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Abstract

Convexity can be generalized to the two weaker notions of reach and r-convexity; both describe the regularity
of a set’s boundary. In this article, these two notions are shown to be equivalent for closed subsets of Rd with
C1 smooth, (d − 1)-dimensional boundary. In the general case, for closed subsets of Rd, we detail a new
characterization of the reach in terms of the distance-to-set function applied to midpoints of pairs of points
in the set. For compact subsets of Rd, we provide methods of approximating the reach and r-convexity based
on high-dimensional point cloud data. These methods are intuitive and highly tractable, and produce upper
bounds that converge to the respective quantities as the density of the point cloud is increased. Simulation
studies suggest that the rates at which the approximation methods converge correspond to those established
theoretically.

1 Introduction

A number of concepts from convex geometry generalize from convex sets to much larger classes of sets. A classic
example from Federer (1959) is the extension of kinematic formulas (in particular, Steiner’s formula) for convex
sets to sets with positive reach (see Definition 3). Another example is the notion of the convex hull of a set, which
can be weakened to the r-convex hull, for r > 0. This weak notion of a convex hull, instead of being expressed as
the intersection of half-spaces, is expressed in terms of intersections of the compliments of open balls of radius r.
The resulting intersection is said to be r-convex (see Definition 2), which differs subtly from the notion of reach,
and these differences have been studied in Colesanti and Manselli (2010) and Cuevas et al. (2012) for example.
These two notions exemplify geometric measures on sets that describe the degree to which the set is convex; each
measure belonging to the closed interval [0,∞] and carrying pertinent information.

In this paper, we bring to light the importance of r-convexity by showing its equivalence to the reach for a large
class of sets. Nonetheless, the mathematical properties of r-convex sets have been widely studied (Perkal, 1956;
Serra, 1984; Walther, 1999; Colesanti and Manselli, 2010; Cuevas et al., 2012) and applications of r-convexity for
image smoothing have been suggested in Walther (1999) and Cuevas et al. (2007) as well as for set estimation
in Mani-Levitska (1993); Cuevas et al. (2007); Pateiro López (2008); Cuevas (2009); Cuevas et al. (2012); and
Aaron et al. (2022). In Cuevas and Rodŕıguez-Casal (2004), the authors use a rolling-type condition (weaker than
r-convexity) to improve the rate of convergence of their set boundary estimator. Rodŕıguez Casal and Saavedra-
Nieves (2016) introduce a statistical estimator for the largest r such that a set is r-convex using the test of
uniformity proposed in Berrendero et al. (2012).

The reach is a popular measure of convexity largely due to its link with the Steiner formula; for the larger the
reach of a set, the larger the interval on which the volume of a dilation of the set is polynomial in the dilation
radius (Federer, 1959, Theorem 5.6). In the field of geometric data analysis, the reach constitutes a commonly used
measure of regularity of a set’s boundary. The theoretical estimation of the reach has been of particular interest
in recent literature (Chazal and Lieutier, 2008; Aamari et al., 2019, 2022; Berenfeld et al., 2022). In Cholaquidis
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et al. (2022), the authors introduce a complete and tractable method for estimating the reach from point cloud
data involving the computation of graph distances in a spatial network defined over the point cloud. A number of
other authors have taken an interest in the mathematical properties of the reach. Poliquin et al. (2000) identifies
the sets of reach r with the r-proximally smooth sets introduced in Clarke and Wolenski (1995), implying that the
reach can be characterized by the gradients of the distance-to-set function. Colesanti and Manselli (2010) makes
a number of insightful connections between the reach and other geometrical properties of sets. Attali and Lieutier
(2015) studies Vietoris–Rips complexes via the reach, proving that the reach of a set can only increase if intersected
by sufficiently small balls. An alternative characterization of the reach, involving pairwise geodesic distances, is
provided in Boissonnat et al. (2019). The positivity of the reach implies a number of desirable properties, and
so positive reach is a common hypothesis to guarantee convergence rates of statistical estimators of geometric
quantities (Thäle, 2008; Cuevas, 2009; Rataj and Zähle, 2019; Biermé et al., 2019; Cotsakis et al., 2022).
The novelties in this paper are listed as follows. Firstly, we establish that for the compact subsets of Rd with C1

