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ARTICLE

Single-shot measurement of the photonic band
structure in a fiber-based Floquet-Bloch lattice
Corentin Lechevalier 1, Clément Evain1, Pierre Suret 1, François Copie 1, Alberto Amo 1 &

Stéphane Randoux 1✉

Floquet-Bloch lattices are systems in which wave packets are subjet to periodic modulations

both in time and space, showing rich dynamics. While this type of lattice is difficult to

implement in solid-state physics, optical systems have provided excellent platforms to probe

their physics: among other effects, they have revealed genuine phenomena such as the

anomalous Floquet topological insulator and the funnelling of light into localised interface

modes. Despite the crucial importance of the band dispersion in the photon dynamics and the

topological properties of the lattice, the direct experimental measurement of the Floquet-

Bloch bands has remained elusive. Here we report the direct measurement of the Floquet-

Bloch bands of a photonic lattice with a single shot method. We use a system of two coupled

fibre rings that implements a time-multiplexed Floquet-Bloch lattice. By Fourier transforming

the impulse response of the lattice we obtain the band structure together with an accurate

characterization of the lattice eigenmodes, i. e. the amplitudes and the phases of the Floquet-

Bloch eigenvectors over the entire Brillouin zone. Our results open promising perspectives for

the observation of topological effects in the linear and nonlinear regime in Floquet systems.
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Optical waveguide arrays represent a class of periodic
structures that have been the focus of intense research in
the two past decades1,2. Such systems enabled direct

observation with the light of many fundamental lattice phe-
nomena such as Bloch oscillations3–5, Anderson localization6–8,
discrete solitons9,10, and many others. Coupled waveguides have
also been used to implement Floquet lattices in which photon
wavepackets are subject to a periodic time modulation11–14. How-
ever, material constraints have limited the number of Floquet
periods accessible in this configuration. Recently, discrete mesh
lattices in time-multiplexed loop arrangements have been used to
study elaborate Floquet–Bloch Hamiltonians with access to hun-
dreds of both lattice sites and modulation periods15. So far, time-
multiplexed fiber loop schemes have demonstrated a high degree of
flexibility16,17 and they have been employed to investigate a number
of effects such as parity-time symmetry18,19 or topological control
of light propagation20,21 to cite a few. Note that photonics now
offers a number of other possibilities to design and engineer the so-
called synthetic mesh lattices, see ref. 22 for a recent review.

Time-multiplexed photonic mesh lattices are often implemented
by connecting two appropriately designed fiber loops with a
directional 50/50 fiber coupler23–25. In these systems, the phe-
nomenon of discrete diffraction created at the fiber coupler results
in the spreading of light wavepackets across the whole array as
Floquet–Bloch waves26,27. The linear propagation of wavepackets in
the Floquet–Bloch lattices is determined by their photonic band
structure. Despite the importance of this band structure in the
dynamics, its experimental determination is not an obvious task. In
previous experimental works, the dispersive properties of the lattices
have been indirectly deduced from the measurement in space and
time of the group velocity and of the broadening experienced by
many individual light wavepackets5,18,23. Recently, the measure-
ment of the band structure in a different configuration based on the
longitudinal optical modes of a single fiber ring has enabled the
observation of synthetic spin–orbit coupling and quantum Hall
ladders28,29. Beyond the only measurement of the band structure,
the direct measurement of the amplitude and phase of the
Floquet–Bloch eigenvectors would open the possibility of extracting
experimentally fundamental properties such as winding and Chern
numbers, of great importance to characterize the topological
properties of a lattice.

In this paper, we report the experimental implementation of a
method that allows the single-shot recording of the photonic band
structure characterizing a Floquet–Bloch lattice realized with two
coupled fiber loops. The experiment relies on the idea that the dis-
persive band structure of the lattice can be determined from the
Fourier transform of its impulse response. The simultaneous mea-
surement of the phase and of the amplitude of the impulse response
of the lattice is achieved using a heterodyne technique. In addition to
providing the dispersive band structure of the lattice (i.e., the dis-
persion relation connecting the quasi-energy and the Bloch
momentum), our method provides the full and accurate character-
ization of the lattice eigenmode structure, i.e., the amplitudes and the
phases of the Floquet–Bloch eigenvectors over the entire Brillouin
zone. Let us notice that the idea that the eigenmode structure of a
photonic mesh lattice can be determined using the optical heterodyne
technique has been proposed in ref. 30. To the best of our knowledge,
this idea has however never been implemented in practice and the
fact that the full eigenmode structure of the photonic mesh lattice can
be determined from the measurement of its impulse response has not
been considered before our work.

