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4

Abstract5

Dynamic mode decomposition (DMD) has been applied to the wake of the NREL-5MW wind
turbine invested by a uniform inflow, to identify the most dynamically relevant coherent struc-
tures characterizing this flow. The decomposition has been applied on a snapshot dataset ob-
tained by Large-Eddy Simulation of the flow impinging on the wind turbine, whose tower and
nacelle are modeled by the immersed boundary method, whereas rotor blades are modeled us-
ing the actuator line method. The Sparsity-Promoting DMD algorithm allows one to select a
limited number of dynamic modes optimally reconstructing the snapshot sequence. Among the
largest-amplitude selected modes, we found the tip vortices, oscillating at an angular frequency
equal to three times the rotational frequency of the turbine. Interestingly, the remaining se-
lected modes are characterized by low frequencies and large-scale spatial structures, reaching
the frequency range of the wake meandering. This small set of dynamic modes is highly rele-
vant for the formulation of accurate reduced-order models, which would eventually lead to the
design of optimized wind farms layout and control to increase the energy density produced.

Keywords: Dynamic Mode Decomposition, NREL-5MW wind turbine, Turbine wake,6

coherent structures, Reduced-order-models, Modal decomposition7

1. INTRODUCTION8

An accurate description and modeling of the complex behaviour of fluid flows relevant to many9

energy-related applications still poses a great challenge to researchers and engineers, especially10

in view of the upcoming energy transition [1]. Notable examples are the flows in a combustion11

chamber [2] and the flow impinging on a wind turbine [3], both exhibiting non trivial and co-12

herent oscillations that markedly affect the energy production. In this work we focus on wind13

turbines, whose production is likely to become crucial in the upcoming years [4].14

For limiting the impact of energy production by fossil fuels on the environment, an increas-15

ingly larger fraction of energy demand should be satisfied by renewable sources [5], such as16

wind turbines. In particular, it is expected that wind power would be able to provide about 35%17

of the total electricity needs by 2050 [6], reaching 6000GW of power production. However, in18

the last few years, the wind-energy electricity capacity have reached only ≈ 9%, corresponding19

to about 700 GW [7]. In order to meet the Paris goal, an average power addition of 180 GW20

per year would be needed.21

The cost of electricity generated from onshore wind is decreasing, with the global average22

falling to USD 53/MWh in 2019 [8]. The levelised cost of electricity (LCOE) for onshore23

wind plants is now competitive with respect to fossil fuel generation sources and is expected24

to decrease further as installation costs reduce and performance improve. Instead, the LCOE25
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of offshore wind plants is competitive in certain European markets (such as Germany and the26

Netherlands) and would most probably become competitive in other markets by 2030, dropping27

from the actual average of 120 USD/MWh in 2019 to an average of 30− 70 USD/MWh by28

2050 [6, 9].29

Despite this encouraging drop of the costs, the current rate of growth of wind-energy installed30

power is still too low for reaching the Paris climate goals [8]. The needed acceleration in the31

deployment of wind power installations will require the enhancement of policy support initia-32

tives, eradication of regulatory uncertainties, and still more investment in new technologies [8].33

In particular, technology innovation is needed for both the single turbine and the farm arrange-34

ment.35

Thanks to the increase of rotor diameters and hub heights, a considerable rise in the capacity36

of the single turbine would be reached by 2035 (namely, 5 − 6MW for onshore applications,37

and 15− 20 MW for offshore ones, more than doubling the current capacity of these turbines38

[10]). However, wind turbines are usually clustered in large farms, where most of the turbines39

operate in the wake of upwind ones. This turbines are rarely capable to achieve the nominal40

power production, being exposed to velocity deficit and high turbulence levels [11]. An opti-41

mization of the farm design, allowing to fruitfully exploit the interaction of the wakes with the42

downwind turbines, would be needed to guarantee high efficiency, flexibility and security of43

the power generation, leading us to the topic of the present work.44

In order to investigate in detail the effect on power production of the interaction of two turbine’s45

wakes, one should numerically simulate the whole flow field ranging from a few diameters pre-46

ceding the upwind turbine to several diameters downstream the second turbine. This task being47

computationally prohibitive, the development of low-dimensional models of the wake dynam-48

ics that can be fed into simulations of the downwind turbines are going to assume a huge49

scientific interest. In fact, the development of such low-dimensional models would allow to50

accurately estimate the power production of these turbines at a much cheaper computational51

cost. As a consequence, it would be eventually possible to consistently increase the power52

produced by the whole wind farm, by simply optimizing the relative placement of the turbines.53

