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We reveal unconventional edge states in a one-dimensional Stub lattice of coupled waveguides with staggered
hoppings. The edge states appear for the same values of hoppings as topological edge states in the Su-Schrieffer-
Heeger model. They have different energies depending on the lattice termination and present a remarkable
robustness against certain types of disorder. We evidence experimentally the phase transition at which these
edge states appear, opening the door to the engineering of one-dimensional lattices with localized edge modes
whose energy and location can be controlled at will.
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I. INTRODUCTION

During the last few years, there has been a surge of interest
in the study of topological edge states in a plethora of sys-
tems, ranging from electronic states in materials [1] to analogs
in mechanical [2] and photonic settings [3,4]. In particular,
the field of topological photonics [3,4] has bloomed over
the last decade. But beyond the much sought-for topological
protection, a few studies [5–8] have shown that sometimes
an enhanced robustness (and even antifragile behavior) can
be achieved by breaking the rules and tinkering with edge
states outside the topological phase. This includes, for exam-
ple, edge states coexisting with a gapless bulk [5], states of
metals on topological insulator systems [6], and also many
Floquet systems [7,8] which are effectively gapless but which
nevertheless show robust edge states.

In one dimension, topological phases require imposing a
symmetry, typically chiral or sublattice symmetry, as in the
case of the Su-Schrieffer-Heeger (SSH) model [9,10]. The
resulting topological phase has edge states which, notwith-
standing their “topological protection,” are not as strong as
their two-dimensional counterpart. Furthermore, the pecu-
liar status of chiral symmetry, which is different from usual
crystalline symmetries, brings more subtleties to the one-
dimensional case. Thus, one may wonder whether when going
beyond the constraints of topology one could find edge states
equally robust to those of the paradigmatic SSH model. Such a
scheme would have the potential to provide more useful edge
states for diverse applications in physics [4].
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Here, we study a modified version of the SSH lattice, that
we call the SSH-Stub model. We show that this model sustains
edge states with unusual properties. On one hand, there is
an imbalanced number of edge states at the two ends of the
chain, and they have different energies: Two are located at
one edge with nonzero energy, and one midgap state is present
at the opposite edge. On the other hand, since the model has
a net chiral charge [11] the midgap state coexists with flat-
band modes. Furthermore, the edge states enjoy a robustness
comparable to those found in the SSH model; therefore, our
results open a path for robust edge states beyond the standard
topological classification.

II. SSH-STUB MODEL

The propagation of light on a dimerized Stub pho-
tonic lattice, which is composed of sites A, B, and C as
sketched in Fig. 1(a), is well described by a tight-binding-like
model [12,13] as follows,

−i
dun

dz
=

∑
m �=n

tn,mum. (1)

Here, un is the light amplitude of the fundamental mode at
the nth waveguide, z the propagation direction (dynamical
variable), and tn,m is the coupling (hopping) coefficient be-
tween sites n and m (the distance in between sites A, B, and
C determines the strength of these coefficients). We identify
the coupling constants t2 and t3 as the horizontal and vertical
intracell couplings, respectively, while t1 defines the intercell
horizontal coupling. Depending on their values, the system
experiences different regimes, which we characterize using
the parameter δ ≡ t2/t1. Bands are obtained using a Bloch
ansatz directly in model (1), obtaining

βz = 0, β±
z ≡ ±

√
(1 + 2δ cos k + δ2)t2

1 + t2
3 . (2)
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FIG. 1. (a) Scheme of a finite SSH-Stub lattice. The unit cell is
marked with a rectangle. (b) Dispersion relation of an infinite lattice
for δ = 0.5 (blue), δ = 1.0 (black), and δ = 1.5 (red). The FB at βz =
0 exists for any value of δ. (c) Spectrum for different values of δ.
(d1)–(d3) Amplitude profiles of left (βz = ±1) and right (βz = 0)
edge states. In (b) and (c) t1 = t3 = 1.