Results and discussion
The lattice model and the associated photonic band structure.
As shown in Fig. 1a, we consider a system of two coupled fiber

loops, which are conceptually identical to those considered in
previous experimental works15,23. The two fiber loops have an
imbalanced path length ΔL= L2− L1 which is chosen to be much
shorter than the length L1 (resp. L2) of the short (resp. long) ring.
When an optical pulse is injected into one of the loops, it is
divided into two pulses after the coupler. These two pulses pro-
pagate along the short and long fiber rings before being split again
at the fiber coupler. As discussed in detail in refs. 23,24, the
dynamical evolution of the light pulses in this optical fiber system
can be mapped onto the lattice shown in Fig. 1b. Each round trip
of the pulses in the rings represents a time step, labeled by the
integer m, while the separation of pulses within a time step can be
mapped into the pseudo-real-space position of the lattice, labeled
n. The timescale associated with the real-space position is given
by ΔL, while the time step is determined by (L1+ L2)/2. The large
difference between these two timescales permits a clear observa-
tion of the evolution of pulses at each time step at the output of
the setup.

The space–time evolution of the complex amplitude of light
pulses in the lattice shown in Fig. 1b is commonly described using
a simple set of two coupled algebraic equations5,23:

umþ1
n ¼ 1ffiffiffi

2
p ðumnþ1 þ i vmnþ1Þ eiΦðmÞ ; ð1Þ

vmþ1
n ¼ 1ffiffiffi

2
p ðvmn�1 þ i umn�1Þ : ð2Þ

umn ¼ uðn;mÞ (resp. vmn ¼ vðn;mÞ) represents the complex
amplitude of the pulses in the short (resp. long) loop at the nth
position in the pulse train and at the mth round trip (time step) in
the fiber loop system5,23. Φ(m) is an extra phase gained by
the pulses in the shorter (U) ring owing to the addition of a phase
modulator (PM in Fig. 1a). Its value changes sign at each time
step (Φ(m)= (−1)m+1 ϕ), as depicted in Fig. 1b.

Following ref. 5, the Floquet–Bloch mode eigenstates (U, V)T of
the lattice are obtained by decomposing umn and vmn on a discrete
basis of Fourier modes

umn
vmn

� �
¼ U

V

� �
ei

Qn
2 ei

θm
2 : ð3Þ

This means that in reciprocal (Fourier) space, the variables n
and m are conjugated with the “Bloch momentum” Q and the
“quasi-energy” θ, respectively (see e.g. refs. 23,24).

Substituting Eq. (3) into Eqs. (1) and (2), it can be easily shown
that the dispersion relation of the system presents two bands that
are periodic both along the quasi-energy and momentum
dimensions and that are given by23:

cos θ ¼ 1
2
ðcosQ� cos ϕÞ: ð4Þ

As shown, e.g., in ref. 23, one of the great advantages of the
photonic lattice described in Fig. 1 is that the band structure can
be easily modified by varying the value of ϕ.

The two bands are represented in Fig. 1c as a function of the
parameter ϕ. For ϕ= 0 (equivalently, ϕ= 2π, blue lines in
Fig. 2c), the lattice model has two bands that are gapped at
the center of the Brillouin zone and touch at the edges due to the
periodicity in quasi-energy. For other values of ϕ the bands can be
fully gaped (red line) or touched in the center of the Brillouin
zone (green line at ϕ= π). Considering a light wavepacket having
a well-defined mean Bloch momentum Q0 together with a narrow
momentum spread ΔQ, the group velocity of this wavepacket in
the (n,m) (space–time) representation space is determined by the
local slope of the excited band while the local curvature of the
band determines the dispersive broadening of the wavepacket in
space and time23,24.
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Measurement of the photonic band structure. Our experimental
determination of the band structure characterizing a Floquet–
Bloch lattice is based on the single-shot simultaneous measure-
ment of the phase and amplitude of the impulse response of the
lattice. This is achieved using a heterodyne measurement where

the wavefield at the output of the double loop system is beaten
against a reference field, which is detuned from the frequency of
the wavefield by ~10.8 GHz.

