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Dynamic mode decomposition (DMD) has been applied to the wake of the NREL-5MW wind turbine invested by a uniform inflow, to identify the most dynamically relevant coherent structures characterizing this flow. The decomposition has been applied on a snapshot dataset obtained by Large-Eddy Simulation of the flow impinging on the wind turbine, whose tower and nacelle are modeled by the immersed boundary method, whereas rotor blades are modeled using the actuator line method. The Sparsity-Promoting DMD algorithm allows one to select a limited number of dynamic modes optimally reconstructing the snapshot sequence. Among the largest-amplitude selected modes, we found the tip vortices, oscillating at an angular frequency equal to three times the rotational frequency of the turbine. Interestingly, the remaining selected modes are characterized by low frequencies and large-scale spatial structures, reaching the frequency range of the wake meandering. This small set of dynamic modes is highly relevant for the formulation of accurate reduced-order models, which would eventually lead to the design of optimized wind farms layout and control to increase the energy density produced.

INTRODUCTION

An accurate description and modeling of the complex behaviour of fluid flows relevant to many energy-related applications still poses a great challenge to researchers and engineers, especially in view of the upcoming energy transition [START_REF] Østergaard | Recent advances in renewable energy technology for the energy transition[END_REF]. Notable examples are the flows in a combustion chamber [START_REF] Liuwen | Combustion instabilities in gas turbine engines: Operational experience, fundamental mechanisms, and modeling[END_REF] and the flow impinging on a wind turbine [START_REF] Medici | Experimental studies of wind turbine wakes: power optimisation and meandering[END_REF], both exhibiting non trivial and coherent oscillations that markedly affect the energy production. In this work we focus on wind turbines, whose production is likely to become crucial in the upcoming years [START_REF] Østergaard | Sustainable development using renewable energy technology[END_REF].

For limiting the impact of energy production by fossil fuels on the environment, an increasingly larger fraction of energy demand should be satisfied by renewable sources [START_REF] Østergaard | Latest progress in sustainable development using renewable energy technology[END_REF], such as wind turbines. In particular, it is expected that wind power would be able to provide about 35% of the total electricity needs by 2050 [START_REF] Agency | Future of wind: Deployment, investment, technology, grid integration and socio-economic aspects (A Global Energy Transformation paper[END_REF], reaching 6000 GW of power production. However, in the last few years, the wind-energy electricity capacity have reached only ≈ 9%, corresponding to about 700 GW [START_REF] Agency | Renewable capacity statistics 2021[END_REF]. In order to meet the Paris goal, an average power addition of 180 GW per year would be needed.

The cost of electricity generated from onshore wind is decreasing, with the global average falling to USD 53/M W h in 2019 [START_REF] Agency | Renewable 2020, Analysis and forecast to 2025[END_REF]. The levelised cost of electricity (LCOE) for onshore wind plants is now competitive with respect to fossil fuel generation sources and is expected to decrease further as installation costs reduce and performance improve. Instead, the LCOE of offshore wind plants is competitive in certain European markets (such as Germany and the Netherlands) and would most probably become competitive in other markets by 2030, dropping from the actual average of 120 U SD/M W h in 2019 to an average of 30 -70 U SD/M W h by 2050 [START_REF] Agency | Future of wind: Deployment, investment, technology, grid integration and socio-economic aspects (A Global Energy Transformation paper[END_REF][START_REF] Agency | Renewable power generation costs in 2019[END_REF]. Despite this encouraging drop of the costs, the current rate of growth of wind-energy installed power is still too low for reaching the Paris climate goals [START_REF] Agency | Renewable 2020, Analysis and forecast to 2025[END_REF]. The needed acceleration in the deployment of wind power installations will require the enhancement of policy support initiatives, eradication of regulatory uncertainties, and still more investment in new technologies [START_REF] Agency | Renewable 2020, Analysis and forecast to 2025[END_REF].

In particular, technology innovation is needed for both the single turbine and the farm arrangement.

