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ABSTRACT
A large number of XAI (eXplainable Artificial Intelligence) solu-
tions have been proposed in recent years. Recently, thanks to new
XAI evaluation metrics, it has become possible to compare these
XAI solutions. However, selecting the most relevant XAI solution
among all this diversity is still a tedious task, especially if a user has
specific needs and constraints. In this paper, we propose AutoXAI, a
framework that recommends the best XAI solution and its hyperpa-
rameters according to specified XAI evaluation metrics while con-
sidering the user’s context (dataset, machine learning model, XAI
needs and constraints). It adapts approaches from context-aware
recommender systems on one side and strategies of optimization
and evaluation from AutoML (Automated Machine Learning) on
the other. Through two use cases, we show that AutoXAI recom-
mends XAI solutions adapted to the user’s needs with the best
hyperparameters matching the user’s constraints.
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1 INTRODUCTION
Machine Learning (ML) models are nowwidely used in the industry.
However, their lack of understandability delays their adoption in
high stakes domains such as the medical field [1], digital security
[2], judicial field [3], or autonomous driving [4]. In such contexts,
decision-makers should understand ML models and their results to
detect biases [3] or meaningless relationships [5]. During the last
decade, the eXplainable Artificial Intelligence (XAI) field proposed
a wide variety of solutions to facilitate the understanding of ML
models [6–12]. In view of the growing number of XAI proposals
[9], evaluating the quality of explanations has become necessary to
choose an appropriate XAI solution as well as its hyperparameters.
It is worth noting that the evaluation of explanations can either be
done subjectively by humans or objectively with metrics [13–15].
However, data scientists who want to include an XAI solution have
the following issues:

• They must check which XAI solutions are compatible with
the data type and the ML model.

• The XAI solutions should explain specifically what the data
scientists want to understand and it should be explained in
an appropriate format.

• They should evaluate the effectiveness of the explanations
produced by the selected XAI solutions.

• The context requires that the explanations match specific
quality criteria (called explanations’ properties) which im-
poses the use of appropriate evaluation metrics.

• They have to find the best hyperparameters for each of the
selected XAI solutions to keep the best of them.

These are tedious and time-consuming tasks. Theoretical guides
have been proposed by [16, 17] but, to the best of our knowledge,
automating the complete XAI recommendation approach has never
been formalized and implemented before.

In this paper, we propose to automate these tasks in a framework
to assist data scientists in choosing the best XAI solutions according
to their context (dataset, ML model, XAI needs and constraints).

https://doi.org/10.1145/3511808.3557247
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Suggesting an adapted XAI solution requires defining the ele-
ments of the data scientists’ contexts and using them to filter the
compatible XAI solutions. This task is challenging because there
are as many formalizations as there are authors in the XAI field
and very few works have attempted to unify XAI elements with
a formalization [15, 17, 18]. As we want to evaluate the XAI so-
lutions, we must automatically find the XAI evaluation metrics
that are compatible with the XAI solutions and are meaningful
to the context. Moreover, it is necessary to find a way to validate
multiple complementary properties by optimizing corresponding
XAI evaluation metrics while considering the data scientists’ pref-
erences. Indeed, properties’ importance is subjective and depend
on the context. In addition, ranking XAI solutions requires finding
the best hyperparameters using XAI evaluation metrics. As it is
computationally expensive, we draw inspiration from time-saving
strategies for model evaluation in AutoML [19].

The contributions of this paper are as follows:

• AutoXAI, a framework that recommends XAI solutions to
match the data scientists’ context and optimize their hyper-
parameters with respect to XAI evaluation metrics [14, 15].

• A more generic formalization of the data scientists’ context
for XAI.

• Anew evaluationmetric to assess the completeness of example-
based explanations.

• New time-saving strategies adapted to XAI evaluation.

We illustrate AutoXAI’s recommendations through two use cases
with different users’ constraints and needs as well as different
datasets and models. These studies let us uncover interactions be-
tween hyperparameters and properties of explanations, as well as
interactions between the properties themselves.

The rest of the paper is organized as follows. Related work are
described in Section 2. Formal definitions are illustrated by an
example of context in Section 3. The core of our framework is
detailed in Sections 4 and 5. Experiments of Section 6 show that our
framework is well adapted to propose an explanation matching the
user’s context and that time-saving strategies considerably reduce
the computation time. Finally, we conclude the paper and give
possible perspectives in Section 7.

2 RELATEDWORK
Four research topics interact in this paper: the XAI solutions, which
are being assessed by XAI evaluation metrics while context-aware
recommender systems and AutoML are means used to propose the
most adapted solution.

2.1 XAI solutions
In this paper, we define an XAI solution as any algorithm that pro-
duces an explanation related to an ML problem. This includes meth-
ods that explain black-box models but also naturally interpretable
models. As mentioned in Section 1, many XAI solutions now exist
and different taxonomies have been proposed such as [6, 7, 9, 12, 15].
[7] also suggests grouping XAI solutions according to the type of
explanation produced. They list: feature summary, model inter-
nals, data point, surrogate intrinsically interpretable model, rule
sets, explanations in natural language, and question-answering.

Later, [20] suggests that XAI explanations answer specific ques-
tions about data, its processing and results inML. Theymap existing
XAI solutions to questions and create an XAI question bank that
supports the design of user-centered XAI applications. [21] defines
an explanation as an explanan: the answer to the question and an
explanandum: what is to be explained. These two elements provide
a user-friendly characterization of explanations and thus allow the
user to specify which explanation is more adapted.

The diversity of existing XAI solutions makes it hard to find an
XAI solution adapted to one’s needs. Moreover, as the XAI field is
growing, more and more XAI solutions proposed in the literature
are producing similar kinds of explanations. Hence, it has become
necessary to objectively compare XAI solutions by assessing the
effectiveness of their explanations. In this direction, the recent
literature has focused on quantitative XAI evaluations [15].