As shown in Fig. 1a, a single-frequency laser at 1550 nm is split
into two arms by using a 99/1 fiber coupler. The high-intensity

Fig. 1 Experimental fiber loop system and associated Floquet–Bloch lattice. a Experimental setup showing the system of two coupled loops made with
polarization-maintaining fibers (PMFs) having lengths L1= 30.27 m and L2= 30.72m. The local oscillator used for the heterodyne measurement is a
Brillouin fiber ring laser (BFRL) that is frequency detuned by ~10.8 GHz from the frequency of the signal circulating inside the loops. An electro-optic
modulator is used to shape the pulses injected into the V loop. The losses in each loop are partially compensated by using Erbium-doped fiber amplifiers
(EDFAs). A phase modulator (PM) can be used for a periodic modulation of the phase between −ϕ and +ϕ in the U loop. Light detection at the output of
the fiber system is made using fast photodiodes (PDs). b Schematic representation of the Floquet–Bloch lattice on which the evolution of the light pulses
circulating inside the loops can be mapped. The index n provides the position of the light pulses at the mth round trip in the Floquet–Bloch lattice. c Photonic
band structure (Bloch momentum Q versus quasi-energy θ) for different values of the phase modulation ϕ within the U loop.

Fig. 2 Experimental results. The space–time evolution shown in (a) is measured in the U loop when a short pulse is injected in the V loop. The impulse
response of the lattice shown in (a) is beaten against a reference laser field. This gives square pulses being modulated at ~10.8 GHz, as shown by the inset
in (a). The fringe pattern expanding in space (n) and time (m) is numerically Fourier transformed in the two dimensions. This gives the 2D Fourier power
spectrum plotted in (b) with one central component and two weak side bands at ~±10.8 GHz. The 2D Fourier spectrum plotted in (c) represents a zoomed
view of the spectrum shown in (b) between 10.45 and 11.33 GHz. In terms of normalized units ("Bloch momentum” Q and “quasi-energy” θ), the photonic
band structure of the lattice is measured for Q∈ [−2π, 2π], θ∈ [−2π, 2π]. The first Brillouin zone is depicted by the square region plotted in (c) with white
dashed lines. The vertical color bar indicates the mapping from the normalized spectral power j~UðQ; θÞj2 to colors.
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arm is directed towards the double ring system. A short square
pulse with a duration of 1 ns and a peak power of ~6 mW is
produced using an electro-optic modulator (EOM) before being
injected into the two coupled fiber loops. Each fiber loop
incorporates a narrow-bandwidth optical filter, an optical
isolator, and an Erbium-doped fiber amplifier (EDFA) to partially
compensate for all round-trip losses. The length L1 of the shorter
loop is 30.27 m and the difference in loop lengths is ΔL= 0.45 m.
With these values the average round trip time are �T ¼
ð2L1 þ ΔLÞ=ð2vÞ ’ 152:5 ns and the time difference between the
two loops is ΔT= ΔL/v≃ 2.26 ns, v being the velocity of light in
the fiber at 1550 nm. The choice of these values for the ring
lengths is one of the key features of our experiment: the fiber ring
lengths are more than one order of magnitude smaller than in
other similar experimental setups23,24 to keep the whole physical
distance covered by pulses circulating inside the loops smaller
than the coherence length of the local oscillator delivering the
reference field.

The local oscillator that delivers the reference field used in the
heterodyne measurement is a Brillouin fiber ring laser (BFRL,
pink dotted rectangle in Fig. 1a). A small part of the laser field
extracted before the EOM is amplified at the Watt level using an
EDFA and it is used as a pump field for the BFRL. The BFRL

delivers a Stokes field with is frequency-downshifted with respect
to the pump frequency by ~10.8 GHz, the frequency of acoustic
waves propagating inside the optical fiber31. It is well known that
BFRLs deliver a Stokes radiation having a linewidth much
narrower than the one of their pump laser32,33. This feature,
recently exploited for the improved operation of atomic clocks34,
is used here to achieve a coherent beating between the narrow-
bandwidth Stokes field and the pulses that propagate over the
kilometric range associated with the tens of round trips made
within the two coupled fiber loops. Assuming that the linewidth
of our pump laser is ~300 kHz (constructor specification) and
assuming that the linewidth of the BFRL is only determined
by the narrowing property of Brillouin lasers, we estimate from
Eq. (9) of ref. 32 that the linewidth of our local oscillator is around
~1 kHz, which means that its coherence length is around
~100 km.

