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Non-equilibrium dynamics of adaptation in sensory systems

Daniele Conti and Thierry Mora
Laboratoire de physique de l’École normale supérieure, CNRS, PSL Université,

Sorbonne Université, Université de Paris, 75005 Paris, France

Adaptation is used by biological sensory systems to respond to a wide range of environmental
signals, by adapting their response properties to the statistics of the stimulus in order to maximize
information transmission. We derive rules of optimal adaptation to changes in the mean and variance
of a continuous stimulus in terms of Bayesian filters, and map them onto stochastic equations that
couple the state of the environment to an internal variable controling the response function. We
calculate numerical and exact results for the speed and accuracy of adaptation, and its impact on
information transmission. We find that, in the regime of efficient adaptation, the speed of adaptation
scales sublinearly with the rate of change of the environment. Finally, we exploit the mathematical
equivalence between adaptation and stochastic thermodynamics to quantitatively relate adaptation
to the irreversibility of the adaptation time course, defined by the rate of entropy production. Our
results suggest a means to empirically quantify adaptation in a model-free and non-parametric way.

I. INTRODUCTION

To make informed decisions, biological organisms sense
and internally represent their environment using sensory
systems, often with accuracy approaching physical limits
[1, 2]. The response function of a sensory system maps in-
put stimuli onto output signals, whose nature depends on
the encoding system. For example, cells respond to en-
vironmental stimuli through biochemical signaling [3–5].
The fate of cells in development is controled by patterns
of gene expression [6]. Neural systems encode informa-
tion using spikes, voltage differences, and ionic currents
[7–9].

A common challenge posed to these sensory devices is
the breadth of variation of external stimuli, which is of-
ten much larger than the response range of the sensory
system. The activity of photoreceptors in the retina sat-
urate over 2 orders of magnitude, yet they must cope
with light intensities spanning 10 decades [10]. E. coli
can navigate gradients of chemo-attractant concentra-
tions over 5 orders of magnitude using the binary re-
sponse of its rotary motors [11]. This is possible because
over short timescales, stimuli are typically restricted to a
much narrower distribution which depends on the imme-
diate surrounding environment — e.g. ambient light level
in vision, or local concentration in chemical sensing. To
produce efficient responses, sensory systems must adapt
their response properties, as changes in the environment
modify the statistical properties of the stimulus [9, 12].

Theories has been developed to understand general
principles of sensory adaptation and predict response
properties, in particular in the context of sensory neu-
roscience [13]. One central idea is Barlow’s efficient cod-
ing hypothesis [14, 15], which posits that neural sys-
tems maximize information transimission under the con-
straints of metabolic costs, dynamic range, and internal
noise [16–19]. Efficient coding predicts that the dynamic
range of the response function should be matched to the
distribution of inputs, so as to make the output distri-
bution as balanced as possible, thus maximizing infor-

mation [20, 21]. As the distribution of input signals
changes with time, the response function should then
adapt accordingly. This argument rationalizes adapta-
tion and makes specific predictions about its properties,
with successful applications in vision [13, 22–24]. How-
ever, progress towards a general theory is hindered by the
multiplicity of systems which differ in their constraints,
costs, and relevant features to be encoded [25, 26].

A possible overarching principle of sensory adaptation
lies in its analogy to nonequilibrium statistical mechan-
ics. When a thermal system is driven out of equilibrium
by an external forcing, its energy landscape evolves and
the system “adapts” by following the new equilibrium
with a delay, while losing heat to the reservoir. The re-
sulting dynamics are irreversible, and the dissipated work
can be estimated using the measure of entropy produc-
tion, which quantifies irreversibility [27]. Similarly, sen-
sory adaptation creates irreversible dynamics that carry
an intrinsic energetic cost, as was studied in the case the
E. coli chemotactic signaling network [28]. The main re-
sult of this paper is to formalize the link between adapta-
tion and irreversibility by studying in detail analytically
solvable systems of sensory adaptation, where the mean
or the variance of the stimulus change over time.

We first derive the dynamics of optimal adaptation
from principles of Bayesian inference (Sec. II). While pre-
vious approaches have used Bayesian estimates to explain
adaptation [24, 26, 29, 30], its impact on the response
function were either not made explicit, or was obtained
by minimizing a loss function reflecting particular cod-
ing constraints. By contrast, we derive the optimal re-
sponse function from the maximization of Shannon’s mu-
tual information [19]. A previous limitation of Bayesian
update rules is that they usually assume discrete time,
while both stimulus and response are continuous. We
show that in the case of a varying mean, the adapta-
tion dynamics have a well-defined continuous-time limit,
which can be mapped onto a system of coupled Langevin
equations with non-linear forces and position-dependent
diffusivities, allowing for an explicit analogy with non-
equilibrium statistical mechanics (Sec. III). We derive
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this mapping for the classical case of a stimulus mean
switching between two values, but also for the case of a
stimulus whose mean follows a random walk, which ad-
mits an analytical solution. In that continuous limit, we
obtain explicit expressions for two quantities that charac-
terize adaptation — accuracy and speed — which are in
a trade-off relationship (Sec. IV). To relax the assump-
tion of optimality, we also explore performance in the
case where the dynamical rules of the stimulus statistics
are not precisely known (Sec. V). The case of variance
switching, which was treated in [29], is revisited with
predictions on how information transmission should drop
and recover following switching events (Sec. VI). Finally,
we generalize and formalize the analogy between sensory
adaptation and non-equilibrium statistical mechanism by
proposing entropy production — a non-parametric mea-
sure of temporal irreversibility — as a signature of adap-
tation (Sec. VI). We calculate it explicitly in the case of
adaptation to a changing mean, and discuss its general
relevance to experimental recordings of sensory neurons.

II. ADAPTATION AS INFERENCE

The first requirement to do efficient coding is to build
a good estimate of the statistics of the environment, e.g.
the mean and variance of the stimulus. To do so, the sen-
sory system only has access to stimuli experienced in the
past. It must integrate stimulus information far enough
into the past to collect enough statistics, but not too
far, since stimulus statistics themselves may change over
time. This task can be naturally framed as an ongoing
inference problem [24, 26, 31, 32]. Its optimal solution
is given by a Bayesian formulation, which estimates the
distribution of possible stimulus parameters given the
stimulus history [24, 25, 33]. Our approach postulates
that the sensory system has access to the raw stimulus,
rather than just the sensory response, to implement its
adaptation mechanism. In this view, the sensory system
“compresses” information by transforming the input into
a noisy response, but can adapt this compression scheme
based on the stimulus statistics, which it has access to
through (unaltered) past stimuli. This is particularly rel-
evant for the early processing of visual information, which
mostly proceeds in a feed-forward way (and, in fact, ex-
clusively so in the retina). For instance, adaptation to
the mean light level occurs directly at the level of pho-
toreceptors, with no feedback from the retinal ganglion
cells (the output of the retinal), and similarly for con-
trast adaptation at the level of signal transduction be-
tween photoreceptors and bipolar cells [34]. This view
stands in contrast with adaptation mechanims through
feedback, whereby the response function is adapted based
on the knowledge of past sensory responses only [26].

