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Approximation-aware Task Deployment on
Heterogeneous Multi-core Platforms with DVFS
Xinmei Li∗, Student Member, IEEE, Lei Mo∗, Member, IEEE, Angeliki Kritikakou†, Member, IEEE, and

Olivier Sentieys†, Member, IEEE

Abstract—Heterogeneous multi-core platforms, such as ARM
big.LITTLE are widely used to execute embedded applications
under multiple and contradictory constraints, such as energy
consumption and real-time execution. To fulfill these constraints
and optimize system performance, application tasks should be
efficiently mapped on multi-core platforms. Embedded applica-
tions are usually tolerant to approximated results but acceptable
Quality-of-Service (QoS). Modeling embedded applications by
using the elastic task model, namely, Imprecise Computation (IC)
task model, can balance system QoS, energy consumption, and
real-time performance during task deployment. However, state-
of-the-art approaches seldom consider the problem of IC task
deployment on heterogeneous multi-core platforms. They typically
neglect task migration, which can improve the solutions due to its
flexibility during the task deployment process. This paper proposes
a novel QoS-aware task deployment method to maximize system
QoS under energy and real-time constraints, where frequency as-
signment, task allocation, scheduling, and migration are optimized
simultaneously. The task deployment problem is formulated as
mixed-integer non-linear programming. Then, it is linearized to
mixed-integer linear programming to find the optimal solution.
Furthermore, based on problem structure and problem decom-
position, we propose a novel heuristic with low computational
complexity. The sub-problems regarding frequency assignment,
task allocation, scheduling, and adjustment are considered and
solved in sequence. Finally, the simulation results show that the
proposed task deployment method improves the system QoS by
31.2% on average (up to 112.8%) compared to the state-of-the-
art methods and the designed heuristic achieves about 53.9% (on
average) performance of the optimal solution with a negligible
computing time.

Index Terms—Heterogeneous multi-core, task deployment, task
migration, imprecise computation, quality-of-service.

I. INTRODUCTION

S INGLE-core and homogeneous multi-core platforms,
namely, Symmetric Multi-core Processors (SMP), cannot

follow the increasing pace of requirements for high computation
capabilities and low energy consumption of embedded systems.
As a result, heterogeneous multi-core platforms, namely, Asym-
metric Multi-core Processors (AMP), such as ARM big.LITTLE
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platforms are widely used [1]. Applications can be executed
on multiple processors simultaneously to achieve parallel and
diverse processing. Energy efficiency and real-time execution
are the primary concerns during system design since 1) embed-
ded systems usually have energy constraints, especially when
they are implemented on battery-powered platforms with limited
energy capacity, and 2) many critical applications (e.g., target
tracking or robot control) require real-time responsiveness, for
an application’s deadline miss can lead to serious or even
disastrous consequences [2], [3].

To improve energy efficiency, platforms have been enhanced
with Dynamic Voltage and Frequency Scaling (DVFS) [4],
which can dynamically adjust the supply voltage and clock
frequency of a processor to change task execution time and
energy. In real-time application domains, approximated results
obtained in time are preferred over accurate results obtained af-
ter the deadline. For example, the JPEG2000 codec [5] supports
low-quality images rather than simply failing the execution in
a limited time. In k-means algorithm [6], 5% of classification
accuracy loss can achieve 50× energy saving. In automotive
systems [7], an approximate result produced by the traction
control is better than an accurate result arriving too late. Such
applications can be modeled by the Imprecise Computation (IC)
task [8]. A task can be logically decomposed into a mandatory
subtask and an optional subtask in the IC model. The mandatory
subtask must be completed before a deadline to generate a
baseline Quality-of-Service (QoS). In contrast, the optional
subtask can be incompletely executed at the cost of decreased
quality. The longer the optional subtasks are executed, the better
the QoS of results. However, the requirements for high system
QoS, low energy consumption, and real-time task execution
often conflict with each other. The more the optional subtasks
are executed, the higher the QoS is, while more energy and time
are consumed. To balance these contradictory requirements, we
propose a novel task deployment approach that simultaneously
optimizes task allocation (on which processor each task is
executed), task scheduling (when each task starts and ends
its execution), and task frequency assignment. By adequate IC
task deployment on DVFS-enabled AMP platforms, the system
QoS can be further improved under limited system sources and
application constraints.

A. Related Work

Table I summarizes several representative works about task
deployment on multi-core platforms. Depending on the prob-
lem’s objectives, the deployment approaches can be Energy-
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TABLE I
TASK DEPLOYMENT METHODS

Ref. Task Platform Variables Constraints Objective
D ID P IP HO HE TM FA TA TS RT ES QA EA

[9]
√ √ √ √ √ √ √

[10]
√ √ √ √ √ √ √ √

[11]
√ √ √ √ √ √ √

[12]
√ √ √ √ √ √ √

[13]
√ √ √ √ √ √ √

[14]
√ √ √ √ √ √ √

[15]
√ √ √ √ √ √ √ √

[16]
√ √ √ √ √ √ √ √ √

[17]
√ √ √ √ √ √ √ √ √

[18]
√ √ √ √ √ √ √ √ √

[19]
√ √ √ √ √ √ √

[20]
√ √ √ √ √ √ √

[21]
√ √ √ √ √ √ √ √ √

[22]
√ √ √ √ √ √ √ √

[23]
√ √ √ √ √ √ √ √

[24]
√ √ √ √ √ √ √ √ √

[25]
√ √ √ √ √ √ √ √ √

[5]
√ √ √ √ √ √ √ √

[26]
√ √ √ √ √ √ √ √

[27]
√ √ √ √ √ √ √ √ √

Prop.
√ √ √ √ √ √ √ √ √ √

Aware (EA) or QoS-Aware (QA). The tasks can be Independent
(I) or Dependent (D) and Precise (P) or Imprecise (IP). The
platforms can be homogeneous (HO) or heterogeneous (HE).
DVFS and task deployment can be used to manage system
resources. The optimization variables include Task Migration
(TM), Frequency Assignment (FA), Task Allocation (TA), and
Task Scheduling (TS). These problems include Real-Time (RT)
and Energy Supply (ES) constraints during the task deployment
process.

1) Energy-aware Task Deployment: The majority of energy-
aware task deployment approaches usually aim at minimizing
energy consumption under system resource and application
constraints [9]–[18]. For the homogeneous platforms, DVFS
and DPM are combined in [9] and [10] to enhance the energy
efficiency, where task-to-processor allocation is fixed in [9]. By
contrast, task allocation, scheduling, and frequency assignment
are jointly optimized in [10]. The extensions from homogeneous
platforms to heterogeneous platforms are not straightforward,
as additional variables regarding the core selection and Volt-
age/Frequency (V/F) selection are included in the task deploy-
ment problem. These variables are usually coupled with each
other nonlinearly, which increases the difficulties of solving
the problem. For the heterogeneous multi-core platforms, the
allocation of independent tasks and the assignment of frequency
are considered in [11], and mapping the dependent tasks on
the NoC platform through task allocation and task scheduling
is studied in [12]. Compared with [12], the approach in [11]
mainly focuses on system-level DVFS, and the frequency of
each processor cannot be adjusted individually. In [13] and [14],
DVFS is combined into the task allocation process to minimize
energy consumption under real-time constraints. Besides DVFS
and DPM, task migration is also used in multi-core platforms
to optimize energy consumption. More precisely, task migration

is introduced into the allocation/scheduling process to deploy
independent tasks on homogeneous platforms for optimizing
energy consumption [15]–[17], where [15] mainly focuses on
task allocation, while [16] and [17] consider both task allocation
and task scheduling. As the processors are homogeneous and
the tasks are independent, task migration in the above studies
is usually used to minimize the overall energy consumption.
A heterogeneous platform is considered in [18], where energy-
aware task deployment is performed through DVFS, task al-
location, scheduling, and migration. However, the approaches
mentioned above are mainly based on the precise tasks, i.e.,
the execution cycles of each task are fixed. Therefore, the
adjustment of optional subtasks is not taken into account, and
thus, the improvement of system QoS is limited.

2) QoS-aware Task Deployment: The works consider QoS-
aware task deployment problems adopting the IC task model
and aim to maximize system QoS under real-time and/or energy
constraints [5], [19]–[27]. The target multi-core platforms can
be homogeneous [19]–[24] or heterogeneous [5], [25]–[27]. On
the one hand, the reward-based (QoS-based) task allocation
and scheduling problems are considered in [19] to improve
the overall system QoS under task deadlines. Taking energy
consumption into account, an energy-adaptive and QoS-driven
task mapping method is studied in [20]. Compared with [19]
and [20], the influences of frequency adjustment and task migra-
tion are studied in [21] during the reward-based task scheduling
process, but the portions of task workloads are fixed during
the migration process. To improve QoS with energy and time
constraints, DVFS is considered in [22]. However, the tasks are
independent in the above studies. For dependent IC tasks, DVFS
is incorporated into the task mapping process considering time
and energy budgets [23], [24]. On the other hand, the allocation
of independent IC tasks on heterogeneous platforms with DVFS
is considered in [25]. For dependent tasks, [5] and [26] consider
DVFS and optimize frequency assignment and task scheduling
simultaneously to enhance the system QoS under real-time and
energy supply constraints. However, the above methods mainly
focus on task allocation and/or task scheduling, where task
migration is not considered. The task allocation, scheduling,
and migration are jointly optimized in [27] to enhance QoS for
heterogeneous platforms, but without considering DVFS.