Note that the fiber setup schematically shown in Fig. 1a is fully
made with polarization-maintaining fibers (PMFs) and with PMF
components. The laser field has a linear polarization state with a
power extinction ratio better than 1:100 both in the BFRL and in
the double loop system. The fact that the light polarization state
does not fluctuate in the fiber system has the advantage to
maximize the contrast of the beating signal between the local

Fig. 3 Comparison between experimental and numerical results. a, b Experimental results showing the dispersive band structure of the photonic mesh
lattice recorded with periodic square modulations of the phase with amplitudes ϕ1= π/2 (a) and ϕ2= 4π/5 (b). c, d Corresponding numerical simulations
showing the band structure computed from the 2D Fourier transform of the impulse response of the system. Numerical simulations are made using Eqs. (1)
and (2) with Φ1(m)= (−1)mπ/2 (c) and Φ2(m)= (−1)m4π/5 (d). The squares in white dashed lines represent the first Brillouin zone. The vertical color bar
indicates the mapping from the normalized spectral power j~UðQ; θÞj2 to colors.
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oscillator and the pulses at the output of the loop system.
Moreover, the experimental results can be compared adequately
with theoretical results provided by scalar models where vectorial
(polarization) effects are ignored.

Figure 2a shows the spatiotemporal evolution measured at the
output of the U ring after injection of a single initial pulse in the
V ring and in the absence of phase modulation (Φ(m)= 0). The
sequence of measured pulses shows trains of pulses separated by
�T . We use this time to order the pulses as a function of time step
m (round trip number) in Fig. 2a, see “Reconstruction of the
spatiotemporal diagrams from the time signal recorded in the
experiments” in the “Methods” section for details. The output of
the U ring is combined in a 99:1 beamsplitter with the BFRL local
oscillator. A fast photodiode (Finisar 70 GHz XPDV3120)
connected to a fast oscilloscope (Lecroy Labmaster 10Zi-A-65
GHz) is used to record the beat signal between the output of the
coupled loop system and this oscillator, as shown in Fig. 1a. In
this way, each individual pulse at the output of the loops has its
amplitude that is fastly modulated in time at the beat frequency of
~10.8 GHz, see inset in Fig. 2a that shows the measured
amplitude of the train of pulses at time step m= 2. The evolution
of the relative phase between the light pulses within each round
trip and between different round trips is encoded into the phase
of the beat signal. The detection bandwidth of the photodiode is
50 GHz and the electrical bandwidth of the fast oscilloscope is
36 GHz. The beating signal is sampled at a rate of 80 GSa/s by the
oscilloscope that has a memory depth of 512Mpts. With these
values, the beat signal is sufficiently well sampled for the proper

quantitative determination of the band structure of the
Floquet–Bloch lattice.

To obtain the dispersive band structure of the lattice, we
perform the two-dimensional (2D) Fourier transform of the
fringe pattern experimentally recorded and plotted in Fig. 2a.
This fringe pattern is recomposed from a time signal having a
duration of ~7.5 μs that corresponds to ~50 round trips of the
light pulses inside the double loop system. The resulting 2D
Fourier transform is computed numerically and shown in Fig. 2b.
The plotted spectrum spreads horizontally between −15 and
+15 GHz, but the spectrum computed numerically spreads over a
wider frequency span of 80 GHz that is determined by the
sampling rate of the oscilloscope. The vertical frequency range of
the 2D spectrum is 6.5 MHz, which corresponds to the mean free
spectral range ΔνFSR ¼ 1=�T of the double loop system. The 2D
Fourier transform shown in Fig. 2b is composed of one vertical
central band surrounded by two vertical side bands separated by
10.8 GHz from the central zero-frequency component.

Figure 2c represents a zoomed view of the 2D Fourier spectrum
plotted in Fig. 2b around ~10.8 GHz. It reveals that this region of the
spectrum displays the double band structure characterizing the
Floquet–Bloch lattice implemented in the double-ring setup. The
dashed square delimits the first quasi-momentum and quasi-energy
Brillouin zone. All eigenstates of both bands are excited by the initial
input pulse. Figure 2 shows that the band structure is straightfor-
wardly determined only from the single-shot recording of the
space–time pattern shown in Fig. 2a and the computation of its 2D
Fourier transform. The measured shape of the bands agrees