Thanks to the increase of rotor diameters and hub heights, a considerable rise in the capacity of the single turbine would be reached by 2035 (namely, 5 -6M W for onshore applications, and 15 -20 M W for offshore ones, more than doubling the current capacity of these turbines [START_REF] Wiser | Expert elicitation survey predicts 37% to 49% declines in wind energy costs by 2050[END_REF]). However, wind turbines are usually clustered in large farms, where most of the turbines operate in the wake of upwind ones. This turbines are rarely capable to achieve the nominal power production, being exposed to velocity deficit and high turbulence levels [START_REF] Stevens | Flow structure and turbulence in wind farms[END_REF]. An optimization of the farm design, allowing to fruitfully exploit the interaction of the wakes with the downwind turbines, would be needed to guarantee high efficiency, flexibility and security of the power generation, leading us to the topic of the present work.

In order to investigate in detail the effect on power production of the interaction of two turbine's wakes, one should numerically simulate the whole flow field ranging from a few diameters preceding the upwind turbine to several diameters downstream the second turbine. This task being computationally prohibitive, the development of low-dimensional models of the wake dynamics that can be fed into simulations of the downwind turbines are going to assume a huge scientific interest. In fact, the development of such low-dimensional models would allow to accurately estimate the power production of these turbines at a much cheaper computational cost. As a consequence, it would be eventually possible to consistently increase the power produced by the whole wind farm, by simply optimizing the relative placement of the turbines. Thus, constructing low-dimensional models of the dynamics of wind turbine wakes appears fundamental for the design and optimization of wind farms. This motivates the present work, which provides a detailed study of the dynamics of the wake of the 5MW wind turbine aiming at extracting the dynamically relevant structures, that can be used to develop advanced lowdimensional models of the wake.

In the last years, several attempts have been made to study the dynamics of the wind-turbine wake by using the Proper Orthogonal Decomposition (POD) method [START_REF] Berkooz | The proper orthogonal decomposition in the analysis of turbulent flows[END_REF] for the formulation of Reduced-Order Models. This modal decomposition, based on orthogonal modes, has been applied: for developing low-order models [START_REF] Hamilton | Low-order representations of the canonical wind turbine array boundary layer via double proper orthogonal decomposition[END_REF]; to array of turbines in order to study the effect of the layout of the farm [START_REF] Ali | Assessing spacing impact on coherent features in a wind turbine array boundary layer[END_REF]; to a single turbine including a detailed description of the effects of the tower and the nacelle [START_REF] De Cillis | Pod-based analysis of a wind turbine wake under the influence of tower and nacelle[END_REF]. However, recent works [START_REF] Schmid | Dynamic mode decomposition of numerical and experimental data[END_REF] have demonstrated that POD suffers from two main drawbacks.

The first is that this method recovers the most energetic structures within the flow, but the energy may not in all circumstances be the correct measure to rank the flow structures. Moreover, since second-order statistics are chosen as a basis for the decomposition, valuable phase information is lost. Thus, the most-energetic POD modes are not always dynamically relevant, therefore the selection of a low-dimensional basis for the realization of a reduced-order model may be not trivial [START_REF] Ilak | Modeling of transitional channel flow using balanced proper orthogonal decomposition[END_REF].

For these reasons, we provide in the present work an analysis based on a different recentlydeveloped approach known as the Dynamic Mode Decomposition (DMD) [START_REF] Schmid | Dynamic mode decomposition of numerical and experimental data[END_REF]. This technique, which allows one to approximate the nonlinear dynamics embedded in a data sequence, has been recently applied to several complex flow cases, from the flow over a wall-mounted roughness element [START_REF] Bucci | Influence of freestream turbulence on the flow over a wall roughness[END_REF], to the instabilities developing in several types of combustors [START_REF] Rajasegar | Comprehensive combustion stability analysis using dynamic mode decomposition[END_REF].

Very recently, the same technique has been successfully used for reconstructing coherent structures developing on turbomachinery applications such as the gas-liquid flow in a rotodynamic multiphase pump [START_REF] Liu | Method of dynamic mode decomposition and reconstruction with application to a three-stage multiphase pump[END_REF][START_REF] Liu | Dynamic mode decomposition of gas-liquid flow in a rotodynamic multiphase pump[END_REF] and the tip leakage vortex in a mixed flow pump [START_REF] Han | Dynamic mode decomposition and reconstruction of tip leakage vortex in a mixed flow pump as turbine at pump mode[END_REF].