The optimal Bayesian estimator [24, 29, 35], also called
Bayesian filter, is defined as follows. At each time step n,
the model estimates the state of the environment given
the stimulus history, P (yn|sj≤n), where yn represents

the state of the environment at time n, and sj≤n is
the vector of past stimuli up until time n. In general
yn parametrizes the distribution of stimuli at each time,
P (sn|yn). In this paper, this distribution will be assumed
to be Gaussian, and yn will then simply denote its mean
or variance. Bayes’s rule states that

P (yn|sj≤n) =
1

Ω
P (sn|yn)P (yn|sj<n), (1)

where Ω = P (sj≤n) normalizes the distribution.
Assuming that the dynamics of the environment is

Markovian, one can write a recursive form:

P (yn|sj≤n) =
1

Ω
P (sn|yn)

∑
yn91

P (yn|yn91)P (yn91|sj<n)

(2)
This formula combines the new observation sn with the
estimate of yn91 at the previous time step [29], taking
into account the way yn may have evolved. Prior knowl-
edge on P (yn|yn91) is essential as it sets the time scale
over which past samples are discarded. Ignoring it, as
was done in [24], leads to assuming an infinite memory
timescale and everlasting dependence on initial condi-
tions.

Armed with an estimate of the environment statistics,
the sensory system may use this knowledge to adapt its
response rn to the stimulus. Following previous propos-
als [21, 22, 36, 37], one may assume that the stochas-
tic encoding P (rn|sn) is chosen to maximize information
transmission:

I(sn, rn) =

∫
dsn drn P (sn)P (rn|sn) ln

P (rn|sn)

P (rn)
, (3)

where the form of the response function P (rn|sn) is set by
biophysical constraints. Alternative choices of objectives
to optimize include decoding accuracy, metabolic costs
[38], or the ability to infer the environmental variable yn
itself [26]. The simplest assumption, which is equivalent
to Laughlin’s original argument [20], is to assume a con-
stant Gaussian output noise:

rn = g(sn) + εn, (4)

where εn is a uncorrelated Gaussian noise of zero mean
and variance σ2

ε , and g(s) is a function constrained be-
tween 0 and rmax, so that P (r|s) ∝ exp[−(r−g(s))2/2σ2

ε ].
In the small noise limit σε � gmax, the response func-
tion g(s) maximizing the mutual information is the one
that maximizes the entropy of the response [21], which
is realized by the uniform distribution P (r) = 1/rmax for

0 ≤ r ≤ rmax, which in turns gives P (r)dr ≈ P̂ (s)ds,

hence dr/ds = g′(s) = rmaxP̂ (s), or equivalently

g(s) = rmax

∫ s

−∞
ds′P̂ (s′), (5)

so that the response function’s sensitivity follows the as-
sumed statistics P̂ of the stimulus at time n, derived from
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FIG. 1. Sketch of the adaptation process. (a) Example of a stochastic stimulus st whose mean varies according to two
environmental states yt = + and −. After sufficient time in each state, the gain function of the sensory system is adapted
to its statistics (phase A for + state, and phase B for − state). In addition, after each switch there is a transient phase
during which the system adapts. (b) The sensory system combines the raw stimulus st with an internal estimate xt of the
environmental variable yt, computed from the past of st′≤t. (c) The sensory response rt, which is optimized to maximize
information transmission based on the internal variable xt, reacts to sudden changes of the mean stimulus, but then relaxes
back to a basal value as the gain function adapts to the new state. (d) Changes in the gain function can be rationalized based
on the internal representation of the expected stimulus statistics (distribution of inputs), encoded by xt. When deep in the
adapted phases A and B, the assumed distribution of inputs matches the true statistics in each state (blue and orange curves for
xt ≈ +1 and xt ≈ −1 respectively). In the transient adaptation phase, new stimuli from the new state challenge the previous
belief, which progresses to the new adapted phase (intermediate colors). (e) Information theory dictates that the optimal gain
function should be most sensitive where the stimulus is expected (Eq. 5), causing the system to shift its dynamic range around
the new mean. This explains the form of the response in (c).

the belief about the state of the environment y:

P̂ (s) =

∫
dy P (s|y)P (y|sj≤n). (6)

The mutual information being actually transmitted can
be rewritten as:

I(s, r) = S[r]− S[r|s] (7)

with S[r] = −
∫
r
drP (r) lnP (r), and S[r|s] =

−
∫
dsP (s|y)

∫
P (r|s) lnP (r|s), where P (r) =∫

dsP (r|s)P (s|y). For Gaussian output noise,
the second term is just the entropy of the noise,
S[r|s] = (1/2) ln(2πeσ2

ε ). In the same limit of
small noise that gaves us the optimal encoding,
the output is almost a deterministic function of the
input, so that S[r] is approximately obtained using

P (r) ≈ P (s|y)ds/dr = r−1
maxP (s|y)/P̂ (s), proportion-

nal to the ratio of the true to the assumed stimulus
distributions. This resulting information transmitted is:

I(s, r) =
1

2
ln

2πer2
max

σ2
ε

−
∫
dsP (s|y) ln

P (s|y)

P̂ (s)
, (8)

where in the second term we recognize a Kullback-Leibler
divergence or cross-entropy, with is always non-negative.
The mutual information is maximized when the inferred
statistics of the environment exactly matches the true
one, P̂ (s) = P (s|y). In that case, the Kullback-Leibler
divergence is zero, and only the first term survives — the
channel capacity — which has an intuitive interpretation:
it is the logarithm of the number of distinct responses
that can be resolved from each other, given by the ratio
of the output dynamic range, rmax, to the resolution of
the response, σε. This number, which can also be in-
terpreted as a signal-to-noise ratio, encodes the resource
constraints of the sensory system, and is the main deter-
minant of information transmission. However, an inter-
esting feature of (8) is that the information loss due to
non-optimal adaptation encoded in the Kullback-Leibler
divergence does not depend on that resource parameter,
making the analysis robust to that choice.

The full adaptation scheme is summarized in Fig. 1
with the example of a Gaussian stimulus whose mean
switches between two values. Shortly after the mean
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changes (Fig. 1a), the system progressively updates its
expected distribution of stimuli as it accumulates more
samples (Fig. 1d), and adapts its response function
(Fig. 1b) according to (5), as illustrated in Fig. 1e. The
resulting response dynamics (Fig. 1c) shows epochs of
strong upward and downward changes right after each
switching transitions, followed by relaxation to interme-
diate values as the system adapts to its new response
function, closely mimicking experimental observations.

In the following we will study and solve particular cases
of adaptation to a Gaussian stimulus with varying mean
or variance.

III. ADAPTATION TO A VARYING MEAN

Let us start with the most intuitive and simple case:
adaptation to changes in the mean of the stimulus. We
will take two very simple processes as case studies: a
telegraph process, in which the mean randomly switches
between two values, and an Ornstein-Uhlenbeck process,
in which the mean varies continuously around a fixed
value. Discontinuous switches such as produced by the
telegraph process are commonly studied in experiments
on sensory adaptation, because of the strong adaptive
transient they trigger. The Ornstein-Uhlenbeck process
is interesting because of the analytical insight it affords.

A. Two models of fluctuating mean

1. Telegraph process

We consider a system where the environmental param-
eter yn switches between two values y−, y+ with probabil-
ity k at each time step The sensory system has access only
to the sn, which we assume to be Gaussian distributed
with mean yn and fixed variance σ2,

sn = yn + σηn, (9)

with 〈ηn〉 = 0 and 〈ηnηn′〉 = δnn′ , so that:

P (sn|yn) =
1√

2πσ2
e−

(sn−yn)2

2σ2 (10)

We replace this expression into (2), and use the fact
that the distribution of yn is entirely determined by its
mean xn ≡ 〈yn〉|sj≤n because of its binary nature. As-
suming y± = ±1 without any loss of generality, by aver-
aging (2) we then obtain an update equation for xn:

xn =
sinh( snσ2 ) + (1− 2k)xn91 cosh( snσ2 )

cosh( snσ2 ) + (1− 2k)xn91 sinh( snσ2 )
. (11)

For this estimator to be optimal, the variance σ2 in
(11) should be equal to the true variance of the stimulus
distribution. This can be achieved, for instance, by a
variance adaptation mechanism as we will see in Sec. VI.
In Sec. V we will also deal with the case where the system
does not use optimal parameters.