smooth, (d − 1)-dimensional boundary, the notions of r-convexity and reach are equivalent (see Theorem 1). A
conjecture mentioned in Perkal (1956) is proven false by constructing a set that does not have positive reach, but
is r-convex for all r ∈ R+. In the same spirit as Boissonnat et al. (2019), we introduce a characterization of the
reach in terms of the distance-to-set function applied to pairwise midpoints (see Theorem 2). This gives rise to a
tractable method of approximating the reach of a compact set A ⊂ Rd based on a point cloud that is known to be
contained, and relatively dense, in A. We show that this method produces an upper bound for the reach of A, and
that the upper bound converges to the reach (with a known rate) if the point cloud is taken to be arbitrarily dense
in A (see Theorem 4). In addition, we propose a natural and computationally efficient method for bounding the
largest r such that a compact set A ⊂ Rd is r-convex based on point cloud data. Like the bound for the reach, the
bound on the r-convexity converges to the correct limit as the density of the point cloud increases (see Theorem 3).
Existing methods for estimating the reach and r-convexity from point cloud data suffer from complexity and do
not obtain the rate of convergence that we have established for the bound on the reach.
The organization of the paper is as follows. Section 2 introduces the notation and set operations that we use
throughout the document, as well as the formal definitions of reach and r-convexity. Section 3 is split into
two subsections. In Section 3.1, we provide the link between reach and r-convexity and the counterexample to
the conjecture in Perkal (1956); in Section 3.2, we provide an alternative formulation of the reach. Section 4
is dedicated to the tractable methods of approximating the reach and r-convexity from point cloud data. The
methods developed in Section 4 are tested on sets with known reach and r-convexity in Section 4.3, and empirical
rates of convergence are provided. The main proofs can be found just after their corresponding claims, however,
those in Section 3.1 are postponed to Section 5, in which some additional auxiliary results are stated and proved.

2 Definitions and notation

The sets that we study in this paper are subsets of Rd, which is endowed with the Euclidean metric ||·||. For a set
S ⊆ Rd, let ∂S denote its boundary, and let cl(S) := S ∪ ∂S denote its closure. Denote the closed ball with radius
r ∈ R+ centered at s ∈ Rd by B(s, r) := {t ∈ Rd : ||t− s|| ≤ r}. For t ∈ Rd, denote the distance between t and a
non-empty set S by δS(t) := inf{||t− s|| : s ∈ S}. Intervals in R with open (resp. closed) endpoints are denoted
with round (resp. square) brackets.

Definition 1 (Operations on subsets of Rd). We recall the Minkowski addition of two sets A,B ⊆ Rd,

A⊕B := {x+ y : x ∈ A, y ∈ B}.

The Minkowski difference is given by

A⊖B :=
⋂
y∈B

(A⊕ {y}) = (Ac ⊕B)c,

where Ac denotes the compliment of A in Rd. For r ∈ R, let

Ar :=

{
A⊕B(0, r), for r ≥ 0,

A⊖B(0,−r), for r < 0,
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denote either the dilation or erosion of a set A, depending on the sign of r. Finally, define A•r := (Ar)−r to be
the closing of A by B(0, r) if r ≥ 0 and the opening of A by B(0,−r) if r < 0.

The Hausdorff distance between two closed sets A,B ⊆ Rd is denoted dH(A,B) := inf{r ∈ R+ : A ⊆ Br, B ⊆ Ar}.

Lemma 1. Let r, s > 0, and let A ⊆ Rd. The following identities hold:

(a) (Ar)
c = (Ac)−r,

(b) A ⊆ A•r,

(c) (Ar)s = Ar+s,

(d) (Ar)−s ⊇ Ar−s,

(e) (A−r)s ⊆ As−r.