Thus, constructing low-dimensional models of the dynamics of wind turbine wakes appears54

fundamental for the design and optimization of wind farms. This motivates the present work,55

which provides a detailed study of the dynamics of the wake of the 5MW wind turbine aiming56

at extracting the dynamically relevant structures, that can be used to develop advanced low-57

dimensional models of the wake.58

In the last years, several attempts have been made to study the dynamics of the wind-turbine59

wake by using the Proper Orthogonal Decomposition (POD) method [12] for the formulation60

of Reduced-Order Models. This modal decomposition, based on orthogonal modes, has been61

applied: for developing low-order models [13]; to array of turbines in order to study the effect62

of the layout of the farm [14]; to a single turbine including a detailed description of the effects63

of the tower and the nacelle [15].64

However, recent works [16] have demonstrated that POD suffers from two main drawbacks.65

The first is that this method recovers the most energetic structures within the flow, but the en-66

ergy may not in all circumstances be the correct measure to rank the flow structures. Moreover,67

since second-order statistics are chosen as a basis for the decomposition, valuable phase in-68

formation is lost. Thus, the most-energetic POD modes are not always dynamically relevant,69

therefore the selection of a low-dimensional basis for the realization of a reduced-order model70

may be not trivial [17].71
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For these reasons, we provide in the present work an analysis based on a different recently-72

developed approach known as the Dynamic Mode Decomposition (DMD) [16]. This tech-73

nique, which allows one to approximate the nonlinear dynamics embedded in a data sequence,74

has been recently applied to several complex flow cases, from the flow over a wall-mounted75

roughness element [18], to the instabilities developing in several types of combustors [19].76

Very recently, the same technique has been successfully used for reconstructing coherent struc-77

tures developing on turbomachinery applications such as the gas-liquid flow in a rotodynamic78

multiphase pump [20, 21] and the tip leakage vortex in a mixed flow pump [22].79

At the moment, very few studies have applied DMD on wind turbine flows. Iungo et al. [23]80

focused on the development of reduced models of the wake. Le Clainche et al. [24] applied81

DMD to a lidar database for wind predictions. Debnath et al. [25] employed the DMD for82

predicting the dynamics of coherent vorticity structures of wind turbine wakes. However, in83

most of these works, the DMD modes are ranked with respect to their amplitude, which can84

be an ineffective criterion for selecting a very limited subset of dynamic modes, leading to an85

unsatisfying quality of the resulting approximation of numerically generated snapshots through86

low-order reduced models.87

For this reason, in this work we use the Sparsity-Promoting variant of the DMD [26] for rank-88

ing the most relevant DMD modes of the three-dimensional numerical dataset. Based on this89

robust ranking, a detailed analysis of the main spatial structures and frequencies of the dy-90

namically relevant motion in a wind turbine wake, including the tower and the nacelle, is91

carried out. Moreover, the convergence of the main frequencies and growth rates, with re-92

spect to the low-dimensional basis on which this decomposition is constructed, is assessed for93

high Reynolds-number wind-turbine flows. Large Eddy Simulations using the Actuator Line94

Method to simulate the rotor and the Immersed Boundary Method to simulate tower and nacelle95

are employed to construct the database on which DMD is performed. The Sparsity-Promoting96

variant of the DMD algorithm is then applied for identifying and analysing the most relevant97

coherent structures embedded in the turbulent wake flow.98

2. LARGE EDDY SIMULATION99

Large Eddy Simulations (LES) is employed for studying the wake behind the NREL-5MW
wind turbine. LES resolves large-scale turbulent structures, filtering out small-scale turbulent
fluctuations, whose effect on the large flow structures is modelled [27]. This is done by solving
the governing equations for the filtered non-dimensional velocity, u, derived from the incom-
pressible Navier–Stokes equations:

∂ui

∂t
+

∂uiuj

∂xj

= − ∂p

∂xi

+
1

Re

∂2ui

∂xj∂xj

− ∂τij
∂xj

+ Fi, (1)

∂ui

∂xi

= 0, (2)

where i, j ∈ {1, 2, 3} indicate the components corresponding to the streamwise, x, wall-100

normal, y, and spanwise, z, directions, respectively, and p denotes the pressure. The Reynolds101

number is defined as Re = U∞D
ν

, where U∞ is the inlet velocity, D is the rotor diameter and ν102

is the kinematic viscosity of the fluid. These quantities have been used as reference variables103

for non-dimensionalisation.104

The residual stress tensor, τij , is decomposed into an isotropic and an anisotropic part. The105
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isotropic part is included in the modified filtered pressure p∗ = p+ 1
3
τii, whereas the anisotropic106

part needs to be modelled. As in many previous works [28, 15], the Smagorinsky model is em-107

ployed, which relates the residual stress to the filtered rate of strain by means of the eddy108

vsiscosity of the residual motion, νr, which is modelled using the mixing length hypothesis,109

with Smagorinsky constant CS set to 0.17.110

The term Fi in equation (1) models the aerodynamic force (per unit length) exerted by the tur-111

bine blades on the fluid, as provided by the actuator line method, [29]. Whereas, the immersed112

boundary method [30], based on a discrete forcing approach is used for describing the tower113

and nacelle.114

The governing equations are solved by means of an in-house numerical code, written in For-115

tran90. This code implements a second-order-accurate centered finite difference scheme for the116

spatial discretization, on a staggered Cartesian grid. A hybrid low-storage third-order-accurate117