Fig. 4 Numerical results. Numerical simulations of Eqs. (1) and (2) showing the impulse responses of the two loops (a, b) and their associated 2D Fourier
transforms j~UðQ; θÞj2 (c), j~VðQ; θÞj2 (d). The squares in white dashed lines in (c, d) represent the first Brillouin zone. The simulations are made using a
dissipation rate similar to the one measured in the experiment (α= 0.07) and no phase modulation (Φ(m)= 0 ∀m). e Spectral power distributions
PUðQÞ ¼ j~UðQ; θþðQÞÞj2 (orange line) and PVðQÞ ¼ j~VðQ; θþðQÞÞj2 (blue line) measured along the upper spectral bands in (c, d). f Spectral phase
distributions ϕV ðQÞ ¼ Argð~VðQ; θþðQÞÞÞ (blue line) and ϕUðQÞ ¼ Argð~UðQ; θþðQÞÞÞ (orange line) measured along the upper spectral bands in (c, d). g Time
evolution of the mean optical power in each loop: <∣U(m)∣2>=∑n∣U(n,m)∣2 (orange line), <∣V(m)∣2>=∑n∣V(n,m)∣2 (green line) and time evolution of the
global power in the two loops <∣U(m)∣2>+ <∣V(m)∣2> (blue line). h Ratio between the spectral power distributions PV(Q)/PU(Q) (red line) measured in the
upper bands and evolution of the ratio ∣R(Q)∣2 (red dashed line) between the power of the Floquet–Bloch eigenmodes (see Eq. (5)). The spectral phase
difference Δϕ(Q)= ϕV(Q)− ϕU(Q) computed from the data shown in (f) is plotted in green dots. It follows a simple linear relation given by Δϕ(Q)=Q/2
that complies with the fact that Arg(R(Q))=Q/2 (blue dashed line).
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quantitatively with Eq. (4) for ϕ= 0 (cos θ ¼ ðcosQ� 1Þ=2). Note
that Fig. 2 shows the spatiotemporal evolution and the measured
band structure for the U ring. Analogously, the same kind of
measurements can be done for the output of the V ring, as discussed
in the subsection where we report the experimental determination of
the eigenmode structure.

In Fig. 2c, the connection between the physical frequency
νx (resp. νy) measured on the horizontal (resp. vertical) axis
and the Bloch momentum (resp. the quasi energy) is given by
the following simple relation: Q ¼ 2πðνx � ν0xÞ=ΔνB (resp.
θ ¼ 4πðνy � ν0yÞ=ΔνFSR). ΔνB= 1/ΔT= 443MHz represents the
width of the Brillouin zone. ν0x represents the central frequency of
the Brillouin zone in the quasi-momentum dimension. In
practice, its value slowly fluctuates from one recording to the
other because the optical length of the fiber loop system is not
actively stabilized with respect to the wavelength of the laser light.
The slow and uncontrolled drift of ν0x arises from slow
fluctuations of the difference in loop lengths ΔL on a timescale
that typically falls in the second range. In practice, the value of ν0x
is “manually” selected from one recording to the other in such a
way that the band spectrum is symmetric with respect to the
center of the Brillouin zone (Q= 0). The same phenomenon
occurs along the vertical frequency direction because the mean
length (2L1+ ΔL)/2 of the double loop system also fluctuates with
respect to the laser wavelength. Consequently, from one
recording to the next, there is a slow drift of the double band
spectrum around the horizontal frequency axis. This drift effect is
also corrected “manually” by adjusting ν0y in such a way that the
band spectrum is symmetric with respect to the horizontal

frequency axis (θ= 0). Active stabilization of the ring length to an
integer multiple of the wavelength of the laser used to inject the
pulses would unambiguously fix ν0x and ν0y .

To explore other band structures, we now activate the PM
inserted in the shorter loop (see Fig. 1a): the phase of the field in
the shorter loop is modulated in time by a square signal
oscillating between +ϕ and −ϕ at a period equal to the mean
round trip time �T of light inside the loops. As shown in ref. 23,
this modulation scheme permits to modify the band structure of
the photonic lattice. Figure 3a, b shows the band structure
measured experimentally in the U ring for ϕ= ϕ1= π/2 and for
ϕ= ϕ2= 4π/5, respectively. Correspondingly, Fig. 3c, d shows the
band structure numerically computed from the Fourier transform
of the spatiotemporal evolution calculated using Eqs. (1) and (2)
with a single pulse injected in the V ring as the initial condition,
like in the experiment. A good quantitative agreement is found
between experiments and theory in terms of the shape and
occupation of the bands for the selected values of ϕ, see
Supplementary Fig. S1 for additional plots showing the band
spectra obtained for other values of ϕ.