Proof of Lemma 1. Fix r, s > 0. The identity in (a) follows directly from Definition 1. Item (b) is proved
by contradiction. Let a ∈ A and suppose a ∈ (A•r)

c = (Ar)
c ⊕ B(0, r). Then there is a p ∈ (Ar)

c such
that a ∈ B(p, r) ⇔ ||p− a|| ≤ r ⇔ p ∈ B(a, r) ⇔ p ∈ Ar; thus, a contradiction. To prove (c), remark
that B(0, r) ⊕ B(0, s) = B(0, r + s) and that Minkowski addition is associative. To prove (d), consider the
case where r ≥ s, then (Ar)−s = (Ar−s+s)−s = ((Ar−s)s)−s = (Ar−s)•s ⊇ Ar−s. For the case r < s, write
(Ar)−s = (Ar)r−s−r = ((Ar)−r)r−s = (A•r)r−s ⊇ Ar−s. To show (e), consider the compliments of the sets in (d)
and apply (a) repeatedly.

Weak notions of convexity Here, we precise the weak notions of convexity that we study in detail.

Definition 2. A set A ⊆ Rd is said to be r-convex for r ∈ R+ if it is closed and A•s = A for all s ∈ (0, r) (see,
e.g., Perkal (1956)). Define the quantity rconv(A) := sup{r ∈ R : A•r = A}.

A useful interpretation of the above definition is that a set A is r-convex if it can be expressed as the compliment
of a union of open balls of radius r.

Definition 3. Recall from Federer (1959) that the reach of a set A ⊆ Rd is given by

reach(A) := sup
{
r ∈ R+ : ∀y ∈ Ar ∃!x ∈ A nearest to y

}
.

If reach(A) > 0, then A is said to have positive reach.

It is shown in Proposition 1 of Cuevas et al. (2012) that for a compact set A ⊂ Rd with reach(A) ≥ r > 0, it holds
that A is r-convex. Thus, the reach of a set provides a stronger notion of convexity than r-convexity. However,
both notions are generalizations of convexity, since a set A has reach(A) = ∞ if and only if it is convex and closed
(Federer, 1959, p. 433).

3 Equivalent notions of reach

3.1 Connections to r-convexity

The weak notions of convexity introduced in Section 2 (see Definitions 2 and 3) are closely related. It is the goal
of this section to highlight the connections between r-convexity and the reach, as well as identify conditions for
which the two notions are equivalent. Theorem 1 provides the principal insight that we leverage for many of our
results.

Theorem 1. Let A be closed in Rd. It holds that

reach(A) ≤ rconv(A). (1)

Moreover, if ∂A is a C1 smooth (d− 1)-dimensional manifold, then

reach(A) = rconv(A). (2)
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Figure 1: The closed set A (in grey) has reach(A) equal to the radius of the small circle, but it is r-convex for all
positive r less than the radius of the larger dashed circle.

Equation (1) is proven in Cuevas et al. (2012, Proposition 1) for compact A. Nonetheless, we reprove the statement
for closed A in the proof of Theorem 1, which we postpone to Section 5. Figure 1 depicts a closed set A that
obeys (1) but not (2).

The following corollary provides the link between the r-convexity and the reach of sets in Serra’s regular model
(Serra, 1984, p. 144).

Corollary 1. Let A ⊂ Rd be non-empty, compact, and path-connected. If rconv(cl(Ac)) > 0, then reach(A) =
rconv(A).

The proof of Corollary 1, which relies heavily on Theorem 1 in Walther (1999), is postponed to Section 5. Likewise,
we prove the following result in Section 5.

Corollary 2. Let A be a closed set in Rd and let ϵ ∈ R+. Then reach(Aϵ) = rconv(Aϵ).

Cockreham and Gao (2018) concerns the coating (i.e., a small dilation) of sets with positive reach. Corollary 2
concerns precisely these sets.