2. Auto-regressive (Ornstein-Uhlenbeck) process

Another simple example of stochastic dynamics for the
mean is given by an auto-regressive process, which we
also call Ornstein-Uhlenbeck process by abuse of lan-
guage, as it reduces to it in the continuous time limit
(see later):

yn+1 = ayn + σ′η′n (12)

where η′ is a Gaussian white noise, 〈η′n〉 = 0 and
〈η′nη′n′〉 = δnn′ , and where a < 1. Again we assume
that signals are distributed according to a Gaussian of
mean yn and variance σ2, sn = yn + σηn, with 〈ηn〉 = 0
and 〈ηnηn′〉 = δnn′ , 〈η′nηn′〉 = 0.

Since the elements of the recursion are Gaussian, we
assume a Gaussian Ansatz for the posterior:

P (yn|sj≤n) =
1√

2πu2
n

e
− (yn−xn)2

2u2n . (13)

Plugging it into (2) yields recursive equations for the
mean and variance of the posterior of yn, which are equiv-
alent to a Kalman filter [39]:

xn =
aσ2xn91 +

[
σ′2 + a2u2

n91

]
sn

σ2 + σ′2 + a2u2
n91

(14)

u2
n =

σ2
[
σ′2 + a2u2

n91

]
σ2 + σ′2 + a2u2

n91

. (15)

The dynamics of the variance (15) does not depend on
the mean or the stimulus, so that it converges to a fixed
point u2 at steady state.

B. Continuous time limit

Our adaptation dynamics were derived at discrete
times, using a Bayesian estimator and exploiting the
Markovian property of the system. We now take the
limit of continuous time to obtain stochastic differential
equations. Denoting by δt the time step between two
observations, the continuous time is defined as t = nδt,
with δt → 0. As we take this limit, we must scale the
various parameters of the dynamics to ensure that all the
relevant quantities remain finite.

For both types of environmental dynamics, the stimu-
lus variance may scale with δt as:

σ2 =
θ

δt
. (16)

This scaling allows us to write the stochastic term
in (9) as the discretization of a Gaussian white noise

ξ(t): σηn = (
√
θ/δt)

∫ tn+δt

tn
dt ξ(t), with 〈ξ(t)〉 = 0 and

〈ξ(t)ξ(t′)〉 = δ(t − t′). In the continuous time limit this
gives:

s(t) = y(t) +
√
θξ(t). (17)
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FIG. 2. Adaptation dynamics for two mean-varying processes: telegraph process (left), and Ornstein-Uhlenbeck
process (right). (a),(b) The state variable y(t)—the mean of the stimulus—varies over time with unit variance and correlation

timescale τ . (c),(d) Perceived stimulus s(t) = y(t)+
√
θξ(t). (e),(f) Mean value of the state variable, x =

∫
dy yP (y|{s(t′ ≤ t)})

inferred by the system from past observations. (g),(h) Sensory response obtained with the optimal gain function r = g(s),
derived by optimizing information transmission. (i),(j) Information (3) actually transmitted per time bin (δt = 10−3, σε =
0.01). Brackets denote averages over 500 repetitions of the state variable evolution.

In the telegraph process, the switching probability be-
tween two infinitesimal time steps should scale with δt.
We define k = δt/(2τ). The switching rate is (2τ)−1, so
that τ is the correlation timescale of the process.

Similarly, a continuous Ornstein-Uhlenbeck (OU) pro-
cess may be obtained from the auto-regressive process
(12) in the δt → 0 limit with the scalings a = 1 − δt/τ ,

σ′2 = 2Dδt:

dy

dt
= −y

τ
+
√

2Dξ′(t), (18)

with ξ′(t) a Gaussian white noise. τ is a relaxation time,
and D may be interpreted as a diffusion coefficient in
stimulus space. We set it toD = 1/τ , so that the variance
of y is 1. With these choices, the first two moments of y(t)
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are the same for both the telegraph and OU processes,

〈y(t)〉 = 0, 〈y(t)y(t′)〉 = e−|t−t
′|/τ . (19)

With these scalings, the adaptation dynamics are de-
scribed in the δt→ 0 limit by stochastic differential equa-
tions (with Itô convention). For the telegraph process,
(11) becomes:

dx

dt
= −x

τ
+

1− x2

θ
s = −x

τ
+

1− x2

θ
y +

1− x2

√
θ

ξ. (20)

For the OU process, (14) becomes:

dx

dt
= −

√
1 + 2τ/θ

τ
x+

u2

θ
s

= −
√

1 + 2τ/θ

τ
x+

u2

θ
y +

u2

√
θ
ξ,

(21)

where the posterior variance

u2 = Var(y(t)|{s(t′ ≤ t)}) =
2

1 +
√

1 + 2τ/θ
(22)

is obtained from the fixed-point condition (15). The
adaptation dynamics for the OU process thus follow an
exactly solvable Gaussian process described by the cou-
pled equations (18) and (21).

Two timescales, τ and θ, govern the adapation dynam-
ics of both processes (20)-(21): τ is the timescale over
which the environment varies, while θ gives the typical
timescale over which the state variable, y, and the fluc-
tuations of the stimulus,

√
θξ, have equal contributions:

〈[(1/T )
∫ T

0

√
θξ(t)dt]2〉 = θ/T ∼ 〈y2〉 = 1 for T ∼ θ. The

adaptation dynamics is expected to depend crucially on
the ratio between these two timescales:

α =
θ

τ
, (23)

which can be viewed as an inverse signal-to-noise ratio,
and is the main control parameter of adaptation. A low α
means low stimulus fluctuations and thus precise adapta-
tion, while high α means high fluctuations and thus poor
adaptation.

The information transmitted under the optimal scheme
described in the previous section is given by (8) with

P̂ (s) =
1√

2π(σ2 + u2)
exp

[
− (s− x)2

2(σ2 + u2)

]
(24)

for the OU process, and

P̂ (s) =
1√

2πσ2

[
1 + x

2
e−

(s−1)2

2σ2 +
1− x

2
e−

(s+1)2

2σ2

]
(25)

for the telegraph process. In the OU case the expression
for the information simplifies to:

I(s, r) =
1

2
ln

2πer2
max

σ2
ε

− 1

2
ln

[
1 +

u2

σ2

]
− 1

2

(x− y)2 − u2

σ2 + u2
.

(26)

Fig. 2 shows numerical simulations of the optimal
adaptation dynamics (20) and (21) for the two processes,
as well as the expected sensory response and information
rate under the assumption of optimal information trans-
mission (3)-(6). For the telegraph process, the response
shows typical adaptive behaviour, with fast changes in
the response following a switch, followed by a slower re-
laxation to the baseline. The information rate drop right
after each switch, and climbs back up to its maximum
as the system adapts its response function to the new
statistics.

IV. ACCURACY AND SPEED OF OPTIMAL
ADAPTATION

To study the adaptation dynamics of (20) and (21),
we focus on two fundamental properties: the speed of
adaptation, measured by the typical time it takes for the
system to adapt to the changing environment, and the
accuracy of adaptation, measured by the discrepancy be-
tween x and y.

A. Adaptation time

We formally define the adaptation time as the time
t = tA at which the cross-correlation function,

C(t) = 〈y(t0)x(t0 + t)〉, (27)

reaches its maximum,

tA = arg maxtC(t). (28)

This defines the time delay after which the adaptation
variable, x, is maximally aligned with the state variable,
y, i.e. the time it takes for x to “catch up” with y.