At the moment, very few studies have applied DMD on wind turbine flows. Iungo et al. [START_REF] Iungo | Datadriven reduced order model for prediction of wind turbine wakes[END_REF] focused on the development of reduced models of the wake. Le Clainche et al. [START_REF] Le Clainche | Wind predictions upstream wind turbines from a lidar database[END_REF] applied DMD to a lidar database for wind predictions. Debnath et al. [START_REF] Debnath | Towards reduced order modelling for predicting the dynamics of coherent vorticity structures within wind turbine wakes[END_REF] employed the DMD for predicting the dynamics of coherent vorticity structures of wind turbine wakes. However, in most of these works, the DMD modes are ranked with respect to their amplitude, which can be an ineffective criterion for selecting a very limited subset of dynamic modes, leading to an unsatisfying quality of the resulting approximation of numerically generated snapshots through low-order reduced models.

For this reason, in this work we use the Sparsity-Promoting variant of the DMD [START_REF] Jovanović | Sparsity-promoting dynamic mode decomposition[END_REF] for ranking the most relevant DMD modes of the three-dimensional numerical dataset. Based on this robust ranking, a detailed analysis of the main spatial structures and frequencies of the dynamically relevant motion in a wind turbine wake, including the tower and the nacelle, is carried out. Moreover, the convergence of the main frequencies and growth rates, with respect to the low-dimensional basis on which this decomposition is constructed, is assessed for high Reynolds-number wind-turbine flows. Large Eddy Simulations using the Actuator Line Method to simulate the rotor and the Immersed Boundary Method to simulate tower and nacelle are employed to construct the database on which DMD is performed. The Sparsity-Promoting variant of the DMD algorithm is then applied for identifying and analysing the most relevant coherent structures embedded in the turbulent wake flow.

LARGE EDDY SIMULATION

Large Eddy Simulations (LES) is employed for studying the wake behind the NREL-5MW wind turbine. LES resolves large-scale turbulent structures, filtering out small-scale turbulent fluctuations, whose effect on the large flow structures is modelled [START_REF] Pope | Turbulent Flows[END_REF]. This is done by solving the governing equations for the filtered non-dimensional velocity, u, derived from the incompressible Navier-Stokes equations:

∂u i ∂t + ∂u i u j ∂x j = - ∂p ∂x i + 1 Re ∂ 2 u i ∂x j ∂x j - ∂τ ij ∂x j + F i , (1) 
∂u i ∂x i = 0, (2) 
where i, j ∈ {1, 2, 3} indicate the components corresponding to the streamwise, x, wallnormal, y, and spanwise, z, directions, respectively, and p denotes the pressure. The Reynolds number is defined as Re = U∞D ν , where U ∞ is the inlet velocity, D is the rotor diameter and ν is the kinematic viscosity of the fluid. These quantities have been used as reference variables for non-dimensionalisation.

The residual stress tensor, τ ij , is decomposed into an isotropic and an anisotropic part. The isotropic part is included in the modified filtered pressure p * = p+ 1 3 τ ii , whereas the anisotropic part needs to be modelled. As in many previous works [START_REF] Santoni | Development of a high fidelity cfd code for wind farm control[END_REF][START_REF] De Cillis | Pod-based analysis of a wind turbine wake under the influence of tower and nacelle[END_REF], the Smagorinsky model is employed, which relates the residual stress to the filtered rate of strain by means of the eddy vsiscosity of the residual motion, ν r , which is modelled using the mixing length hypothesis, with Smagorinsky constant C S set to 0.17.

The term F i in equation ( 1) models the aerodynamic force (per unit length) exerted by the turbine blades on the fluid, as provided by the actuator line method, [START_REF] Sorensen | Computation of wind turbine wakes using combined navierstokes/actuator-line methodology[END_REF]. Whereas, the immersed boundary method [START_REF] Orlandi | Dns of turbulent channel flows with two-and three-dimensional roughness[END_REF], based on a discrete forcing approach is used for describing the tower and nacelle.

The governing equations are solved by means of an in-house numerical code, written in For-tran90. This code implements a second-order-accurate centered finite difference scheme for the spatial discretization, on a staggered Cartesian grid. A hybrid low-storage third-order-accurate

Runge-Kutta scheme is used for time integration. [START_REF] Orlandi | Fluid flow phenomena: a numerical toolkit[END_REF]. Further details on the numerical approach can be found in [START_REF] Santoni | Effect of tower and nacelle on the flow past a wind turbine[END_REF][START_REF] De Cillis | Pod-based analysis of a wind turbine wake under the influence of tower and nacelle[END_REF].

