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Numerous research efforts have been devoted to the ap-

plication of control theory to fluid flows in the last decades.

Common approaches consist of reduced order models of the

original system, often within the linear limit, for enabling the

control design based on standard control theory. However,

these approximated representations are often the main lim-

itation of standard applications, as these control techniques

usually exhibit poor performance when applied in off-control

design conditions; an example is provided by the impact that

non-linearities have on the dynamics of the closed-loop when

neglected [9].

REINFORCEMENT LEARNING

An alternative is represented by fully data-driven meth-

ods where a physical model is not employed; Reinforcement

Learning (RL) algorithms allow such a strategy while pre-

serving optimality of the control solutions. Indeed, some RL

algorithms can be regarded as a fully data-driven counterpart

of the discrete-in-time optimal control strategies based on the

Bellman equation, where the policy – i.e., the control action –

is directly learnt from interactions of the system with the en-

vironment without relying on an a-priori physical model [10].

The relevance of a control action when the system is in a given

state is measured by a reward and the expected cumulative re-

wards (or Value function) is the objective to be maximized.

When neural networks are employed as an approximation for-

mat, the framework is referred to as deep RL (DRL). Recent

works show the feasibility of the approach for the control of in-

stabilities classically found in fluid mechanics systems [7, 2, 6].

IMPROVING LEARNING BY IMPROVING THE EXPLO-

RATION

The methods we consider here are fully data-driven, with-

out prior knowledge of a model. This implies that the mod-

elling step is now replaced by the so-called exploration. Since

the dimension of the phase space of the system under con-

sideration is very large with respect to traditional tasks in

Reinforcement Learning, the data efficiency of state-of-the-art

methods such as Proximal Policy Optimization [8] and Deep

Deterministic Policy Gradient [5] must be improved.

As an illustration in this work, we will consider the sys-

tem governed by the Kuramoto-Sivashinsky (KS) equations.

This system is described by a partial differential equation with

initial value and spatial periodicity conditions:

∂u

∂t
(t, x) = −u(t, x)

∂u

∂x
(t, x)−

∂2u

∂x2
(t, x)−

∂4u

∂x4
(t, x), (1)

with an initial condition u(0, x), and periodicity in space

u(t, x + M) = u(t, x) given a length of the domain M ∈ R+.

This 1-D dynamical system exhibits a chaotic behavior for a

range of values of M and is often used as a convenient proxy of

turbulent flow regimes. As such, it has recently been used as

a practical tool to evaluate the robustness of machine learn-

ing methods. Properties of the KS system as discussed in

detail in [4]. As an illustration, a controllable trajectory in

the chaotic regime is depicted in Fig. 1. In a previous work

[3], we have shown that using the Deep Deterministic Policy

Gradient (DDPG) algorithm allows to stabilize these chaotic

trajectories; Fig. 2 shows an illustration of the method. More

precisely, the controller task is to drive the trajectory of the

chosen dynamical system to transit from one system equilib-

rium to an other one by accumulating statistical knowledge

of the solution space (environment). The resulting policies

were however far from being the optimal ones discussed in

[1]. In this contribution, we hence intend to understand and

identify the multiple factors and their influence on the policy

identification, with a quantitative scope, but without relying

on physics constraints or prior knowledge. In particular, we

develop consistent exploration strategies which allow to care-

fully sample new observations, based on the previous ones, in

order to achieve the knowledge of the system to be controlled.

As a result, better control policies – in principle, the optimal

ones – could be obtained with a lower amount of interactions

with the system. From this perspective, we rely on informa-

tion theory and optimal design of experiments to quantify the

knowledge the controller gathers during the process.
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We will compare the control policies achieved with the dif-

ferent strategies, and contrast them with the standard linear

solutions. More generally, the final goal is to improve the

use of data-driven and statistical learning for computational

fluid dynamics, and specifically reinforcement learning. This

approach, at the crossing between machine learning and dy-

namical systems, can also be of help to the streaming learning

community to gather insights for explaining and understand-

ing behaviour of data-based modelling.
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Figure 1: A sampled chaotic trajectory emanating from the

neighbourhood of the equilibrium u = 0 of the Kuramoto-

Sivashinsky equation under chaotic regime (M = 22); the

visualization is obtained by projecting on the first 3 Fourier

modes. The 3 non-trivial equilibria (stationary solutions) are

also shown.

Figure 2: Reinforcement Learning scheme: from an initial

state, the control law applies a forcing to the state of the

dynamical system. Given this forcing action (or control) and

the new state, a reward is obtained. An optimal reinforcement

learning policy is a set of control decisions which maximises

the asymptotical sum of rewards. In this case, a reward or

cost could be the energy of the system. Taken from [3].
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