Runge-Kutta scheme is used for time integration. [31]. Further details on the numerical ap-118

proach can be found in [32, 15].119

For the considered NREL-5MW wind turbine, the Reynolds number based on the turbine di-120

ameter and the inlet velocity at hub-height is Re = 108. The tip-speed ratio considered in this121

study is λ = 7. The computational domain has extension 12.5D× 5D× 3D in the streamwise,122

vertical and transverse directions, respectively. The turbine is located at 4D from the inlet,123

centered in the transverse direction. Concerning the wall-normal direction, we set y = 0 on the124

nacelle’s center, the wall being placed at y = −0.9.125

This computational domain is discretized in space using 2048 × 512 × 512 grid-points in x, y126

and z directions, respectively. The grid is uniform along the streamwise and transverse direc-127

tions, and is stretched in the vertical direction, with finer grid spacing in the turbine’s wake. In128

particular, of the total 512 points used in the wall-normal direction, 250 points are uniformly129

gathered in the region going from y = −0.9 to y = 0.6, which comprises the rotor’s and the130

tower’s wakes. The remaining 262 points are distributed in the region y ∈ [0.6, 5], stretched131

towards the upper boundary following an hyperbolic tangent law.132

At the domain boundaries, we imposed the following conditions: at the outlet points, a radia-133

tive non-reflective boundary condition with convection velocity C = 9m/s [33]; no-slip at the134

bottom wall; free slip at the top wall; periodicity along the spanwise direction.135

Concerning time integration, in order to guarantee a uniform time spacing of the snapshots for136

the DMD analysis (see the next subsection), we set a fixed time step dt = 0.00073, ensuring a137

Courant-Friedrichs-Lewy number < 0.5 throughout the whole computation.138

3. SPARSITY PROMOTING DYNAMIC MODE DECOMPOSITION139

The dynamic mode decomposition (DMD), introduced in [16], is a data driven technique which
allows one to extract relevant flow features, namely the DMD modes, whose dynamics is gov-
erned by corresponding eigenvalues. The variant we employ in the present study has been
developed in [26] and is called Sparsity Promoting Dynamic Mode Decomposition (SP-DMD),
since it selects a limited number of modes which optimally reconstruct the flow field time se-
ries.
A series of M snapshots is collected from the LES at a constant sampling frequency. Each
snapshot qi can include one or multiple flow variables or even derived observables and has
dimension N = O × S (qi ∈ CN ), where O is the number of observables considered, whereas
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S represents the number of measurements points:

{q1, q2, . . . , qM}. (3)

We assume that a linear time-invariant mapping A, connects every pair of successive snapshots,

qi+1 = Aqi, i = {0, . . . ,M − 1}. (4)

Using relation (4) we can write:
Q1 = AQ0, (5)

where Q0 and Q1 are:

Q0 =
[
q0 q1 . . . qM−1

]
, (6)

Q1 =
[
q1 q2 . . . qM

]
. (7)

The linear operator A, as suggested by [16], can be projected onto the r−dimensional POD
basis U of the snapshots matrix Q0, calculated using a Singular Value Decomposition (SVD)
or the snapshot method [34],

Q0 = USV∗, (8)
A ≈ UFU∗. (9)

The matrix F can be therefore obtained by minimizing the Frobenius norm of the difference
between Q1 and AQ0, with A = UFU∗ and Q0 = USV∗,

min
F

∥∥Q1 −UFSV∗∥∥2

F
. (10)

The optimal solution to (10) is:
F = U∗Q1VS−1. (11)

This projection ensures a more robust calculation of the low dimensional representation of
A and it allows also to account for a rank-deficiency of the snapshots matrix Q0, restricting
the basis U to those vectors associated to non-zero singular values, or singular values above
a prescribed threshold. The dynamics in the low-dimensional subspace defined by the POD
modes U is governed by

xi+1 = Fxi. (12)

Dynamic modes are then extracted by computing the eigendecomposition of the matrix F :