We plot them in Fig. 1(b) for three different values of δ, where
k defines the transversal quasimomentum. The spectrum is
composed by a flat band (FB) [14] at βz = 0, and two dis-
persive bands β±

z which have a symmetric spectrum, where
each positive frequency is paired to a negative one [15]. The
coupling parameter t3 determines the size of dispersive bands
and the gap in between bands β±

z . FB modes consist of only
three lattice sites: two consecutive C and one A amplitudes,
with null B sites [16]. Now, by considering a finite lattice with
boundaries as the ones shown in Fig. 1(a), we numerically
compute the spectrum for different δ values [see Fig. 1(c)].
We clearly observe the flat band at βz = 0 and also the two
symmetric dispersive bands β±. Interestingly, two new states
emerge in the internal gap of the dispersive bands for |δ| < 1,
which we identify as edge states with βz = ±t3. Figures 1(d1)
and 1(d2) show their spatial profiles: They present a zero
amplitude at A sites, and an exponential decay towards the
bulk for B and C sites. The high-energy state at βz = t3 has
a bonding phase structure within each unit cell, while the
low-energy one at βz = −t3 has an antibonding character. By
inspecting the opposite (right) edge, which ends with an A
site, we notice two extra edge modes at βz = 0. One of them
is trivial and it corresponds to a truncated FB state that exists
for any value of δ. A second one is a hidden (h) edge mode,
which exists for |δ| < 1 and decays exponentially into the bulk
with nonzero amplitude only on A sites. Notice that there is
an imbalanced number of edge states on the boundaries due to
the coupling dimerization: Two edge states appear at the left
boundary and one edge state exists at the right boundary. This

fact differs from other topological models such as the SSH
lattice [9], in which the same number of edge modes appear at
both boundaries.

The localization properties are studied by using an stan-
dard definition of the inverse participation ratio, IPR =∑

n |un|4/(
∑

n |un|2)2. IPR → 1 [1/(3N )] for a localized (de-
localized) profile, with N the number of unit cells. Figure 1(c)
shows that the bulk β±

z states are extended having a small IPR,
whereas the FB localized modes possess a high IPR value.
This figure also shows that the edge states at β = ±t3 are
well localized for δ → 0, while the IPR decreases for δ → 1.
These edge modes can be analytically expressed as follows,{

Be
n(z),Ce

n (z)
} = {Be,Ce}εn−1 exp

(
iβe

z z
)
, Ae

n(z) = 0,

with n � 1 (starting at the left boundary) and considering
|ε| < 1, such that the profile decays exponentially from the
surface into the bulk. We find that Ce = ±Be, ε = −δ, and
βe

z = ±t3, corroborating the existence condition |δ| < 1. The
IPR of these edge states can be analytically written as IPRe =
(1 − δ2)/[2(1 + δ2)]. Therefore, IPRe → 1/2 for δ → 0, as
only the B and C sites of the first unit cell have a nonzero
amplitude. IPRe → 0 for δ → 1, evidencing that the edge
states bifurcate from completely delocalized bulk states. Fur-
thermore, we analytically construct the hidden edge state as

Ah
n(z) = ANγ N−i exp

(
iβh

z z
)
, Bn(z) = Cn(z) = 0,

for n � N . We find that γ = −δ and βh
z = 0 for |δ| < 1,

which is the same existence condition of the two previous
edge states. This state has a IPRh = 2IPRe because only A
sites are excited. IPRh → 1 for δ → 0 (maximal localization)
and IPRh → 0 for δ → 1, which indicates that this edge state
mixes with completely delocalized states composed of a su-
perposition of FB states. It is possible to reveal this edge state,
for example, by adding an on-site energy at the A sites and
destroying the flat band.

The existence condition |δ| < 1 for the three exponentially
decaying edge modes suggests a close relation between our
model and the SSH one [9,17]. Our model possesses a unit
cell formed by three sites, therefore we expect to find three
edge states only. The third state is equivalent to the SSH one,
due to the fact both B and C amplitudes are zero. However,
the left-hand edge modes are naturally detuned in energy to
βz = ±t3. They exist as vertical dimers coupled by A null sites
following an SSH dimerization. Although our edge modes
show similarities with the topologically nontrivial edge states
of an SSH system, including the chiral symmetry [18], we
cannot assign them a topological origin due to the absence
of a well-defined topological invariant [19].