For the considered NREL-5MW wind turbine, the Reynolds number based on the turbine diameter and the inlet velocity at hub-height is Re = 10 8 . The tip-speed ratio considered in this study is λ = 7. The computational domain has extension 12.5D × 5D × 3D in the streamwise, vertical and transverse directions, respectively. The turbine is located at 4D from the inlet, centered in the transverse direction. Concerning the wall-normal direction, we set y = 0 on the nacelle's center, the wall being placed at y = -0.9.

This computational domain is discretized in space using 2048 × 512 × 512 grid-points in x, y and z directions, respectively. The grid is uniform along the streamwise and transverse directions, and is stretched in the vertical direction, with finer grid spacing in the turbine's wake. In particular, of the total 512 points used in the wall-normal direction, 250 points are uniformly gathered in the region going from y = -0.9 to y = 0.6, which comprises the rotor's and the tower's wakes. The remaining 262 points are distributed in the region y ∈ [0.6, 5], stretched towards the upper boundary following an hyperbolic tangent law.

At the domain boundaries, we imposed the following conditions: at the outlet points, a radiative non-reflective boundary condition with convection velocity C = 9 m/s [START_REF] Orlanski | A simple boundary condition for unbounded hyperbolic flows[END_REF]; no-slip at the bottom wall; free slip at the top wall; periodicity along the spanwise direction.

Concerning time integration, in order to guarantee a uniform time spacing of the snapshots for the DMD analysis (see the next subsection), we set a fixed time step dt = 0.00073, ensuring a Courant-Friedrichs-Lewy number < 0.5 throughout the whole computation.

SPARSITY PROMOTING DYNAMIC MODE DECOMPOSITION

The dynamic mode decomposition (DMD), introduced in [START_REF] Schmid | Dynamic mode decomposition of numerical and experimental data[END_REF], is a data driven technique which allows one to extract relevant flow features, namely the DMD modes, whose dynamics is governed by corresponding eigenvalues. The variant we employ in the present study has been developed in [START_REF] Jovanović | Sparsity-promoting dynamic mode decomposition[END_REF] and is called Sparsity Promoting Dynamic Mode Decomposition (SP-DMD), since it selects a limited number of modes which optimally reconstruct the flow field time series.

A series of M snapshots is collected from the LES at a constant sampling frequency. Each snapshot q i can include one or multiple flow variables or even derived observables and has dimension N = O × S (q i ∈ C N ), where O is the number of observables considered, whereas S represents the number of measurements points:

{q 1 , q 2 , . . . , q M }. (3) 
We assume that a linear time-invariant mapping A, connects every pair of successive snapshots,

q i+1 = Aq i , i = {0, . . . , M -1}. (4) 
Using relation ( 4) we can write:

Q 1 = AQ 0 , (5) 
where Q 0 and Q 1 are:

Q 0 = q 0 q 1 . . . q M -1 , (6) 
Q 1 = q 1 q 2 . . . q M . (7) 
The linear operator A, as suggested by [START_REF] Schmid | Dynamic mode decomposition of numerical and experimental data[END_REF], can be projected onto the r-dimensional POD basis U of the snapshots matrix Q 0 , calculated using a Singular Value Decomposition (SVD) or the snapshot method [START_REF] Sirovich | Turbulence and the dynamics of coherent structures. parts i-iii[END_REF],

Q 0 = USV * , (8) A ≈ UF U * . (9) 
The matrix F can be therefore obtained by minimizing the Frobenius norm of the difference between Q 1 and AQ 0 , with

A = UF U * and Q 0 = USV * , min F Q 1 -UF SV * 2 F . (10) 
The optimal solution to (10) is:

F = U * Q 1 VS -1 . (11) 
This projection ensures a more robust calculation of the low dimensional representation of A and it allows also to account for a rank-deficiency of the snapshots matrix Q 0 , restricting the basis U to those vectors associated to non-zero singular values, or singular values above a prescribed threshold. The dynamics in the low-dimensional subspace defined by the POD modes U is governed by

x i+1 = F x i . (12) 
Dynamic modes are then extracted by computing the eigendecomposition of the matrix F :