F =
[
y1 . . . yr

]︸ ︷︷ ︸
Y

µ1

. . .
µr


︸ ︷︷ ︸

Dµ

z
∗
1
...
z∗
r


︸ ︷︷ ︸

Z∗

(13)

where yi and z∗
1 are the right and left eigenvectors of F , which are scaled such that y∗

i yi = 1
and z∗

i yj = δij . Therefore the solution to (12) can be calculated as follows:

xn = Y Dn
µZ

∗x0 =
r∑
i

yiµ
n
i z

∗
ix

0 =
r∑
i

yiµ
n
i αi, (14)
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where αi = z∗
ix

0 represents the component of the initial condition x0 in the z∗
i direction. The

snapshots can be approximated by mapping xi on the higher dimensional space CN ,

qn ≈ Uxn =
r∑
i

Uyiµ
n
i αi =

r∑
i

ϕiµ
n
i αi, (15)

and can be seen, therefore, as a linear combination of the DMD modes ϕi = Uyi where αi

is the amplitude of the corresponding DMD mode. The equation (15) can be written also in
matrix form:

[
q0 q1 . . . qM−1

]︸ ︷︷ ︸
Q0

≈
[
ϕ1 ϕ2 . . . ϕr

]︸ ︷︷ ︸
Φ


α1

α2

. . .
αr


︸ ︷︷ ︸

Dα


1 µ1 . . . µM−1

1

1 µ2 . . . µM−1
2

...
... . . . ...

1 µr . . . µM−1
r


︸ ︷︷ ︸

Vand

,

(16)
which highlights that the temporal evolution of the dynamic modes is governed by the Vander-
monde matrix Vand. Once the eigendecomposition of (13) is computed, the calculation of the
amplitudes vector α = [α1 . . . αr]

T is performed solving the following optimization problem.

min
α

J(α) =
∥∥Q0 −ΦDαVand

∥∥2

F
. (17)

The latter, using equation (8) and the relation and the definition of the matrix Φ := UY , can
be rewritten as:

min
α

J(α) = ∥SV∗ − Y DαVand∥2F . (18)

The superposition of all the DMD modes, weighted by their amplitudes and evolving according
to their frequency and growth rate, optimally approximates the data sequence. However, the
sparsity promoting DMD aims at finding a low dimensional representation of the snapshots’
sequence in order to capture the most relevant dynamic structures.
This objective is achieved in two steps: firstly, a sparsity structure is sought, which achieves
a user-defined trade-off between the number of modes and the approximation error; then the
sparsity structure of the amplitudes’ vector is fixed and the optimal values of the non-zero
amplitudes is calculated. The first step is tackled by augmenting the objective function J(α)
in (18) with an additional term, card(α), the penalizes the number of non-zero elements in the
amplitudes’ vector α,

min
α

J(α) + γ card(α). (19)

In the sparsity promoting optimization problem (19), γ is a parameter that influences the spar-
sity level, with higher values of the parameter promoting sparser solutions. In general, finding
a solution to (19) amounts to a combinatorial search that quickly becomes intractable for any
problem of interest. For this reason a relaxed version of (19) is introduced by replacing the
cardinality function of α with its ℓ1-norm,

min
α

J(α) + γ

r∑
i=1

|αi|. (20)
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The sparsity-promoting DMD problem (20) is a convex optimization problem, solved using the
ADMM [26]. Then, the sparsity structure of the amplitudes’ vector is fixed and the amplitudes
of the non-zero entries are recomputed by solving the following optimization problem:

minimize
α

J(α) (21)

subject to ETα = 0,

where the matrix E ∈ Rr×m encodes the sparsity structure of the amplitudes’ vector α. The
columns of E are unitary vectors whose non-zero elements correspond to zero components of
α. For example, for α ∈ C4 with:

α =
[
α1 0 α3 0,

]T (22)

the matrix E will be:

E =


0 0
1 0
0 0
0 1

 . (23)

The numerical method employed for the solution of the optimization problem (21) is the one140

proposed in [26].141

4. RESULTS142

143

In order to carrying out the DMD analysis, we extract from the snapshots of the velocity144

field a reduced three-dimensional subdomain enclosing the wake. As shown in the sketch in145

figure 1, the considered subdomain begins at x = 0, y = −0.7, z = −0.7 and extends towards146

x = 8.4, y = 0.63, z = 0.7 in the x, y and z directions, respectively. Notice that, since the147

computational domain is centered at the nacelle location in the spanwise direction, the selected148

subdomain comprises the whole region of the wake, starting just downstream of the rotor and149

extending towards the outlet, while in the wall-normal direction it extends from the wall up150

to the upmost position reached by the tip of the blades. Figure 2 provides a snapshot of the151

flow field in such a subdomain showing, by means of the λ2 criterion [35], the coherent set of152

tip- and root-vortices generated by the rotor’s blades. These vortices remain rather coherent up153

to ≈ 3 − 4 diameters downstream of the turbine, and then break down to turbulence further154

downstream. However, some coherent vortex filaments can be observed in the downstream155

