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A B S T R A C T   

Many different solutions to predicting the cognate epitope target of a T-cell receptor (TCR) have been proposed. However several questions on the advantages and 
disadvantages of these different approaches remain unresolved, as most methods have only been evaluated within the context of their initial publications and data 
sets. Here, we report the findings of the first public TCR-epitope prediction benchmark performed on 23 prediction models in the context of the ImmRep 2022 TCR- 
epitope specificity workshop. This benchmark revealed that the use of paired-chain alpha-beta, as well as CDR1/2 or V/J information, when available, improves 
classification obtained with CDR3 data, independent of the underlying approach. In addition, we found that straight-forward distance-based approaches can achieve 
a respectable performance when compared to more complex machine-learning models. Finally, we highlight the need for a truly independent follow-up benchmark 
and provide recommendations for the design of such a next benchmark.   

Introduction 

A key challenge within immunoinformatics is the prediction of the 
target epitope for a T-cell receptor (TCR) sequence. Indeed, the recog
nition of an epitope by a T-cell receptor (TCR) is an essential step for the 
activation of T-cells and thus critical for a functioning adaptive immune 

system. Epitopes are short peptides presented by the major histocom
patibility complex (MHC) on the surface of antigen-presenting cells, 
allowing cognate TCRs to bind them and to confer specificity to the T 
cell. TCRs consist of a heterodimer, most commonly of an alpha- and a 
beta chain. Each of these chains are the result of a V(D)J somatic 
recombination event during T-cell maturation. Due to the randomness of 
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this recombination process, each T-cell clone expresses a potentially 
unique TCR and thus has a unique epitope specificity. This high TCR 
diversity allows the adaptive immune system to respond to the myriad of 
seen and unseen threats. 

The advent of high-throughput adaptive immune receptor repertoire 
(AIRR) sequencing techniques allows to access the TCR sequences of 
large parts of T-cell repertoires. However, the sheer numbers of existing 
TCRs mean that most of the TCRs encountered in an experiment may not 
have been characterized before. Moreover, while the presence of specific 
TCRs in a population of T-cells can now often be established, their 
cognate epitope targets mostly remain unknown. Because epitope 
recognition is crucial for pathogen defense, vaccine response, tumor 
control and autoimmune diseases and since TCR specificity helps un
derstanding the function of a T-cell, it is essential to learn to decipher it. 

Predicting the epitope of a TCR sequence can be considered a 
straightforward machine learning problem. In the “seen” epitope 
setting, which is the focus of this study, the TCR sequence is used as the 
input of the model and a fixed number of epitopes are the target labels. 
The input features are therefore derived from the TCR sequence, how
ever some models also include features derived from the epitope to 
possibly learn interactions between the two. Known TCR-epitope pairs, 
collected in databases such as VDJdb [1] or IEDB [2], can then be used to 
fit the epitope-TCR model. Within the “seen” epitope setting, only those 
epitopes that are contained in the epitope-TCR database are possible 
targets. In its simplest form, this can be a single epitope, reducing the 
problem to a binary classification. The task of the model is to identify 
which, if any, epitope is the most likely target of the input TCR. 

During the past years, several solutions to unravel and predict the 
specificity and the cognate epitope target of a TCR have been proposed, 
ranging from a simple database look-up to deep learning-based predic
tion models. The advantages and disadvantages of these different ap
proaches have not yet been systematically examined, most having only 
been evaluated within the context of their initial publications and data 
sets. In addition, the annotation of TCR-epitope pairs is a complex 
problem: the promiscuity of TCR-epitope binding and the technical but 
also experimental variations underlying paired TCR-epitope data make 
the identification of a clear signal difficult [3]. There is thus a clear need 
to benchmark existing TCR-epitope prediction approaches, enabling the 
field to progress towards an understanding of the principles underlying 
T-cell specificity. 

Here we report the findings of the first public TCR-epitope prediction 
benchmark performed in the context of the ImmRep 2022 TCR-epitope 
specificity workshop (https://www.pks.mpg.de/immrep22). Leading 
scientists in the field as well as junior researchers interested in the TCR 
specificity problem were invited to participate and were offered datasets 
to train and test a collection of existing prediction models. The aim of the 
workshop was to evaluate and compare the obtained outputs to classify 
the approaches and most importantly, to help identify an ideal dataset 
and optimal evaluation strategies for future follow-up efforts. Describing 
the outcome of the workshop, we attempt to group the selected and 
tested methods, both - based on the TCR feature input as well as on the 
underlying prediction algorithm - in an attempt to identify patterns 
within the performance results. We conclude the report with lessons 
learned on the TCR-epitope problem from this first benchmarking study 
and make several recommendations towards future attempts at 
benchmarking. 