Experimental determination of the eigenmode structure of the
Floquet–Bloch lattice. Measuring the impulse response of the
photonic lattice by injecting a short pulse into the fiber system,
we perform an excitation of the entire Brillouin zone that reveals
the dispersive band structure of the lattice. We will see now that it
also permits to extract quantitative information on the structure
of its eigenmodes. Assuming that the PM inserted in the short
loop is inactive (Φ(m)= 0), the substitution of Eq. (3) into

Fig. 5 Experimental results. Impulse responses were measured in the two loops (a, b) and their associated 2D Fourier transforms j~UðQ; θÞj2 (c) and
j~VðQ; θÞj2 (d). The squares in white dashed lines in (c, d) represent the first Brillouin zone. Experiments are made without applying any phase modulation in
the U loop (Φ(m)= 0 ∀m). e Spectral power distributions PUðQÞ ¼ j~UðQ; θþðQÞÞj2 (orange line) and PVðQÞ ¼ j~VðQ; θþðQÞÞj2 (blue line) measured along the
upper spectral bands in (c, d). f Spectral phase distributions ϕVðQÞ ¼ Argð~VðQ; θþðQÞÞÞ (blue line) and ϕUðQÞ ¼ Argð~UðQ; θþðQÞÞÞ (orange line) measured
along the upper spectral bands in (c, d). g Time evolution of the mean optical power in each loop: <∣U(m)∣2>=∑n∣U(n,m)∣2 (orange line),
<∣V(m)∣2>=∑n∣V(n,m)∣2 (green line) and time evolution of the global power in the two loops <∣U(m)∣2>+ <∣V(m)∣2> (blue line). h Ratio between the
spectral power distributions PV(Q)/PU(Q) (red line) measured in the upper bands and evolution of the ratio ∣R(Q)∣2 (red dashed line) between the power of
the Floquet–Bloch eigenmodes (see Eq. (5)). The spectral phase difference Δϕ(Q)= ϕV(Q)− ϕU(Q) computed from the data shown in (f) is plotted in
green dots. It follows a simple linear relation given by Δϕ(Q)=Q/2 that complies with the fact that Arg(R(Q))=Q/2 (blue dashed line).

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00750-w

6 COMMUNICATIONS PHYSICS |           (2021) 4:243 | https://doi.org/10.1038/s42005-021-00750-w |www.nature.com/commsphys

www.nature.com/commsphys


Eqs. (1) and (2) provides not only the energy dispersion Eq. (4)
but also the ratio R between the complex amplitudes of the
Floquet–Bloch eigenmodes in the two loops:

R ¼ V
U

¼ iffiffiffi
2

p
eiQ=2 eiθ=2 � 1

ð5Þ

The meaning of Eq. (5) can be better understood by analyzing
numerical simulations of Eqs. (1) and (2). Figure 4a, b shows the
computed spatiotemporal evolution of the lattice with Φ(m)= 0
and a single pulse injected in the V ring as initial condition:
v(n= 0,m= 0)= 1, v(n ≠ 0,m= 0)= 0; u(n,m= 0)= 0 ∀ n. In
these simulations, we have additionally added a term � α

2 u
m
n and

� α
2 v

m
n in the right-hand side of Eqs. (1) and (2), respectively, to

describe the fact that the losses in each loop are not perfectly well
compensated by gain.

As shown in Fig. 4a, a symmetric evolution of the light power
distribution ∣u(n,m)∣2 is observed in the U loop, while an
asymmetric one is observed at the output of the other loop (V
loop) where the light pulse is initially injected, see Fig. 4b. This
asymmetric features between the injected and non-injected rings
were already reported in the space–time domain in ref. 15.
Figure 4c (resp. Fig. 4d) represents the 2D Fourier power
spectrum j~UðQ; θÞj2 (resp. j~VðQ; θÞj2) of the impulse response
u(n,m) (resp. v(n,m)) shown in Fig. 4a (resp. Fig. 4b).
Asymmetric features observed in space–time domain are also
found in the 2D Fourier spectra shown in Fig. 4c and d for the U
and V rings, respectively.

The origin of this asymmetry in the measured bands is a
combination of two properties: (i) the fact that the relative
amplitude and phase of the eigenvectors in the U and V rings
depends on Q (see Eq. (5)), and (ii) the projection of the initial
pulse, in the V ring, onto the eigenvectors. In the case displayed in
Fig. 4c, d, the spectral power distribution of the bands, the
distribution is symmetric in the U loop with respect to Q= 0, see
Fig. 4c, and asymmetric in the V ring (see Fig. 4d). These features
are exchanged when the initial excitation takes place in ring U.