III. EXPERIMENTAL DEMONSTRATION
OF THE EDGE STATES

We use a photonic platform to verify experimentally the
existence of edge states on SSH-Stub lattices. Optical waveg-
uide arrays are fabricated using a femtosecond laser writing
technique [20], as sketched in Fig. 2(a). Ultrashort pulses
(red beam in the figure) from a Yb-doped fiber laser (Menlo
Systems BlueCut, wavelength of 1030 nm, repetition rate of
500 kHz, pulse width ∼230 fs) are tightly focused inside
a borosilicate Eagle XG glass wafer (yellow block in the
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FIG. 2. (a) Femtosecond laser writing technique. (b) Bright-field microscopy of dimerized Stub photonic lattices for d1 = 16 μm, d3 =
18 μm, and d2 = 22 (top), 16 (center), and 12 (bottom) μm, respectively. (c) HeNe characterization setup. (d)–(f) Intensity output profiles for
edge-B, edge-C, and edge-A excitations (see yellow circle), respectively. d2 and δ are indicated directly in the figure. A dashed horizontal line
indicates the transition region. Insets in (d) and (e): Pr vs distance d2.

figure) by using a 20× microscope objective. Then, samples
are continuously translated using a motorized Thorlabs XYZ
stage (gray plate in the figure), thus creating waveguides in-
side the sample (see cylinders inside the glass), achieving a
refractive index contrast �n ∼ 10−4–10−3, on a borosilicate
material with a nominal refractive index of n0 = 1.48. The
writing velocity was set to v = 0.4 mm/s and kept fixed along
this experiment. The pulse energy used for all waveguides
was of 0.16 μJ (∼80 mW average power), implying single-
mode operation at 633 nm. The propagation length for all
the waveguides corresponds to the total length of the sam-
ple, L = 5 cm. Every waveguide has an elliptical transversal
shape, of approximately 4 × 11 μm. Figure 2(b) shows three
different lattices after illumination, where the dimerization
is clearly revealed as well as the waveguide ellipticity. As
the excitation of edge states is determined by the parameter
δ, it is mandatory to dimerize the coupling interaction in
between sites A and B. The dimerization is experimentally
implemented by varying the intracell distance d2, while keep-
ing constant the intercell (d1 = 16 μm) and vertical (d3 =
18 μm) distances, considering that coupling constants decay
exponentially with the distance [20] [in our experiment, cou-
pling constants were fit as th(d ) = 15.41 exp{−0.1631d} and
tv (d ) = 53.64 exp{−0.2139d}]. Light from a HeNe laser at
633 nm was tightly focused by a 10× microscope objective
at the input facet of a photonic chip (PC), as described in
Fig. 2(c). This allows us to excite single waveguides only,
which is equivalent to excite the lattices using deltalike input
conditions in model (1). Near-field intensity images are taken
by a CCD camera at the output facet of the PC, after a total
propagation length of 5 cm.

First of all, we excite the lattice at a bulk-B site to
demonstrate good transport conditions. We notice that, in-
dependently of the value of d2, a clear light broadening

(transport) is observed in all cases. This is due to the fact
that bulk-B sites excite dispersive bands only, with a null
superposition of the flat band. Then, we excite an edge-B site
and collect results in Fig. 2(d). This input condition excites ex-
tended propagating modes and edge states, but no FB modes.
Therefore, if a localized edge state exists, we may observe the
energy trapped at the left-edge region. We observe clearly that
a well-localized edge profile is excited for distances d2 > d1

(δ < 1), with almost no tail nor relevant transport through the
lattice. Then, for d2 = d1 (δ = 1) we observe a kind of broader
profile as expected in the limit δ → 1. Afterwards, for d2 < d1