2.2 Evaluation of XAI solutions
[10] distinguishes three strategies of evaluation: application-grounded
evaluation, human-grounded evaluation, and functionality-grounded
evaluation that does not imply human intervention. Application-
grounded evaluation tests the effectiveness of explanations in a
real-world application with domain experts and human-grounded
evaluation are carried out with lay humans. While explanations
are intended for humans, functionality-grounded evaluations are
interesting because of their objectivity. Thus, this type of evalu-
ation is inexpensive, fast and can lead to a formal comparison of
explanation methods [14].

Since the notion of "good explanations" is not trivial, some qual-
ity properties have been proposed by [22]. These are man-made
criteria that attest to the quality of the explanations. Functionality-
grounded evaluation metrics are constructed to calculate scores to
measure how well a property is met.

[15] focuses on the functionality-grounded evaluation and pro-
posed the Co-12 Explanation Quality Properties to unify the di-
verse properties proposed in the literature. They reviewed most
XAI evaluation metrics and associate each of them with properties.
Examples of their properties that will be studied in this paper are
as follow: Continuity describes how continuous and generalizable
the explanation function is, Correctness describes how faithful the
explanation is w.r.t. the black box, Compactness describes the size
of the explanation, and Completeness describes how much of the
black box behavior is described in the explanation.

In practice, XAI evaluation metrics produce scores for proper-
ties of interest, making it possible to compare and choose an XAI
solution. However, the data scientists still have to find the desired
XAI solutions and their corresponding XAI evaluation metrics. This
issue could be addressed with strategies that have been studied in
context-aware recommender systems.

2.3 Context-aware recommender systems
Recommender systems filter information to present the most rele-
vant elements to a user. To the best of our knowledge, there is no
recommender system for XAI solutions. To recommend adapted
XAI solutions, one should consider the whole context of the data sci-
entist. According to [23], context-aware recommender systems offer
more relevant recommendations by adapting them to the user’s
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situation. They also state that context may be integrated during
three phases: contextual prefiltering which selects a subset of pos-
sible candidates before the recommendation, contextual modeling
which uses context in the recommendation process, and contextual
postfiltering which adjusts the recommendation afterward. These
three phases require formally defining the elements of the context,
which is one of our objectives for the framework we propose in
this paper. While recommending an adapted XAI solution is a first
interesting step, the data scientist eventually wants a reliable ex-
planation, i.e. an explanation that verifies the properties of interest.
To achieve this, a possible approach is to use previously detailed
XAI evaluation metrics to optimize hyperparameters of adapted
XAI solutions. For this kind of approach, many strategies have been
proposed in the AutoML domain.

2.4 AutoML
Designing ML algorithms is an iterative task of testing and modify-
ing both the architecture and the hyperparameters of the algorithm.
It is a repetitive task that requires a lot of time. For this reason, a
part of the research has focused on automating the design of ML
algorithms, namely AutoML [19]. AutoML frameworks look for
the best performing ML pipeline treatment to solve a task on a
given dataset. According to [19], AutoML consists of several pro-
cesses: data preparation, feature engineering, model generation,
and model evaluation. They divide the model generation process
into two steps: search space and optimization methods. The first
step defines the design principles of models that are tested, and the
second is how to obtain the best scores in the model evaluation
process. The main strategy of interest here is HyperParameter Opti-
mization (HPO) which consists in finding the best hyperparameters
according to a loss function. As model performances cannot be
derived according to a hyperparameter, it is a non-differentiable
optimization problem, therefore the HPO methods do not rely on
the model to propose a solution. Moreover, since training a model
until convergence is a costly operation, model evaluation is a very
time-consuming step. Thus, several strategies have been proposed
to accelerate the evaluation of models. [19] lists four types of strate-
gies: low fidelity, weight sharing, surrogate, and early stopping. The
low fidelity strategy consists in reducing the number of observa-
tions to reduce the number of epochs, or the size of observations
to reduce the number of parameters to optimize. Weight sharing
reuses learned parameters between models. The surrogate strategy
replaces a computationally expensive model with an approximation
to estimate the performance of neural architecture and guide archi-
tecture research. Early stopping can accelerate model evaluation by
stopping iterations if performances are predicted to be lower than
the current best score.

2.5 Approaches for choosing an XAI solution
As mentioned in Section 1, to select an XAI solution, the data scien-
tist can currently rely on XAI libraries, benchmarks, and AutoML
frameworks. Currently, available XAI libraries such as DeepExplain
[24], AI Explainability 360 [25], and Alibi [26] are gathering state-
of-the-art XAI solutions. However, they neither integrate automatic
evaluation of explanation nor recommend XAI solutions according
to data scientists’ needs and constraints.

Comparatives and benchmarks [27–29] compare XAI solutions
efficiency using XAI evaluation metrics. They are often joint with
the proposal of an XAI solution or an XAI evaluation metric on
which they are focusing. However, the results obtained depend
on the dataset and the ML model that may not be the ones the
data scientist uses, and thus the results may be different. Moreover,
the hyperparameters of the XAI solutions are not optimized to
maximize the various properties needed by the data scientist. This
last point is problematic as some XAI properties such as correctness
and compactness are not independent [15].

Eventually, [16] highlights that users should be guided in choos-
ing XAI solutions and proposes a methodology for this issue, while
[17] proposes a theoretical framework to facilitate the comparison
between XAI solutions.