B. Illustration Example

We use the example shown in Fig. 1 to describe and motivate
our approach, where the deployment results from allocating
and executing the dependent IC tasks on the AMP platforms
without and with task migration are compared in Fig. 1(b) and
Fig. 1(d). The AMP platform can support per-core DVFS, e.g.,
ARM DynamIQ big.LITTLE platform [28]. As the IC tasks
are dependent, a Directed Acyclic Graph (DAG) G(T,E) is
used to describe these tasks, where the vertices T denote the
tasks, and the edges E represent the dependencies between
the tasks, as shown in Fig. 1(a). We assume that the cycles
of mandatory and optional subtasks, namely, Mi and oi, are
within the range [4 × 107, 6 × 108] [20], and the deadlines of
the tasks are set to D1 = 3.27 s, D2 = 3.48 s, D3 = 3.50
s, D4 = 4.06 s, D5 = 3.57 s, D6 = 3.42 s, D7 = 3.50 s,
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(d) Deployment result with task migration.

Fig. 1. The example of task deployment results under different schemes.

and D8 = 4.11 s, which are based on the length of the critical
path. The system QoS has a linear relationship with the cycles
of optional subtasks [29], e.g., fi(oi) = kioi + Ri, where ki
and Ri are constants. If task migration is performed, a task
can be divided into two subtasks executed on the processors of
the big and LITTLE clusters, respectively. Based on G(T,E),
a new DAG G(T ′, E′) is generated, as shown in Fig. 1(c).
According to the task deployment results, the system QoS
with and without task migration are 6.2022× 107 (cycles) and
3.2581 × 107 (cycles), respectively, under the same real-time
and energy supply constraints. Due to the task migration, tasks
τ4, τ5, and τ8 are divided into two subtasks, i.e., τ4 → {τ ′7, τ ′8},
τ5 → {τ ′9, τ ′10}, and τ8 → {τ ′15, τ

′
16}. These subtasks can be

executed on different processors with different V/F levels. Note
that task migration is not necessary for each task, and thus,
the cycles of some subtasks are 0, e.g., subtasks τ ′1, τ ′4, τ ′5,
τ ′11 and τ ′14 in Fig. 1(d). Therefore, by using task migration, we
can better use system resources to execute more optional cycles
to improve system QoS. For instance, without task migration,
task τ4 is executed on processor θ4, and the number of its
optional cycles o4 is 1.7 × 108. On the contrary, when task
migration is considered, the subtasks of τ4, namely τ ′7 and τ ′8,
are executed on different processors θ2 and θ6, and thus, the
achieved optional cycles are 4.9× 108.

C. Contributions

Complementary to the state-of-the-art, this paper proposes
a joint optimization method for IC task deployment on AMP
using task allocation, task scheduling, and task migration. The
structure of the proposed task deployment schemes is shown in
Fig. 2. We aim to determine: 1) which processor the task should
be executed on; 2) what voltage/frequency level should be used
for each task; 3) what is the execution sequence of the tasks on
each processor; 4) when should a task start its execution; and
5) how many cycles of the optional subtasks are needed to be
executed, such that the system QoS is maximized, and at the
same time satisfying the real-time and energy constraints. Our
main contributions are summarized as follows:

(1) To improve system QoS, IC tasks and task migration are
involved in the task deployment process. We formulate the
IC tasks deployment problem that simultaneously optimizes
task allocation, frequency assignment, task sequence, task
migration, task start time, and task adjustment as an MINLP
problem. The objective is to maximize QoS without violat-
ing real-time and energy constraints.

(2) The nonlinear items are caused by the product of optimiza-
tion variables related to task allocation, frequency assign-
ment, task migration, and task adjustment. We prove that by
replacing the nonlinear items with auxiliary variables and
additional linear constraints in the optimization problem,
the MINLP problem can be equivalently transformed into
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Fig. 2. The structure of the proposed task deployment scheme.

an MILP problem to find the optimal solution.
(3) Based on the idea of problem decomposition and the prob-

lem structure, we design a novel heuristic task deployment
method. The proposed method decomposes the original
problem into three smaller easier-to-solve problems. The
first problem is an ILP problem for frequency assignment,
and we utilize the Greedy algorithm to solve it. The
second problem is an MILP problem for task allocation
and scheduling, and we design a three-step heuristic to
solve this problem. It includes task layer classification, task
allocation and scheduling, and frequency adjustment. The
third problem considers the adjustment of optional cycles,
and we design a low-complexity algorithm to tackle it.

(4) Finally, we perform extensive simulations to analyze the
solution quality, computation time, and scalability of the
proposed task deployment scheme. The results show that
the proposed task deployment scheme outperforms other
schemes regarding QoS improvement and energy efficiency.
Under the resource-limited situation, the joint optimization
algorithm can improve the QoS by 31.2% on average (up to
112.8%). The heuristic algorithm can obtain an acceptable
suboptimal solution in a negligible time, achieving about
53.9% (on average) performance of the optimal solution.

D. Paper Organization

The remainder of the paper is organized as follows. Section II
presents the system models and problem formulation. Section III
describes the details of the problem linearization, and Section IV
presents the heuristic task deployment algorithm. Section V
discusses the simulation results. Finally, Section VI concludes
this paper.

II. SYSTEM MODELS AND PROBLEM FORMULATION

A. System Model

1) Task Model: We consider a real-time task set T with N
periodic IC tasks {τ1, . . . , τN}.

Definition 2.1: A task τi is defined as an IC task that can
be logically decomposed into a mandatory subtask τmi with Mi

cycles and an optional subtask τoi with oi cycles. The mandatory
subtask should be completed before the deadline to generate
a baseline QoS. The optional subtask is to be executed after
the mandatory subtask and still completed before the deadline,
if there are available resources in the system to execute the
optional subtasks without missing the deadlines. The more the
optional subtasks are executed, the better the obtained QoS is.

For each task τi, Mi and oi are measured by the Worst-Case
Execution Cycles (WCEC). The mandatory cycles Mi are fixed,
while the optional cycles oi are adjustable and oi has an upper
bound Oi, i.e., 0 ≤ oi ≤ Oi. The tasks are released at time 0
and each task τi has a deadline Di. In addition, the scheduling
horizon H is also the period of task τi. As the example shown
in Fig. 1(a), the tasks in the set T are described by a DAG
G(T,E), where the vertices T denote the tasks, and the edges E
denote the dependencies between the tasks. Each task τi cannot
start execution until the input data from all its predecessors
have arrived. At the same time, the output data is concurrently
available for all its successors only when it completes execution.

The system QoS is closely related to the task optional part.
Usually, the more cycles of the optional subtasks are executed,
the higher the generated QoS. The relationship between system
QoS and optional tasks is measured by a QoS function. Linear
and general concave functions are considered as the most real-
istic and typical QoS representation in the literature [20], [30],
as they adequately capture the behavior of many application
areas, such as image and speech processing, control engineering,
and automatic target recognition. In this paper, we consider
the linear function, fi(oi) = kioi + Ri, describing the linear
relationship between system QoS and optional cycles oi, where
Ri is the baseline QoS after executing mandatory cycles.

2) Platform Model: We consider a multi-core AMP plat-
form with M processors {θ1, . . . , θM}. According to the
characteristics of many heterogeneous platforms (e.g., ARM
big.LITTLE) [27], we introduce the concept of cluster. For in-
stance, the big.LITTLE platform consists of two heterogeneous
clusters: the big cluster and the LITTLE cluster. The processors
in the same cluster are homogeneous. Without loss of generality,
we describe the proposed approach considering two clusters,
such as in the ARM big.LITTLE platform.

Let P , {PB ,PL} denote the processor set, where PB ,
{θ1, . . . , θMB

} is the set of the processors in the big cluster,
while PL , {θMB+1, . . . , θMB+ML

} is the set of the processors
in the LITTLE cluster. Moreover, MB and ML are the number
of processors in the big and LITTLE clusters, respectively,
and M = MB + ML. We assume that the processors in PB
have lB discrete V/F levels VFB , {(V1, f1), . . . , (VlB , flB )},
while the processors in PL have lL discrete V/F levels VFL ,
{(VlB+1, flB+1), . . . , (VlB+lL , flB+lL)}.