F = y 1 . . . y r Y    µ 1 . . . µ r    Dµ    z * 1 . . . z * r    Z * (13) 
where y i and z * 1 are the right and left eigenvectors of F , which are scaled such that y * i y i = 1 and z * i y j = δ ij . Therefore the solution to (12) can be calculated as follows:

x n = Y D n µ Z * x 0 = r i y i µ n i z * i x 0 = r i y i µ n i α i , (14) 
where α i = z * i x 0 represents the component of the initial condition x 0 in the z * i direction. The snapshots can be approximated by mapping x i on the higher dimensional space C N ,

q n ≈ Ux n = r i Uy i µ n i α i = r i ϕ i µ n i α i , (15) 
and can be seen, therefore, as a linear combination of the DMD modes ϕ i = Uy i where α i is the amplitude of the corresponding DMD mode. The equation ( 15) can be written also in matrix form:

q 0 q 1 . . . q M -1 Q 0 ≈ ϕ 1 ϕ 2 . . . ϕ r Φ      α 1 α 2 . . . α r      Dα      1 µ 1 . . . µ M -1 1 1 µ 2 . . . µ M -1 2 . . . . . . . . . . . . 1 µ r . . . µ M -1 r      V and , (16) 
which highlights that the temporal evolution of the dynamic modes is governed by the Vandermonde matrix V and . Once the eigendecomposition of ( 13) is computed, the calculation of the amplitudes vector α = [α 1 . . . α r ] T is performed solving the following optimization problem.

min α J(α) = Q 0 -ΦD α V and 2 F . (17) 
The latter, using equation ( 8) and the relation and the definition of the matrix Φ := UY , can be rewritten as:

min α J(α) = ∥SV * -Y D α V and ∥ 2 F . ( 18 
)
The superposition of all the DMD modes, weighted by their amplitudes and evolving according to their frequency and growth rate, optimally approximates the data sequence. However, the sparsity promoting DMD aims at finding a low dimensional representation of the snapshots' sequence in order to capture the most relevant dynamic structures. This objective is achieved in two steps: firstly, a sparsity structure is sought, which achieves a user-defined trade-off between the number of modes and the approximation error; then the sparsity structure of the amplitudes' vector is fixed and the optimal values of the non-zero amplitudes is calculated. The first step is tackled by augmenting the objective function J(α) in ( 18) with an additional term, card(α), the penalizes the number of non-zero elements in the amplitudes' vector α, min

α J(α) + γ card(α). (19) 
In the sparsity promoting optimization problem [START_REF] Rajasegar | Comprehensive combustion stability analysis using dynamic mode decomposition[END_REF], γ is a parameter that influences the sparsity level, with higher values of the parameter promoting sparser solutions. In general, finding a solution to [START_REF] Rajasegar | Comprehensive combustion stability analysis using dynamic mode decomposition[END_REF] amounts to a combinatorial search that quickly becomes intractable for any problem of interest. For this reason a relaxed version of ( 19) is introduced by replacing the cardinality function of α with its ℓ 1 -norm,

min α J(α) + γ r i=1 |α i |. (20) 
The sparsity-promoting DMD problem ( 20) is a convex optimization problem, solved using the ADMM [START_REF] Jovanović | Sparsity-promoting dynamic mode decomposition[END_REF]. Then, the sparsity structure of the amplitudes' vector is fixed and the amplitudes of the non-zero entries are recomputed by solving the following optimization problem:

minimize α J(α) (21) 
subject to E T α = 0, where the matrix E ∈ R r×m encodes the sparsity structure of the amplitudes' vector α. The columns of E are unitary vectors whose non-zero elements correspond to zero components of α. For example, for α ∈ C 4 with:

α = α 1 0 α 3 0, T (22) 
the matrix E will be:

E =     0 0 1 0 0 0 0 1     . (23) 
The numerical method employed for the solution of the optimization problem ( 21) is the one proposed in [START_REF] Jovanović | Sparsity-promoting dynamic mode decomposition[END_REF].