(δ > 1), we do not observe any significant localization in
the waveguides close to the edge, which is evidence that no
edge states are found at this parameter region. In order to
quantify the amount of energy which remains trapped at the
left boundary versus the energy in the whole lattice, we define
the ratio Pr ≡ (|B1|2 + |C1|2)/

∑
n |un|2. Pr = 1 means that all

the energy is fully localized at the B1 and C1 (edge) sites.
Figure 2(d) (inset) shows Pr vs d2, where we observe quite
clearly a transition into delocalization while d2 decreases.
The energy remains localized for d2 > d1, while it spreads
out from the edge for d2 < d1. This is a direct experimental
demonstration of the existence of edge modes for δ < 1 at
the left boundary, in perfect agreement with our theoretical
findings.

Now, we excite an edge-C site and present our results in
Fig. 2(e). A C site excites all bands, including the FB and the
edge modes as well. Then, for d2 < d1 we observe a localized
pattern where A and C sites are mostly excited. This is clear
indication of a FB excitation with a quite localized spatial
profile [16]. When d2 > d1 the light intensity gets localized
in the outermost B and C sites, evidencing the excitation of
the edge mode. In this case, the observed transition is not as
abrupt as when exciting the B site due to the simultaneous
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FIG. 3. (a) Averaged spectrum of a disordered SSH-Stub lattice
vs the disorder strength t0/t1, for δ = 0.5. Blue, green, and red dots
indicate the energies of the edge states, while gray dots correspond to
the energies of bulk states. (b) Scheme for a SSH-Stub lattice includ-
ing a coupling defect td at the first unit cell. (c) Microscope image of a
SSH-Stub photonic lattice for {d1, d2, d3, dd} = {16, 14, 18, 12} μm.
(d) Intensity output profiles for an A-site excitation (see yellow
circle). (d1)–(d6) dd = 19, 17, 16, 15, 14, 12 μm, respectively.

excitation of localized FB modes. On the other hand, when
exciting the A site at the right-hand boundary [see Fig. 2(f),
two uppermost panels], we observe the third edge state for
δ � 1 what is direct proof of the existence of this hidden
mode. This excitation strongly overlaps with the FB mode
at the right edge while δ (d2) increases (decreases), and we
observe a clear superposition of FB modes forming a zigza-
glike spatial configuration with null B sites. For d2 < d1, the
edge FB amplitude AN decreases and the absence of the third
nontrivial edge state is evident by observing the penetration of
the energy into the bulk of the lattice. The excited spectrum
for all the experimental cases described in Figs. 2(d)–2(f)
is addressed in Appendix A, where we analyze the specific
excited bands depending on the input excitation.

The robustness of these edge states can be probed numer-
ically adding random off-diagonal disorder into model (1) in
the form t1 + t0ε1 and t2 + t0ε2, such that every link of the
lattice takes a different value (t0 is the disorder strength and
ε1,2 are real numbers taken randomly in the interval {−1, 1}).
We compute the spectrum for a dimerized lattice for δ = 0.5
and average the results shown in Fig. 3(a) over 50 realizations.
As it can be observed, only the dispersive part of the spectrum
is perturbed in βz values (energies). The three edge states
remain unaffected at their respective energies βz = 0,±t3, for
any degree of disorder. This shows the robustness of edge
states against horizontal disorder, which is analytically proven
in Appendix B. Since the energy of the left-side edge states
depends on t3 only, any perturbation to this coupling constant

will produce a modification of this frequency and their robust-
ness will be lost. However, the right-side edge state will persist
as it is not affected by the coupling constant t3.