We first compute this adaptation time numerically
(Fig. 3) for both processes and for different values of the
control parameter α, using the Euler–Maruyama method
[40]. In general, the adaptation timescale tA grows with
the timescale of switching, τ . This suggests that sensory
systems should modify their dynamics of adaptation as
a function of what their expected rate of change is. Such
meta-adaptation of the relaxation timescale has indeed
been observed in the context of mean adaptation to the
mean [24].

Two broad regimes can be distinguished. In the low
signal-to-noise regime, α & 1, tA scales linearly with
τ : the optimal adaptation timescale is proportional to
the timescale of the environment. However, in the well-
adapted regime, α � 1, this scaling breaks down, and
adaptation happens much faster than the rate of change
of the environment would suggest. In that regime, it’s
the reliability of the observed signals that drives how fast
the system adapts, so that small values of θ lead to fast
adaptation.
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FIG. 3. Time of adaptation to the mean stimulus, tA. The adaptation time is defined as the time at which the cross-
correlation between the true and inferred state variable is maximum (28). It is shown as a function of the environmental time
scale τ for (a) the telegraph process and (b) the Ornstein-Uhlenbeck process. The results are obtained numerically for the
telegraph process, and analytically for the OU process (30). Insets show the rescaled adaptation time tA/τ as a function of
the control parameter α, for both simulations (circles), and analytical predictions (Eq. 35 for the telegraph process, valid for
α� 1, and Eq. 30 for the OU process).

To gain analytical insight into these different scalings,
we first consider the OU process, for which the cross-
correlation can be calculated analytically:

C(t) = e−
t
τ

[
1− 2

1 +
√

1 + 2/α
e−

(
√

1+2/α−1)t

τ

]
, (29)

yielding:

tA
τ

=
α(1 +

√
1 + 2/α)

2
ln

(
2
√

1 + 2/α

1 +
√

1 + 2/α

)
. (30)

For large α, this expression becomes at leading order
tA ∼ τ/2, confirming the linear scaling observed in that

regime. For small α, we get tA ∼
√
τθ/2 ln(2), meaning

that the adaptation scale is the geometric mean of the
environmental timescale and the noise timescale. Such
a scaling, which was previous derived in the context of
Bayesian filtering for concentration sensing [41], results
from a trade-off between the requirements to integrate
information about the stimulus for as long as possible
(tA � θ), but not too long to avoid including out-of-date
information (tA � τ).

While the adaptation dynamics for the telegraph pro-
cess doesn’t have an analytical solution, we may approxi-
mate tA by the typical time x takes to cross 0 following a
switch. This allows us to cast the problem as a first pas-
sage calculation. We start by writing the Fokker-Planck
equation describing the density evolution of (20) as a
function of time:

∂ρ

∂t
= − ∂

∂x

[(
−x
τ

+
1− x2

θ
y

)
ρ

]
+

∂2

∂x2

(
(1− x2)2

2θ
ρ

)
,

(31)

whose steady-state solution at constant y reads:

ρeq(x|y) =
N

(1− x2)2

(
1 + x

1− x

)y
exp

(
− α

1− x2

)
, (32)

where N is a normalization constant.
In the α � 1 limit, x is typically close to y and its

difference with it is of order α: 1 − yx = O(α), as can
be checked by solving dρeq/dx = 0. Suppose that at the
time t = 0 of a switch from y = +1 to y = −1, x = x0 is
drawn from the steady-state distribution ρeq(x|y = +1)
(32). We define T (x0) as the mean first passage time
of x from x0 to 0, with x = +1 acting as a reflecting
boundary. This time is given by [42]:

T (x0) = 2θ

∫ 0

x0

dx

ψ(x)

∫ x

−1

dx′
ψ(x′)

(1− x′2)2
(33)

where

ψ(x) =

(
1− x
1 + x

)
exp

(
− α

1− x2

)
. (34)

The adaptation time is then tA ≈ 〈T (x0)〉x0∼ρeq(x|y=+1).
Examining Eq. 20 in the small α regime, we see that

when x is close to +1, the (1 − x2) terms scales with
α, meaning that x has sluggish dynamics dominated by
the time scale τ . When x finally gets away from +1,
the dynamics accelerates according to the fast time scale
θ, quickly reaching zero. This motivates us to use the
change of variable x = 1 − α/(2v), and expand in α to
obtain (see Appendix A):

tA
τ
' α

4

[
ln2(α) + (2γe − 2 ln(2) + 1) ln(α) + C

]
+ o(α),

(35)
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where γe is Euler’s constant, C ≈ 7.59 is a numerical con-
stant. We checked the validity of this expression against
simulation results (Fig. 3a).

The leading order in α scales as:

tA ∼
θ

4
ln2
(τ
θ

)
. (36)

This sublinear scaling with τ stands in contrast with the
theorical results of Wark et al. [24], which reported a
linear one. This difference is explained by the fact that
in [24], the inference system assumed a vanishing switch-
ing rate. This leads to the absence of a well defined
steady-state, requiring to evaluate the adaptation scale
over simulations of finite durations, with a dependence
on initial conditions.

This scaling is also much more faster with θ than the
square-root scaling obtained for the OU process. This is
because the OU process assumes that the mean changes
all the time, instead of by discontinuous jumps, making
adaptation faster.

B. Accuracy

We introduce two definitions of accuracy adapted to
each case. For the telegraph process, which admits
only two values for the state variable y = ±1, we de-
fine the discrepancy as the probability for the poste-
rior to be wrong, Pwrong = (1 − 〈xy〉)/2, long after the
adaptation transient. For the OU process, whose the
state variable is continuous, it is more natural to define
the discrepancy of adaptation as the standard error be-
tween x and y: ∆2 = 〈(y − x)2〉 (although note that
Pwrong = 〈|ŷ − y|2〉/4, where ŷ is drawn from the poste-
rior P (ŷ|st′≤t) = 1+x

2 δ(ŷ − 1) + 1−x
2 δ(ŷ + 1), can also be

viewed as a mean-squared difference).

1. Ornstein-Uhlenbeck

Since the OU process is Gaussian, all moments can be
calculated exactly. We can rewrite ∆2 = 〈(y − x)2〉 =
〈y2〉 + 〈x2〉 − 2〈yx〉. We already know 〈y2〉 = 1, and

calculate 〈x2〉 = 〈yx〉 = 1−α(
√

1 + 2/α−1), from which
we get

∆2 = α
(√

1 + 2/α− 1
)

= u2. (37)

(Note that this error is equal to the uncertainty computed
by the Bayesian inference system, u2, consistent with its
optimality). In Fig. 4b, we plot this result and check its
validity by comparing it to numerical integration of (18)
and (21). In the limit of perfect adaptation, α � 1, we
get at leading order

∆2 ∼ (2α)1/2. (38)

The expression for the accuracy allows us to compute
the average information between stimulus and response
(26).

I(s, r) ≈ 〈I(s, r)〉 =
1

2
ln

2πer2
max

σ2
ε

− 1

2
ln

[
1 +

u2

σ2

]
. (39)

The comparison between numerics and this expression
is shown in Fig. 5b. In the α � 1 regime, infor-
mation approaches channel capacity, i.e. the maximal
value allowed by the output noise, I(s, r) ≈ Imax =
1
2 ln[2πe(rmax/σε)

2].

2. Telegraph process

Because Pwrong is a steady-state property, it only de-
pends on the control parameter α. We computed it by
simulating a telegraph process y(t) with switching rate
1/(2τ), and by integrating (20) numerically (Fig. 4a).
For small α, adaptation is very accurate, while for α & 1
it is very poor, with Pwrong quickly reaching chance level
≈ 1/2.