RESULTS

In order to carrying out the DMD analysis, we extract from the snapshots of the velocity field a reduced three-dimensional subdomain enclosing the wake. As shown in the sketch in figure 1, the considered subdomain begins at x = 0, y = -0.7, z = -0.7 and extends towards x = 8.4, y = 0.63, z = 0.7 in the x, y and z directions, respectively. Notice that, since the computational domain is centered at the nacelle location in the spanwise direction, the selected subdomain comprises the whole region of the wake, starting just downstream of the rotor and extending towards the outlet, while in the wall-normal direction it extends from the wall up to the upmost position reached by the tip of the blades. Figure 2 provides a snapshot of the flow field in such a subdomain showing, by means of the λ 2 criterion [START_REF] Jeong | On the identification of a vortex[END_REF], the coherent set of tip-and root-vortices generated by the rotor's blades. These vortices remain rather coherent up to ≈ 3 -4 diameters downstream of the turbine, and then break down to turbulence further downstream. However, some coherent vortex filaments can be observed in the downstream part of the domain, indicating that the dynamics of the wake is not only driven by incoherent fluctuations.

The whole flow field in the selected subdomain is stored at time intervals ∆t corresponding to a 10 • rotation of rotor. The entire dataset comprises 3052 snapshots, whose ensemble average is shown in Figure 3. One can observe that the wake is asymmetric and that smaller wakes are present right behind the tower and at the center of the wake, as shown in the bottom right frame of figure 3. Notice that the snapshots' ensemble average is subtracted from each snapshot before applying the DMD, which makes all the eigenvalues lie on the unitary circle [START_REF] Chen | Variants of dynamic mode decomposition: boundary condition, koopman, and fourier analyses[END_REF]. Small deviations from this theoretical condition will be observed because we perform the decomposition in reduced POD subspaces. In order to ensure the convergence of the dynamical modes with respect to the dimension of the chosen POD basis, the sparsity promoting DMD has been carried out for different values of the POD subspace dimension, r. Figure 4 shows the logarithmic mapping of the eigenvalues for different values of r, computed according to ω = -log(µ) i∆t , where ∆t is the time interval between two consecutive snapshots and i the imaginary unit. Notice that the eigenvalues (as well as the associated dynamic modes) form complex conjugate pairs, since the decomposed velocity field is constituted of real variables.

Concerning the influence of the POD subspace dimension on the DMD spectrum, one can observe in the top panel of figure 4, that increasing this parameter, for sufficiently high value of r the spectra collapse onto each other. In particular, the bottom panel of figure 4 shows that for r ≥ 301, the eigenvalues' frequencies are very well converged, and only small deviations are recovered on the associated growth rates of the modes. However, as expected for a turbulent statistically-stationary flow, the eigenvalues should collapse onto the unit circle (corresponding to a zero growth rate), due to the quasi periodic dynamics of the associated modes. Thus, this small deviation of the growth rate is a consequence of the numerical approximation and has no physical meaning. The behavior shown in the bottom frame of figure 4 indicates that further increasing the subspace dimension would not provide any improvement in the numerical estimate of the growth rate. For this reason, the following analyses have been carried out with r = 301, which is to be considered satisfactory.

The influence of the sparsity parameter γ on the DMD modes is now assessed, by repeating the computation for different values of γ, ranging from 100 to 40000, quasi equally spaced in logarithmic scale. As shown in Figure 5, low (high) values of γ ensure the selection of a large (small) number of DMD modes. Notice that, even for very low values of γ, the performance loss is not null since the DMD is carried out on a lower-dimensional POD projection of the snapshot's space.

For the considered case, when γ < 8 × 10 3 , the performance loss with respect to the POD basis is negligible. Whereas, for γ > 8 × 10 3 , the performance loss rapidly increases towards 90%, while the number of selected modes is reduced of more than one order of magnitude. The influence of γ on the DMD spectrum is shown in figure 6. With γ = 40000, four pair of modes with ω ∈ (3 -5), and a larger frequency mode with ω ≈ 42, are selected. Decreasing the sparsity parameter of a factor 4, many other low-frequency modes are selected together with a The five pairs of DMD modes selected for γ = 40000 are shown in figure 7. The pair corresponding to ω = 42.00 is clearly related to the tip vortices (see Figure 7(b)), oscillating at an angular frequency equal to three times the rotational frequency of the turbine. The remaining selected modes, characterized by rather low frequencies, are associated to large-scale spatial structures mostly developing in the far wake region, as can be observed in Figure 7(a,c-e).