To indicate the heterogeneity among the processors in differ-
ent clusters, we introduce a factor γi,l ∈ (0, 1] [11], which
represents the efficiency factor of heterogeneous processors
executing task τi with (Vl, fl). Therefore, when (Vl, fl) is used
to execute τi with Mi + oi cycles, the task execution time
is (Mi + oi)/(γi,lfl). In addition, since the processors are
connected by the high-speed data bus, the communication costs
(i.e., time and energy) among the processors are negligible,
compared with task execution time and energy [11]. Due to
the special interconnection bus designed for data transmission
between the clusters, it is feasible to migrate a task from one
cluster to another cluster during the task execution process [28].
We consider the task migrated only between the big and
LITTLE clusters, since processors in the same cluster are
homogeneous. The overhead of task migration is considered in
the WCEC of the mandatory part, assuming that task migration
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always takes place. Let τ ′2i−1 and τ ′2i denote the subtasks of task
τi executed on the processors of different clusters when task
migration is performed. To model the workload of τ ′2i−1 and
τ ′2i, we introduce two continuous variables µ2i−1 and µ2i, where
we have µ2i−1 +µ2i = 1 and µ2i−1, µ2i ∈ [0, 1]. Therefore, the
workloads of τ ′2i−1 and τ ′2i are given by µ2i−1(Mi + oi) and
µ2i(Mi+oi), respectively. By adjusting the values of µ2i−1 and
µ2i, we can change the workload proportions of task τi executed
on different processors. Due to the dependencies between the
subtasks, τ ′2i starts its execution only after its predecessor τ ′2i−1

is completed. Therefore, we obtain a new DAG G(T ′, E′),
as shown in Fig. 1(c). Note that the task set {τ ′2i−1, τ

′
2i}

(1 ≤ i ≤ N) can be rewritten as {τ ′i} (1 ≤ i ≤ 2N).
We consider that processors can operate in two modes: idle

and active [9]. A processor executes a task in active mode; if the
assigned tasks are finished, the processor goes into idle mode.
During this switching process, processors’ energy and time
consumption are very small, compared with the task execution
time and energy. Therefore, the transition time and energy are
considered to be incorporated into task execution time and
energy [18]. We assume the target platform can support per-
core DVFS, e.g., ARM DynamIQ big.LITTLE platform [28].
Hence, the power consumption of a processor θk working on
the V/F level (Vl, fl) is given by

Pcore,l = Psta,l + Pdyn,l + Pon, (1)

where Psta,l = Lg(VlIsub + |Vbs|Ij) is the static power when
ready to execute tasks, Pdyn,l = CeffVl

2fl is the dynamic
power during the task execution, and Pon is the inherent
power which keeps processors on. The static power Psta,l is
mainly contributed by the sub-threshold leakage current Isub,
the reverse bias junction current Ij , the number of devices in
the circuit Lg , and the body bias voltage Vbs. For the dynamic
power Pdyn,l, Ceff is an effective switching capacitance. The
energy model (1) is adopted from [31]–[33], where the accuracy
of this model has been verified through the SPICE simulations.

B. Problem Formulation
In this section, we consider the problem of deploying de-

pendent IC tasks on the AMP platform, with the aim of
maximizing the system QoS under energy and real-time con-
straints. Therefore, we need to determine: 1) task allocation,
2) frequency assignment, 3) task scheduling, 4) optional cycle
adjustment, and 5) task migration. To formulate the problem,
we introduce the following binary and continuous variables:
1) xi,k = 1, if τ ′i is assigned to θk, otherwise, xi,k = 0; 2)
ci,l = 1, if τ ′i is executed with (vl, fl), otherwise, ci,l = 0;
3) pi,j = 1, if τ ′i proceeds τ ′j , otherwise, pi,j = 0; 4) tsi
denotes the start time of τ ′i ; 5) oi denotes the optional cycles of
τi; 6) µ2i−1 and µ2i denote the proportions of τi executed on
different clusters (µ2i−1 + µ2i = 1). Therefore, the execution
cycles of τ ′2i−1 and τ ′2i are (Mi + oi)µ2i−1 and (Mi + oi)µ2i,
respectively. The main symbols used in the problem formulation
are summarized in Table II. For the sake of paper presentation,
let N , {1, . . . , N}, N ′ , {1, . . . , 2N},MB , {1, . . . ,MB},
ML , {MB + 1, . . . ,MB + ML}, M , {MB,ML},
LB , {1, . . . , lB}, LL , {lB+1, . . . , lB+lL}, L , {LB ,LL}.
The constraint descriptions are as follows:

TABLE II
SYMBOLS USED IN THE PROBLEM FORMULATION

Parameters

N number of tasks in T
MB number of processors in PB
ML number of processors in PL
lB number of V/F levels in PB
lL number of V/F levels in PL
H scheduling horizon
τi the ith task in T
τmi , τoi mandatory and optional subtasks of τi
τ ′2i−1, τ ′2i two parts of τi executed on different clusters
Mi mandatory cycles of τi
Oi maximum optional cycles of τi
Di deadline of task τi
θk the kth processor in P
(Vl, fl) the lth V/F level in {VFB ,VFL}
γi,l efficient factor when τi is executed with (Vl, fl)

qi,j =

{
1 if τ ′i is the predecessor of τ ′j
0 else

Binary Variables

xi,k =

{
1 if τ ′i is executed on θk
0 else

ci,l =

{
1 if τ ′i is executed with (Vl, fl)

0 else

pi,j =

{
1 if τ ′i proceeds τ ′j
0 else

λi =

{
1 if τ ′i is executed on the processor of PB
0 if τ ′i is executed on the processor of PL

Continuous Variables

oi optional cycles of τi
µ2i−1, µ2i workload proportions of τ ′2i−1 and τ ′2i
tsi start time of τ ′i

1) Task Allocation Constraints: The task allocation variable
xi,k is bounded by∑

k∈M
xi,k = 1, ∀i ∈ N ′, (2)

x2i−1,p + x2i,q ≤ 1, ∀i ∈ N , ∀p 6= q ∈MB or ML, (3)

where (2) ensures that each task τ ′i , i.e., τ ′2i−1 or τ ′2i, is assigned
to a processor, and (3) ensures that τ ′2i−1 and τ ′2i, i.e., two parts
of task τi, cannot be executed on the different processors in the
same cluster, as there is no task migration among the processors
in the same cluster.

2) Frequency Assignment Constraints: We consider task-
level DVFS, i.e., each processor θk uses one V/F level to
execute the assigned task τ ′i . For instance, the ARM DynamIQ
technology [34] supports such kind of task-level DVFS, which
increases the flexibility of DVFS. Since the processors in
different clusters are heterogeneous, they have different V/F
levels. We need to determine the range of V/F for each task,
i.e., VFB or VFL, according to the task allocation variable
xi,k. Therefore, we introduce an auxiliary (binary) variable λi.
If λi = 1 (λi = 0), task τ ′i is executed on a processor of PB
(PL). Based on the definition of λi, we have

λi =
∑

k∈MB

xi,k, ∀i ∈ N ′. (4)
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If λi = 1, the V/F level assigned to task τ ′i is selected from
the big cluster V/F set VFB , otherwise (λi = 0), the V/F level
is selected from the LITTLE cluster V/F set VFL. Hence, we
have

λi
∑

l∈LB

ci,l + (1− λi)
∑

l∈LL

ci,l = 1, ∀i ∈ N ′. (5)

Note that, for the AMP platforms that only support cluster-
level DVFS [18], as the processors in the same cluster operate
with the same V/F, additional constraints, i.e., ci,m = cj,n
(∀m 6= n ∈ PB or PL), should be added into the problem.

3) Real-time Constraints: When task τ ′2i−1 is allocated to
processor θk, and the V/F level (vl, fl) is used to execute τ ′2i−1,
the task execution time is (Mi+oi)µ2i−1/(γ2i−1,lfl). Since task
τ ′2i−1 is executed before task τ ′2i, we get

te2i−1 ≤ ts2i, ∀i ∈ N , (6)

where

te2i−1 = ts2i−1 +
∑

l∈L

c2i−1,l(Mi + oi)µ2i−1

γ2i−1,lfl
, ∀i ∈ N ,

(7)

te2i = ts2i +
∑

l∈L

c2i,l(Mi + oi)µ2i

γ2i,lfl
, ∀i ∈ N , (8)

Since the end time of task τi is equal to the end time of task
τ ′2i, and each task τi must be completed within the deadline Di,
we have

te2i ≤ Di, ∀i ∈ N . (9)

4) Task Non-preemption Constraints: For the tasks without
dependency, e.g., τ ′i and τ ′j , where qi,j = 0, if they are assigned
to the same processor, their execution sequence should be de-
termined, as one processor cannot execute multiple tasks at the
same time. Therefore, we introduce the following constraints:

tei ≤ tsj + (2− xi,k − xj,k)H + (1− pi,j)H,
∀i 6= j ∈ N ′, qi,j = 0, ∀k ∈M, (10)

tej ≤ tsi + (2− xi,k − xj,k)H + pi,jH,

∀i 6= j ∈ N ′, qi,j = 0, ∀k ∈M. (11)

If τ ′i and τ ′j are executed on the same processor, e.g., θk, we
have xi,k = xj,k = 1, and thus, (10) and (11) are meaningful.
If τ ′i is executed before τ ′j , i.e., pi,j = 1, (10) is relaxed to
tei ≤ tsj , which bounds the execution sequence of τ ′i and τ ′j ;
and (11) is relaxed to tei ≤ tsj +H , which is always satisfied,
and thus, it can be ignored. Similarly, if τ ′i is executed after τ ′j ,
i.e., pi,j = 0, (10) can be ignored since tei ≤ tsj +H , and (11)
is relaxed to tej ≤ tsi.