To summarize, as there is a high diversity of XAI solutions, it is
a complex and tedious task for data scientists to find XAI solutions
that fit their needs. Yet, there is no recommendation system to
automate this task. Moreover, data scientists look for the best XAI
solution as they want a reliable solution. XAI evaluation metrics
allow for objective comparison, but XAI libraries do not implement
them and comparatives are not adapted to the user’s context. Even-
tually, data scientists have to find hyperparameters to maximize
the desired properties. However, this task should be done for mul-
tiple XAI solutions and multiple properties according to the data
scientists’ preferences. This paper aims to address these issues in
the following sections.

3 EXAMPLE AND FORMALIZATION
3.1 Illustrative example
Let’s first consider a data scientist in a medical laboratory, Alice
and Bob, a physician colleague. Bob uses a ML black box model as a
decision support tool and asks if it is possible to have an explanation
for the predictions of the model to check some rare cases. Alice has
access to themodel, as well as the data that were used to build it, and
now wants to implement an XAI solution to produce explanations.

Here, the needs of Bob, the physician, are the following: the
explanations must focus on predictions (as it is asked why they are
obtained) and the XAI solution must explain a trained model with-
out modifying it. Moreover, Bob wants to know how the collected
data for a patient (the features) influence the result of the model.

Regarding the constraints of the context, the high-stakes de-
cisions impose the use of a precise model and the most faithful
explanations possible (correctness property). Nevertheless, the ex-
planations should not be completely changed by small perturbations
as blood measurements might be noisy, therefore, stable explana-
tions are mandatory (continuity property). Eventually, since Bob
will be the main user of these explanations, concise explanations
should be encouraged as physicians shouldn’t waste time on unim-
portant features (compactness property).

3.2 Definitions
Definition 3.1 (Dataset). Let𝑋,𝑌 be a dataset with𝑋 = {𝑥𝑖 }𝑛𝑖=1 |𝑥𝑖 ∈

R𝑑 the observations and 𝑌 = {𝑦𝑖 }𝑛𝑖=1 |𝑦𝑖 ∈ R their corresponding
labels, 𝑛 is the number of observations and 𝑑 is the number of
dimensions of the dataset (also called features).
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In our illustrative example, the diabetes dataset [30] 𝑋 is com-
posed of 𝑛 = 442 patients with 𝑑 = 10 features (physiological
information) and 𝑌 is the disease progression for each patient.

Definition 3.2 (ML model). A ML model is trained on a dataset
𝑋,𝑌 by inferring statistical relationships between 𝑋 and 𝑌 . This
model can then be used as predictive function which we note 𝑓 :
𝑋 → 𝑌 with 𝑌 = {𝑦𝑖 }𝑛𝑖=1 |𝑦𝑖 ∈ R, the produced predictions.

In our illustrative example, a Multilayer Perceptron learns a pre-
dictive function 𝑓 that predicts the disease progressions 𝑌 based
on the observations 𝑋 and the labels 𝑌 .

Definition 3.3 (Explanandum and explanan). Wenote E = {E𝑖 }𝑘𝑖=1
the set of all possible explanandum, where the explanandum E𝑖
is a descriptor for explanation functions that specifies what is ex-
plained. We also note E ′ = {E ′

𝑗
}𝑘′
𝑗=1 the set of all possible explanan,

where the explanan E ′
𝑗
is a descriptor for explanation functions

that specifies how it is explained.

In our illustrative example, E𝑖 =Why this prediction? and E ′
𝑗
=feature

summaries.

Definition 3.4 (XAI properties). XAI properties are descriptive
quality criteria for explanations. We note 𝑃𝑟 , the set properties that
explanations verify or not.

In our illustrative example, the properties of interest are correct-
ness, continuity, and compactness.

Thus, in AutoXAI the data scientist can specify the needs with
(E, E ′) and constraints with 𝑃𝑟 .

Definition 3.5 (XAI solution). An XAI solution acts as a function
that produces one or several explanations. We note 𝐸 = {𝑒𝑡 }𝑙𝑡=1,
the explanations set with 𝑙 ∈ N the number of explanations.We note
𝑓
(ℎ)
𝑒 : 𝑃 (𝑋,𝑌, 𝐹, 𝑌 ) → 𝐸 the explanation functionwith 𝑃 (𝑋,𝑌, 𝐹, 𝑌 )
a partition of {𝑋,𝑌, 𝐹, 𝑌 } and ℎ the hyperparameters of the XAI
solution. 𝑓 (ℎ)𝑒 ∈ 𝐹𝑒 with 𝐹𝑒 the set of explanation functions. The
hyperparameters refer to the static parameters that determine the
behaviors of the XAI solution. For naturally interpretable models
𝑓 = 𝑓

(ℎ)
𝑒 .

In our illustrative example, the XAI solutions LIME [5] and Kernel
SHAP [18] are considered as 𝑓 (ℎ)𝑒 : (𝑋, 𝐹 ) → 𝐸. Both produce one
feature importance explanation 𝑒𝑡 ∈ R𝑑 for each patient so that
𝐸 = {𝑒𝑡 }𝑛𝑡=1.

Definition 3.6 (XAI evaluation metrics). An XAI evaluation metric
evaluates one property and is often adapted to one specific type
of explanation. We note the set of XAI evaluation metrics 𝑀 =

{𝑚𝑞}𝑐𝑞=1, where 𝑚𝑞 : 𝑃 (𝑋, 𝐹, 𝐹𝑒 , 𝑌 ) → R, with 𝑃 (𝑋, 𝐹, 𝐹𝑒 , 𝑌 ) a
partition of {𝑋, 𝐹, 𝐹𝑒 , 𝑌 }, so that𝑚𝑞 evaluates 𝑝𝑞 ∈ 𝑃𝑟 .

In our illustrative example, robustness𝑚𝑞 : (𝑋, 𝐹𝑒 ) → R is an
evaluation metric that assess the property of continuity 𝑝𝑞 .