Last but not least, we study the differences between our
edge states and the well-known Tamm or defect states [21,22]
appearing in trivial (nontopological) lattices [23]. To do this,
we replace the first t2 coupling coefficient by td , at the first
unit cell of the lattice, as sketched in Fig. 3(b). Experi-
mentally speaking, this is achieved by locally modifying the
distance in between the first B and A sites (named dd ), as
Fig. 3(c) clearly shows. We fabricate a set of lattices, vary-
ing the distance dd : 19, 17, 16, 15, 14, 12 μm (implying td :
0.61, 0.85, 1.00, 1.18, 1.39, 1.92 cm−1, respectively), consid-
ering a situation where the previously described edge states
do not exist: d1 = 16 μm and d2 = 14 μm → δ ≈ 1.4. Then,
using a characterization setup as the one shown in Fig. 2(c),
we excite the A sites at the first unit cell [see the yellow
circle in Fig. 3(d1)]. Defect edge states appear due to the
presence of an impurity or defect at the boundary. The inclu-
sion of a coupling defect td shows that these modes appear
in the semi-infinite gap only, above and below the spectrum,
and that they become well localized only for td � 1.8t1 (see
Appendix C). Figures 3(d1)–3(d3) show that for td � t1 a
localized FB pattern is observed with an increasing radiation
tail to the right. For td > t1 we observe a combined state [see
in Figs. 3(d4)–3(d6)] where the FB profile disappears and a
decaying profile emerges, which occupies sites on the main
row mostly. This is certainly very different from the edge
states described before, where A sites are never excited.

IV. DISCUSSION

One may wonder whether these states might be topolog-
ical, a question which is also fueled by their robustness. A
first aspect is that these edge states neither have the same
energy (two of them appear at βz = ±t3 and another one at
βz = 0) nor appear in the same number at each edge. This
contrasts with other known cases in one dimension (e.g., the
SSH model [9,10]) where the topological states are midgap
states, one at each edge, and where chiral symmetry pins their
energy. Furthermore, there is another special property of our
model resulting from its connectivity. Indeed, the lattice is
bipartite, the sites making one frame (say A and C) couple
only to those in the second frame (sites B). The imbalance in
the number of sites on each frame (unit chiral charge [11])
imposes one zero energy state per k point [11,24], i.e., a flat
band, which for a finite system coexists with an edge state. All
these elements hint that the reported edge states do not fall into
the standard classification of topological states. However, our
results suggest that their robustness against imperfections is
comparable to that of the topological states in the SSH model.

In conclusion, we have theoretically and experimentally
shown the appearance of unconventional edge states in quasi-
one-dimensional dimerized Stub photonic lattices. Three
exponentially localized edge states appear as the same tran-
sition regime as in the SSH model, but at three different
energy values. These states are robust against horizontal dis-
order and are not originating due to effective defects at the
edges. Our findings could open other opportunities for edge
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FIG. 4. The frequency spectrum vs parameter δ for (a) left-B,
(b) left-C, and (c) right-A input conditions, as indicated directly in the
insets. The dashed line marks δ = 1 as the limit where edge modes
exist. Simulations were performed considering 31 unit cells and a
propagation length of zmax = 1000

localization at one-dimensional systems with controllable lo-
calization properties, robustness against disorder, and with a
well-defined and controllable energy (see Appendix D).
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APPENDIX A: FREQUENCY SPECTRUM
FOR SINGLE-SITE EXCITATIONS

By solving numerically Eqs. (1), up to a given distance
zmax, we obtain the light amplitudes un(z) in the interval
{0, zmax}. Then, we compute a discrete Fourier transform
along the propagation coordinate, for every waveguide, and
get the information about the dynamically excited βz frequen-
cies [25]. We integrate this information for all the lattice sites
and generate a frequency spectrum diagram, which helps us
to reveal the specific modes excited on a given dynamics.
The results are shown in Fig. 4 for three different edge input
conditions, as indicated in the insets of every figure.

Figure 4(a) shows the frequency spectrum for a B-edge
excitation. For δ < 1, there is a strong excitation of edge
states at frequencies βz = ±t3, whereas for δ > 1 the excited

An An+1 An+2 An+3An−1An−2 Bn−1

Cn−1 Cn

Bn Bn+1

Cn+1 Cn+2

Bn+2 Bn+3
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2tn−1

2 tn−1
1tn−2

1

t3 t3 t3 t3 t3

FIG. 5. Dimerized Stub lattice including disorder in coupling
constants.