A counterexample to Borsuk’s conjecture. Here, we provide a simple counterexample to Borsuk’s conjec-
ture, that r-convex sets are locally contractible (see, e.g., Perkal (1956) and Remark 2 of Cuevas et al. (2012)).
Consider the following subset of R2,

Λ :=

{(
1

n
, 0

)
: n ∈ N+

}
∪ {(0, 0)}

is not locally contractible at (0, 0) ∈ R2, but is r-convex for all r ∈ R+, i.e., rconv(Λ) = ∞. This is consistent
with Cuevas et al. (2012, Remark 4) and Federer (1959, Remark 4.15), since reach(Λ) = 0. In general, any closed
subset of Rd contained in a (d− 1)-dimensional affine linear subspace is r-convex for all r > 0.

3.2 Alternative formulations of the reach in the general case

Boissonnat et al. (2019) introduces a new formulation of the reach by considering pairs of points in the set, and
remarking that they must satisfy a certain condition depending on the reach. In this section, we provide an
equivalent notion of the reach, inspired by Colesanti and Manselli (2010, Theorem 3.8) and the formulation in
Boissonnat et al. (2019, Theorem 1). Our new formulation is expressed in terms of the following geometric objects.

Definition 4. Define for α ∈ R+ and x ∈ [0, α/2],

gα(x) :=

{
α2

8x + x
2 , x > 0,

∞, x = 0,
(3)

and its inverse for r ≥ α/2,

g−1
α (r) := r −

√
r2 − α2

4
. (4)
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g−1
||p2−p1||(r)

Figure 2: A geometric interpretation of the objects in Definition 4. The two grey arcs with radius r outline the
set h(p1, p2, r). The blue circle marks the boundary of the set b(p1, p2, r) in (5).

For p1, p2 ∈ Rd, denote

b(p1, p2, r) := B

(
p1 + p2

2
, g−1

||p2−p1||(r)

)
. (5)

In addition, let h(p1, p2, r) be the intersection of all closed balls in Rd of radius r that contain both p1 and p2 (see
Colesanti and Manselli (2010, Definition 3.1)).

Theorem 2. Let A be closed in Rd. Two equivalent formulations of the reach are

reach(A) = sup
{
r ∈ R+ : ∀a1, a2 ∈ A, ||a2 − a1|| < 2r ⇒ b(a1, a2, r) ∩A ̸= ∅

}
(6)

and

reach(A) = inf

{
g||a2−a1|| ◦ δA

(
a1 + a2

2

)
: a1, a2 ∈ A

}
, (7)

where g||a2−a1|| and b(a1, a2, r) are as in (3) and (5) respectively, and δA is the distance-to-set function defined in
Section 2.

See Figure 2 for a geometric interpretation of the function in (3) and its inverse in (4). Evidently from the figure,
this function is derived from the height of a spherical cap; it is written about in Attali et al. (2013), Attali and
Lieutier (2015), and Divol (2021) in reference to the reach.

Proof of Theorem 2. We prove the following two claims separately, which together imply (6).

(i) If r > reach(A), then there exist a1, a2 ∈ A such that ||a2 − a1|| < 2r and b(a1, a2, r) ∩A = ∅.

(ii) If 0 < r ≤ reach(A), then for all a1, a2 ∈ A such that ||a2 − a1|| < 2r, the set b(a1, a2, r) ∩A is not empty.

We begin by showing the first claim. Let r > reach(A) and let r̃ ∈ (reach(A), r). By the definition of reach(A)
(Definition 3), ∃p ∈ Ar̃ and a1, a2 ∈ A such that ||a1 − p|| = ||a2 − p|| = δA(p) ≤ r̃. It is easy to check that
b(a1, a2, r) is contained in the interior of B(p, δA(p)), which does not intersect A. Since ||a2 − a1|| ≤ 2r̃ < 2r by
the triangle inequality, item (i) holds.