4 OUR FRAMEWORK PROPOSAL
We first describe a global step-by-step AutoXAI process with its
components as shown in Figure 1a, then we detail the Hyperparam-
eters Optimizer in Figure 1b and eventually each component using
the definitions of Section 3.2.

User
(1) (2) (3)

Context
Adapter

Hyperparameters
Optimizer

Context : needs (E𝑖 , E′
𝑗
) ,

constraints ⊂ 𝑃𝑟E𝑖 ,E′𝑗
,

data (𝑋,𝑌 ) , model 𝑓 ,
parameters for AutoXAI,
preferences for properties

XAI solutions ⊂ 𝐹𝑒E𝑖 ,E′𝑗
Evaluation metrics ⊂ 𝑀E𝑖 ,E′𝑗

𝑓𝑒1

𝑓𝑒2

𝑓𝑒3

XAI solutions optimized and ranked

(a) Global architecture of AutoXAI

(3.1)
(3.2)

(3.3)

Hyperparameter
Estimator

Evaluator

Explainer
XAI solution and
evaluation metrics

New hyperparameters

Ex
pla
na
tio
ns

Aggregated score

XAI solutions optimized
and ranked

(b) Details on Hyperparameters Optimizer

Figure 1: Architecture of AutoXAI.
The figures are read by following the number of the steps. In

Figure 1a, for each XAI solution, step (3) optimizes its
hyperparameters with respect to the aggregated scores of the

evaluation metrics by entering the loop in Figure 1b.

Here are the operations as they are performed, starting with
Figure 1a:

1. The User gives the elements of the context, the parameters
for AutoXAI and its preferences regarding the properties.

2. The Context Adapter component selects a subset of XAI
solutions matching the needs and a subset of evaluation
metrics to ensure that the constraints are met.

3. For each XAI solution, the Hyperparameters Optimizer looks
for hyperparameters that will reduce the loss function based
on the aggregated scores of the evaluation metrics. To do so,
it performs the following operations in a loop, see Figure 1b.

3.1. The Hyperparameters Estimator proposes new hyperpa-
rameters according to the chosen optimization algorithm.

3.2. The Explainer uses the XAI solution and the newly pro-
posed hyperparameters to produce explanations.

3.3. The Evaluator applies the evaluation metrics to the expla-
nations and aggregates the scores thus obtained.

4.1 Context adapter
As detailed in Section 3.2, XAI solutions can be grouped according
to (E𝑖 , E ′

𝑗
), their explanandum and their explanan. This grouping

also determines 𝑃𝑟 E𝑖 ,E′
𝑗
, the properties that can describe the XAI

solutions, and therefore 𝑀E𝑖 ,E′
𝑗
, the XAI evaluation metrics that

can be applied. To get (E𝑖 , E ′
𝑗
), we ask what the user wants in

natural language with pre-written answers. To do so, AutoXAI uses
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the question bank from [20] for explanandum proposals, letting
the user choose which question the XAI solution should answer.
For the explanan, AutoXAI uses the list of explanation types from
[7]. With this knowledge, a contextual prefiltering (see Section
2.3) is possible by selecting 𝐹𝑒E𝑖 ,E′

𝑗
in 𝐹𝑒 , 𝑃𝑟 E𝑖 ,E′

𝑗
in 𝑃𝑟 and𝑀E𝑖 ,E′

𝑗

in 𝑀 . This is possible by tagging each of these proposals with a
tuple from (E, E ′) using [15, 20] correspondence tables. 𝑃𝑟 E𝑖 ,E′

𝑗

serve for contextual modeling (see Section 2.3). Indeed, the user
can choose the weights (degree of importance) for each of the
properties in 𝑃𝑟 E𝑖 ,E′

𝑗
. These weights are used in the evaluation of

the XAI solutions which guide the optimization and therefore the
ranking of XAI solutions that are produced. 1 is the default value,
increasing a weight𝑤𝑞 makes its property 𝑝𝑞 more important and
conversely, 0 means that the property is ignored. In addition to
these elements, AutoXAI can retrieve the model and the dataset on
which it was trained if necessary.

4.2 Hyperparameters estimator
This component’s goal is to propose new hyperparameters to ob-
tain the best aggregated score. The optimization algorithms are
iterative and some, such as Bayesian optimization [31], associate
the hyperparameters to a score for building a probabilistic model.
This probabilistic model estimates the hyperparameters that should
give the best score. Here, 𝑓𝑒 , with previously estimated hyperpa-
rameters, is evaluated with the aggregated scores of𝑀E𝑖 ,E′

𝑗
(further

detailed in Section 4.4) and it results in a new entry to update the
probabilistic model. This component estimates hyperparameters
according to previous score results in case there are. Otherwise, the
values of the hyperparameters are set according to the initialization
of the chosen algorithm, for example at random.

4.3 Explainer component
This component’s objective is to produce explanations using the
XAI solution and the defined hyperparameters. As the implementa-
tions of XAI solutions vary in their programming paradigm and in
the data structure they use and return, it is necessary to set up a
wrapper that standardizes the input and output for each XAI solu-
tion of a given group. This component serves as a base to include
all implemented XAI solutions and is made to be completed with
new XAI solutions.

4.4 Evaluator component
This component aims at computing the scores of XAI evaluation
metrics corresponding to the XAI properties requested by the user.
Like the precedent component, this one also acts as a wrapper that
standardizes the input and output of XAI evaluation metrics and
serves as a base to include any XAI evaluation metrics.