5) Task Dependency Constraints: For the dependent tasks,
e.g., τ ′i and τ ′j , where qi,j = 1, no matter if they are assigned
to the same processor or different processors, the execution
sequence among these tasks is fixed. Hence, we have

tei ≤ tsj + (1− qi,j)H, ∀i 6= j ∈ N ′, (12)

where (12) ensures that if τ ′i proceeds τ ′j , i.e., qi,j = 1, we have
tei ≤ tsj , otherwise, (12) is always satisfied.

6) Energy Constraints: Since the total energy consumed by
M processors to execute N tasks during the hyper-period H
should not exceed the energy budget Ebuget, we have∑

i∈N

∑
l∈L

[
c2i−1,l(Mi + oi)µ2i−1

γ2i−1,lfl
+
c2i,l(Mi + oi)µ2i

γ2i,lfl

]
(Psta,l + Pdyn,l) + (MB +ML)HPon = Etotal ≤ Ebuget.

(13)

7) Primal Problem: Based on the constraints and the objec-
tive function (maximizing system QoS) mentioned above, the
task deployment problem PP is formulated as follows:

PP : max
x,c,p,o,µ,t

∑
i∈N

fi(oi) (14)

s.t.


(2)− (13),
0 ≤ oi ≤ Oi, 0 ≤ tsi ≤ H, ∀i ∈ N ,
µ2i−1 + µ2i = 1, 0 ≤ µ2i−1, µ2i ≤ 1, ∀i ∈ N ,
xi,k, ci,l, pi,j ∈ {0, 1}, ∀i 6= j ∈ N ′, ∀k ∈M, ∀l ∈ L.

where the system QoS function fi(oi) = kioi + Ri, x =
[xi,k]2N×(MB+ML), c = [ci,l]2N×(lB+lL), p = [pi,j ]2N×2N ,
o = [oi]1×N , µ = [µi]1×2N , and t = [tsi]1×2N .

Remark 2.1: Although the number of optional cycles oi is
an integer variable, we consider oi a continuous variable to
simplify the problem. After problem (14) is solved, the result
of oi is rounded down, which does not affect the real-time
constraint (9) and the energy constraint (13). The influence of
this one-cycle approximation is small since a task is usually
executed in hundreds and thousands of cycles.

Considering the overhead of task migration, extra energy EMi
and time tMi should be added to problem (14). First, task end
time is updated by te′2i−1 = te2i−1 + αit

M
i , where binary

variable αi denotes task τi is migrated or not. Then, te2i−1 in
time constraints (6) and (9)–(12) is replaced by te′2i−1. Finally,
energy constraint (13) is rewritten as Etotal +

∑
i∈N αiE

M
i ≤

Ebuget. Moreover, the proposed approach can be extended to
completely heterogeneous platforms by modifying the con-
straints in problem (14), where we assume that the platforms
contain multiple clusters and each cluster has a single core.

Since xi,k and ci,l are binary variables, while oi, µ2i−1 and
µ2i are continuous variables, and the nonlinear terms xi,kci,l,
c2i−1,l(Mi + oi)µ2i−1 and c2i,l(Mi + oi)µ2i are included in
(5)–(13), PP is an MINLP problem.

Theorem 2.1: The QoS-aware IC-task deployment problem
based on DVFS (i.e., PP) is NP-hard.

Proof: Please refer to [35] for the details.

III. PROBLEM LINEARIZATION

To find the optimal solution to PP, we equivalently transform
it into an MILP problem according to the following linearization
methods.

1) Nonlinear items caused by the products of continuous
variables: Since oi, µ2i−1 and µ2i are the continuous variables,
the nonlinear items oiµ2i−1 and oiµ2i are hard to linearize
directly. Note that (Mi + oi)µ2i−1 and (Mi + oi)µ2i are the
execution cycles of task τi run on the processors of different
clusters. To deal with these nonlinear items, we propose a
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linearization method according to the physical meaning of task
execution cycles.

Let ϕ2i−1 = (Mi+oi)µ2i−1 and ϕ2i = (Mi+oi)µ2i, where
ϕ2i−1 and ϕ2i are auxiliary variables. Since 0 ≤ oi ≤ Oi and
0 ≤ µ2i−1 ≤ 1, ϕ2i−1 has the maximum value ϕ2i−1,max =
Mi +Oi and the minimum value ϕ2i−1,min = 0. Similarly, we
have ϕ2i,min = 0 ≤ ϕ2i ≤ ϕ2i,max = Mi + Oi. Since ϕ2i−1

and ϕ2i represent the execution cycles of task τ ′2i−1 and τ ′2i, we
have Mi ≤ ϕ2i−1 + ϕ2i ≤ Mi + Oi. Therefore, the execution
cycles of optional subtask τoi is oi = ϕ2i−1 + ϕ2i −Mi, and
the QoS function is

∑
i∈N [ki(ϕ2i−1 + ϕ2i −Mi) +Ri].

Taking the auxiliary variables ϕ2i−1 and ϕ2i into account,
the end times of task τ ′2i−1 and τ ′2i, i.e., (7) and (8), have the
form

te2i−1 = ts2i−1 +
∑

l∈L

c2i−1,lϕ2i−1

γ2i−1,lfl
, ∀i ∈ N , (15)

te2i = ts2i +
∑

l∈L

c2i,lϕ2i

γ2i,lfl
, ∀i ∈ N . (16)

In addition, the energy constraint (13) can be rewritten as∑
i∈N

∑
l∈L

(
c2i−1,lϕ2i−1

γ2i−1,lfl
+
c2i,lϕ2i

γ2i,lfl

)
(Psta,l + Pdyn,l)

+ (MB +ML)HPon ≤ Ebuget. (17)

2) Nonlinear items caused by the products of continuous
and binary variables: Since c2i−1,l is a binary variable, while
ϕ2i−1 is a continuous variable, to deal with the nonlinear items
c2i−1,lϕ2i−1 and c2i,lϕ2i in (15), (16) and (17), we introduce
the following lemma.

Lemma 3.1: Assume that the constant s1, s2 > 0 and two
constraint spaces P1 = {[t, b, x]|t = bx,−s1 ≤ x ≤ s2, b ∈
{0, 1}} and P2 = {[t, b, x]|− bs1 ≤ t ≤ bs2, t+ bs1−x− s1 ≤
0, t− bs2 − x+ s2 ≥ 0, b ∈ {0, 1}}, then P1 
 P2.

Proof: P1 ⇒ P2. Since t = bx and −s1 ≤ x ≤ s2, we have
−bs1 ≤ t ≤ bs2. According to −s1 ≤ x ≤ s2 and b ∈ {0, 1},
we get (b − 1)(x − s2) ≥ 0 and (b − 1)(x + s1) ≤ 0. Then,
t+ bs1 − x− s1 ≤ 0 and t− bs2 − x+ s2 ≥ 0 hold. P2 ⇒ P1.
If b = 0, we have t = 0 and −s1 ≤ x ≤ s2. If b = 1, we get
−s1 ≤ t = x ≤ s2. Thus, P1 
 P2.

According to Lemma 3.1, two auxiliary (continue) variables
Φ2i−1,l and Φ2i,l are introduced to replace the nonlinear
terms c2i−1,lϕ2i−1 and c2i,lϕ2i. Since ϕ2i−1,min ≤ ϕ2i−1 ≤
ϕ2i−1,max and ϕ2i,min ≤ ϕ2i ≤ ϕ2i,max, we add the following
constraints into PP:

ci,lϕi,min ≤ Φi,l ≤ ci,lϕi,max, ∀i ∈ N ′, ∀l ∈ L, (18)

Φi,l − ci,lϕi,min − ϕi + ϕi,min ≤ 0, ∀i ∈ N ′, ∀l ∈ L, (19)

Φi,l − ci,lϕi,max − ϕi + ϕi,max ≥ 0, ∀i ∈ N ′, ∀l ∈ L. (20)

Substituting Φ2i−1,l = c2i−1,lϕ2i−1 and Φ2i,l = c2i,lϕ2i into
(15), (16) and (17), we have

te2i−1 = ts2i−1 +
∑

l∈L

Φ2i−1,l

γ2i−1,lfl
, (21)

te2i = ts2i +
∑

l∈L

Φ2i,l

γ2i,lfl
, (22)

∑
i∈N

∑
l∈L

(
Φ2i−1,l

γ2i−1,lfl
+

Φ2i,l

γ2i,lfl

)
(Psta,l + Pdyn,l)

+ (MB +ML)HPon ≤ Ebuget. (23)

3) Nonlinear items caused by the products of binary vari-
ables: For the nonlinear item xi,kci,l in (4) and (5), since xi,k
and ci,l are binary variables, we propose the following lemma
to deal with this nonlinear item.

Lemma 3.2: Assume that x1 and x2 are the binary variables.
The nonlinear term x1x2 can be replaced by an auxiliary
(binary) variable y, where y = x1x2, and the additional
constraints y ≤ x1, y ≤ x2 and y ≥ x1 + x2 − 1.

Proof: When binary variables x1 = 1 and x2 = 1, the
additional constraint is transformed to 1 ≤ y ≤ 1, and thus,
y = 1 holds. Similarly, for the cases 1) x1 = 0 and x2 = 0;
2) x1 = 1 and x2 = 0; 3) x1 = 0 and x2 = 1, we have
y = x1x2 = 0.