Now, to prove the second claim, we recall Theorem 3.8 in Colesanti and Manselli (2010): For 0 < r ≤ reach(A)
and any a1, a2 ∈ A such that ||a2 − a1|| < 2r, it holds that h(a1, a2, r) ∩A is connected, where h(a1, a2, r) is as in
Definition 4.
Let 0 < r ≤ reach(A) and suppose that for some a1, a2 ∈ A, both ||a2 − a1|| < 2r and b(a1, a2, r) ∩ A = ∅ hold.
Then

h(a1, a2, r) ∩A =
(
h(a1, a2, r) \ b(a1, a2, r)

)
∩A

is disconnected, since a1 and a2 are in two disconnected components of h(a1, a2, r) \ b(a1, a2, r). This contradicts
Theorem 3.8 in Colesanti and Manselli (2010). Thus, claim (ii) holds.
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Now we show the equality in (7). Since gα(x) is monotonically decreasing in x, it holds for any a1, a2 ∈ A and
r > ||a2 − a1|| /2 that,

b(a1, a2, r) ∩A = ∅ ⇔ δA

(
a1 + a2

2

)
> g−1

||a2−a1||(r) ⇔ g||a2−a1|| ◦ δA
(
a1 + a2

2

)
< r.

Thus, by Claim (i) above, the RHS of (7) is at most reach(A). To finish the proof, we fix r ∈ (−∞, reach(A)),
and aim to show that g||a2−a1|| ◦ δA

(
a1+a2

2

)
≥ r for all a1, a2 ∈ A. If ||a2 − a1|| ≥ 2r, then the image of g||a2−a1||

is contained in [r,∞]. If ||a2 − a1|| < 2r, then b(a1, a2, r) ∩A ̸= ∅ by Claim (ii), and so g||a2−a1|| ◦ δA
(
a1+a2

2

)
≥ r

as desired.

4 Methods for point cloud data

In practice, one might be interested in understanding the smoothness of a set A ⊆ Rd from a discrete set of points
that are known to reside in A. In this section, we provide methods of bounding the r-convexity and the reach
of A given such a set of points. We show that as the sampling points becomes dense in A, these upper bounds
converge to their respective quantities. The Hausdorff metric serves as an excellent candidate to quantify the
density of points in the set, since it captures the minimal local density of points within the set. Convergence is
thus expressed in terms of the Hausdorff distance from the point cloud to the set of interest tending to 0, as has
been done in, for example, Cuevas and Fraiman (1997).

4.1 A converging upper bound for r-convexity

We have seen in Section 3.1 that in cases where ∂A is (d − 1)-dimensional and C1 smooth, the reach is equal
to the maximal r such that the set is r-convex. More generally, this holds even for some sets that are not C1

continuous at some “outward pointing” points on their boundaries, such as the filled square in R2. Thus, in many
cases, the reach of a set can be obtained through its r-convexity (see Section 3.1). At the very least, the reach
is always bounded above by the maximal r such that it is r-convex (see Theorem 1). In this section, we provide
a simple and computationally efficient algorithm for bounding rconv(A) above for a compact set A ⊂ Rd, based
on discrete samples of the space Rd. Moreover, if the sampling becomes dense in Rd, we show that this method
obtains rconv(A) exactly.

Here, we introduce the sample points in Rd, and analogous operations to those of dilation and erosion for subsets
of these points.

Definition 5. Let P be a point cloud in Rd. For a set Â ⊆ P, we make a slight abuse of notation and denote for
r ∈ R,

Âr :=

{
{p ∈ P : δÂ(p) ≤ r}, for r ≥ 0,

{a ∈ Â : δP\Â(a) > −r}, for r < 0.

Remark 1. We emphasize that for a point cloud P, a subset Â ⊆ P, and a real number r ∈ R, Definition 5 implies
that Âr ⊆ P. Contrast this with the set Â⊕B(0, |r|), which is not contained in P for r > 0.