Materials and methods 

Construction of the training- and test data 

The benchmark data set was derived from the VDJdb database 
(downloaded on 23/06/2022). VDJdb is a curated database of TCRs 
with known antigen specificities [4]. Only those TCR-epitope pairs with 
paired alpha-beta chain data were collected. Any duplicated 
TCR-epitopes were removed, as defined by V/J gene usage as well as the 

CDR3 (complementarity determining region) sequence for both the 
alpha- and the beta chain. Only TCR-epitope pairs obtained by tetramer- 
or dextramer-sort were retained. Furthermore, all the dextramer-sort 
entries originating from the 10X technical report [5] were excluded 
because of the high reported cross-reactivity of these TCRs [3]. Lastly, 
only those 17 MHC-epitopes that had at least 50 unique TCR sequences 
were retained. 

A full list of epitopes and the number of their associated TCR is 
provided in Table S1. To constitute the negative control data set, un
published paired alpha-beta chain TCR sequences without peptide 
specificity information and obtained from 10x genomics sequencing of 
CD8+CD96+ T cells from 11 control individuals were provided by A. 
Eugster. The entire data was subsequently separated into “positive”/ 
”negative” training- and test data sets as follows. 

The “positive” set for each epitope under consideration was extracted 
from the VDJdb as described. The “negative” set for each epitope was 
constructed by randomly sampling a set of TCRs specific to any of the 
other 16 epitopes. The size of this negative set was three times larger 
than the number of the positive TCRs for the epitope in consideration. 
The negative set was further expanded by randomly sampling TCRs from 
the negative control dataset to obtain twice the number of positive TCRs. 
Thus, the final set for each epitope had a negative/positive ratio of 5:1. 
For instance, for the epitope “ATDALMTGF” with 132 positive TCRs, 
there are 660 negative TCRs, of which 396 TCRs originated from the 
swapping of the TCRs from other epitopes while 264 TCRs were sampled 
from the negative control data. The data was then split randomly into a 
training and test set in the ratio of 80:20. 

Models applied 

In total, 23 TCR-epitope prediction models were trained and tested 
during the course of the workshop, which can be found in Table 1. Most 
approaches have been previously published, or are novel variants of 
existing models. These variations were created specifically for the 
workshop to explore the added benefit of integrating specific informa
tion types for the TCR-epitope prediction problem, notably the inte
gration of specific TCR chain data. For comparison purposes, a ‘Random’ 
model was included, which produced scores between zero and one, 
based on the Numpy random number generator. Data, optimization, 
model and evaluation (DOME) machine learning reporting criteria can 
be found in Table S2. 

Evaluation of prediction performance 

Models were trained on the available training set for each epitope, or 
on all available training sets where appropriate for multi-label models. 
To decrease information leakage, the models were only allowed to train 
on the available data and any pre-training steps on TCR specificity were 
excluded. A decision value was then assigned to each TCR in the test 
data set for a given epitope with a blinded ground truth with respect to 
negative and positive samples. The ground truth of the test set was thus 
not available to workshop participants during model training and 
application. 

Two data set setups were utilized to evaluate the models. The first 
included a mixture of positive and negative test data for each epitope, 
with the target epitope being known. Thus, each model had to score the 
likelihood of the TCRs included in the dataset binding to the specified 
epitope. From these results, the area under the ROC curve (AUC) was 
calculated. In the second setup, all positive test data from the previous 
setup were merged, and each method was challenged to provide pre
dictions for every possible epitope seen during training. The epitopes 
were then ranked for each TCR from the most likely to the least likely 
according to the prediction scores of the model, and the rank of the true 
epitope was enumerated. As an epitope has multiple true TCRs, an 
average rank was calculated across all TCRs for one epitope. Within 
multi-label classification, this is equivalent to the coverage, i.e. the 
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average number of labels to include to avoid missing the ground truth 
label [16]. All prediction scores were then collected and analyzed with 
the same evaluation script, which calculated the AUC / the average rank 
for each epitope, as well as the average over all epitopes. 

Github and data repository 

The data sets and evaluation scripts can be found at https://github. 
com/viragbioinfo/IMMREP_2022_TCRSpecificity. 