Based on Lemma 3.2, we introduce an auxiliary (binary)
variable zi,k,l, where zi,k,l = xi,kci,l, and add the following
constraints into PP.

zi,k,l ≤ xi,k, zi,k,l ≤ ci,l, zi,k,l ≥ xi,k + ci,l − 1,

∀i ∈ N ′, ∀k ∈M, ∀l ∈ L, (24)

On this basis, substituting (4) into (5) and recalling that λici,l =∑
k∈MB

xi,kci,l =
∑
k∈MB

zi,k,l, (5) can be linearized as
follows:∑

k∈MB

(∑
l∈LB

zi,k,l −
∑

l∈LL

zi,k,l

)
+
∑

l∈L
ci,l = 1,

∀i ∈ N ′. (25)

4) MILP formulation: Based on the linearization methods
mentioned above, PP can be transformed into the following
problem:

PP1 : max
x,c,p,t,
ϕ,Φ,z

∑
i∈N

[ki(ϕ2i−1 + ϕ2i −Mi) +Ri] (26)

s.t.



(2), (3), (6), (9)− (12), (18)− (25),
0 ≤ tsi ≤ H, ∀i ∈ N ,
Mi ≤ ϕ2i−1 + ϕ2i ≤Mi +Oi, ∀i ∈ N ,
0 ≤ ϕ2i−1, ϕ2i ≤Mi +Oi, ∀i ∈ N ,
xi,k, ci,l, pi,j , zi,k,l ∈ {0, 1},∀i 6= j ∈ N ′,∀k ∈M,∀l ∈ L.

where ϕ = [ϕi]1×2N , Φ = [Φi,l]2N×(lB+lL), and z =
[zi,k,l]2N×(MB+ML)×(lB+lL).

Remark 3.1: PP1 is an MILP problem, as the binary and
continuous variables are coupled linearly. Hence, it is much
easier to solve the MILP-based PP1 than the MINLP-based
PP. Furthermore, Lemma 3.1 and Lemma 3.2 imply that the
variable replacement will not change the feasible region of the
problem. In addition, the objective functions of PP and PP1
are the same. Hence, PP1 is equivalent to PP (i.e., the optimal
objective function values of PP and PP1 are the same).

IV. HEURISTIC TASK DEPLOYMENT ALGORITHM

Since the MINLP-based PP is linearized to the MILP-based
PP1, the optimal solution to PP1 can be found by the existing
solver, e.g., CPLEX or Gurobi [9]. However, finding the optimal
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Fig. 3. Example of task layer classification.

solution is still time-consuming, especially when the size of the
problem is large. The complexity of an optimization problem is
related to the number of variables and constraints. Based on the
idea of problem decomposition, we propose a novel heuristic
method for solving PP to improve the scalability of the proposed
method. The reasons for solving PP rather than PP1 are that
1) these two problems are equivalent, but the problem size of
PP is smaller than PP1; and 2) the heuristic method considers
the variables of PP in sequence, and thus, the coupling among
variables can be avoided. According to the relationship among
variables, we decompose PP into the following sub-problems
and solve them in sequence: 1) Frequency Assignment (SP1),
2) Task Allocation and Task Scheduling (SP2), and 3) Optional
Cycle Adjustment (SP3).

A. Frequency Assignment

The task deployment problem PP is restricted by the time
and energy constraints, which are influenced by the V/F level
(Vl, fl) used to execute tasks. Hence, we consider frequency
assignment cil at the first step. Note that the number of cycles of
the optional subtask oi is coupled nonlinearly with the portion
of task migration µi in (13), i.e., c2i−1,l(Mi + oi)µ2i−1 and
c2i,l(Mi + oi)µ2i, which makes the problem difficult to solve.
We consider task migration is performed between mandatory
subtask τmi and optional subtask τoi . Therefore, τmi and τoi are
equivalent to τ ′2i−1 and τ ′2i, i.e., Mi = (Mi + oi)µ2i−1 and
oi = (Mi + oi)µ2i.

Since the subtask τmi must be executed, while the subtask τoi
is optional and the execution cycles of τoi can be adjusted within
the range 0 ≤ oi ≤ Oi, we consider the frequency assignment
of mandatory subtask τmi firstly and omit optional subtask τoi .
Hence, we set oi = 0 at the current step. When (Vl, fl) is used
to execute a subtask τmi with Mi cycles, the task execution time
and energy are

t2i−1,l =
Mi

γ2i−1,lfl
, ∀i ∈ N , (27)

E2i−1,l = t2i−1,l(Psta,l + Pdyn,l), ∀i ∈ N . (28)

Note that the QoS function is given by
∑
i∈N (kioi + Ri).

The more optional cycles are executed, the higher system QoS
is generated, and the more energy is consumed for the task
execution. Since the system energy budget Ebuget is limited,

Algorithm 1: Frequency Assignment
Input : Parameters in Table II, CPT
Output : Frequency assignment c
Initialization: c2i−1,l = −1, Etotal = 0, tcp = 0, Emin =∞

1 for i← 1 to N do
2 for l← 1 to (lB + lL) do
3 Calculate t2i−1,l and E2i−1,l through (27) and (28);
4 if Etotal + E2i−1,l ≤ Ebuget and t2i−1,l + tcp ≤ Di

(i ∈ CPT ) then
5 if Emin > Etotal + E2i−1,l then
6 Emin = Etotal + E2i−1,l, l∗ = l;
7 end
8 end
9 end

10 if Emin ≤ Ebuget then
11 Etotal = Emin, Emin =∞, c2i−1,l∗ = 1;
12 tcp = tcp + t2i−1,l∗(i ∈ CPT );
13 else
14 Stop.
15 end
16 end

to increase the number of optional cycles at the next step, SP1
aims to minimize the execution energy of mandatory subtasks.

With the fixed task execution cycles, minimizing task execu-
tion energy will increase task execution time, as a lower V/F
level may be prone to use. To avoid missing the task dead-
line, the real-time constraint should be considered. Since the
allocation of mandatory subtask τmi , i.e., x2i−1,k, is unknown
at the current step, we focus on the real-time constraints for
the tasks on the critical path. Let CPT denote the index set
of the tasks on the critical path. For example in Fig. 3, we
have CPT = {1, 2, 3, 4, 5, 8} for the critical path of consisting
of tasks τ1, τ2, τ3, τ4, τ5, and τ8. Therefore, the frequency
assignment problem is formulated as follows:

SP1 : min
c
Etotal,

s.t.


∑
l∈L c2i−1,l = 1, ∀i ∈ N ,∑
l∈L c2i−1,lt

e
2i−1,l ≤ Di, ∀i ∈ CPT,

Etotal ≤ Ebuget.

where Etotal =
∑
i∈N

∑
l∈L c2i−1,lE2i−1,l+(MB+ML)HPon

is the total energy required to execute all the mandatory sub-
tasks. te2i−1,l is the end time of subtask τmi , and we assume that
the tasks in the set CPT are executed in sequence. Thus, the
start time of τmi equals the end time of τmi ’s predecessor.

Since SP1 is an ILP-based problem, based on the Greedy
algorithm, we propose Algorithm 1 to solve SP1. For the sake
of presentation, frequency assignment variable is initialized as
c2i−1,l = −1. Algorithm 1 firstly finds a proper frequency for
each mandatory subtask τmi , under the real-time and energy
constraints (Line 4). The selected frequency should cause the
minimum increase of task execution energy among the tasks that
have already been assigned the frequency (Line 1–9). During
this process, if the frequency assignment, e.g., c2i−1,l = 1,
violates the real-time and energy constraints, the assignment
c2i−1,l = 1 will be excluded (Line 10–15). Applying the above
method for each mandatory subtask τmi , the solution c2i−1,l to
the SP1 can be found. In Algorithm 1, the inner loop l runs
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lB + lL times for each outer loop i. Since the outer loop i runs
N times, the time complexity is O(N(lB + lL)).

B. Task Allocation and Task Scheduling

At this step, we mainly consider the deployment of mandatory
subtasks. Substituting frequency assignment c2i−1,l, i.e., the
solution to SP1, into (27) and (28), the execution time t2i−1 and
energy E2i−1 of each mandatory subtask τmi can be determined.
According to task allocation x2i−1,k, the time and energy of
each processor used for executing tasks can be adjusted. With
x2i−1,k and t2i−1, the task execution time of processor θk
is tpk =

∑
i∈N x2i−1,kt2i−1. In SP2, we aim to balance

the workloads of the processors, i.e., min(maxk∈M{tpk}). By
doing so, we can increase the idle time of each processor, i.e.,
H − tpk. This idle time can be used to execute the optional
subtasks, which is the main purpose of the next step.

Since the tasks are dependent, the allocation and the schedul-
ing of these tasks should be considered concurrently. Therefore,
the constraints regarding task non-preemptive (10)–(11) and task
dependency (12) should also be taken into account. Hence, the
task allocation and scheduling problem has the form:

SP2 : min
x,p,t

(
max
k∈M
{tpk}

)
(29)

s.t.