4.1.1 Problems with the traditional closing operation on discrete data

In image analysis, if P is taken to be the pixels of an image, then the closing of a set Â ⊆ P by a distance r > 0
is usually taken to be (Âr)−r. The closing operation for discrete data, like the closing operation on sets, satisfies

(Âr)−r ⊇ Â. If Â is chosen to describe a set A ⊂ R2 such that Â = A ∩ P, then one might be interested in

understanding the smoothness of A via Â. For r > 0 it is quite clear that (Âr)−r = Â does not imply A•r = A,
because there may be fine discontinuities of the set A that are not captured by P. One might then ask if the
converse holds, i.e., if A•r = A implies (Âr)−r = Â. Indeed, it does not. See Figure 3 for a visual example of a

set A satisfying A•r = A and (Âr)−r ̸= Â.
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Figure 3: Here is an example where the closing of a discrete set Â by a distance r (3 pixels) is strictly larger

than Â, however the underlying set A is r-convex. Medium-grey pixels belong to Â, the dark-grey pixel is the one
remaining pixel in (Âr)−r that is not in Â, and the remaining light-grey pixels are in Âr

4.1.2 A corrected closing operation to test for r-convexity

In this section, we introduce a modified closing operation on discrete point clouds that does not suffer from the
pitfall discussed in Section 4.1.1.

Theorem 3. For n ∈ N+, let P(n) be a point cloud in Rd, and suppose that

ϵn := sup
{
δP(n)(q) : q ∈ Rd

}
(8)

is finite. Let A be a compact subset of Rd, and for n ∈ N+, define Â(n) := A ∩ P(n) and the corresponding
approximation of rconv(A),

r̂(ϵn)(Â(n)) := inf
{
r > ϵn : (Â

(n)
r−ϵn)−(r+ϵn) ⊈ Â(n)

}
. (9)

It holds that
inf
n∈N+

r̂(ϵn)(Â(n)) ≥ rconv(A). (10)

Moreover, if ϵn → 0 and dH(Â(n), A) → 0 as n→ ∞, then

lim
n→∞

r̂(ϵn)(Â(n)) = rconv(A). (11)

Remark 2. Note that r̂(ϵn)(Â(n)) in (9) can be computed efficiently using entirely available information, since
ϵn in (8) is a feature of the point cloud P(n) and not of the unknown set A. In particular, there is no need

to estimate dH(Â(n), A) for the construction of r̂(ϵn)(Â(n)). A binary search algorithm, along with the discrete

dilation operations in Definition 5, are sufficient for the numerical calculation of r̂(ϵn)(Â(n)). See Figure 4 for an

example of a set A for which (Â
(n)
r−ϵn)−(r+ϵn) ⊈ Â(n).

Remark 3. The requirement that P(n) extends over all of Rd allows for a mathematical simplification and is not
needed in practice. For applications on data, one only requires that dH(P(n), T ) = ϵn for some compact T ⊂ Rd
that contains Arconv(A)+2ϵn . In the case where A is lower dimensional than the embedding space Rd, one can add

any finite number of points uniformly distributed on T to P(n), and they will almost surely not belong to A.

The following result from Rodŕıguez Casal and Saavedra-Nieves (2016), while interesting on its own, is instrumental
in the proof of Theorem 3.

Proposition 1 (Lemma 8.3 in Rodŕıguez Casal and Saavedra-Nieves (2016)). Let r ∈ R+ and let A ⊂ Rd be a
closed set satisfying rconv(A) < r. The set A•r \A contains an open subset of Rd.
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(b)(a)

Figure 4: We test the r-convexity of a set A ⊂ R2 via Â(n) (grey regions in panel (a)) for r = 9an, where an is the

lattice spacing of the square lattice P(n). With, ϵn = an/
√
2, we see that (Â

(n)
r−ϵn)−(r+ϵn) \ Â(n) (dark grey regions

in panel (b)) is not empty, thus, rconv(A) ≤ r̂(ϵn)(Â(n)) ≤ 9an. The remaining pixels in Â
(n)
r−ϵn are shaded in light

grey in panel (b).

We provide an alternative proof of Proposition 1 in Section 5.