In the well-adapted phase α � 1 (τ � θ), adaptation
is fast compared to the switching of the state variable.
After each transition, following an adaptation transient,
the system quickly reaches the steady state of (20) with
fixed y, given by (32). While the moments of ρeq(x|y)
cannot be calculated analytically, its expression simplifies
in the small α limit. With the change of variable x =
y(1 − αu), we obtain the following distribution of u at
leading order in α:

ρeq(u) ≈ 1

4u3
e−

1
2u , (40)

from which we deduce 〈u〉 ≈ 1/2 and thus

Pwrong =
1− 〈xy〉

2
=
α〈u〉

2
≈ α

4
. (41)

This analytic prediction agrees very well with the sim-
ulation, see Fig. 4a. This error is estimated assuming
that the system has adapted, so long after the adapta-
tion transient, t� tA.

However, while Pwrong is the error long after the adap-
tation transient, it is not equal to the average error in-
cluding during the adaptation transients. To get that
average error, we can approximate the error to 1 for
0 < t ≤ tA, and to Pwrong for t > tA. Since the av-
erage time between switches is 2τ , we obtain:

Pwrong,av ≈
(

1− tA
2τ

)
Pwrong +

tA
2τ

≈ α

8

[
ln2(α) + (2γe − 2 ln(2) + 1) ln(α) + C + 2

]
.

(42)

Note that this scaling of the error with α is smaller
than for the OU process (37). In the switching process, in



9

10 3 10 2 10 1 100 101 102

= /

10 3

10 2

10 1

P w
ro

ng
=

(1
xy

)/2
(a)

analytical, 1
numerical

10 3 10 2 10 1 100 101 102

= /

10 1

100

2
=

(y
t

x t
)2

(b)

analytical
numerical

FIG. 4. Accuracy of adaptation to the mean stimulus as a function of rescaled stimulus variance α = θ/τ . (a)
Accuracy in the telegraph process, defined as the value of the probability of being in the wrong state Pwrong = (1 − 〈xy〉)/2.
Circles are obtained by numerical simulation, and the line is the analytical approximation given by (41) for α � 1. (b)
Accuracy in the Ornstein-Uhlenbeck process, defined as the posterior mean squared error ∆2 = 〈(y − x)2〉. Circles are from
numerical simulations, and the line is the analytical prediction given by (37). In both panels the dashed line shows chance
prediction (Pwrong = 1/2 and ∆2 = 1)

the α� 1 limit the system adapts almost perfectly to the
value of y after a transient lag. By contrast, in the OU
process the state variable changes constantly, causing a
permanent lag in the adaptation, and thus a larger error.

Fig. 5b shows how transmitted information depends on
α, in particular how it quickly converges to the maximal
transmissible information as α goes to 0.

V. NON-OPTIMAL ADAPTATION

So far we have assumed that the sensory system knows
perfectly the statistics of the environmental dynamics,
including its time scale τ , mean and, variance, and type
of dynamics. In realistic situations however, the system
may not know the statistics of the environment precisely,
or may have evolved to best respond to stimuli with par-
tiular statistics (e.g. natural ones), while the experimen-
tal stimulus was designed using artificial statistics (e.g.
mean switching between two values). In this section we
explore the impact of maladapted (non-optimal) adapta-
tion dynamics, where the inference system makes wrong
assumptions about the environmental dynamics.

A. Misrepresented dynamics

We first consider adaptation when the sensory systems
misrepresents the nature of the dynamics. We assume
that the true dynamics follows a switching mean (tele-
graph process), while the Bayesian system assumes an
Ornstein-Uhlenbeck dynamics. This leads to integrating
the OU dynamics (21), but with y switching between −1

and +1 with rate (2τ)−1.
Such an adaptation scheme is illustrated Fig. 6a-b.

The error (in the sense of the OU process, ∆2 = 〈(x −
y)2〉) may be calculated analytically and is identical to
the case where y would actually follow a OU process
with the same time constant, Eq. 37. This is due to
the fact that in both cases the solution to (21) can be

formally written as y(t) =
∫ t
dt′ e−(t−t′)/τ ′(τ ′/θ)u2s(t′),

with τ ′ = τ/
√

1 + 2/α, and that both the telegraph and
the OU process have the same first two moments (19).

However, it does much worst that the optimal adap-
tation scheme (20), as can be seen from Fig. 6c, and
confirmed by the scaling at small α of the adaptation
time (α ln2 α� α1/2, see (38)). The impact of this non-
optimal adaptation can also be seen, to a lesser extent,
on mutual information (Fig. 6d).

For the same reason cited above, the adaptation time
scale tA is identical to that of the OU process (30). We
observe a broad range of parameters where adaptation
with the OU assumption is faster than the optimal adap-
tation scheme (Fig. 6e). We can understand this intu-
itively by noting that the OU assumption assumes con-
stant change, and thus will be quicker to react to sudden
changes. The flipside is that even when the mean is sta-
ble between switches, it overestimates the uncertainty
and tends to conservatively adapt less well (Fig. 6a and
b).

B. Wrong parameters

We next consider the case where the type of dynamics
is correctly assumed by the Bayesian system, but its pa-
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(a) the telegraph process, and (b) the Ornstein-Uhlenbeck process. Circles are from numerical simulations, and the line is the
analytical prediction given by (39).
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FIG. 6. Optimal adaptation vs OU adaptation in Telegraph process. a) Example of adaptation of a telegraph process
given by y, red line, using an optimal estimator, blue line, and a (non-optimal) OU estimator, purple line. b) Average response
of the adaptive system based on a gain function derived from an optimal estimator (blue), or from the OU estimator (purple).

c) Accuracy of adaptation measured by ∆ =
√
〈(y − x)2〉 using the optimal (blue) and OU (purple) estimator. (d) Information

transmission using the optimal (blue) or OU (purple) estimators. e) Rescaled adaptation time as a function of the control
parameter α using optimal (blue) and OU (purple) estimators. Note the crossover between the OU and the Optimal around
α = 10−3 as the fastest adapting estimator.

rameters are wrongly estimated. The assumed values of
the two parameters are off by a factor r and l respectively:
τassumed = rτ , θassumed = lθ. The resulting adaptation
dynamics for both processes (20) and (21) are modified

by substituting these assumed values:

dx

dt
= − x

rτ
+

1− x2

lθ
y +

1− x2

l
√
θ
ξ, (43)

dx

dt
= −

√
1 + 2r/(lα)

rτ
x+

u2

lθ
y +

u2

l
√
θ
ξ, (44)
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for the telegraph and OU processes respectively, with
u2 = 2/(1 +

√
1 + 2r/(lα)). On the other hand, the

dynamics of y (Eq. 17, and switching with rate (2τ)−1

for the telegraph process and Eq. 18 for the OU process)
are unchanged, with the true parameters τ and θ.

For the OU process the problem is still solvable and
the accuracy can be calculated:

∆2 = u2 1 + lr + β(lr + r + l − 1) + β2(l − r)
2l(1 + βr)

, (45)

with β = (1 + 2r/(lα))−1/2, which reduces to

∆2 ∼ 1 + lr

2
√
lr

(2α)1/2 ≥ (2α)1/2 (46)

in the well-adapted regime α � 1. The adaptation time
can similarly be computed:

tA
τ

=
βr

1− βr
ln

2

1 + βr
. (47)

which scales as tA ∼ (rτ lθ/2)1/2 in the α� 1 regime, i.e.
the geometric mean of the two assumed time scales, as
in the optimal case. In the α � 1 regime, the adap-
tation time scales like τ (also like the optimal case):
tA ∼ τ [r/(r − 1)] ln[(1 + r)/2]. These results indicate
that while underestimating the noise and switching pe-
riod lead to faster adaptation, doing so hurts the accu-
racy of the inference.