It also aggregates the properties’ scores to provide a unique
optimization objective for HPO. To find the best hyperparameters
ℎ of the XAI solution 𝑓𝑒 , we define the optimization objective as
follows:

max
ℎ∈𝐻

𝐴(𝑓𝑒 , ℎ) (1)

With 𝐴 the aggregation function and 𝐻 the set of every possible
hyperparameters. 𝐴 should gather the multiple scores returned by
the XAI evaluation metrics assessing the properties chosen and

weighted according to the user’s preferences for properties. To do
so, we opt for a linear scalarization [32]:

𝐴(𝑓𝑒 , ℎ) =
1
𝑐 ′

𝑐′∑︁
𝑞=1

𝑤𝑞 × 𝑠𝑐𝑞 (𝑚𝑞 (𝑓 (ℎ)𝑒 )) (2)

The XAI evaluation metric for 𝑝𝑞 is written𝑚𝑞 (𝑓 (ℎ)𝑒 ) for a shorter
notation, thought it might use any partition of {𝑋, 𝐹, 𝐹𝑒 , 𝑌 } as de-
fined in 3.6. 𝑐 ′ is the number of chosen properties and therefore XAI
evaluation metrics. The weights𝑤𝑞 are the degree of importance
set by the user and 𝑠𝑐𝑞 (.) is a scaling function based on previous
results for a property 𝑝𝑞 . This scaling function allows not to favor
one XAI evaluation metric over another. For the first epoch, there
are no previous results and scaling cannot be defined. Therefore, we
initialize 𝑠𝑐𝑞 (.) using the evaluation scores of XAI solutions with
the default hyperparameters. This cold start also verifies whether
XAI solutions can perform well with default hyperparameters.

Although this framework already produces a ranking of XAI
solutions, the computation time should be taken into account.

5 TIME-SAVING EVALUATION STRATEGIES
Some XAI solutions and XAI evaluation metrics were not designed
to be used multiple times in a row and have high algorithmic com-
plexity. To reduce the time cost of these algorithms, without chang-
ing their architecture, we propose to adapt the existing heuristic
strategies from the AutoML field. AutoXAI adapts three AutoML
strategies to reduce computing time: low fidelity which becomes
sampling, early stopping, and weight sharing which becomes infor-
mation sharing. These strategies are detailed below.

5.0.1 Sampling. Reducing the number of explanations produced
reduces the number of operations in explanation making and in
explanation evaluation. It is also possible to use a subset of the
dataset to create explanations, which can reduce the number of
operations for explanation making. These approximations can be
accurate enough depending on the diversity of the dataset, the
complexity of the model, and the sensitivity of the XAI solution.
This issue is addressed by specifying the percentage of explanations
to be processed.

5.0.2 Early stopping. Early stopping can be performed during the
calculation of the XAI evaluation metric or the HPO. In both cases,
this strategy can save a lot of time but it must be set up correctly to
avoid approximating too roughly. For the calculation of evaluation
metrics, this option is only possible if the XAI evaluation metric is
applied sequentially to the explanations. Moreover, this strategy
is more efficient if explanations are also calculated sequentially,
indeed, fewer explanations are computed this way. The stopping
condition is that the XAI evaluation metric only updates itself by
a small percentage below a threshold during multiple iterations.
We then consider that it stabilizes. For early stopping applied to
HPO, the reasoning is that if the best score does not change during
several iterations, then it has been found. Here, the choice of a
threshold matters to avoid missing a better solution.

5.0.3 Information sharing. Another way to save computing time is
to reuse intermediate results and share information between eval-
uations. In AutoML, the weight-sharing strategy of an old model
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speeds up the training of a new one [19]. In AutoXAI, some inter-
mediate calculations can be reused in the same way. This strategy
is especially efficient for some costly intermediate calculations like
a Gaussian process [29].

6 EXPERIMENTS
In the following experiments, an implementation of the AutoXAI
framework described in Section 4 is applied to two use cases in-
cluding the illustrative example described in Section 3.1. The code
to reproduce the results of these use cases is available at https:
//github.com/RobinCugny/AutoXAI.

6.1 Diabetes estimation
For the illustrative example, the datasets used are diabetes dataset
[30] and Pima Indians dataset [33]. Diabetes dataset has 10 features
and is designed for a regression task to predict disease progression.
Pima Indians dataset has 8 features and is made for a binary classifi-
cation to predict if patients have diabetes. The black box model used
is the scikit-learn implementation of a Multilayer Perceptron [34].
For the regression we use MLPRegressor1 and for the classification
we use MLPClassifier2.

The implemented XAI solutions are LIME [5] and Kernel SHAP
[18]. LIME provides explanations using the weights of a local linear
model for each observation. SHAP captures features’ interactions
using Shapley values [35] as previously done by [36]. We use Kernel
SHAP, one of their contributions, that builds a linear model like
LIME but uses Shapley values as coefficients and therefore as feature
importance. In this paper, SHAP refers to Kernel SHAP for short.

The implemented XAI evaluation metrics and their correspond-
ing properties are:

• Robustness [29] Continuity
• Infidelity [27] Correctness
• Number of features [37] Compactness

[29] proposes the measure of robustness that evaluates Continu-
ity by adapting Lipschitzian continuity. The objective is to measure
changes in explanations while the input has small perturbations.
Indeed, explanations should not radically change if the observation
does not either. [27] proposes to evaluate Correctness with an in-
fidelity metric. It consists in perturbing the input, based on the
order of the features in explanations, and measuring for each new
input the change in the output of the predictive function 𝑓 . The
Compactness is evaluated with the number of features which is
obtained with the cardinal of the explanation vector. See Table 1
for the formulas.

For the aggregation in this scenario, Alice and Bob set theweights
to 1, 2, 0.5 for robustness, infidelity and number of features
respectively. Alice, sets the number of epochs to 25.

