected, the two-sample Kolmogorov-Smirnov test detects very well the difference between the two distributions, systematically as soon as n1 ≥ 30, n2 ≥ 90.

Conclusion

If we want to test if Med(Y -X)=0, it is a priori preferable to use the robust Mann-Whitney test, the usual test can lead to a false positive rate that is much too high. One could object that the usual Mann-Whitney test can be used to test the hypothesis H0: X and Y have the same distribution. But our simulations reveal that the usual Mann-Whitney test is not consistent to test this hypothesis (its rejection frequency does not tend to 1 when n tends to infinity), whereas the two-sample Kolmogorov-Smirnov type test is consistent.

We also investigated how to test stochastic dominance in the case of paired samples, which will be the subject of the next section.

Other tests of the robusTest package for paired twosample

In the robusTest package, we also provide functions to test stochastic dominance in the case of paired samples. The context is as follows: let (X1, Y1), . . . , (Xn, Yn) be independent copies of the pair (X, Y ), where X, Y are real-valued random variables. We also assume that the variables are continuous. As in the previous section, we want to know if Y tends to take larger or smaller values than X. But here, the variables X and Y are a priori not independent. Classically, we consider the series of differences Di = Yi -Xi, and we are therefore reduced to a problem of univariate statistics. We can then use the confidence interval for the median Med(D) described in Example 21.8 of the book by van der Vaart [START_REF] Van Der | Asymptotic statistics[END_REF], and based on the order statistics (D (i) ) 1≤i≤n . Let us describe this confidence interval: for α ∈ (0, 1), let

kn,α = -cα √ n 2 + n 2 , n,α = cα √ n 2 + n 2 ,
the square brackets denoting the integer part, and cα being the quantile of order 1 -(α/2) of the N (0, 1) distribution. Then, the interval

IC1-α = [D (kn,α) , D ( n,α) ] , (4) 
is a confidence interval of Med(D) with asymptotic confidence level 1 -α. As usual, a test of H0 : Med(D) = 0 against H1 : Med(D) = 0 can be deduced from (4). This test is an alternative to the sign test. For these confidence interval and test, the R function of the package robusTest is mediantest. This function can be used for a single sample, as well as in the case of paired two-sample (in this case, the confidence interval and the test are for the quantity Med(Y -X)).

Note that we could have implemented the non-asymptotic confidence interval for Med(D) (which is also described in Example 21.8 of [START_REF] Van Der | Asymptotic statistics[END_REF]). However, some simulations suggest that, even for small samples (25 ≤ n ≤ 50), the asymptotic confidence interval behaves as well as the non asymptotic one.

As another alternative to the sign test, Wilcoxon's sign and rank test is often proposed, whose statistic is written

Wn = n i=1 Ri1D i >0 ,
where Ri is the rank of |Di| in the sample (|D k |) 1≤k≤n . If the variable D is symmetric (which means that D has the same distribution as -D), Wilcoxon [START_REF] Wilcoxon | Individual comparisons by ranking methods[END_REF] showed that |D| and 1D>0 are independent; we can then easily deduce that the distribution of Wn is distribution free (i.e. does not depend on the distribution of D). Therefore, if D is symmetric, the distribution of Wn is known and tabulated. Wilcoxon's sign and rank test is constructed from the quantiles of this distribution. But if the variable D is not symmetric, the distribution of Wn has no reason to be distribution free under H0 : Med(D) = 0. We can therefore make the following conclusion: in a general context, Wilcoxon's sign and rank test is not correctly calibrated to test Med(D)=0. In fact, the sign and rank test allows to test 1D i +D j >0 .

Note that

Wn = Un + n i=1 1D i >0 ,
the second term on the right in the equality being asymptotically negligible with respect to Un. Starting from the Hoeffding decomposition of the U -statistic Un (see for example [START_REF] Van Der | Asymptotic statistics[END_REF], example 12.4), we see that the variable √ n(2Un/(n(n -1)) -0.5) converges in distribution under H 0 to the distribution N (0, V ), where V = 4Var(F (-D))

and F is the distribution function of the variables Di. The empirical estimator of V is therefore Fn(-Di) .