part of the domain, indicating that the dynamics of the wake is not only driven by incoherent156

fluctuations.157

The whole flow field in the selected subdomain is stored at time intervals ∆t corresponding to158

a 10◦ rotation of rotor. The entire dataset comprises 3052 snapshots, whose ensemble average159

is shown in Figure 3. One can observe that the wake is asymmetric and that smaller wakes are160

present right behind the tower and at the center of the wake, as shown in the bottom right frame161

of figure 3. Notice that the snapshots’ ensemble average is subtracted from each snapshot be-162

fore applying the DMD, which makes all the eigenvalues lie on the unitary circle[36]. Small163

deviations from this theoretical condition will be observed because we perform the decompo-164

sition in reduced POD subspaces.165
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Figure 1: Sketch of the computational setting indicating the subdomain selected for the DMD analysis.

Figure 2: Snapshot of the flow field showing the λ2 criterion. The axis labels refer to the grid points, in order to
specify the mesh points distribution.
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Figure 3: Ensemble average of the LES snapshots: streamwise velocity in the plane x = 3 (left), y = 0 (top right),
and z = 0 (bottom right).
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Figure 4: Convergence of the DMD spectrum with respect to the dimension r of the POD basis: (a) entire spectrum
and (b) close-up. Circled dots correspond to the selected modes for each r with γ = 29181.
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Figure 5: The sparsity level card(α) (a) and the optimal performance loss %Πloss (b) for different values of the
sparsity parameter γ.

In order to ensure the convergence of the dynamical modes with respect to the dimension of166

the chosen POD basis, the sparsity promoting DMD has been carried out for different values167

of the POD subspace dimension, r. Figure 4 shows the logarithmic mapping of the eigenvalues168

for different values of r, computed according to ω = − log(µ)

i∆t
, where ∆t is the time interval169

between two consecutive snapshots and i the imaginary unit. Notice that the eigenvalues (as170

well as the associated dynamic modes) form complex conjugate pairs, since the decomposed171

velocity field is constituted of real variables.172

Concerning the influence of the POD subspace dimension on the DMD spectrum, one can ob-173

serve in the top panel of figure 4, that increasing this parameter, for sufficiently high value of r174

the spectra collapse onto each other. In particular, the bottom panel of figure 4 shows that for175

r ≥ 301, the eigenvalues’ frequencies are very well converged, and only small deviations are176

recovered on the associated growth rates of the modes. However, as expected for a turbulent177

statistically-stationary flow, the eigenvalues should collapse onto the unit circle (corresponding178

to a zero growth rate), due to the quasi periodic dynamics of the associated modes. Thus, this179

small deviation of the growth rate is a consequence of the numerical approximation and has180

no physical meaning. The behavior shown in the bottom frame of figure 4 indicates that fur-181

ther increasing the subspace dimension would not provide any improvement in the numerical182

estimate of the growth rate. For this reason, the following analyses have been carried out with183

r = 301, which is to be considered satisfactory.184

The influence of the sparsity parameter γ on the DMD modes is now assessed, by repeating185

the computation for different values of γ, ranging from 100 to 40000, quasi equally spaced in186

logarithmic scale. As shown in Figure 5, low (high) values of γ ensure the selection of a large187

(small) number of DMD modes. Notice that, even for very low values of γ, the performance188

loss is not null since the DMD is carried out on a lower-dimensional POD projection of the189

snapshot’s space.190

For the considered case, when γ < 8 × 103, the performance loss with respect to the POD191

basis is negligible. Whereas, for γ > 8 × 103, the performance loss rapidly increases towards192

90%, while the number of selected modes is reduced of more than one order of magnitude. The193

influence of γ on the DMD spectrum is shown in figure 6. With γ = 40000, four pair of modes194

with ω ∈ (3 − 5), and a larger frequency mode with ω ≈ 42, are selected. Decreasing the195

sparsity parameter of a factor 4, many other low-frequency modes are selected together with a196

10



-100 -80 -60 -40 -20 0 20 40 60 80 100

-0.08

-0.06

-0.04

-0.02

0

R(ω)

I
(ω

)

1

Figure 6: Eigenvalues of the selected DMD modes for different values of the parameter γ. Black circles correspond
to the modes shown in Figure 8.