For the telegraph process, the equilibrium accuracy
may be computed using the same method as described
earlier:

Pwrong =
αl

4r
. (48)

For the adaptation time, we obtain

tA
τ
∼ αl2

2(l − 1)
ln(1/α) for l > 1 (49)

∼ αl l
2Γ(l + 1)

2(1− l)

(
l2

2r

)l−1

for l < 1 (50)

≈ α

4

[
ln2(α) + (1 + 2γe − 2 ln(2) + ln(r)) ln(α) +O(1)

]
for l = 1, (51)

where Γ(x) is the Gamma function.
Underestimating the switching rate (r < 1) allows

a slightly faster adapation, but at the cost of a lower
equilibrium accuracy. Likewise, overestimating the noise
(l > 1) also speeds up the response, but again at the
expense of accuracy.

VI. ADAPTATION TO VARYING VARIANCE

A. Optimal adaptation dynamics

We now turn to the case of variance switching, where
the sensory system tries to evaluate the variance of a

random stimulus of fixed mean. The variance follows
a telegraph process, alternating a between high-value σh
and a low-value σl. There are many examples of this type
of adaptation [7, 43–45] and it has been much studied
experimentally [18, 22, 24, 29, 46, 47]. As in the case of
adaptation to the mean, we start with discrete time. At
each time step, the variance switches with probability k.
This defines a correlation time τ = 1/ ln(1 − 2k) of the
underlying telegraph process. The stimulus is sn = s0 +
ynηn, where yn is the varying variance (equal to σh or σl),
and ηn is normally distributed (〈ηn〉 = 0 and 〈ηnηn′〉 =
δnn′). We set s0 = 0, σl = 1 and σh = r without loss of
generality. The posterior probability of being in the low-
variance phase given previously observed stimuli, P ln =
P (yn = σl|sj 6=n) is then given by the recursive relation
obtained from (2):

P ln =

[
1 +

1

r

kP ln−1 + (1− k)(1− P ln−1)

(1− k)P ln−1 + k(1− P ln−1)
e−

s2n(r−2−1)

2

]−1

.

(52)
A major difference with the case of adaptation to the

mean is that this equation does not admit a well de-
fined continuous-time limit. Intuitively, this is because
learning the amplitude of white noise is much faster than
learning its mean. During any observation time ∆t, the
observer has access to an infinite number of independent
samples. However, each sample is infinitely noisy. For the
mean, these two infinities compensate exactly, but for the
variance the high value of the noise is not an issue since
the goal is to estimate its magnitude. As a result, in the
continuous-time limit, the system can adapt instantly to
the variance, as it receives an infinite amount of signal.
A solution to this problem could be to replace the white
noise in the stimulus by a colored noise with a finite cor-
relation time scale τs, so that the number of independent
samples during time ∆t scales as ∆t/τs. However, keep-
ing with discrete time has similar effect with τs = δt.

B. Speed and accuracy of variance adaptation

The dynamics of optimal adaptation can be studied by
simulating (52) numerically. Fig. 7 shows an example of
input signal, inferred variance, optimal output response
and information transmission as a function of time.

The dynamics are characterized by an asymmetry in
the adaptation to the two states (Fig. 7b). This is due
to the fact that the high-variance state is capable to pro-
duce signals of low amplitude with high probability, while
the low-variance state is very unlikely to produce large
amplitudes. When in the low-variance state, the system
receives few misleading signals, while in the high-variance
state, frequent low-amplitude signals confound the pos-
terior. The flipside is that the system adapts faster to
switches towards the high variance state, as already noted
[29], because that state produces unlikely signals under
the low-variance hypothesis. This asymmetric behaviour
is reflected in the dynamics of information transmission,
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normally distributed signals with swithcing variance. (b) True value of the variance (red) versus assumed one (blue) based
on past signals. (c) Mean response obtained by the optimizing the expected information transmission based on the posterior
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FIG. 8. Accuracy and speed of adaptation to variance switching. (a) Accuracy of the optimal adaptation dynamics
for three different values of the variance ratio r = σh/σl, as a function of the inverse of the switching timescale τ , which plays
a similar role as α in mean switching. The lower r the larger the estimationg error. (b) Adaptation time as a function of the
switching timescale τ . The dependence is linear for very short times, then displays strong sub-linear behaviour. (c) Information
transmission as a function of τ . Note that while a large ratio between the two variances induces a lower error in (a) (because
they are easier to distinguish), this error has a larger impact on information transmission, so that information loss is overall
larger.

which experiences a stronger drop after a low-to-high than high-to-low transition (Fig. 7d). Notably, these pre-
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dictions agree with experiments in the fly visual system,
where this asymmetry in the loss of information trans-
mission following variance switches was observed [23].

As in the case of adaptation to the mean, we can de-
fine the accuracy of adaptation as the probability that
the posterior is wrong, and the adaptation time tA as
the delay n maximizing 〈yn0P

l
n0+n〉. In Fig. 8 we plot

these two quantities, as well as the transmitted informa-
tion, given by (8), as a function of the two parameters of
the model: the switching rate τ , and the variance ratio
r = σh/σl. The error decreases with the switching period
τ , as the system has more time to adapt, as well as with
the variance ratio r. The trend here depends also on the
value of r. The adaptation time varies sublinearly with
τ . It is approximately linear at small τ , and levels off
without saturating at larger τ . The larger the variance
ratio r, the narrower the linear region. The loss in in-
formation transmission due to imperfect adaptation, ∆I,
follows the same dependency on τ as the error. However,
its dependency with respect to the variance ratio r is
reversed. The higher that ratio, the easier it is to distin-
guish between the two stimulus statistics, but errors are
more costly in terms of information transmission because
of the larger discrepancy between the assumed and actual
dynamic range. Conversely, smaller differences between
the two environments lead to less inefficiency in their en-
coding, despite a higher error in distinguishing them.

Experiments in the fly [48] and vertebrate [24] visual
system suggest a linear relationship between the adap-
tation time and the switching timescale, although this
linear assumption was not compared against alternative
scalings. Our theory predicts that such a linear regime
is only expected when the switching period is relatively
short compared to the typical time between independent
samples, which is also the regime where adaptation is
poor.

VII. ENTROPY PRODUCTION AS A
SIGNATURE OF ADAPTATION

A. Motivation and definition

So far we have studied the adaptation dynamics of ide-
alized sensory systems, focusing on the trade off between
precision and speed. However, these notions require prior
assumptions about what adaptation should look like and
do. In the example of switching between environmental
states, the adaptation time course is expected to look
like relaxation dynamics. By contrast, for a continuous
change such as OU, adaptation is much harder to see by
eye. Can we measure adaptation in a way that makes
minimal assumptions about what the response is adapt-
ing to, or about the nature of the environmental changes?

To define such a quantity, we exploit the connection be-
tween adaptation and the dissipative dynamics of a ther-
modynamic system under an external drive [28, 49], as
suggested by the form of the adaptation dynamics (20)-

(21), where the adaptation variable x(t) is driven out of
equilibrium by an external stimlus y(t). In this type of
dynamics, the importance of non-equilibrium effects is
commonly measured by the rate of entropy production
[50], which quantifies the irreversibillity of the observed
joint time courses of x(t) and y(t), and is defined for-
mally as the relative entropy between the forward and
backward trajectories of the dynamics. Our goal is to
calculate that entropy production in the systems stud-
ied so far, and to relate this quantity to the degree of
adaptation.