(10)− (12),
λ2i−1

∑
k∈MB x2i−1,k + (1− λ2i−1)

∑
k∈ML x2i−1,k = 1,

0 ≤ ts2i−1 + t2i−1 ≤ Di, ∀i ∈ N .

Under the given frequency assignment decision c2i−1,l, we
can determine the value of λ2i−1 according to (5). If λ2i−1 = 1,
we have

∑
k∈MB x2i−1,k = 1, which implies that task τ2i−1 is

allocated to the big cluster PB , otherwise (i.e., λ2i−1 = 0), we
have

∑
k∈ML x2i−1,k = 1, and thus, task τ2i−1 is allocated to

the LITTLE cluster PL.
Since ts2i−1 is a continuous variable, while x2i−1,k and pij

are the binary variables, SP2 is an MILP problem. Based on the
problem structure, a three-step heuristic method is proposed to
solve SP2. Firstly, we determine the task sequence to perform
task allocation according to the dependencies among the tasks.
Then, we determine the start time of the tasks. Finally, we adjust
the frequency assignment as the above process may violate
the real-time constraints. Based on this idea, the proposed
heuristic contains three steps: 1) task layer classification, 2)
task allocation and scheduling, and 3) frequency adjustment.

1) Task Layer Classification: Since the tasks are dependent,
we introduce a sequence Seq to perform task allocation. To
determine Seq, we set a sequence index LCi for each task τi.
a. For each entry task τi, we assume that its sequence index

is 0. In Fig. 3, we have LC1 = 0 as τ1 is an entry task.
b. For each non-entry task τj , we find all its predecessors, e.g.,

task τi with qi,j = 1. We denote the index of predecessor
τi as LCi and let LCj = maxi∈N {LCi}+ 1. In Fig. 3, we
have LC2 = 1, LC3 = 2, LC4 = 3, LC5 = 4, LC6 = 4,
LC7 = 5 and LC8 = 5.

c. We sort all the tasks in ascending order according to their
indices, and the tasks with the same index are sorted by their
execution time in ascending order. Therefore, we obtain a
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Fig. 4. Example of heuristic task deployment method.

task sequence Seq. In Fig. 3, if the execution time of τ5 (τ8)
is less than τ6 (τ7), we have Seq = {1, 2, 3, 4, 5, 6, 8, 7}.

2) Task Allocation and Task Scheduling: Based on the
task sequence Seq, we perform task allocation to balance
the workloads of the processors. By using the sequence Seq,
task allocation xi,k and task start time tsi can be considered
concurrently.
a. The allocation of mandatory subtask τmi is influenced by the

frequency assignment c2i−1,l. According to (5), the value of
λ2i−1 can be determined under the given c2i−1,l. If λ2i−1 =
1, τmi is assigned to the big cluster, otherwise (i.e., λ2i−1 =
0), τmi is assigned to the LITTLE cluster.

b. On the one hand, as we follow the decisions Seq and c
to allocate and execute the tasks, the end time of τmi ’s
predecessors is known. Based on the task dependency pij ,
the feasible start time of subtask τmi is maxi∈Pre{tei},
where Pre is the set of τmi ’s predecessors, and tei is the end
time of corresponding task. As the DAG example shown in
Fig. 3, we have Pre = {2, 3} for τm4 . If we set te2 = 0.41
s and te3 = 0.88 s, the feasible task start time of τm4 is
max{te2, te3} = 0.88 s, as shown in Fig. 4(a).

c. On the other hand, when dealing with τmi , the tasks before
τmi in the sequence Seq have been allocated. Therefore,
based on the end time of these tasks, the task execution time
of each processor, i.e., tpk, is known. To obtain a longer time
interval to execute the optional subtasks, the feasible start
time of mandatory subtask τmi can be set to maxk∈M{tpk}.
Therefore, taking the feasible start time from the perspec-
tives of tasks and processors into account, τmi is assigned
to the processor with the latest feasible start time, i.e.,
maxk∈M{maxi∈Pre{tei}, tpk}, under the real-time con-
straints. As the example shown in Fig. 4(a), subtask τm4
is allocated to processor θ1, due to max{max{te2, te3} =
0.88, tp1 = 0.88, tp2 = 0, . . . , tp8 = 0} = 0.88 s.

3) Frequency Adjustment: If the real-time constraints cannot
be satisfied, we adjust the frequency assignment c2i−1,l accord-
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Fig. 5. Four cases to determine the potential optional subtasks.

ingly.
a. We record the index of subtask τmi that violates the real-

time constraint, e.g., te2i−1 > Di.
b. On the one hand, under the energy constraints, i.e., Etotal ≤
Ebudget, to reduce the end time of subtask τmi , we increase
the V/F levels of τmi and its predecessors, e.g., c2i−1,l =
1 → c2i−1,l+1 = 1 and c2j−1,l = 1 → c2j−1,l+1 = 1
(∀j 6= i ∈ N , qj,i = 1). On the other hand, to balance
the energy consumed for task execution, we reduce the V/F
levels of τmi ’s successors, e.g., c2k−1,l = 1→ c2k−1,l−1 =
1 (∀k 6= i ∈ N , qi,k = 1).

c. With the updated V/F assignment, the above task allocation
process is performed again for subtask τmi .

d. If the real-time constraints are still not satisfied, the above
method is repeated until all the tasks in the sequence Seq
have adjusted their V/F levels.

C. Optional Cycle Adjustment

Based on the solutions of the SP1 and SP2, we obtain the
deployment results of mandatory subtasks, the remaining energy
Eoptl = Ebudget − Etotal, and the ith idle time interval of
processor θk: ∆tk,i = tek,i − tsk,i, where tsk,i and tek,i are the
start time and the end time of ∆tk,i, respectively. In this step,
we aim to optimize the optional execution cycles, by using the
idle time interval ∆tk,i and the remaining energy Eoptl, in order
to improve the system QoS. The details are as follows.
a. According to the allocation and scheduling of each manda-

tory subtask τmi , i.e., x2i−1, ts2i−1 and te2i−1, we can
calculate the idle time interval of each processor, i.e., ∆tk,i.
For example, in Fig. 4(a), we have ∆t1,1 = 0.65 s and
∆t5,1 = 4.11 s.

b. Since (27) and (28) are the time and energy required to
execute a task with Mi cycles using the V/F level (Vl, fl),
TCl = 1

γi,lfl
and ECl =

Psta,l+Pdyn,l

γi,lfl
are the time and

energy required to execute a task with one cycle. Thus,
under the given the time ∆tk,i and energy Eoptl, we can ex-
ecute a task with ∆tk,i

TCl
cycles and Eoptl

ECl
cycles, respectively.

Note that the processors are heterogeneous. If θk ∈ PB, the
range of V/F level is L′ = LB , otherwise (i.e., θk ∈ PL),
L′ = LL. Based on the type of processor θk, the maximum
optional cycles are ∆omax = maxl∈L′{min{∆tk,i

TCl
,
Eoptl

ECl
}},

and we assume that the V/F level to achieve ∆omax is
(V ∗, f∗). Substituting (V ∗, f∗) into TCl and ECl, we
obtain TCl∗ and ECl∗ , i.e., the optimal computation cost
to achieve a longer task execution cycles.

c. Based on the task sequence Seq, we determine the potential
optional subtasks executed in each idle time interval ∆tk,i.

TABLE III
THE EXAMPLE OF OPTIONAL CYCLE ADJUSTMENT.

Task Oj (cycles) ∆Omax

(cycles)
tefea,j−tsfea,j

TCl∗
oj (cycles)

τo1 2.67× 108

1.65×109

0.31−0.31
TC12

0
τo2 5.84× 108 0.41−0.41

TC12
0

τo3 4.13× 108 0.88−0.88
TC12

0
τo4 4.94× 108 1.58−1.58

TC12
0

τo5 3.11× 108 2.30−2.30
TC12

0
τo6 4.64× 108 2.30−1.78

TC12
1.24× 108

τo8 5.63× 108 1.53× 109 2.30−1.78
TC12

1.55× 108

τo7 2.74× 108 1.37× 109
tsfea,8 = 4.11 s
tefea,8 = D8 = 3.5 s 0

Let τmp and τmq denote the nearest dependent tasks allocated
to θk before and after time interval ∆tk,i, respectively. As
the example shown in Fig. 5, the nearest dependent tasks
allocated to θ1 before and after the time interval ∆t1,1 are
τm1 and τm3 . Note that the index of τmp is LC2p−1, while
the index of τmq is LC2q−1. In addition, τmp and τmq may
not always exist. We have the following four cases:
• If τmp and τmq exist and they are allocated to θk, we

have T = {τoj |LC2p−1 ≤ LC2j ≤ LC2q−1,∀j ∈ N},
where T is the candidate set of optional subtasks executed
during ∆tk,i, e.g., for ∆t1,1, as τm1 is the predecessor of
τm3 , the candidate task set T = {τoj |LC1 = 0 ≤ LC2j ≤
LC5 = 2,∀j ∈ N} = {τo1 }.