(a) Pair 1 (b) Pair 2 (c) Pair 3

(d) Pair 4 (e) Pair 5

Figure 7: Streamwise velocity iso-surfaces (red for positive, blue for negative values) of the real part of the 5
dynamic modes’ pairs selected by the sparsity-promoting algorithm with γ = 40000, ordered according to their
amplitude |α|.

few high frequency DMD modes with ω ≈ 21, ω ≈ 35, ω ≈ 84. Further decreasing γ to 3209,197

mostly low-frequency modes, in the range ω < 20, are added to the spectrum, together with198

two more stable DMD modes with ω = 42. Further decreasing the parameter to 100 leads only199

to negligible changes in the spectrum.200

201

The five pairs of DMD modes selected for γ = 40000 are shown in figure 7. The pair corre-202

sponding to ω = 42.00 is clearly related to the tip vortices (see Figure 7(b)), oscillating at an203

angular frequency equal to three times the rotational frequency of the turbine. The remaining204

selected modes, characterized by rather low frequencies, are associated to large-scale spatial205

structures mostly developing in the far wake region, as can be observed in Figure 7(a,c-e).206

These low-frequency modes are likely to be linked to the secondary instability of the tip vor-207

tices and to their interaction with the vortices shed by the tower, as suggested by the POD208

analysis of the wake of a wind turbine in the presence of tower and nacelle [15].209

Some of the modes selected for γ = 11330 (indicated by the black circles in figure 6), are210

shown in figure 8, ordered according to their amplitude. The largest-amplitude mode shown211
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(a) Pair 2 (b) Pair 22 (c) Pair 33

(d) Pair 47 (e) Pair 41 (f) Pair 42

Figure 8: Streamwise velocity iso-surfaces (red for positive, blue for negative values) of the real part of six
dynamic modes’ pairs selected by the sparsity-promoting algorithm with γ = 11330, ordered according to their
amplitude |α|.

in figure 8 (a) are very similar to the low-frequency ones found for γ = 40000. Among the212

largest-amplitude modes, many other DMD modes present a similar spatial structure, associ-213

ated to slightly higher (figure 8 (c)) or lower (figure 8 (b)) spatial and temporal wavenumbers.214

In particular, the mode provided in figure 8 (b) is characterized by a very low frequency corre-215

sponding to a Strouhal number St ≈ 0.2 which lies within the frequency range typical of the216

wake meandering [3, 37, 38].217

High-frequency modes are selected as well for γ = 11330. In particular, among these modes,218

that with the largest amplitude has ω = 84.00 (see figure 8 (d)), appearing as a harmonic of219

the previously shown DMD mode associated to the tip vortices (see figure 7 (b)). Among the220

lower-amplitude modes, some moderate-frequency modes are present, two of which are shown221

in figure 8 (e-f). These modes appear to be localized in the tower’s and nacelle’s wake and222

characterized by a fine spatial structures.223

A two-dimensional visualization of some of these DMD modes is shown in figure 9 (left col-224

umn), together with the Fourier transform in the streamwise direction of their axial velocity225

component averaged on the cross-section (right column). The modes are ordered with increas-226

ing frequency, from top to bottom. The lowest-frequency mode shown in figure 9 (a), whose227

frequency lies in the range of the wake meandering, is characterized by a very low main stream-228

wise wavenumber close to 1.229

The following three modes, provided in figure 9 (c-e-g) and associated with a Strouhal number230

in the range St ≈ 0.46 − 0.78, are very similar in structure and frequency to the dominant231

modes found by POD in the far wake region of a wind turbine in the presence of tower and232

nacelle [15]. Notice that these frequencies and large-scale oscillations were undetected in a233

modal decomposition of the wake of the wind turbine rotor in the absence of tower and nacelle234

[15], suggesting that the turbine’s tower may have a crucial role in the flow dynamics in the235

near and in the far-wake regions.236

Spatial Fourier transform of these modes allows one to find a dominant streamwise wavenum-237

bers in the range α ≈ 4− 5, which are consistent with the dominant streamwise wavenumbers238
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recovered by local stability analyses of the wake flow behind low-Reynolds number wind tur-239

bines [39, 40]. Notice that, for γ = 40000, four out of the five selected modes are characterized240

by temporal and spatial wavenumbers in this range, suggesting that these large-scale oscilla-241

tions have a strong dynamical relevance for the considered flow.242

As previously discussed, for decreasing values of the sparsity parameter, DMD modes with243

finer structures and higher frequencies are found as well. The mode with ω = 6.50 has a spa-244

tial distribution and structure similar to the lower-frequency ones, although characterized by a245

larger streamwise wavenumber (figure 9 (i-j)). In particular, being characterized by a dominant246