The HPO strategy is a Bayesian optimization, we use [31] im-
plementation of the Gaussian Process. The time-saving evaluation
strategies are early stopping for XAI evaluation metrics computa-
tion and HPO, and information sharing for robustness and infidelity.
For robustness, information shared between epochs are the data

1https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.
MLPRegressor.html
2https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.
MLPClassifier.html

Figure 2: Robustness loss and Fidelity loss for diabetes dataset

Figure 3: Robustness loss and Fidelity loss for Pima Indians
dataset

points giving the maximum score of robustness (see Table 1) we
call maxima for short. For infidelity, the information shared be-
tween epochs are the generated perturbation points and the model
predictions for them.

An extract from the ranking produced by AutoXAI for Diabetes
dataset is in Table 2 and the one for Pima Indians dataset is in Table
3. The XAI solutions are sorted in descending order according to
the Aggregated score produced by Equation 2. To show diverse XAI
solutions we present three combinations of hyperparameters with
LIME and three with SHAP. The choice of the number of features
in the explanation is a subjective process requiring to visualize
the explanations, we decide on a number of features of 1, 3, and
5. Thus, the user can verify if short explanations are enough to
understand the prediction or if more features would help. In the
Hyperparameter columns, the two first hyperparameters for LIME
as for SHAP are: first, the number of features in the explanation,
and second, the number of perturbations used to build the linear
model. The last hyperparameter for SHAP is the l1 regularization
to use for feature selection3.

Regarding Table 2, LIME is systematically higher than SHAP
in the rankings with these XAI evaluation metrics. Several factors
could explain why SHAP does not score better: with default hy-
perparameters, SHAP has lower average robustness than LIME on
certain UCI classification datasets [38] (glass, wine, and leukemia)

3https://shap-lrjball.readthedocs.io/en/latest/generated/shap.KernelExplainer.html

https://github.com/RobinCugny/AutoXAI
https://github.com/RobinCugny/AutoXAI
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://shap-lrjball.readthedocs.io/en/latest/generated/shap.KernelExplainer.html
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Table 1: XAI evaluation metrics

Property Metric Formula

Continuity Robustness 𝐿̂(𝑥𝑖 ) = max
𝑥 𝑗 ∈𝐵𝜖 (𝑥𝑖 )

∥𝑓 (ℎ)
𝑒 (𝑥𝑖 )−𝑓 (ℎ)

𝑒 (𝑥 𝑗 ) ∥2
∥𝑥𝑖−𝑥 𝑗 ∥2

With 𝐵𝜖 (𝑥𝑖 ) a ball of radius 𝜖* centered in 𝑥𝑖 the studied data point. The optimization method looks for the point in the data space
with the highest ratio in the neighborhood. This value is kept as a measure for the lack of robustness 𝐿̂(𝑥𝑖 ).

Correctness Infidelity 𝐼𝑁 𝐹𝐷 (𝑒𝑖 , 𝑓 , 𝑥𝑖 ) = E𝐼∼𝜇𝐼 [(𝐼𝑇 𝑒𝑖 − (𝑓 (𝑥𝑖 ) − 𝑓 (𝑥𝑖 − 𝐼 )))2]
With 𝐼 , perturbations around 𝑥𝑖 so that 𝐼 = 𝑥𝑖 − 𝑥 ′

𝑖
, here we choose a noisy implementation with 𝑥 ′

𝑖
= 𝑥𝑖 + 𝜖 and 𝜖 a uniform noise.

Compactness Number of features 𝑁𝑜𝐹 (𝑒𝑖 ) = Card(𝑒𝑖 )
With 𝑒𝑖 ∈ 𝐸, the 𝑖-th explanation vector, a feature summary.

Completeness Non-representativeness 𝑁𝑅(𝐸) = 1
𝑛

𝑛∑
𝑖=1

min
𝑒 𝑗 ∈𝐸

𝑑 (𝑥𝑖 , 𝑒 𝑗 )

With 𝑛 = Card(𝑋 ), 𝑑 a distance function and 𝐸 the explanations set composed of representative data points 𝑒 𝑗 also called prototypes.
Compactness Diversity 𝐷𝑖𝑣 (𝐸) = ∑

{𝑒𝑖 ,𝑒 𝑗 }∈𝑃2 (𝐸)

𝑑 (𝑒𝑖 ,𝑒 𝑗 )
𝐶𝑙
2

(Redundancy) With 𝑃2 (𝐸), the set of combinations of two prototypes, 𝑑 a distance function and 𝐶𝑙
2 the number of combination with 𝑙 = Card(𝐸) prototypes.

Compactness Number of prototypes 𝑁𝑜𝑃 (𝐸) = Card(𝐸)
(Size) With 𝐸, the prototypes set.

*The implementation is a box having the size of the standard deviation, it is a variation proposed by the original authors.

Table 2: Extract from the ranking produced by AutoXAI on
Diabetes dataset.

Aggregated
score

Scaled
Robustness

Scaled
Fidelity

Scaled
NoF

XAI
Solution Hyperparameters

1.023 0.727 0.833 1.351 LIME 1;3656
1.019 0.703 0.991 0.745 LIME 3;8782
0.963 0.682 1.068 0.139 LIME 5;5392
-0.287 0.310 -0.924 1.351 SHAP 1;1304;auto
-0.633 -0.319 -0.975 0.745 SHAP 3;1571;aic
-0.639 0.014 -1.000 0.139 SHAP 5;1148;aic

Table 3: Extract from the ranking produced by AutoXAI on
Pima Indians dataset.