Results 

No relation between size of the training data and model performance 

When benchmarked on the 17 MHC-epitope test data, all methods 
reached a non-random performance (AUC > 0.5) for most epitopes, as 
can be seen in Fig. S1. This demonstrates that independent of the method 
used, it is possible to classify unseen TCRs for a given epitope within this 
dataset. Only the SARS-CoV-2-derived epitope NQKLIANQF consistently 
scored poorly or even randomly across all methods (AUC 0.539 mean ±
0.065 s.d.). In contrast, the easiest to predict epitope, NYNYLYRLF, also 
a known SARS-CoV-2 epitope, featured a near-perfect classification for 
most methods (AUC 0.956 mean ± 0.042 s.d.). TCRs for both the NQK 

and NYN epitopes were derived from the same MHC-dextramer study 
[17], thus there is no experimental difference in how the TCRs were 
collected or from which individuals. Furthermore, both epitopes had 
very similar training data sizes, namely 112 and 88 respectively. An 
overall analysis did show a strong relationship the performance and the 
similarity between TCR sequences in the training set (quantified as the 
average Levenshtein distance between the CDR3 sequences), as can be 
seen in Fig. 1. The strongly performing NYN epitope had an average 
Levenshtein distance of 12.6 within its training CDR3 sequences, while 
the NQK epitope featured an average distance of 17.7. This relationship 
was found to be consistent across most tested methods, as can be seen in 
Fig. S4. Therefore, those epitopes that had many highly similar TCR 
sequences seemed to be easier to classify within the presented held-out 
data set-up. 

Distance-based methods provide a good baseline prediction 

Methods that annotate unseen TCRs for binding a specific seen 
epitope can be broadly divided into two categories, namely distance- 
based methods and feature-based classification methods. Distance- 
based methods, such as TCRbase, mainly use a single distance metric 
to calculate the similarity between unseen TCRs and seen TCRs in the 
training data, independent of the epitope. In its simplest iteration, this 
can be the amount of amino acid mismatches between the two CDR3 
sequences (i.e. the Hamming distance). If the distance is below a given 
threshold, an unseen TCR can be judged sufficiently similar to the 
training set TCR to be annotated with the same epitope. The distance 
metric itself can then be considered a confidence estimate of the method, 
where larger distances are considered less reliable annotations. More 
commonly, these distance-based methods rely on a k-nearest neighbor 
approach (k-NN), as is the case for all distance-based methods used in 
this benchmark. Within these k-NNs, it is the label of the k most similar 
TCRs that is used to predict the target epitope. 

Feature-based methods are defined here as those that try to identify 
common patterns underlying the training set TCRs that bind a given 
epitope. These patterns then form the basis of predicting the binding 
preference of unseen TCRs. The underlying model is always a supervised 
machine learning method, where the known TCRs binding each epitope 
are provided as training data. The result is therefore a fitted model, 
which can then be applied to any unseen TCR. These are distinct from 
the distance-based methods as they try to learn which features are 
important for each epitope. However, as can be seen in Fig. 2, some 
distance-based approaches have a performance that is very close to those 
of the best performing feature-based methods. This supports the use of 
distance-based methods as a comparative baseline, as any new, more 
complex methodologies claiming to learn TCR-epitope patterns should 
be required to outperform basic matching algorithms. 

An additional distinction can be made between those machine- 
learning approaches that train one model for each epitope separately 
(peptide-specific) or one model for all epitopes simultaneously (pan- 
specific). However, research has shown that even in the latter case, most 
pan-specific methods internally act as having a model per epitope [15]. 
This is because the generalisation of epitope-TCR pairing across 
different epitopes is still currently challenging due to the so far rather 
limited number of peptides characterized by TCR data [18]. This also 
matches with the found results in this study, as there seemed to be no 
consistent difference between these two approaches, as can be seen in 
Table S3. 

Combining alpha and beta chain improves epitope prediction 

Historically, the majority of methods to address the TCR-epitope 
specificity problem focus on the CDR3 sequence of the beta chain only 
for predictions, as historical TCR sequencing efforts have mainly only 
characterized the TCR beta chain. However, the TCR heterodimer 
complex consists of both alpha and beta chains, and both are known to 

Table 1 
List of models tested.  