frequencies involve only bulk modes due to the absence of
edge modes. In this case, there is no excitation of frequencies
βz = 0, i.e., no flat-band modes are excited during propaga-
tion as shown in Fig. 2(c). Figure 4(b) shows the excitation
of a C-edge site, which looks quite similar to the B-edge
excitation; however, in this case, there are also frequencies
at βz = 0, meaning that flat-band modes are also excited.
Figure 4(c) shows the spectrum excited by an input condition
at the right A-site boundary. We clearly observe that no fre-
quencies associated with the edge modes βz = ±t3 are present
in the linear spectrum. FB and exponential modes at βz = 0
are indeed excited as well as extended bulk states. Considering
these results, it is quite clear that edge modes at βz = ±t3
are better excited by using a B-site input excitation, whereas
hidden edge modes at βz = 0 are always superposed with FB
states.

APPENDIX B: EDGE STATE WITH DISORDER

Let us assume that all horizontal couplings are different
and depend on lattice positions as t n

1 and t n
2 , as shown in

Fig. 5 (this can be experimentally implemented by varying
the distances in between the waveguides). In this case, we can
write the stationary equations as follows,

βzAn = t n
2 Bn + t n

1 Bn+1, (B1)

βzBn = t n
2 An + t n−1

1 An−1 + t3Cn, (B2)

βzCn = t3Bn. (B3)

We find that the two edge states decaying from the left B-C
surface preserve their energy to βz = ±t3, and have a modified
exponential profile given by

An = 0, Bn = B0δn−1, Cn = ±Bn, (B4)

where

δn = (−1)n
n∏

i=1

(
t i
2

t i
1

)
δ0, with δ0 = 1 .

If there is no disorder in the lattice, t i
1 = t1 and t i

2 = t2, and the
expressions of the main text are recovered. However, when
disorder is included, we observe that as soon as t i

2/t i
1 < 1,

the edge states remain localized exponentially, i.e., the same
condition for a homogenous lattice. We also observe that
this is not a strict condition, and the requirement is that the
product of all the ratios t i

2/t i
1 must be lower than 1 to fulfill the

condition of exponential localization.
On the other hand, we check the effect of disorder at

the right-hand (A) edge state. Again, the frequency remains
unchanged as βz = 0, and the profile modification can be
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written as follows,

An = AN δ̄n, Bn = Cn = 0, (B5)

where

δ̄n = (−1)N−n
N−1∏
i=n

(
t i+1
2

t i
1

)
δN , with δN = 1.

Again, if t i
1 = t1 and t i

2 = t2, expressions from the main text
are recovered. When disorder on horizontal couplings is
present, the condition for preserving the localization demands
that ratios t i+1

2 /t i
1 < 1, which is equivalent to the condition for

the existence of edge localized modes on an ordered system.
In both cases, exponential localization is assured once the

localized edge states are present on a full homogeneous lat-
tice, due to the fact that t2 < t1. In the main text, the disorder
was included in the form t i

1 = t1 + t0ε1 and t i
2 = t2 + t0ε2,

with εi real numbers from the interval {−1, 1}. Therefore,
as soon as the condition t2 < t1 is fulfilled, t i

2/t i
1 < 1 and

t i+1
2 /t i

1 < 1 after averaging.