Vn = 1 n -1
Finally, under H 0 ,

W n = √ n √ Vn 2Un n(n -1)
-0.5 converges in distribution when n → ∞ to the distribution N (0, 1).

The rejection region of H 0 of the corrected sign and rank test is therefore of the form Rn,α = {|W n | > cα} where cα is the quantile of order 1 -(α/2) of the distribution N (0, 1), q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 80 100 120 140 We can see that the results of the two tests are very different, with a p-value of 9.25% for the usual Pearson test, and 1.74% for the robust Pearson test. The robust test not requiring any hypothesis on the distribution of the pair of variables, it is a priori the one that must be retained. Note that Shapiro's test on the variables CHL and DBP each time gives a p-value lower than 1%, which implies that the observations do not come a priori from a pair of Gaussian variables. At the 5% risk level, we conclude that there is indeed a significant correlation in the sense of Pearson.

Let us now try to see the differences between the usual versions of the Kendall and Spearman tests and their corrected versions. Using the command tiebreak of the package robusTest, we see that ties are present in both series of observations. To compare the usual tests and their corrected versions, we get rid of this problem by using

X=tiebreak(CHL[CDH==1]) Y=tiebreak(DBP[CDH==1])

To test Kendall's correlation with the cor.test function of the package stats, type cor.test(X,Y, method="kendall")

We get the output

Figure 1 :

 1 Figure 1: Scatter plot of 150 couples (x i , y i ) drawn according to model (1)

Figure 2 :

 2 Figure 2: Scatter plot of 150 couples (x i , y i ) drawn according to model (2)

n 2 converges

 2 in distribution as n1, n2 → ∞ to the N (0, 1) distribution, with V1 = Var(HY (X1)) and V2 = Var(FX (Y1)) ,

Figure 4 :

 4 Figure 4: Boxplots of 1: 60 observations drawn according to the distribution U([-0.5, 0.5]), and 2: 180 observations drawn according to the distribution N (0, (0.04) 2 ).

H 0 :

 0 Med(D1 + D2) = 0 against H1 : Med(D1 + D2) = 0 .But then again, it is not well calibrated to test this hypothesis. We can nevertheless solve (asymptotically) this problem, by considering the limiting distribution of √ n(2Un/(n(n -1)) -0.5) under H 0 , with

Figure 5 :

 5 Figure 5: Scatter plot of cholesterol as a function of diastolic blood pressure in patients with coronary artery disease

Table 1 :

 1 Frequencies of rejection of the seven tests at level 5% for model[START_REF] Ammous | Testing Kendall's τ for a large class of dependent sequences[END_REF].

	n	30	40	50	60	70	80	90	100	200	300
	usual P	0.361 0.376 0.365 0.369 0.38 0.353 0.366 0.362 0.374 0.384
	robust P 0.055 0.047 0.048 0.052 0.055 0.05 0.049 0.049 0.051 0.054
	usual K	0.174 0.184 0.183 0.201 0.201 0.202 0.187 0.194 0.203 0.194
	robust K 0.077 0.067 0.069 0.066 0.064 0.057 0.057 0.052 0.052 0.051
	usual S	0.123 0.124 0.132 0.135 0.145 0.131 0.131 0.126 0.139 0.137
	robust S 0.113 0.096 0.089 0.082 0.078 0.071 0.068 0.061 0.057 0.056
	KS indep 0.732 0.934 0.989 0.999	1	1	1	1	1	1

Table 2 :

 2 Frequencies of rejections of the seven tests at level 5% for model[START_REF] Bartlett | Properties of sufficiency and statistical tests[END_REF].are always between 5% and 7% for n ≥ 90. Our last observation is that, unsurprisingly, the independence test detects very well the non-independence of X and Y , systematically as soon as n ≥ 40.

	n	30	40	50	60	70	80	90	100	200	300
	usual P	0.162 0.159 0.158 0.154 0.148 0.146 0.154 0.153 0.141 0.142
	robust P 0.072 0.064 0.06 0.057 0.056 0.058 0.058 0.05 0.049 0.052
	usual K	0.231 0.236 0.236 0.242 0.249 0.248 0.255 0.247 0.245 0.246
	robust K 0.082 0.074 0.063 0.06	0.06 0.059 0.06 0.059 0.054 0.05
	usual S	0.138 0.143 0.133 0.132 0.142 0.139 0.148 0.14 0.142 0.135
	robust S 0.113 0.099 0.085 0.079 0.071 0.071 0.07 0.068 0.059 0.056
	KS indep 0.956	1	1	1	1	1	1	1	1	1