Name Chain CDR 
usage 

Distance/ 
Machine 
Learning 

Reference 

diffrbm_alpha* alpha cdr3 ML [6] 
diffrbm_beta* beta cdr3 ML [6] 
netTCR_CDR123_ab* alpha- 

beta 
cdr123 ML [7] 

netTCR_CDR3_ab* alpha- 
beta 

cdr3 ML [7] 

netTCR_CDR3_b* beta cdr3 ML [7] 
pMTnet beta cdr3 ML [8] 
Random - - - Numpy random 

number generator 
SETE beta cdr3 ML [9] 
sonia_a* alpha cdr3 ML [10] 
sonia_b* beta cdr3 ML [10] 
sonia_ab* alpha- 

beta 
cdr3 ML [10] 

TCRbase_CDR123_ab 
* 

alpha- 
beta 

cdr123 Distance https://services.he 
althtech.dtu.dk/se 
rvice.php?TCRbase 
-1.0 

TCRbase_CDR3_ab* alpha- 
beta 

cdr3 Distance https://services.he 
althtech.dtu.dk/se 
rvice.php?TCRbase 
-1.0 

TCRbase_CDR3_b* beta cdr3 Distance https://services.he 
althtech.dtu.dk/se 
rvice.php?TCRbase 
-1.0 

TCR-BERT beta cdr3 ML [11] 
TCRAI alpha- 

beta 
vjcdr3 ML [3] 

tcrdist3_a* alpha cdr123 Distance [12] 
tcrdist3_b* beta cdr123 Distance [12] 
tcrdist3_ab* alpha- 

beta 
cdr123 Distance [12] 

tcrex_a* alpha vjcdr3 ML [13] 
tcrex_b* beta vjcdr3 ML [13] 
tcrex_ab* alpha- 

beta 
vjcdr3 ML [13] 

TCRGP alpha- 
beta 

cdr123 ML [14] 

TITAN* beta cdr3 ML [15]  

* These models have been trained and applied by one of the original model 
authors, and thus can be considered having an advantage. 
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make contacts with the epitope [19]. Paired alpha-beta chain informa
tion is still rare as it requires TCR sequencing at the single cell level, but 
prior studies have suggested that prediction performance can be 
increased by using information from both chains, alpha and beta [20]. 
The current benchmark data set only included the TCR-epitope entries 
with paired alpha- and beta chain information. This allowed a direct 
comparison between methods only using one of the two chains, by only 
using the relevant part of the input data. In this manner, the difference in 
prediction performance using either alpha, beta, or both chains could be 

assessed on the same TCR-epitope pair training- and test data. As can be 
seen in Fig. 3, methods that use both chains (alpha and beta) consistently 
outperform methods that only use a single chain (alpha or beta). The 
same trend can be seen at the level of individual AUCs, as seen in 
Table S3 and Fig. S2, where the most performant method per epitope is 
usually one that uses both chains. Furthermore, when clustering the 
individual performances, the use of single or both chains can be seen as 
the most prominent grouping factor, as can be seen in Fig. S3. 

Fig. 1. Relationship between the prediction performance and similarity of TCR sequences in the training set. The x-axis shows the average Levenshtein distance 
between the CDR3 sequences in the training data set. The y-axis shows the micro AUC for each epitope and each method. 

Fig. 2. Average microAUC by approach. Distance-based methods to the left 
annotate TCRs based on the similarity to known epitope-specific TCRs. Feature- 
based approaches use machine learning to learn associated features specific to 
an epitope, which is then used for classification. 

Fig. 3. Comparison of average microAUC of methods considering both TCR 
chains (Alpha-Beta) and methods that only consider the beta chain (Beta) or the 
alpha chain (Alpha). The lines denote those methods that use the same archi
tecture but with different input. 
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Integrating V/J gene usage or CDR1/CDR2 improves epitope prediction 

Most methods focus only on the CDR3 region of the beta (or alpha 
chain) of the TCR, as this region is the most variable and responsible for 
the majority of contacts with the epitope residues. Even though the 
CDR1 and CDR2 of a TCR are wholly determined by the V gene usage, 
they add a degree of variability to the chains and facilitate the crucial 
contacts between the TCR and the epitope-MHC complex. To investigate 
the complementary information contained in V/J genes and CDR1/ 
CDR2 segments, we can divide methods into three categories based on 
their inputs: (i) Only requiring CDR3 amino acid sequence (CDR3) as the 
input, (ii) Requiring the CDR1/CDR2/CDR3 amino acid sequence 
(CDR123) as the input, and (iii) Requiring the CDR3 amino acid 
sequence as well as the V/J gene usage (VJCDR3). From the average 
performance results, as seen in Fig. 4, we observed that methods that 
consider the CDR1/CDR2 regions, either directly (CDR123) or indirectly 
(VJCDR3), outperform those that only consider the CDR3 amino acid 
sequence. However, considering the amino acid sequence of the CDR1 
and CDR2 regions does not, in this setting, seem to have any improve
ment over simply considering the V gene annotation itself. Some 
methods, such as tcrdist3, do utilize a prior alignment of these regions to 
calculate their difference (as well as an additional variable loop between 
CDR2 and CDR3 which is given the name “CDR2.5”), and thus already 
formulate the concept that some CDR1/CDR2 are more similar than 
others. 