Aggregated
score

Scaled
Robustness

Scaled
Fidelity

Scaled
NoF

XAI
Solution Hyperparameters

1.412 0.744 1.435 1.243 LIME 1;5347
1.282 0.575 1.325 1.243 SHAP 1;509;bic
0.361 0.633 0.117 0.430 LIME 3;8329
0.176 0.339 -0.014 0.430 SHAP 3;713;auto
0.070 0.262 0.070 -0.383 SHAP 5;537;bic
-0.185 0.599 -0.481 -0.383 LIME 5;7023

and especially a larger standard deviation [29]. For Diabetes dataset,
as we can see in Figure 2, we also observe a large standard deviation
and higher average robustness for SHAPwith different hyperparam-
eters. We observe especially that it has constantly a higher fidelity
loss with a narrow distribution on this score. According to [27],
this means that SHAP captures less well how the model prediction
changes in response to the perturbations. As Kernel SHAP relies
on LIME strategy to build a local linear model, this means that the
loss might come from the inclusion of Shapley values. A hypothesis
here would be that the black box model does not make much use
of the relationships between features or not in the same way as
Kernel SHAP detects it with its linear approximation. Besides, a
similar conclusion has already been observed in [39].

Regarding the Pima Indians dataset, however, it seems that SHAP
performs slightly better. In Figure 3, we can see that SHAP is less

Figure 4: Different sizes of explanations produced by LIME
for an observation from Diabetes dataset

robust than LIME most of the time but that it has equivalent fi-
delity. Here SHAP seems to succeed in capturing the predictor
function changes, therefore it might find more feature interactions
in common with the model.

Compactness has an impact on the other properties [15]. More-
over, Bob, the physician, should observe the explanations to con-
firm the number of features that are necessary to understand the
prediction. Thus, it is appropriate to compare the XAI solutions
using the aggregated score while taking into account the number
of features. For that, let’s pick a particular observation from the
Diabetes dataset. The model makes a prediction and Bob asks Why
this prediction? and wants to know the features contributing to
this prediction. The explanations produced by the XAI solutions
recommended by AutoXAI are in Figure 4. At the bottom right is
LIME with default hyperparameters. We can see that some features
have little influence on the prediction and are useless to answer
the question of Bob. With these different-sized explanations, Bob
can see what is important and what is negligible to him. He can
thus choose the size of explanation he wants, keeping in mind the
scores of the properties and the aggregated score.
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6.2 SPAM detection
For the second use case, let’s first describe the context. We consider
a computer security manager in a laboratory, Charli. The staff
complains about receiving spam in the chat service of the laboratory.
Charli manages this service and knows little aboutML, Charli wants
to use an ML algorithm to automatically detect spam. Therefore,
Charli finds an off-the-shelf GloVe embedding [40] and implement
a LSTM [41]. Charli trains the model on a spam dataset, obtains a
good accuracy, and decides to try it one week on the chat service.
At the end of this week, a colleague of Charli shows a message that
has not been sent because suspected as a spam. Therefore, Charli
ends up wondering "Where does the model fail ?", more specifically,
"What do false positives and false negatives look like?". To answer
these questions, Charli wants to implement an XAI solution. In the
end, Charli wants to use this knowledge to be able to explain to
users the decisions made with their data and possibly reduce the
error rate.

Charli needs examples of messages with specific predictions to
know what they look like. Therefore, we define E𝑖′ =What kind of
data lead to this prediction? and E ′

𝑗 ′ =data points as explanations
(also called prototypes).

For the constraints of the context, Charli does not want to miss
any type of message leading to an error. Ideally, Charli wishes that
each data point should have a similar prototype (completeness).
However, Charli also wants to avoid having too many prototypes
and avoid redundancies (compactness).

The dataset used is derived from the UCI SMS Spam dataset [38],
it has 8714 features for 5572 data samples and was built using TFIDF
[42]. Charli separates the dataset into 4 subsets according to the
model results: true positives, true negatives, false positives, and
false negatives. Thus, the ML model (GloVe and LSTM) is no longer
necessary for this experiment. The implemented XAI solutions are
MMD-critic [43], Protodash [44] and k-medoids [45].

MMD-critic [43] proposes prototypes as explanations. To accu-
rately represent the data distribution, it minimizes the discrepancy
between the prototypes distribution and the data distribution. It also
proposes critics which are points that are not well represented by
the prototypes. Protodash [44] generalizes [43], it is a fast prototype
selection that also associates non-negative weights to prototypes
which are indicative of their importance. Eventually, although it
was not proposed for XAI, we use k-medoids [45] as it is a baseline
that gives comparable results. It finds medoids (prototypes here)
such that the distance between one prototype and the other points
of its data group is minimal.

The implemented XAI evaluation metrics and their correspond-
ing properties are:

• Non-representativeness Completeness
• Diversity [13] Compactness (redundancy)
• Number of prototypes Compactness (size)

We propose a new non-representativeness metric to assess
whether there is a close prototype for each data sample on average.
Unlike [13], it is model-agnostic, as XAI solutions that do not use
an ML model should not be evaluated according to the ML model.
To assess the Compactness, we use the number of prototypes for
the size of the explanation and diversity. For diversity, we adapt
[13] proposal to measure the mean distance between prototypes. As

Figure 5: Influence of the number of prototypes on represen-
tativeness

Figure 6: Influence of the number of prototypes on diversity

diversity and number of prototypes are fundamentally different,
we consider that they correspond to two different sub-properties
(redundancy and size respectively) and let the user give a weight to
each. See Table 1 for the formulas.

For the aggregation in this scenario, Charli sets the weights to
2, 1, 2 for non-representativeness, diversity and number of
prototypes respectively. Charli, sets the number of epochs to 25.
The HPO strategy is also the Gaussian Process here.

An extract from the ranking produced by AutoXAI for SMS Spam
dataset is in Table 4. As previously, the XAI solutions are sorted in
descending order according to the Aggregated score. For each XAI
solution, we present 2 results, the overall best score and the best
score for a number of prototypes lower or equal to 5. In the Hyper-
parameter columns, k-medoids has the following hyperparameters:
the initialization method, the maximum number of iterations, the
algorithm to use, the metric and the number of medoids to generate
4. MMD-critic has the following hyperparameters: the gamma value
and the number of prototypes to find. Protodash has the following
hyperparameters: the kernel to use, the value of sigma, and the
number of prototypes to find.