If P (ΩN0 ) is the probability of a given trajectory Ω =
{z0, ..., zN} in discrete time, where z = (x, y) is the vari-
able describing the state of the system, the entropy pro-
duction of the trajectory Ω is defined by [51]:

SNtot(Ω) = ln
P (ΩN0 )

P (R(ΩN0 ))
(53)

where R(Ω) is the time-reversal of Ω. While in early
work entropy production was defined in terms of heat
loss and dissipation, and shown to be equal to (53) in
the case of Markovian dynamics with local detailed bal-
ance [49, 52], here we take (53) as a definition, following
the modern view of stochastic thermodynamics. For a

Markov system, one has P (ΩN0 ) = p(z0)
∏N−1
n=0 wzn+1zn ,

where wzz′ is the transition probability from z′ to z, so
that at steady state the average entropy production per
time step reads:

1

N
SNtot(Ω)

N→∞−−−−→ δS =
∑
zz′

wzz′pz′ ln
wzz′

wz′z
, (54)

where pz is the steady state distribution of z defined by
the implicit equation: pz =

∑
z′ wzz′pz′ . Taking the con-

tinuous limit, we can define an entropy production rate,
Ṡ = δS/δt, as δt→ 0.

When the statistics of stimuli do not vary and are re-
versible in time, no adaptation occurs in an optimal es-
timator, and we expect the temporal statistics of the re-
sponse to be temporally reversible. When the statistics of
stimuli change (abruptly or continuously), the response
statistics are transiently poorly adapted and require time
to relax to its efficient encoding state, similar to the re-
laxation of the equilibrium of a thermodynamic system
after a change in an external control parameter (tem-
perature, displacement, force, etc.) thus leading to the
production of entropy.

The measure of adaptation through entropy produc-
tion provides a means to detect and quantify adaptation
in any sensory system, in a parameter-free manner and
without having to know the fine details of the encoding
strategy. In the following we quantify the production of
entropy in the models of mean and variance adaptation
studied above.
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FIG. 9. Entropy production in mean adaptation process. Entropy production rate in the (a) telegraph and (b)
Ornstein-Uhlenbeck models of mean adaptation. Points are obtained by the numerical simulations, while the curves are
analytical predictions given by (62) for the telegraph case and (59) for the OU case. The lower the α parameter, the better the
adaptation, and the larger the entropy production, which diverges with α→ 0.

B. Mean switching

We start with the OU process, for which entropy pro-
duction may be calculated analytically. We start with the
Gaussian transition probabilities, with z′ = (x(t), y(t))
and z = (x(t+ δt), y(t+ δt)):

wzz′ = P (yt+δt|yt)P (xt+δt|xt, yt) (55)

P (yt+δt|yt) ∝ exp−
[
yt+δt − yt

(
1− δt

τ

)]2
4 δtτ

, (56)

P (xt+δt|xt, yt) ∝ exp−
[
xt+δt − xt

(
1− δt

τ ′

)
− δt

θ yt
]2

4Dxδt
,

(57)

with Dx = u4/2θ. Plugging these expression into (54)
gives:

δS =

√
1 + 2/α− 1

τ

C(δt)− C(−δt)
2Dx

(58)

where we recall C(t) = 〈y(t0)x(t0 + t)〉. Expanding at
small δt yields the entropy production rate:

Ṡτ =
√

1 + 2/α− 1 (59)

which diverges as ∝ α−1/2 in the regime of good adapta-
tion (α� 1), and decays to zero when signal is too poor
to allow for adaptation (α� 1).

To calculate the entropy production during the pe-
riod of a switch in the well-adapted regime (α � 1), we
may exploit the analogy with statistical thermodynam-
ics. After each switch, the energy landscape changes from
U+(x) = − ln ρeq(x|y = 1) to U−(x) = − ln ρeq(x|y =
−1) (and vice-versa), which are given by the steady-state
distributions (32). During the adaptation transient, the

system relaxes to its new equibrium, lowering its energy
by dissipation. The heat thus dissipated is exactly equal
to the total entropy produced during this transient. As-
suming that the system has completely adapted to the
previous epoch prior to each switch (which is valid for
α � 1), we may write the entropy production rate as
the mean entropy production per switch, divided by the
average time between switches:

Ṡ =
1

2τ

[
〈U−(x)〉x∼ρeq(·,y=+1) − 〈U−(x)〉x∼ρeq(·,y=−1)

]
,

(60)

Ṡτ =

〈
ln

1 + x

1− x

〉
x∼ρeq(·,y=+1)

. (61)

In the small α regime, we can compute this expression at
leading order:

Ṡτ = 1− γe + 2 log(2)− log(α), (62)

which again diverges for α→ 0, but this time logaritmi-
cally. In the α→∞ limit, the system never adapts, and
the dynamics are in effective equilibrium, Ṡτ → 0.

C. Variance switching

Since we have no analytical solution or continuous-time
limit for the case of a switching variance, we recourse
to numerical estimates of (54). The results, shown in
Fig. 10, paint a similar picture as for the mean switching
case. When the switching period is large, the system is
well adapted, spending most of its time in the equilib-
rium state, but dissipating heat during each adaptation
transient. The average amount of entropy production
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FIG. 10. Entropy production in adaptation to variance
switching. Average entropy production rate δSτ as a func-
tion of the inverse correlation time for three different values
of the variance ratio r = σh/σl.

per switching cycle seems to diverge for large τ , and also
grows with the variance ratio r, as expected.

Taken together, these results suggest that entropy pro-
duction provides a good signature of adaptation. It is
larger when adaptation is more precise, and when the
environemental changes causing adaptation are more im-
portant.

VIII. DISCUSSION

We have studied a theoretical scheme in which sensory
adaptation is cast as an inference problem. As noted
before [24, 26, 29], the solution to this problem can be
described in terms of Bayesian filters. In this work, we
have focused on simple, solvable models of adaptation
to sudden or continuous changes to the stimulus statis-
tics. The resulting Bayesian adaptation dynamics couple
the sensory response function to the state of the environ-
ment in a noisy manner, allowing for their study in terms
of stochastic thermodynamics. This explicit analogy to
non-equilibrium systems allowed us to relate adaptation
and dissipation (entropy production) in a precice math-
ematical sense.

In the case of a switching stimulus mean, these dy-
namics reduce in the continuous time limit to coupled
stochastic differential equation, which we can solve ana-
lytically. We computed the speed and accuracy of adap-
tation, and showed that they both depend on a single pa-
rameter α controling the ratio between the noise and the
environmental time scale. When α is small, the system
has enough time to adapt relative to the environment’s
speed of change. In this regime adaptation is accurate,
meaning that the response function is optimally tuned
to the current environment statistics. For large α how-
ever, the environment changes too quickly for the system
to garner information, and the response does not adapt,
instead ignoring received signals and using an effectively

constant response function (x ≈ 0).

We find that, in the fidelity regime, the timescale of
adaptation always scales sublinearly with the environ-
mental timescale. However, the precise scaling depends
of the precise model of the environment: logarithmic
for abrupt changes in the stimulus mean (telegraph pro-
cess), and square root for continuous ones (Ornstein-
Uhlenbeck process). Since these are two extremes of one-
dimensional stochastic process, we expect other types of
environmental dynamics to have scalings that fall within
that range. Most experiments studying visual adaptation
have reported linear scalings in adaptation to both the
mean and variance [24, 48], although alternative scaling
laws were not tested. In our model, a strict linear scal-
ing is approached only in the limit of low fidelity, where
adaptation is very poor. This suggests that these sen-
sory systems are actually not optimal for these simplified
stimulus statistics, but have instead evolved under other
constraints, such as metabolic or biophysical constraints,
and for efficiency under a broad range of complex stimu-
lus contexts.