From the 2D spectra shown in Fig. 4c, d, the spectral power
distribution and the spectral phase distribution in the
upper bands can be measured as a function of the Bloch
momentum Q. The blue curve in Fig. 4e shows the spectral power
distribution PV ðQÞ ¼ j~VðQ; θþÞj2 measured for the V ring along
the upper band of Fig. 4d whose dispersion is given by
θþðQÞ ¼ þ arccosððcosðQÞ � 1Þ=2Þ, see “Measuring the spectral
power distribution and the spectral phase distribution in the
photonic band structure” in the “Methods” section for the
description of the method used for the computation of the
spectral power. The orange curve in Fig. 4e shows, equivalently,
the spectral power distribution of the upper band for the U ring:
PU ðQÞ ¼ j~UðQ; θþÞj2. The ratio PV(Q, θ+)/PU(Q, θ+) is displayed
in the full red line in Fig. 4h. It nearly coincides with the dashed
red curve, which displays ∣R(Q)∣2 computed from the analytical
form given by Eq. (5). The slight difference between solid and
dashed red curves in Fig. 4h arises from the fact that numerical
simulations have been made by incorporating dissipative effects
(α ≠ 0), while the expression of R is calculated for α= 0.

Analogously, by considering the argument of the 2D
Fourier transform, we can compute the spectral phase
distributions along the upper bands ϕV ðQÞ ¼ Argð~VðQ; θþðQÞÞÞ
and ϕU ðQÞ ¼ Argð~UðQ; θþðQÞÞÞ, for the V and U rings,
respectively. In this case, for each value of Q, the phase is
obtained at the value of the maximum spectral power density, see
“Measuring the spectral power distribution and the spectral phase
distribution in the photonic band structure” in the “Methods”
section for details about the computation of the spectral phase.
Figure 4f shows that the spectral phase in each band undergoes an
excursion of ~40 radians over the entire Brillouin zone.
Remarkably, the phase difference Δϕ(Q)= ϕV(Q)− ϕU(Q) fol-
lows a simple linear evolution (Δϕ(Q)=Q/2) plotted in green in
Fig. 4h), which fully complies with the evolution of the argument
of R(Q): Arg(R(Q))=Q/2, from Eq. (5). A similar treatment can
be done for the lower bands. The analysis we have just described
based on numerical simulations shows how the eigenmode
structure of the photonic mesh lattice can be measured from the
Fourier transform of the impulse response of the lattice. Let us
note that the results synthesized in Fig. 4 show that the eigenstate
structure determined from an analytical calculation where α is set
to zero (Eq. (5)) are robust to dissipative effects.

Figure 5 shows that all features revealed by numerical
simulations reported in Fig. 4 are observed using our experi-
mental methodology. Figure 5a, b shows the impulse responses
measured at the output of loops U and V, respectively. Figure 5c,
d displays the symmetric and asymmetric 2D Fourier spectra that
are computed from the impulse responses plotted in Fig. 5b,
respectively. Despite clear differences in the intensity distribu-
tions in the measured bands with respect to the bands computed
from numerical simulations (compare Fig. 4e and Fig. 5e), the
ratio PV(Q)/PU(Q) between the measured spectral powers is very
close to the theoretical curve over the entire Brillouin zone,
see Fig. 5h. The spectral phases ϕU(Q) and ϕV(Q) measured in
the upper bands in Fig. 5c, d depict the same evolution as the one
obtained from numerical simulations. Regarding the phase
extracted of the upper bands extracted from the 2D Fourier

Fig. 6 Schematic representation of the protocol used to reconstruct the
space–time diagram showing the evolution of light pulses in the
Floquet–Bloch lattice by starting from the time signal recorded by a
photodiode at the output of the double loop system. The recorded signal
is sliced in a sequence of multiple time windows having all a duration �T
equal to the mean round trip time of light in the double loop system. The
space–time diagram is recomposed by concatenating the multiple time
slices and by encoding the amplitude of the square pulses using a colormap.
The index n provides the position of the light pulses at the mth round trip in
the Floquet–Bloch lattice. A is the amplitude of the detected signal. The
vertical color bar indicates the mapping from the amplitude A to colors.
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transform protocol, Fig. 5f displays a large excursion in the phases
ϕV,U(Q) over the Brillouin zone. Nevertheless, the phase
difference Δϕ(Q)= ϕV(Q)− ϕU(Q) follows a simple linear
relation in good agreement with results obtained from the model
(Eqs. (1) and (2)): Δϕ(Q)=Arg(R(Q))=Q/2.

Conclusion
In this paper, we have reported experiments where the dispersive
band structure characterizing a Floquet–Bloch lattice is measured
in a single shot over the entire Brillouin zone by Fourier trans-
forming the impulse response of the lattice. In addition, our
method provides the full and accurate characterization of the
lattice eigenmode structure, i.e., the amplitudes and the phases of
the Floquet–Bloch eigenvectors over the entire Brillouin zone.