Regarding Table 4, we observe that k-medoids has the best Ag-
gregated score with high representativeness. We also observe that
the representativeness score is systematically lower with fewer

4https://scikit-learn-extra.readthedocs.io/en/stable/generated/sklearn_extra.cluster.
KMedoids.html

https://scikit-learn-extra.readthedocs.io/en/stable/generated/sklearn_extra.cluster.KMedoids.html
https://scikit-learn-extra.readthedocs.io/en/stable/generated/sklearn_extra.cluster.KMedoids.html
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Table 4: Extract from the ranking produced by AutoXAI on SMS Spam dataset

Aggregated score Scaled Representativeness Scaled Diversity Scaled NoP XAI solution Hyperparameters
0.483 0.904 0.248 -0.303 k-medoids heuristic;300;pam;cosine;16
0.466 0.463 0.412 0.030 MMD-critic 1.000;13
0.384 0.224 0.201 0.251 Protodash gaussian;11.90;11
0.367 -0.660 0.589 0.917 MMD-critic 1.000;5
0.331 -0.444 0.048 0.917 k-medoids build;224;alternate;cosine;5
0.255 -0.580 0.092 0.917 Protodash gaussian;21.43;5

Table 5: Computation time and scores for LIME evaluation without and with the time-saving evaluation strategies

No strategy Early stopping Information sharing Both strategies
Time Score Time Score Time Score Time Score

Robustness 488.04 ± 14.79 -70.67 ± 0.64 17.45 ± 1.37 -67.41 ± 3.26 34.15 ± 1.70 -69.22 ± 2.24 1.22 ± 0.13 -67.62 ± 3.12
Infidelity 11.84± 0.27 -5.29 ± 0.06 0.46 ± 0.05 -5.00 ± 0.78 9.32 ± 0.37 -5.40 ± 0.12 0.35 ± 0.03 -5.48 ± 0.6
Computation times are in seconds. For evaluation scores, the higher, the better.

prototypes. This trend is shown in Figure 5. It can be seen that rep-
resentativeness is more important with more prototypes. Indeed,
intuitively, the more prototypes there are, the more likely it is that
a data point is close to one of them. It results in a trade-off between
compactness and completeness that encourage choosing appropri-
ate weights for the properties. In Table 4, we observe that the two
algorithms for k-medoids (pam and alternate) are performing well,
while Protodash seems to have better results with the Gaussian
kernel. This is confirmed in Figure 6 where Protodash performs
better in terms of diversity with Gaussian kernel while k-medoids
have equivalent results with pam and alternate algorithm. MMD-
critic regularly has the best scores in diversity and k-medoids has a
higher variance in scores on both diversity and representativeness.

Using the best scoring XAI solution on the SMS Spam dataset,
Charli obtains the following prototypes for false positives:

• Hey pple...$700 or $900 for 5 nights...Excellent location wif
breakfast hamper!!!

• Unlimited texts. Limited minutes.
As well as the following protoypes for false negatives:

• FROM 88066 LOST £12 HELP
• Money i have won wining number 946 wot do i do next

With these representative examples, Charli can explain to users
what kind of messages the model may misclassify and can work
on the data and the ML model while tracking predictions for these
messages.

6.3 Time-saving evaluation strategies
Preliminary results for time-saving evaluation strategies (see Sec-
tion 5) are obtained on the first use case (see Section 6.1) with
diabetes dataset and MLPRegressor model. The XAI solution is
LIME with default hyperparameters and the XAI evaluation metrics
are robustness and infidelity. AutoXAI is run on a laptop with a 2.40
GHz octa-core CPU. Table 5 shows the average with its standard
deviation of computation time and evaluation score. Early stopping
saves 96.42% of the time for robustness and 96.13% for infidelity.
Information sharing saves 93% of the time for robustness and 21.26%

of the time for infidelity. For Information sharing with robustness,
the maxima used for computing scores are obtained with LIME with
other hyperparameters, hence the scores difference. With infidelity,
the generated perturbation points and their corresponding pre-
dictions are obtained with another seed which explains the small
difference in score compared to the no strategy baseline. Using
both strategies saves 99.75% of the time for robustness and 97% for
infidelity.

7 CONCLUSION AND PERSPECTIVES
In this paper, we propose AutoXAI, a framework that recommends
the best XAI solutions according to the context of its user. Au-
toXAI automates the tedious task of selecting an XAI solution
and its hyperparameters. It produces a ranking of solutions tak-
ing into account the preferences of the user. Although AutoXAI is
system-centric like AutoML, here the user specifies the needs, the
constraints and chooses the XAI solution in the ranking. It saves
time and does not require the user to have deep knowledge of XAI.
AutoXAI can also serve a researcher who wants to test an XAI
proposal and monitor results. Indeed, as AutoXAI tests multiple
XAI evaluation metrics on multiple XAI solutions and hyperparam-
eters, potential relationships could be discovered. In this paper, we
show there might be a trade-off between properties. Compactness,
in particular, should be monitored and the user should decide by
checking the explanations. The choice of one explanation over an-
other one may raise ethical issues. Indeed, encouraging too much
particular properties of explanations can lead to bias. For instance,
reducing the number of prototypes can lead to missing the less
represented data samples. Alternatively, a small number of features
in an explanation can hide a bias in a model.

A short-term work could complement AutoXAI with new adap-
tations of AutoML methods. Longer perspectives should be to apply
AutoXAI in a real-world setting and analyze users’ feedback to
assess its usefulness and give opportunities to improve it. Lastly,
studying the influence of XAI properties on each other will be an
important topic of study in the field of XAI solution evaluation.
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