α ≈ 8, this mode is likely to represent a harmonic of one of the low-frequency modes shown247

in 9 (a-c) which have streamwise wavenumber α ≈ 4.248

Finally, a two-dimensional visualization of three high-frequency DMD modes is provided in249

figure 9 (k-m-o). The first two of these modes are localized in the central region of the domain,250

corresponding to the tower’s (and nacelle’s) wake. Unlike the previously discussed modes,251

these DMD modes are mostly localized in the near wake and characterized by much higher252

streamwise wavenumbers. In particular, one of these two modes has temporal and streamwise253

wavenumber equal to half of the tip vortices’ ones (compare figure 9 (k-l) with (o-p)), probably254

representing a subharmonic of this high-amplitude DMD mode. Whereas, the other is charac-255

terized by a temporal and streamwise wavenumber slightly lower than those of the tip vortices,256

with Strohual number with respect to the tower diameter close to ≈ 0.22. This mode might be257

associated to the vortex shedding of the tower. Similar modes were recovered by POD in [15]258

for a lower value of the Reynolds number, probably being linked to the interaction of the tip259

vortices with the vortices shed by the tower.260

5. CONCLUSIONS261

The present work provides a numerical study of the dynamically relevant flow motion in262

the wake of the NREL-5MW wind turbine. The novelty of this work is in the use of the263

Sparsity-Promoting variant of the Dynamic Mode Decomposition (DMD) method based on a264

three-dimensional dataset generated by large eddy simulation of the flow through the turbine.265

The tower and the nacelle are included in the simulation and are modeled by the immersed266

boundary method, whereas rotor blades are modeled using the actuator line method.267

For dynamically decomposing the wake flow, we extracted flow snapshots in a subdomain268

enclosing the wake, stored every 10◦rotation of the rotor. The Sparsity-Promoting DMD al-269

gorithm has been applied on this data-set, allowing us to select a limited number of dynamic270

modes which optimally reconstruct the snapshots’ sequence.271

This method is applied on a projection of the dataset over a low-dimensional proper-orthogonal-272

decomposition (POD) basis. On this low-dimensional basis, the algorithm seeks for a sparsity273

structure by minimizing an objective function representing the error with respect to the consid-274

ered data-set. The influence of the dimension of the POD subspace on the DMD modes has275

been first investigated, showing a good convergence of the DMD spectrum for a POD subspace276

dimension > 300.277

For high values of the sparsity parameter, only five conjugate pairs of DMD modes are selected.278

Among the selected modes, we find one mode corresponding to the tip vortices, oscillating at279

an angular frequency equal to three times the rotational frequency of the turbine. The remain-280

ing selected modes are all characterized by low frequencies and large-scale spatial structures281

developing in the far wake.282

13



(a)

0 2 4 6 8 10
0

2

4
10-4

(b)

(c)

0 5 10 15 20
0

2

4
10-4

(d)

(e)

0 5 10 15 20
0

2

4
10-4

(f)

(g)

0 5 10 15 20
0

2

10-4

(h)

(i)

0 5 10 15 20
0

2

10-4

(j)

(k)

0 10 20 30 40 50
0

5

10-5

(l)

(m)

0 10 20 30 40 50
0

2

4
10-5

(n)

(o)

0 10 20 30 40 50 60
0

5

10-5

(p)

Figure 9: (Left) Axial component of the real part and (right) Fourier amplitudes in the streamwise direction of
several leading DMD modes averaged in the wall-parallel planes y = 0 ((a-j) and (o-p), y = −0.41 (k-l) and
y = −0.65 (m-n). The modes are ordered from top to bottom according to their frequency, those in subframes
(a-h) and (o-p) being four of the five pairs selected with γ = 40000.
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Decreasing the sparsity promoting parameter allows retrieving a more complete basis, inducing283

a negligible performance loss coefficient with respect to the POD, with a smaller set of modes284

(250 instead of 300). The additional DMD modes are mostly harmonics of the five pairs recov-285

ered for the highest value of γ, although some lower-amplitude modes, linked to the dynamics286

of the towers’s wake are found as well. Unlike the largest-amplitude ones, these DMD modes287

are localized in the near wake, in the central region of the domain, corresponding to the tower’s288

(and nacelle’s) wake and are characterized by a much higher streamwise wavenumber. More-289

over, high-amplitude DMD modes localized in the far wake and characterized by a very low290

frequency, lying in the range of the wake meandering, are found as well.291

6. OUTLOOK292

These results show that the most dynamically relevant DMD modes are related to the tip293

vortices in the near wake and to larger-scale structures in the far wake, pulsating with low fre-294

quency reaching the range of the wake meandering. The main result of this analysis is that295

a consistent part of the dynamically relevant coherent structures in the wake is due to these296

large-scale modes.297

Therefore, a very-low-dimensional reduced-order model (ROM) would mostly take into ac-298

count these low-frequency modes, but at the price of a large performance loss. Whereas, a299

low-dimensional model of the wake taking into account the harmonics or subharmonics of the300

largest-amplitude modes, together with other lower-amplitude modes linked to the tower’s and301

nacelle’s vortex shedding, will ensure a negligible performance loss, with a smaller number302

of modes than the POD. This is a very useful indication to develop accurate ROMs based on303