We believe that our experimental method will be useful not
only for the accurate characterization of the linear dispersive
properties of time-multiplexed photonic mesh lattices but also for
the investigation of questions related to the influence of nonlinear
effects on the propagation of Floquet–Bloch waves. A variety of
nonlinear wave mixing phenomena at the origin of the broad-
ening of spectral bands or of the nonlinear coupling between the
Floquet–Bloch eigenmodes can be investigated using our
experimental technique. In particular, it could be useful to explore
the phenomenon of modulation instability in nonlinear topolo-
gical photonic systems, as recently suggested in ref. 35.

Methods
Reconstruction of the spatiotemporal diagrams from the time signal recorded
in the experiments. In the experiment, an electrical signal changing in time is
recorded at the output of each fiber loop by using fast photodiodes. This signal is
composed of sets of square pulses having peak amplitudes that slowly decay on
average at each round trip while also spreading out in time due to the slight length
imbalance between the two fiber loops, see Fig. 6. Using other words the recorded
signal evolves on a slow timescale �T ¼ ð2L1 þ ΔLÞ=ð2vÞ determined by the mean
round trip time of light in the fiber loop system and on a faster timescale
ΔT= ΔL/v determined by the difference length ΔL= L2− L1 between the two
loops. In the experiment, the two timescales �T ’ 152:5 ns and ΔT=≃ 2.26 ns are
well separated and it is appropriate to plot the dynamical evolution of light pulses
using a representation where the slow evolution is decoupled from the fast one.

This is achieved by using a method that is schematically shown in Fig. 6. The
mean round trip time �T is measured in an accurate way and the recorded time
signal is sliced into a sequence of time windows having all a duration �T . The time
segments obtained from this procedure are then concatenated in a space–time
representation where the horizontal axis is associated with the fast timescale while
the vertical axis is associated with the slow timescale. The spatiotemporal evolution
of the light pulses in the photonic lattice is obtained in a last step where the
amplitude of the square pulses is encoded by using a colormap.

Note that the voltage detected by the photodiode typically decays between
~300 mV and a few mV over ~50 round trips made by the light pulses inside the
double loop system. This range of measured voltage keeps the photodiode in a

linear response regime while also providing a reasonable signal-to-noise ratio over
the whole measurement duration.

Measuring the spectral power distribution and the spectral phase distribution
in the photonic band structure. The method used in our paper to measure the
photonic band structure of the Floquet–Bloch lattice consists of Fourier trans-
forming the impulse response of the lattice. In addition to providing the shape of
the dispersive bands, this method provides the complex amplitude of the
Floquet–Bloch eigenmodes. Here, we describe how the power and the phase of the
eigenmodes are determined from the 2D band spectra that are computed by
Fourier transforming the impulse response of the lattice.

The 2D Fourier power spectrum j~UðQ; θÞj2 computed from the impulse
response of the U loop is shown in Fig. 7a. For any given value Q of the Bloch
momentum, the power PU(Q) of a Floquet–Bloch eigenmode is determined by
integrating the spectral power density in a narrow spectral region centered around
the upper dispersive band using the following expression

PU ðQÞ ¼
1

2Δθ

Z θþðQÞþΔθ

θþðQÞ�Δθ
j~UðQ; θÞj2 dθ ð6Þ

where θþðQÞ ¼ þ arccosððcosðQÞ � 1Þ=2Þ provides the shape of the spectral band.
Note that the knowledge of the analytical form of the function θ+(Q) is not
required and that the value θ+(Q) simply represents the value of θ+ for which the
spectral power density is maximum: θþðQÞ ¼ maxðj~UðQ; θÞj2Þ. The value of Δθ is
chosen in such a way that the average power given by Eq. (6) represents a smooth
function of Q, as shown in Fig. 7b (Δθ= 0.1 in Fig. 7).

To determine the spectral phase ϕU(Q) of the Floquet–Bloch eigenmodes, we
first locate the points in the upper part of the 2D spectrum (Fig. 7a) where the
spectral power density is maximum: θþðQÞ ¼ maxðj~UðQ; θÞj2; θ > 0Þ. The spectral
phase ϕU(Q) is simply computed as the argument of the Fourier modes at the
points where the spectral power density is maximum: ϕU(Q)=Arg(~UðQ; θþðQÞÞ.

Data availability
The data that support the findings of this study are available from the corresponding
author on reasonable request.
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