These low-frequency modes are likely to be linked to the secondary instability of the tip vortices and to their interaction with the vortices shed by the tower, as suggested by the POD analysis of the wake of a wind turbine in the presence of tower and nacelle [START_REF] De Cillis | Pod-based analysis of a wind turbine wake under the influence of tower and nacelle[END_REF]. Some of the modes selected for γ = 11330 (indicated by the black circles in figure 6), are shown in figure 8, ordered according to their amplitude. The largest-amplitude mode shown In particular, the mode provided in figure 8 (b) is characterized by a very low frequency corresponding to a Strouhal number St ≈ 0.2 which lies within the frequency range typical of the wake meandering [START_REF] Medici | Experimental studies of wind turbine wakes: power optimisation and meandering[END_REF][START_REF] Mao | Far-wake meandering induced by atmospheric eddies in flow past a wind turbine[END_REF][START_REF] Gupta | Low-order modelling of wake meandering behind turbines[END_REF].

High-frequency modes are selected as well for γ = 11330. In particular, among these modes, that with the largest amplitude has ω = 84.00 (see figure 8 (d)), appearing as a harmonic of the previously shown DMD mode associated to the tip vortices (see figure 7 (b)). Among the lower-amplitude modes, some moderate-frequency modes are present, two of which are shown in figure 8 (e-f). These modes appear to be localized in the tower's and nacelle's wake and characterized by a fine spatial structures.

A two-dimensional visualization of some of these DMD modes is shown in figure 9 (left column), together with the Fourier transform in the streamwise direction of their axial velocity component averaged on the cross-section (right column). The modes are ordered with increasing frequency, from top to bottom. The lowest-frequency mode shown in figure 9 (a), whose frequency lies in the range of the wake meandering, is characterized by a very low main streamwise wavenumber close to 1.

The following three modes, provided in figure 9 (c-e-g) and associated with a Strouhal number in the range St ≈ 0.46 -0.78, are very similar in structure and frequency to the dominant modes found by POD in the far wake region of a wind turbine in the presence of tower and nacelle [START_REF] De Cillis | Pod-based analysis of a wind turbine wake under the influence of tower and nacelle[END_REF]. Notice that these frequencies and large-scale oscillations were undetected in a modal decomposition of the wake of the wind turbine rotor in the absence of tower and nacelle [START_REF] De Cillis | Pod-based analysis of a wind turbine wake under the influence of tower and nacelle[END_REF], suggesting that the turbine's tower may have a crucial role in the flow dynamics in the near and in the far-wake regions.

Spatial Fourier transform of these modes allows one to find a dominant streamwise wavenumbers in the range α ≈ 4 -5, which are consistent with the dominant streamwise wavenumbers recovered by local stability analyses of the wake flow behind low-Reynolds number wind turbines [START_REF] Viola | Prediction of the hub vortex instability in a wind turbine wake: stability analysis with eddy-viscosity models calibrated on wind tunnel data[END_REF][START_REF] De Cillis | Stability and optimal forcing analysis of a wind turbine wake: comparison with pod[END_REF]. Notice that, for γ = 40000, four out of the five selected modes are characterized by temporal and spatial wavenumbers in this range, suggesting that these large-scale oscillations have a strong dynamical relevance for the considered flow.

As previously discussed, for decreasing values of the sparsity parameter, DMD modes with finer structures and higher frequencies are found as well. The mode with ω = 6.50 has a spatial distribution and structure similar to the lower-frequency ones, although characterized by a larger streamwise wavenumber (figure 9 (i-j)). In particular, being characterized by a dominant α ≈ 8, this mode is likely to represent a harmonic of one of the low-frequency modes shown in 9 (a-c) which have streamwise wavenumber α ≈ 4.

Finally, a two-dimensional visualization of three high-frequency DMD modes is provided in figure 9 (k-m-o). The first two of these modes are localized in the central region of the domain, corresponding to the tower's (and nacelle's) wake. Unlike the previously discussed modes, these DMD modes are mostly localized in the near wake and characterized by much higher streamwise wavenumbers. In particular, one of these two modes has temporal and streamwise wavenumber equal to half of the tip vortices' ones (compare figure 9 (k-l) with (o-p)), probably representing a subharmonic of this high-amplitude DMD mode. Whereas, the other is characterized by a temporal and streamwise wavenumber slightly lower than those of the tip vortices, with Strohual number with respect to the tower diameter close to ≈ 0.22. This mode might be associated to the vortex shedding of the tower. Similar modes were recovered by POD in [START_REF] De Cillis | Pod-based analysis of a wind turbine wake under the influence of tower and nacelle[END_REF] for a lower value of the Reynolds number, probably being linked to the interaction of the tip vortices with the vortices shed by the tower.