Proof of Theorem 3. We begin by showing (10). Let n ∈ N+ and fix p ∈ P(n) \ Â(n). If ϵn ≥ rconv(A), then (10)
holds trivially. Now, let r ∈ R+ be such that ϵn < r < rconv(A) so that A•r = A. We aim to show that

p /∈ (Â
(n)
r−ϵn)−(r+ϵn). Indeed, by the r-convexity of A, there exists x ∈ (Ar)

c such that ||x− p|| < r. In addition,

B(x, ϵn)∩Ar−ϵn = ∅, so there exists q ∈ P(n)\Â(n)
r−ϵn such that ||q − x|| ≤ ϵn. Therefore, by the triangle inequality,

||q − p|| ≤ r + ϵn, which implies δP(n)\Â(n)
r−ϵn

(p) ≤ r + ϵn. Thus, p /∈ (Â
(n)
r−ϵn)−(r+ϵn) as desired.

Now, to prove (11), first fix r > rconv(A). To simplify notation, let δn := dH(Â(n), A). By Proposition 1,
there exists an open subset O ⊆ A•r \ A that contains a closed ball of radius δn0 + 3ϵn0 for sufficiently large
n0 ∈ N+. Let n ≥ n0. The point cloud P(n) is sufficiently dense such that there exists q ∈ O−(δn+2ϵn) ∩ P(n).

Importantly, this implies that q ∈ (Ar)−(r+δn+2ϵn) ∩P(n). By Lemma 1, for all s > r, we have (Ar)−(r+δn+2ϵn) ⊆
((Ar)•(s−r))−(r+δn+2ϵn) = (As)−(s+δn+2ϵn), and therefore q ∈ (As)−(s+δn+2ϵn) ∩ P(n). Notice that As ∩ P(n) ⊆
Â

(n)
δn+s

, which implies (As)
c ⊇ P(n)\Â(n)

s+δn
and thus (As)−(s+δn+2ϵn) ⊆ (Â

(n)
δn+s

)−(s+δn+2ϵn). Summarizing, we have

shown that there is a point q in (Â
(n)
δn+s

)−(s+δn+2ϵn) that is not in Â
(n). By the change of variables s̃ := s+δn+ϵn, it

follows that (Â
(n)
s̃−ϵn)−(s̃+ϵn)\Â(n) ̸= ∅ for all s̃ > r+δn+ϵn, which implies r̂(ϵn)(Â(n)) ≤ r+δn+ϵn. Sending n→ ∞

yields limn→∞ r̂(ϵn)(Â(n)) ≤ r, and since r ∈ (rconv(A),∞) was chosen freely, limn→∞ r̂(ϵn)(Â(n)) ≤ rconv(A).
This result, along with (10), gives the convergence in (11).

Remark 4. Equation (11) is provided without a rate of convergence. This is due to the fact that Proposition 1
provides no guarantees on the size of the open subset that can be found in A•r \ A for r > rconv(A). To provide
a rate of convergence, a deeper analysis is needed to understand the rate at which the size of the largest open
ball in A•r \A decreases as r → rconv(A). By contrast, the bound that we construct for the reach in Section 4.2
converges to the reach at a known rate (see Theorem 4 below).

4.2 A converging upper bound for the reach

In the general case where the boundary of a compact set A ⊂ Rd, is not (d − 1)-dimensional, or perhaps not

C1 smooth, one does not have any guarantees that r̂(ϵn)(Â(n)) (the upper bound introduced in Section 4.1.2)

converges to the reach of A as P(n) becomes dense in Rd. Nonetheless, one can leverage the fact that r̂(ϵn)(Â(n))
is an upper-bound for reach(A) by Theorems 1 and 3. In this section we introduce a method of approximating
reach(A), based on Theorem 2. To guarantee a rate of convergence, we impose assumptions on a quantity which
we define here as the β-reach of A.
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Definition 6. For a closed set A ⊆ Rd and β ∈ R+ ∪ {0}, let the β-reach of A be defined as

reachβ(A) := inf

{
g||a2−a1||(x) : a1, a2 ∈ A, x = δA

(
a1 + a2

2

)
≥ β

}
,

where g||a2−a1||(x) is defined in (3).