• If τmp is allocated to θk and τmq doesn’t exist, we have
T = {τoj |LC2j ≥ LC2p−1,∀j ∈ N}, e.g., for ∆t2,2,
as τm2 and τm3 are independent, the candidate task set
T = {τoj |LC2j ≥ LC3 = 2,∀j ∈ N} = {τo2 , τo3 }.

• If τmq is allocated to θk and τmp doesn’t exist, we have
T = {τoj |LC2j ≤ LC2q−1,∀j ∈ N}, e.g., for ∆t2,1,
as τm1 is the predecessor of τm2 , the candidate task set
T = {τoj |LC2j ≤ LC3 = 2,∀j ∈ N} = {τo1 }.

• If τmp and τmq are not exist, we assume that T contains all
the optional subtasks, e.g., for ∆t3,1, the candidate task
set is T = {τo1 , τo2 , τo3 }.

Since no task migration is performed among the processors
in the same cluster, we remove the optional subtask τoj from
the set T if τoj and its mandatory subtask τmj are executed on
different processors in the same cluster. Based on the above
method, for the idle interval ∆t5,1 in Fig. 4(a), the feasible
task set T = {τo1 , τo2 , τo3 , τo4 , τo5 , τo6 , τo7 , τo8 }. As the tasks
in the set T are dependent, we follow the task sequence Seq
to determine the execution cycles of each optional subtask
τoj in the set T .

d. Let tsfea,j = max{tsk,i, {tes}} denote the feasible start time
of τoj in ∆tk,i, where {tes} is the end time set of τoj ’s
predecessors. In addition, let tefea,j = min{tek,i, Dj , {tst}}
denote the feasible end time of τoj in ∆tk,i, where {tst} is
the start time set of τoj ’s successors. Note that only when the
feasible start time tsfea,j is smaller than the feasible end
time tefea,j , i.e., tsfea,j ≤ tefea,j , the optional subtask
τoj exists. Taking the optimal V/F to achieve longer task
execution cycles into account, i.e., (V ∗, f∗), the number
of execution cycles can be executed during the time slot
tefea,j − tsfea,j is tefea,j−tsfea,j

TCl∗
. On this basis, with the
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consideration of the maximum execution cycles Oj of τj
and the upper bound ∆omax of execution cycles in ∆tk,i,
the number of execution cycles for optional subtask τoj can
be set to oj = min{Oj ,∆omax,

tefea,j−tsfea,j

TCl∗
}. As the

example in Fig. 4(b), during the idle time interval ∆t5,1,
we have ∆omax = 4.11−0

TC12
= 1.65× 109 (cycles). Based on

the method mentioned above, we can obtain the cycles of τo6
and τo8 , and these tasks are allocated to θ5, the adjustment
process of optional cycles is shown in Table III.

e. We apply the above method for each ∆ti,k and the adjust-
ment of optional subtasks ends until Eoptl = 0 or oi = Oi
(∀i ∈ N ). Therefore, the number of execution cycles for τo7
is min{O7,∆omax,

3.40−2.80
TC12

} = 1.69×108 (cycles) and τo7
is allocated to θ6.

Based on the above sub-problems, the frequency allocation
variable ci,l, the task allocation variable xi,k, the task start time
tsi, and the optional execution cycles oi can be determined.
Thus, we can obtain the task deployment solution to maximize
system QoS under real-time and energy constraints.

D. Time Complexity

To solve the task deployment problem, the proposed heuristic
method divides it into three sub-problems: SP1, SP2, and SP3,
and solves these sub-problems in sequence. For SP1, the time
complexity is O(N(lB + lL)). In SP2, we have three stages.
Firstly, the recursive manner is adopted to decide the task layer.
As the height of the top-down recursive tree is log(N), the time
complexity is O(Nlog(N)). Then, we use the greedy method to
determine task allocation and scheduling. During this process,
the outer loop i runs N times, while the inner loop k runs M
times. Therefore, the time complexity is O(NM). Finally, dur-
ing the frequency adjustment process, as the maximum number
of adjustments is N , the time complexity is O(N). For SP3,
we consider the worst case, where the maximum number of idle
time intervals is M +N . Therefore, the calculation of feasible
optional cycles is invoked O(M+N) times. As this calculation
takes O(N) times, the time complexity is O(N(M + N)). To
sum up, the total time complexity of the heuristic method is
O(N(lB + lL) + Nlog(N) + NM + N + N(M + N)). Note
that N denotes the total number of tasks, M denotes the number
of processors, and lB + lL denotes the number of V/F levels. In
addition, we have N � M and N � lB + lL. Therefore, the
total time complexity is O(Nlog(N) +N2).

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
task deployment methods through a set of simulation experi-
ments.

1) Simulation Setup: We consider the AMP platform in-
spired by the ARM DynamIQ big.LITTLE with per-core DVFS
technology as a case study. The power parameters are adopted
from [34] and [28]. The number of processors MB = 4 and
ML = 4, and the number of V/F levels lB = 9 and lL = 5. The
execution efficient factor γi,l is within the range [0.4, 1] [36],
which demonstrates the heterogeneity among the processors.
For each task τi, the cycles of the mandatory subtask τmi and

TABLE IV
EXPERIMENTAL SET-UP

Task Model
Mi, Oi ∈ [4× 107, 6× 108] γi,l ∈ [0.4, 1]

Dmin = minl∈L{Mi+Oi
γi,lfl

} Dmax = maxl∈L{
∑
i∈CPT

Mi+Oi
γi,lfl

}
H = Dmax fi(oi) = 0.0313oi − 9.296

Di = (Dmax −Dmin)β + δDmin

System Model
Emin = minl∈L{

∑
i∈N

Mi+Oi
γi,lfl

(Psta,l + Pdyn,l)}

Emax = maxl∈L{
∑
i∈N

Mi+Oi
γi,lfl

(Psta,l + Pdyn,l)}
Ebuget = (Emax − Emin)β + Emin + (MB +ML)HPon

the maximum cycles of the optional subtask τoi , i.e., Mi and Oi,
are assumed to be in the range of [4×107, 6×108] [20], which
is given by the practical applications, such as M-JPEG2000.
For the QoS function, we use a T2-coder’s linear QoS model
fi(oi) = 0.0313oi−9.296 [29]. Under the given task number N ,
we randomly generate a DAG to describe the task dependency.
The parameters regarding the IC tasks and the AMP platform
are summarized in Table IV. β and δ are the tuned parameters.
Dmax denotes the time required to execute the tasks on the
critical path (CPT) of DAG with the minimum frequency, while
Dmin denotes the time required to execute task τi with the
maximum frequency. In addition, we set H = Dmax as all the
tasks should be executed within the scheduling horizon H . Note
that the values of these parameters do not affect the structure
of the task deployment problem. Thus, the proposed method is
still applicable to other system parameters.

Next, we first evaluate the influence of system parameters
on task deployment results. Then, we compare the system
performance (i.e., system QoS, problem schedulability, and
computation time) of the proposed optimal (OPT), the heuristic
(HEU) methods, and other state-of-the-art deployment schemes:
i) task deployment without task migration (WTM) [24], ii) task
deployment without DVFS (WDV) [20], i.e., each processor has
a fixed voltage/frequency, and iii) task deployment with fixed
task allocation (WTA) [5], i.e., task-to-processor allocation is
fixed. The simulations are performed on a workstation with 32
processors and 64 GB RAM, and the algorithms are imple-
mented in Matlab 2019a with optimization solver Gurobi 9.

2) Simulation Results: Fig. 6 compares the system QoS
achieved by the OPT method under different task numbers N
and system parameters β and δ. Note that β and δ will change
energy supply Ebuget and task deadline Di, and thus, influence
the system QoS. We set the requirements regarding time and
energy in the intermediate level, and thus, we have β ∈ [0, 0.5]
and δ ∈ [0.4, 1]. In addition, the execution efficient factors
are set to γi,l = 0.6 (l ∈ PL) and γi,l = 1 (l ∈ PB) [11].
Fig. 6 shows that the system QoS increases with β, δ, and
N . Moreover, under the same task number N , with β and δ
increasing, the growth rate of system QoS decreases. This is
because the larger the values of β, δ, and N , the more optional
subtasks are executed, and thus, a higher system QoS can be
achieved. However, under the fixed task number N , although
the processors can execute more optional cycles with β and δ
increasing, the QoS improvement becomes limited, since the
range of optional cycles oi is bounded by 0 ≤ oi ≤ Oi.

Fig. 7 evaluates the influence of DAG structure on system
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Fig. 6. The system QoS achieved by OPT method with N , δ, and β varying.

QoS. Let NCPT denote the number of the tasks on the critical
path, and we introduce a task parallelism factor η = NCPT /N .
Since N is the number of total tasks, the larger the value of
η, the lower the parallelism level of task DAG. The box plot
of ‘OPT vs WTM’ shows the statistical property of data set
{ fOPT (N,η)−fWTM (N,η)

fOPT (N,η) } for all the tuned N and η parameters,
where fOPT (N, η) and fWTM (N, η) are the system QoS of
OPT and WTM under the given N and η parameters. On
each box, the central mark indicates the median. The bottom
and the top edges indicate the 25th and the 75th percentiles,
respectively. The whiskers extend to the most extreme data
points that are not considered outliers, and the outliers are
plotted individually by the ‘+’ symbol. From Fig. 7, we observe
that the QoS gain increases with η. When DAG has a higher
parallelism task execution level (i.e., η is small), each processor
has more idle time intervals to execute the optional subtasks.
Therefore, the differences in system QoS achieved by OPT
and WTM methods are the smallest observed. However, when
the parallelism level of task execution is low (i.e., η is large),
the task deployment process of OPT has higher gains. This is
because OPT is more flexible due to the task migration, al-
lowing one subtask to be executed on different (heterogeneous)
processors. Thus, we can better use system resources to increase
QoS under time and energy constraints.