Our results on mean switching mostly hold true in the
case of variance switching, including the sub-linear scal-
ing of adaptation time with environmental timescale. In
that case, the continuous time limit is not straightfor-
ward. We thus focused on the dynamics in discrete time
using numerical simulations. We found an asymmetry in
the adaptation dynamics, with a larger drop in informa-
tion transmission following an increase of variance than
a decrease, consistent with experimental observations in
the fly visual system [23].

Optimality is only a guiding principle, and not an as-
sumption for what the system does. We also studied the
effect of optimizing response properties when stimulus
statistics are misrepresented. We found that while as-
suming continuous change is more conservative, the cor-
responding adaptation strategy fares just as well when
the actual dynamics are discontinuous. Mischaracteriz-
ing the parameters of the environmental statistics affects
the precision and speed of adaptation, tipping the bal-
ance between the two, but not their scaling with α.

To explore the impact of adaptation on the coding
strategy, we assumed that the system changes its re-
sponse function to optimize the expected information
transfer. This relies on the implicit assumption that the
sensory system also outputs the adaptation variable x
in addition to the response r. However, realistic coding
strategies may combine the two together into a single
response, as for instance in the case of variance coding,
where the response encodes both stimulus fluctuations
and its varaince through the mean reponse [23]. How to
efficiently compress these different signals into a single
noisy response remains to be studied.

A main contribution of this paper is a mathemati-
cally precise link between adaptation and dissipation.
This analogy emerges from the form of the dynamical
Bayesian equations (20)-(21), where adaptation resem-
bles relaxation to equilibrium. We showed that a high
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degree of adaptation, as determined by its speed and ac-
curacy, can be quantified by the degree of deviation from
equilibrium and reversibility. This measure of adapta-
tion through entropy production could give a systematic
way to detect and quantify adaptation in any sensory
system, in a parameter-free manner and without having
to know the fine details of the encoding strategy. In par-
ticular, it could be applied to recordings of populations
of neurons in a variety of sensory systems in response
to changes in the stimulus statistics, using increasingly
available multi-electrode recordings [53] or 2-photon cal-
cium imaging techniques [54, 55]. Adaptation has mostly
been studied at the level of single neurons, because of its
evident manifestation in terms of spiking rates of indi-
vidual neurons. However, more subtle adaptive changes
could occur in the way multiple neurons encode informa-
tion collectively through their interactions or shared vari-
ability, which would be missed by traditional methods.
For instance, Hopfield networks [56] encode information
in the collective state of many neurons, and it has been
argued that similar principles may govern the encoding
of visual information in the retina [57]. The signatures
of entropy production proposed here could be useful for
detecting adaptation in such combinatorial codes.

Other sources of irreversibility, including in the stim-
ulus statistics themselves, or through the inherent irre-
versibility of the biophysical processes that implement
the response, may confound this analysis and would have
to be corrected for. Still, the relation between adapta-
tion, time and accuracy provides a testable hypothesis
that could be explored in future experiments. It should
also be emphasized that this dissipation may not directly
correspond to actual energy consumption in the system,
although it always provides a lower bound. In neural
systems, energy consumption from electrical activity far
outweighs dissipation estimated by the irreversibility of
measurable quantities. On the other hand, the two may
be surprisingly close for molecular systems. Previous
work by Lan et al. [28] has used entropy production
to estimate energy consumption in the context of adap-
tation in E. coli chemotaxis, showing that the system
realizes a near-optimal trade off between energy, speed,

and accuracy. By contrast, our proposal is to use entropy
production as an intrinsic definition of adaptation in sen-
sory systems, independently of energetic considerations.

Our framework could be expanded to account for
“meta-adaptation” [58], which describes the possibility
that the system dynamically learns the hyperparame-
ters of the stimulus statistics (e.g. θ, τ , and σ) from
the past stimulus. A similar form of meta-adaptation
has been proposed and explored in the context of evolu-
tionary adaptation [59], where microbial populations are
assumed not only to adapt their composition to environ-
mental changes, but also to the statistics with which that
environment changes, using a similar strategy of Bayesian
filtering as employed here. Combining all hyperparame-
ters into a collective variable Θ, we could write a similar
recursive equation to (2) assuming a Markovian dynam-
ics for Θ:

P (yn,Θn|sj≤n) =
1

Ω
P (sn|yn)

[ ∑
yn91,Θn91

P (yn|yn91,Θn−1)

× P (kn|Θn91)P (yn91,Θn91|sj<n)

]
.

(63)

In this scheme the sensory system learns both the pa-
rameters of the stimulus statistics as well as the hy-
perparameters that govern their own dynamics. Such
meta-adaptation is needed to explain how sensory sys-
tems dynamically adapt their adaptation speed to the
environmental timescale [24, 46], on a longer timescale
than adaptation itself. This hypothesis is consistent with
the fact that changes in the world occur on many time
scales [60], and is also suggested by the wide range of
timescales in visual adaptation even at the level of the
retina, from seconds to hours. Future experimental and
theoretical work should determine the relevance of this
theory in biological sensory systems.
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Appendix A: Mean first passage time after a switch

We start with (33) operate the change of variable
x = 1− α/(2w), x′ = 1− α/(2v). In the limit α� 1, we
assume that w and v are small for the dominating contri-
bution of the integral. Because of the (1− x2) prefactor
in the attraction term towards y, the dynamics of x is
initially “stuck” in the previous belief, x ∼ 1. Once it
reaches a value 1−O(1), it quickly (in time ∼ θ) reaches
0, before continuing on to its next state ∼ −1.

The change of variable gives:

T (x0) ∼θ
2

∫ w0

α
2

dw e
w2

w−α
4

w − α
4

w2

∫ +∞

w

dv e
− v2

v−α
4

v2

(v − α
4 )3

,

(A1)

with w0 = (α/2)/(1 − x0) is of order O(1) in α. The
internal integral in (A1) can be rewritten as the sum of

three parts:

≈
∫ +∞

w

dv e−v

v
+

∫ +∞

w

R(v)e−vv

+

∫ +∞

w

v2

(v − α
4 )3

e−v
(
e−

α
4

1
v−α/4 − 1

), (A2)

with R(v) = v2/(v − α
4 )3 − 1/v.

The first term in (A2) is by definition equal to the spe-
cial function E1(w) ≈ w− γe − ln(w) +O(w) (related to
exponential integral). Its contribution to (A1) is dom-
inated by the behaviour at small w → α/2 where the
integral diverges when α → 0. As we will see, it also
dominates the second and third terms, yielding:

T (x0) ≈ θ

2

∫ w0

α
2

dw ln(1/w)− γe

w − α
4

w2

≈ θ

4

[
ln2(α) + (2γe − 2 ln(2) + 1) ln(α) +O(1)

]
.

(A3)

What remains to show is that the second and third
terms in (A2) contribute at most O(1) to the result. The
second term’s contribution to (A1) is bounded by:

θ

2
e2w0

∫ w0

α/2

dw(w − α/4)

w2

[
8 2w
α − 3

2
(
2 2w
α − 1

)2 + ln
2w
α

2w
α −

1
2

]
= θO(1).

(A4)

As for the third term, it is approximately:

≈ −α
4

∫ +∞

w

w3(
w − α

4

)4 e−w ∝ α ln

(
1

w

)
, (A5)

and will thus contribute O(θα ln(1/α)) = O(θ) to the
result.