APPENDIX C: TAMM MODES

Tamm modes are known to exist when an effective defect
is present at the edge of a given periodic system [21,23].
Therefore, we are interested in showing that the exponentially
localized edge states found in this work do not originate from
an effective defect, but from an originally dimerized SSH
lattice which has been transformed into a Stub system. To
study this, we consider the structure sketched in Fig. 3(b),
where a coupling defect has been inserted at the first unit cell.
Tamm states appear in pairs and are characterized by having a
frequency outside the linear bands, one with a positive and one
with a negative value, which is associated with an unstaggered
and a staggered phase structure, respectively. First of all, in the
absence of exponential edge states (δ > 1), we only expect
localization at the edge due to the excitation of FB modes or
defect Tamm states. As an example, we numerically computed
the whole linear spectrum for δ = 1.4 and analyzed the two
Tamm states. The profile of both Tamm states is the same,
apart from a phase; therefore, their localization properties are
equal as shown in Fig. 6(a). There, we observe how the Tamm
states are broad and delocalized for td/t1 � 1.8, while above
this value the defect states start to increase their localization
rapidly. In Fig. 6(b) we show three intensity profiles as exam-
ples. We observe that for different td values a different profile
is obtained in terms of localization, but also with the largest
peak having been shifted from the bulk into the edge. For
td/t1 = 1.85 we see how the profile is broader and occupies
several waveguides, while for td/t1 = 2.1 and 3.0 the profile
is well localized and decays from the surface into the bulk, as
expected for an edge state. Interestingly, all sites in the main
row are excited, which is a crucial contrast with respect to
the exponential edge states shown in Figs. 1(d1)–1(d3), which
only exist for δ < 1 and have some null sites in the main
row. The experimental profiles shown in Fig. 3(d) are quite
similar in shape and excited waveguides to the ones shown in

(a)

(b1)

(b2)

(b3)

defect

defectdefect

0

1

(d) (e)

(c)

FIG. 6. (a) Inverse participation ratio (IPR) vs td/t1 for both
Tamm states, for δ = 1.4 and t3 = 1. (b1)–(b3) Intensity profiles for
Tamm states for td/t1 = 1.85, 2.1, and 3.0, for the same parameters
used in (a) and using an avocado color scale. (c)–(e) Frequencies
excited vs δ, for A-, B-, or C-edge input conditions, as sketched in
the insets. Simulations were performed considering 31 unit cells and
a propagation length of zmax = 1000.

Fig. 6(b). This is confirmation that the exponential edge states
found in this work do not have an origin in any effective defect
at the edge, but are reminiscent of those in the SSH model
obtained in the limit t3 → 0.

We numerically computed the dynamically excited fre-
quencies when varying the parameter δ, considering different
input conditions at the left edge (described in insets), for
td = 3.0 and t3 = 1. For an A-edge excitation [see Fig. 6(c)],
we observe that the edge states at βz = ±t3 are not excited.
However, FB modes and the two Tamm states are excited,
the last ones corresponding to the two quasihorizontal lines
above and below the bands. Therefore, in this case (equal
to the experiment described in the main text) the localized
profile observed above a given value of td is originated only
due to a defect, which in this case is a clear example of a
Tamm state. When B or C sites are excited [see Figs. 6(d)
and 6(e)], we observe that the edge states and Tamm modes
are excited simultaneously, but FB states are excited only for
a C excitation. Note that the frequencies of the edge states
are not perturbed by the presence of the Tamm modes, which
shows their robustness against the inclusion of a local defect.

APPENDIX D: PARAMETRIC STUDY OF t3 COUPLING

Edge states localized on a B-C boundary have a
frequency/energy that is set by the coupling among these two
sites, βz = ±t3. Therefore, the energy of these edge states can
be modified at will by varying the coupling t3. By computing
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FIG. 7. Spectrum of a finite SSH-Stub lattice of 31 unit cells as
a function of t3 coupling when δ = 0.5. Gray lines correspond to the
energies of bulk states. Blue, red, and green lines correspond to the
energies of the edge states.

the spectrum of a finite SSH-Stub lattice of 31 unit cells as a
function of the t3 coupling and considering δ = 0.5, we obtain
the plot shown in Fig. 7. Gray lines present the energy evolu-
tion of the bulk states as a function of t3, the blue and red lines
correspond to the energy evolution of the left-boundary edge
states, and the green line corresponds to the energy of the edge
state localized on the right boundary. The amplitude profiles
of the edge states are the ones shown in Figs. 1(d1)–1(d3).
Since their spatial decay depends only on the parameter δ,
they exhibit the same spatial and phase pattern along the entire
t3 scan. The limit t3 = 0 is actually the SSH model. Once
the parameter t3 is nonzero, two new edge states bifurcate
from the left SSH edge state and the Zak phase is no longer
quantized because inversion symmetry is broken [19]. As a
consequence, there is no well-defined topological invariant in
a SSH-Stub lattice.
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