Fig. 8 evaluates the influence of processor heterogeneity
on the system QoS. As the processors in the same cluster
are homogeneous, we introduce a heterogenous factor γL/γB ,
where γL = γi,l (l ∈ PL) and γB = γi,l (l ∈ PB). Thus, γL/γB
represents the ratio of execution efficiency factor between the
processors in the LITTLE and big clusters. When the V/F level
(Vl, fl) is used to execute a task with Mi cycles, the task
execution time and energy are Mi

γi,lfl
and Mi

γi,lfl
(Psta,l+Pdyn,l),

respectively. Hence, if we fix the parameters Mi, fl, Psta,l
and Pdyn,l, the larger the value of γL/γB , the smaller the
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Fig. 7. The change of QoS gain (OPT vs WTM) with η and N varying.

gap regarding task execution between processors of LITTLE
and big clusters. We set N ∈ [5, 8], γL ∈ [0.5, 1] and
γB = 1. The box plot of ‘OPT vs WTM’ shows the statistical
property of data set { fOPT (N,γL/γB)−fWTM (N,γL/γB)

fOPT (N,γL/γB) } for all
the tuned N and γL/γB parameters, where fOPT (N, γL/γB)
and fWTM (N, γL/γB) are the system QoS of OPT and WTM
under the given N and γL/γB parameters. From Fig. 8, we
observe that when the differences of processors in big and
LITTLE clusters are large (i.e., γL/γB is low), task migration is
more efficient, and thus, OPT can achieve a higher system QoS.
On the other hand, with γL/γB increasing (i.e., γL/γB is close
to 1), the heterogeneity of the processors in big and LITTLE
clusters is reduced. Since task execution time Mi

γi,lfl
and energy

Mi

γi,lfl
(Psta,l + Pdyn,l) decrease, we can execute more optional

cycles to improve system QoS, and thus, OPT can achieve a
higher system QoS.

Fig. 9 compares the system QoS and the problem feasibility
of OPT and WTM, as both task deployment problems are
solved by the optimal methods. The system QoS and problem
feasibility are given by

∑
i∈N fi(oi) and nfea/n, respectively,

where nfea is the number of feasible solutions found during n
simulations. We run the simulations n = 30 times, under the
time factors β = 0.4 and δ = 0.4, execution efficient factors
γi,l = 1 (∀l ∈ PB) and γi,l = 0.6 (∀l ∈ PL), and task
number N ∈ [5, 19]. From Fig. 9 we observe that, compared
with WTM, OPT achieves a higher QoS (31.2% on average
and up to 112.8%) and higher problem feasibility (72.54%
on average). This is because, with task migration, a set of
additional variables µ2i−1 and µ2i (i.e., the proportions of a
task τi executed on the processors of different clusters) are
introduced into the task deployment problem, which makes this
problem easier to solve, under the same constraints. The values
of µ2i−1 and µ2i are fixed during task deployment without task
migration. Note that the multi-core system is time- and energy-
constrained, and the processors in big and LITTLE clusters have
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Fig. 8. The change of QoS gain (OPT vs WTM) with γL/γB and N varying.

different performances, e.g., computation time and energy. Thus,
separating a task into two parts and assigning them to different
clusters can better balance energy consumption and execution
time, satisfying the problem constraints.

Fig. 10 compares the system QoS and the computation
time of OPT, HEU, WDV, and WTA based on both randomly
generated DAGs and the DAGs from real applications, such
as Gaussian Elimination (GE) [37], Fast Fourier Transform
(FFT) [37], Laplace equation (LE) [38], and Montage Work-
flows (MW) [39]. We set γi,l = 1 (∀l ∈ PB), γi,l = 0.6
(∀l ∈ PL), and η ∈ (0, 1]. For randomly generated DAGs,
N ∈ [5, 100]; while for GE, FFT, LE, and MW, the applications
can be modeled as DAGs with 14, 15, 16, and 24 tasks, respec-
tively. In Fig. 10(a) and Fig. 10(b), the QoS gain between OPT
and HEU is defined as fOPT (N)−fHEU (N)

fOPT (N) , where fOPT (N)

and fHEU (N) are the system QoS achieved by OPT and HEU
under the given N parameter, respectively. Note that WDV and
WTA are based on multiple-step heuristic methods. Fig. 10(a)
and Fig. 10(b) show that our method (HEU) outperforms WDV
and WTA in terms of QoS improvement (22.89% and 27.62%
on average, including randomly generated DAGs and DAGs
for GE, FFT, LE, and MW), as DVFS and task allocation are
taken into account and optimized in the HEU method. On the
other hand, with task number N increasing, more variables and
constraints are added to the task deployment method. Therefore,
the computation time to find the optimal solution increases as
well. Fig. 10(c) shows that, compared with the OPT method,
the HEU method has a negligible time (within 0.5 seconds) and
achieves about 53.9% (on average) performance of the OPT
method. Hence, our HEU approach is suitable for applications
with larger and more complex task sets, which can enhance the
adaptivity and scalability of the task deployment process.

VI. CONCLUSION

This paper addresses the problem of dependent IC task
deployment on the AMP platforms to maximize system QoS.

Fig. 9. QoS and problem feasibility comparisons of OPT with WTM.

The task allocation, scheduling, migration, and frequency as-
signment are optimized concurrently under real-time and energy
supply constraints. The joint-design task deployment problem
is formulated as an MINLP problem and then is equivalently
transformed into an MILP problem to find the optimal so-
lution. To improve the scalability of the proposed method,
we design a novel three-step heuristic with low computation
time to solve this problem. This method decomposes the joint-
design problem into three sub-problems with fewer variables
and constraints. The sub-problems regarding the assignment of
task execution frequency, the allocation and scheduling of tasks,
and the adjustment of optional subtasks are solved in sequence.
The simulation results show that the proposed heuristic can
obtain an acceptable solution with a negligible computation
time. In addition, the proposed methods outperform other task
deployment methods in terms of the improvement of system
QoS and the usage of system resources.
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[24] S. Chakraborty, S. Saha, M. Själander, and K. Mcdonald-Maier, “Prepare:
Power-aware approximate real-time task scheduling for energy-adaptive
QoS maximization,” ACM Transactions on Embedded Computing Systems,
vol. 20, no. 5s, pp. 1–25, 2021.

[25] T. Wei, J. Zhou, K. Cao, P. Cong, M. Chen, G. Zhang, X. S. Hu, and J. Yan,
“Cost-constrained QoS optimization for approximate computation real-

Time tasks in heterogeneous MPSoCs,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 37, no. 9, pp. 1733–
1746, 2017.

[26] G. L. Stavrinides and H. D. Karatza, “An energy-efficient, QoS-aware and
cost-effective scheduling approach for real-time workflow applications in
cloud computing systems utilizing DVFS and approximate computations,”
Future Generation Computer Systems, vol. 96, pp. 216–226, 2019.

[27] L. Mo, A. Kritikakou, and O. Sentieys, “Approximation-aware task
deployment on asymmetric multicore processors,” in Proc. IEEE/ACM
Design, Automation and Test in Europe, 2019, pp. 1513–1518.

[28] Y. Qin, G. Zeng, R. Kurachi, Y. Matsubara, and H. Takada, “Execution-
variance-aware task allocation for energy minimization on the big. little
architecture,” Sustainable Computing: Informatics and Systems, vol. 22,
pp. 155–166, 2019.

[29] H. Yu, B. Veeravalli, Y. Ha, and S. Luo, “Dynamic scheduling of
imprecise-computation tasks on real-time embedded multiprocessors,”
in Proc. IEEE International Conference on Computational Science and
Engineering, 2013, pp. 770–777.

[30] L. A. Cortés, P. Eles, and Z. Peng, “Quasi-static assignment of voltages
and optional cycles in imprecise-computation systems with energy con-
siderations,” IEEE transactions on very large scale integration systems,
vol. 14, no. 10, pp. 1117–1129, 2006.

[31] R. Jejurikar, C. Pereira, and R. Gupta, “Leakage aware dynamic voltage
scaling for real-time embedded systems,” in Proc. Design Automation
Conference, 2004, pp. 275––280.

[32] S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw, “Combined dynamic
voltage scaling and adaptive body biasing for lower power micropro-
cessors under dynamic workloads,” in Proc. IEEE/ACM International
Conference on Computer-Aided Design, 2002, pp. 721––725.

[33] W. Wang and P. Mishra, “Leakage-aware energy minimization using
dynamic voltage scaling and cache reconfiguration in real-time systems,”
in Proc. International Conference on VLSI Design, 2010, pp. 357–362.
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