Epitope ranking mostly, but not always follows binary classification 
performance 

Prior sections have focused on method performance as calculated by 
the AUC of the ROC curve, thus the trade-off between false negatives and 
false positives for the binary classification problem. However, epitope- 
TCR pairing is not a true binary classification problem, as the target 
epitope is commonly unknown. Thus each TCR needs to be matched 
with any epitope, and is thus a multi-label classification problem. For 
this reason, we considered the epitope rank as an alternative metric, 
where the prediction scores for each of the 17 epitopes is compared for 

every TCR in the test set, and the rank of the ground truth is averaged 
across all TCRs for a given epitope. In this instance, a lower score is 
considered better and a score of 1 signifies a perfect prediction for an 
epitope. As this required applying the model for each epitope on the 
same data set, this could not be accomplished for every method previ
ously tested. Some methods were not able to create models for each 
epitope, others did not provide the option to predict per epitope. As can 
be seen in Fig. 5, the relative performance across models between AUC 
and ranked epitope has remained relatively stable. The most performant 
method with regards to AUC remains the most performant method with 
regards to the epitope rank. This is not unsurprising as the AUC already 
captures the difference in prediction scores between a positive pair and a 
negative pair. The key difference is that the epitope rank focuses solely 
on the positive pairs. Indeed, the overall ranking between some methods 
does change, as can be seen in supplemental Table S4. Most notably, 
basic clustering approaches, such as TCRbase, score relatively better on 
average epitope rank than AUC. This can be attributed to the fact that 
these methods do not hold the concept of a negative background, as they 
are searching for TCRs similar to those TCRs known to bind an epitope. 
Thus, it can be expected that these methods are less able to distinguish 
negative samples, despite being proficient in the annotation of positive 
samples with the right epitope. 

Discussion 

Limitations of the benchmark 

While many methods were included into this benchmark, our effort 
was not exhaustive. The wealth of currently existing methods for TCR- 
epitope prediction makes it impossible to compare them all in a single 
effort. In addition, many methods that have been described in the 
literature unfortunately lack a publicly accessible code/interface. 

In addition, ground-truth true negative data does not exist within the 
TCR-epitope context. Two strategies to circumvent this problem were 
combined for this benchmark: swapped TCR-epitope pairs and unrelated 
repertoires from healthy individuals without epitope knowledge as 
background sequences. Both have their advantages and disadvantages. 
Swapping TCR-epitope pairs by considering the TCRs positive for one 
epitope as being negative for another, means that methods can in theory 
learn the TCR patterns associated with the negative epitopes in training 
and test data. Utilizing unrelated, healthy repertoires has the disad
vantage that there may be an experimental and/or biological bias in the 
data. This lends itself to the possibility that any model may learn the 
distinction between positive and negative based on such biases alone. In 
addition, healthy repertoire data is not free of potential misannotations, 
due to the presence of T cells specific for common dominant epitopes 
also present in the positive data. Simulated data with a known ground 
truth could not be used here as we wished to evaluate the contribution of 
CDR1/2, alpha/beta, which is a required assumption prior to simula
tion. Using the simulated datasets as negatives only, would have created 
more opportunity to bias. As highlighted by the difference in perfor
mance ranking based on AUC and epitope ranking, classifiers potentially 
do have a tendency to learn patterns within the negative data that 
changes how they will consider the problem. This benchmark is far too 
limited to provide a solid answer to what negative strategy is most 
appropriate, and this remains an important topic for future research. 