Conclusion:

We have seen, through two really different scenarios of simulations, that if we want to test non-correlation, it is preferable to use robust tests. Indeed the usual tests can lead to a false positive rate that is much too high. One could object that the usual correlation tests can be used to test the null hypothesis H0: X and Y are independent. But our simulation study reveal that the usual correlation tests are not consistent to test this hypothesis (their rejection frequency does not tend to 1 when n tends to infinity), whereas the Kolmogorov-Smirnov type test is consistent.

Table 3 (

 3 level α = 5%).

	n	60	70	80	90	100	150	200	250	300
	Fisher	0.145 0.151 0.144 0.154 0.152 0.153 0.161 0.16 0.161
		0.142 0.147 0.143 0.153 0.152 0.153 0.161 0.16 0.161
	Levene	0.08 0.083 0.091 0.097 0.106 0.119 0.155 0.172 0.196
	VWelch 0.057 0.054 0.056 0.056 0.055 0.053 0.056 0.055 0.053

Table 3 :

 3 Frequency of rejection of the 4 tests at level 5% for model[START_REF] Blum | Distribution free tests of independence based on the sample distribution function[END_REF]

Table 4 (

 4 level α = 5%).

	n 1 ; n 2	20;60 30;90 40;120 50;150 60;180 70;210 80;240 90;270 100;300
	robust M-W 0.061 0.064 0.057	0.058	0.054	0.056	0.055	0.054	0.051
	M-W	0.172 0.171	0.18	0.166	0.17	0.186	0.168	0.179	0.161
	Welch	0.057 0.048 0.051	0.057	0.49	0.57	0.053	0.051	0.051
	K-S	0.998	1	1	1	1	1	1	1	1

Table 4 :

 4 Frequency of rejection of the four tests at level 5% for n 1 pairs drawn according to the distribution U([-0.5, 0.5]), and n 2 couples according to the distribution N (0, (0.04) 2 ).

which provides a test asymptotically well calibrated.

For the robust Wilcoxon sign and rank test, the correspondind R function of the robusTest package is: wilcoxtest(,paired=TRUE).

Remark. As we see, the Wilcoxon sign and rank test is not well suited to test H0 : Med(D) = 0 (calibration and consistency issues) nor H0 : "D is symmetric" (consistency issues). If one wants to test the symmetry, one can rather use the Kolmogorov-Smirnov type statistic:

where

One can easily check that the test statistic Kn is distribution-free under H0 : "D is symmetric", and that it converges in distribution under H0 to the supremum of a Gaussian process.

In the last section, we illustrate on a real data set the functions of the robusTest package to test the correlation, and we compare the outputs to those of the usual tests.

Testing correlation on a real data set

We will illustrate our results on the Evans data set which comes from the lbref package (see also [START_REF] Kleinbaum | Logistic regression: A self-learning text[END_REF]). These are data from a cohort study in which white males in Evans County were followed for 7 years, with coronary heart disease as the outcome of interest. The data set is a data frame with 609 rows and 9 variables. We focus on the three variables : CDH : outcome variable; 1 = coronary disease CHL : cholesterol, mg/dl DBP : diastolic blood pressure, mmHg

In this example, we restrict ourselves to the sub-sample made up of the 71 men having coronary heart disease. We propose to test the correlation between the CHL and DBP variables in men affected by this disease. The scatter plot is drawn in Figure 5 We see a clear difference between the p-values of the two tests. That of the usual test is close to 5%, while that of the robust test is 1.6%. Note that these values remain globally stable when several attempts are made with the tiebreak function. The comments are exactly the same for the usual and robust Spearman tests (using method="spearman"): the p-value of the usual test is 4.45% while that of the robust test is 1.72%. Note the the p-values of the three robust tests (Pearson, Kendall, Spearman) are all below 2%.