CONCLUSIONS

The present work provides a numerical study of the dynamically relevant flow motion in the wake of the NREL-5MW wind turbine. The novelty of this work is in the use of the Sparsity-Promoting variant of the Dynamic Mode Decomposition (DMD) method based on a three-dimensional dataset generated by large eddy simulation of the flow through the turbine.

The tower and the nacelle are included in the simulation and are modeled by the immersed boundary method, whereas rotor blades are modeled using the actuator line method.

For dynamically decomposing the wake flow, we extracted flow snapshots in a subdomain enclosing the wake, stored every 10 • rotation of the rotor. The Sparsity-Promoting DMD algorithm has been applied on this data-set, allowing us to select a limited number of dynamic modes which optimally reconstruct the snapshots' sequence.

This method is applied on a projection of the dataset over a low-dimensional proper-orthogonaldecomposition (POD) basis. On this low-dimensional basis, the algorithm seeks for a sparsity structure by minimizing an objective function representing the error with respect to the considered data-set. The influence of the dimension of the POD subspace on the DMD modes has been first investigated, showing a good convergence of the DMD spectrum for a POD subspace dimension > 300.

For high values of the sparsity parameter, only five conjugate pairs of DMD modes are selected.

Among the selected modes, we find one mode corresponding to the tip vortices, oscillating at an angular frequency equal to three times the rotational frequency of the turbine. The remaining selected modes are all characterized by low frequencies and large-scale spatial structures developing in the far wake. Decreasing the sparsity promoting parameter allows retrieving a more complete basis, inducing a negligible performance loss coefficient with respect to the POD, with a smaller set of modes (250 instead of 300). The additional DMD modes are mostly harmonics of the five pairs recovered for the highest value of γ, although some lower-amplitude modes, linked to the dynamics of the towers's wake are found as well. Unlike the largest-amplitude ones, these DMD modes are localized in the near wake, in the central region of the domain, corresponding to the tower's (and nacelle's) wake and are characterized by a much higher streamwise wavenumber. Moreover, high-amplitude DMD modes localized in the far wake and characterized by a very low frequency, lying in the range of the wake meandering, are found as well.

OUTLOOK

These results show that the most dynamically relevant DMD modes are related to the tip vortices in the near wake and to larger-scale structures in the far wake, pulsating with low frequency reaching the range of the wake meandering. The main result of this analysis is that a consistent part of the dynamically relevant coherent structures in the wake is due to these large-scale modes.

Therefore, a very-low-dimensional reduced-order model (ROM) would mostly take into account these low-frequency modes, but at the price of a large performance loss. Whereas, a low-dimensional model of the wake taking into account the harmonics or subharmonics of the largest-amplitude modes, together with other lower-amplitude modes linked to the tower's and nacelle's vortex shedding, will ensure a negligible performance loss, with a smaller number of modes than the POD. This is a very useful indication to develop accurate ROMs based on DMD in the future, which would eventually lead to the design of optimized wind farms layout and control to increase the energy density produced.
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 1 Figure 1: Sketch of the computational setting indicating the subdomain selected for the DMD analysis.
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 2 Figure 2: Snapshot of the flow field showing the λ 2 criterion. The axis labels refer to the grid points, in order to specify the mesh points distribution.
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 345 Figure 3: Ensemble average of the LES snapshots: streamwise velocity in the plane x = 3 (left), y = 0 (top right), and z = 0 (bottom right).
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 167 Figure 6: Eigenvalues of the selected DMD modes for different values of the parameter γ. Black circles correspond to the modes shown in Figure 8.

Figure 8 :

 8 Figure 8: Streamwise velocity iso-surfaces (red for positive, blue for negative values) of the real part of six dynamic modes' pairs selected by the sparsity-promoting algorithm with γ = 11330, ordered according to their amplitude |α|.

Figure 9 :

 9 Figure 9: (Left) Axial component of the real part and (right) Fourier amplitudes in the streamwise direction of several leading DMD modes averaged in the wall-parallel planes y = 0 ((a-j) and (o-p), y = -0.41 (k-l) and y = -0.65 (m-n). The modes are ordered from top to bottom according to their frequency, those in subframes (a-h) and (o-p) being four of the five pairs selected with γ = 40000.
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