Another key choice involved the lack of removal of similar TCRs from 
the test set compared to the training data set. This would have required a 
strict definition of what constitutes a sufficiently similar TCR. There 
does not currently exist a common consensus of how different a TCR can 
be before it can be expected to no longer bind the same epitope. 
Furthermore, whether to include or exclude similar TCRs from the 
datasets is a decision that depends fully on the downstream application. 
Mostly, the end goal of these methods is to identify epitope-specific TCR 
pairs among a large TCR sequence repertoire extracted independently. It 
is already known that public clonotypes do occur across different 

Fig. 4. Average performance by CDR region usage. From left to right, methods 
using only CDR3 amino acid sequence, methods that use CDR3 and V/J genes, 
and methods that use CDR1,CDR2,CDR3 amino acid sequences as input. The 
lines denote those methods that use the same architecture but with 
different input. 
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individuals, and that small subsets of TCRs can be successfully annotated 
with their epitopes just by matching their TCR sequences to annotated 
TCR sequences of a database [21–23]. However, public clonotypes are 
the exception rather than the rule. Removal of the highly similar TCRs 
from the test set does allow evaluation to what degree these methods are 
capable of linking distant TCRs to the correct epitope. This results in a 
far more limited positive test set, with more focus on the classification of 
the negative samples. 

Finally, many methods are hampered in their success by the current 
limited training data set size. Thus their measured performance is not 
representative of their theoretical potential with an unrestricted training 
data set. For example, several methods have shown improvements by 
utilizing transfer learning or pre-training steps, which are not possible 
with this limited benchmark [8]. In addition, methods using only 
beta-chain data can typically rely on a larger dataset than methods with 
both alpha and beta chains, which may explain their poorer perfor
mance in this instance. The performing data set curation from paired 
chain data also had an impact on the size of the training and the test set 
of a few epitopes. For instance, two TCRs would be considered for 
evaluation if their alpha chains are different, implying that they are 
overall different but they may collapse to a single TCR if their beta chain 
is identical. Furthermore, the dataset used here and split into test- and 
training data sets was derived from the same experiments. This was 
necessary given the current scarcity of available TCR-epitope specific 
data. Ideally, the train-test split would be derived from independent 
experiments to avoid any experimental information bleed, however this 
can only be done for a very limited number of epitopes. 

The shape and scope of future benchmarks 

The goal of this study was to evaluate the possibility of a benchmark 
between methods and highlight important lessons learned from this 
pilot study. Due to the aforementioned limitations, no strong conclu
sions should be made about the superiority of one approach to another at 
this point. Regardless of the limitations, an independent benchmark has 
become necessary due to a rapid surge in the number of the TCR-epitope 
prediction tools. It is no longer feasible or reasonable to expect a single 
study to compare to all other existing methods. Furthermore, as high
lighted in this study, the choice of data set on which to evaluate can have 

a large impact on the performance. Related is the commonly accepted 
phenomenon that a method will always score best when applied by its 
own authors and on the data set in the paper where it is introduced. 

Other prediction-focused fields have embraced the idea of an open 
competition where methods are benchmarked on the same never-before- 
seen data set. This is a way to independently evaluate the wide variety of 
methods that are available, but also to drive the field forward and enable 
it to reach new heights. As a conclusion of the ImmRep TCR-epitope 
specificity workshop, we strongly encourage the organization of 
similar competitions focused on the TCR-epitope prediction problem. 
The most essential choice will be the origin of the test data as many 
options are available, from a stratified approach as highlighted here, to 
the integration of simulated datasets with a known ground truth [24]. 
The ideal data set for such a challenge would unequivocally be an un
published independent data set with both TCRs with known 
epitope-specificity, as well as “negative” TCRs that do not bind these 
epitopes. As highlighted in this study, it would ideally involve paired 
alpha-beta TCR sequence data, and would therefore likely be derived 
from a single cell sequencing experiment. In addition, the use of 
oligo-tagged multimers would enable both identification of those TCRs 
that are specific for an epitope, along with those that are likely not. 
Furthermore, this data set should contain multiple previously studied 
epitopes, so as to compare the epitope rank beyond the straight-forward 
classification problem. The technology to create such a dataset is 
currently available, and therefore only requires the willingness of either 
funders, institutes or companies to provide it. 

Conclusions 

This study contains an initial large-scale benchmark of epitope-TCR 
prediction methods. It was not meant to be exhaustive, nor should the 
results be overly interpreted as the data set was limited and the evalu
ation superficial. Several important observations could nevertheless be 
established. The use of paired-chain alpha-beta data, as well as CDR1/2 
or V/J information, improves classification when this data is available, 
independent of the underlying approach. Straight-forward clustering 
approaches can achieve a respectable performance and should be used 
as a valid benchmark for future studies. Finally, there is a large need for 
a true independent benchmark on the myriad of methods within the 

Fig. 5. Average performance of methods based on microAUC in the binary classification problem (x-axis) plotted against the epitope rank performance for multi- 
label prediction (y-axis). Each dot in the plot represents a single method. 
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field. 
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