DMD in the future, which would eventually lead to the design of optimized wind farms layout304

and control to increase the energy density produced.305

7. ACKNOWLEDGEMENTS306

This paper is an extended version of our conference paper from 16th SDEWES Conference,307

Dubrovnik, Croatia, 10-15 October 2021.308

References309

[1] P. A. Østergaard, N. Duic, Y. Noorollahi, S. A. Kalogirou, Recent advances in renewable310

energy technology for the energy transition, Renewable Energy 179 (2021) 877–884.311

[2] Liuwen, Yang, Combustion instabilities in gas turbine engines: Operational experience,312

fundamental mechanisms, and modeling, 1, 2006.313

[3] D. Medici, Experimental studies of wind turbine wakes: power optimisation and mean-314

dering, Ph.D. thesis, KTH, 2005.315

[4] P. A. Østergaard, N. Duic, Y. Noorollahi, H. Mikulcic, S. Kalogirou, Sustainable devel-316

opment using renewable energy technology, Renewable Energy 146 (2020) 2430–2437.317

[5] P. A. Østergaard, N. Duic, Y. Noorollahi, S. Kalogirou, Latest progress in sustainable318

development using renewable energy technology, Renewable Energy 162 (2020) 1554–319

1562.320

15



[6] I. R. E. Agency, Future of wind: Deployment, investment, technology, grid integration321

and socio-economic aspects (A Global Energy Transformation paper), Technical Report,322

IRENA, 2019.323

[7] I. R. E. Agency, Renewable capacity statistics 2021, Technical Report, IRENA, 2021.324

[8] I. E. Agency, Renewable 2020, Analysis and forecast to 2025, Technical Report, Fuel325

report November 2020, 2020.326

[9] I. R. E. Agency, Renewable power generation costs in 2019, Technical Report, IRENA,327

2021.328

[10] R. Wiser, J. Rand, J. Seel, P. Beiter, E. Baker, E. Lantz, P. Gilman, Expert elicitation329

survey predicts 37% to 49% declines in wind energy costs by 2050, Nat. Energy (2021).330

[11] R. J. Stevens, C. Meneveau, Flow structure and turbulence in wind farms, Annual review331

of fluid mechanics 49 (2017).332

[12] G. Berkooz, P. Holmes, J. L. Lumley, The proper orthogonal decomposition in the analysis333

of turbulent flows, Annual review of fluid mechanics 25 (1993) 539–575.334

[13] N. Hamilton, M. Tutkun, R. B. Cal, Low-order representations of the canonical wind335

turbine array boundary layer via double proper orthogonal decomposition, Physics of336

Fluids 28 (2016) 025103. doi:10.1063/1.4940659.337

[14] N. Ali, N. Hamilton, D. DeLucia, R. Bayoan Cal, Assessing spacing impact on coherent338

features in a wind turbine array boundary layer, Wind Energy Science (Online) 3 (2018).339

doi:10.5194/wes-3-43-2018.340

[15] G. De Cillis, S. Cherubini, O. Semeraro, S. Leonardi, P. De Palma, Pod-based analysis of341

a wind turbine wake under the influence of tower and nacelle, Wind Energy 24 (2021).342

[16] P. J. Schmid, Dynamic mode decomposition of numerical and experimental data, Journal343

of fluid mechanics 656 (2010) 5–28.344

[17] M. Ilak, C. W. Rowley, Modeling of transitional channel flow using balanced proper345

orthogonal decomposition, Phys. Fluids 20 (2008) 034103.346

[18] M. A. Bucci, S. Cherubini, J. C. Loiseau, J. C. Robinet, Influence of freestream turbulence347

on the flow over a wall roughness, Physical Review Fluids 6 (2021) 063903.348

[19] R. Rajasegar, J. Choi, B. McGann, A. Oldani, T. Lee, S. D. Hammack, C. D. Carter,349

J. Yoo, Comprehensive combustion stability analysis using dynamic mode decomposition,350

Energy & Fuels 32 (2018) 9990–9996. doi:10.1021/acs.energyfuels.8b02433.351

[20] M. Liu, L. Tan, S. Cao, Method of dynamic mode decomposition and reconstruction with352

application to a three-stage multiphase pump, Energy 208 (2020).353

[21] M. Liu, L. Tan, S. Cao, Dynamic mode decomposition of gas-liquid flow in a rotodynamic354

multiphase pump, Renewable Energy 139 (2019) 1159–1175.355

16



[22] Y. Han, L. Tan, Dynamic mode decomposition and reconstruction of tip leakage vortex356

in a mixed flow pump as turbine at pump mode, Renewable Energy 155 (2020) 725–734.357

[23] G. V. Iungo, C. Santoni-Ortiz, M. Abkar, F. Porté-Agel, M. A. Rotea, S. Leonardi, Data-358
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