Importantly, the β-reach of a set for β = 0 is identified with the reach, i.e., reach0(A) = reach(A) for closed
A ⊆ Rd (see Theorem 2, Equation (7)). Another easily verifiable property of the β-reach is that for any closed set
A, the β-reach satisfies reachβ(A) ≥ β.

Remark 5. The β-reach of a set is closely related to the spherical distortion radius (with parameter δ) introduced
in Aamari et al. (2022), or the µ-reach (with parameter µ) introduced in Chazal et al. (2009). Indeed, all three
notions give a measure of reach that excludes “local” effects, where locality is measured by the corresponding
parameter β, δ, or µ.

Lemma 2. For A ⊂ Rd closed, the function φ : R → R ∪ {∞} that maps β 7→ reachA(β) is non-decreasing, and
is continuous at β = 0, so that limβ→0 reachβ(A) = reach(A).

Proof of Lemma 2. The non-decreasing property is seen via the inclusion{
(a1, a2) ∈ A2 : δA

(
a1 + a2

2

)
≥ β2

}
⊆
{
(a1, a2) ∈ A2 : δA

(
a1 + a2

2

)
≥ β1

}
,

for all β1, β2 ∈ R satisfying β2 > β1. Moreover, this implies limβ↘0 reachβ(A) ≥ reach0(A). Now, it suffices to
show the reverse inequality. Let ϵ > 0. By Theorem 2, Equation (7), there exists a1, a2 ∈ A satisfying

g||a2−a1|| ◦ δA
(
a1 + a2

2

)
< reach(A) + ϵ = reach0(A) + ϵ.

Any such pair (a1, a2) must satisfy δA
(
a1+a2

2

)
> 0, and so for β ∈

(
0, δA

(
a1+a2

2

))
, it holds that reachβ(A) <

reach0(A) + ϵ. Thus, limβ↘0 reachβ(A) ≤ reach0(A).

The following assumption, imposed on the β-reach of a set, serves as a regularity condition that is used to prove
a convergence rate for the approximation of the reach in Theorem 4.

Assumption 1. Suppose that the set A ⊂ Rd is compact, and that there exists δ > 0 such that φ : R → R ∪ {∞}
defined by β 7→ reachA(β) is either constant or strictly increasing on [0, δ]. In addition, suppose that

KA := lim
β↘0

reachβ(A)− reach(A)

β
(12)

exists and is finite.

Assumption 1, crucial for the proof of Theorem 4 below, is satisfied by a large class of sets. Consider the following
examples.

Example 1. For two line segments with ends joined by an angle θ ∈ (0, π), the β-reach of their union is
β
2

(
1 + sec2

(
θ
2

))
, for sufficiently small β > 0.

Example 2. The β-reach of a circular arc is equal to the radius of the arc, for sufficiently small β > 0.

Example 3. Let h : R → R be a C2 smooth function with h′(0) > 0. Suppose that the graph of the function
f : [−1, 1] → R defined by f(x) := h(x2) obtains its maximal curvature at x = 0. Then, the set G := {(x, f(x)) :
−1 ≤ x ≤ 1} ⊂ R2 satisfies

reach(G) =
1

2h′(0)
(13)

and

reachβ(G) =
1

2h′(0)
+

(
1

2
− h′′(0)

4h′(0)3

)
β + o(β), (14)

for sufficiently small β > 0. Justifications for Equation (13) and (14) are provided at the end of Section 5.
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Assumption 1 is imposed on the β-reach of A alternatively to the regularity of ∂A since the regularity of β-reach
lends very naturally to the proof of Theorem 4. Moreover, Assumption 1 allows for most compact sets in Rd,
excluding some pathological counterexamples.

Theorem 4. Let A ⊂ Rd satisfy Assumption 1. For n ∈ N+, let P(n) be a point cloud in Rd, and denote
Â(n) := A ∩ P(n). Let (ϵn)n≥1 be a sequence in R+ tending to 0 as n → ∞, and suppose that ϵn ≥ dH(Â(n), A)
for all but finitely many n. For each n ∈ N+, define the corresponding approximation of reach(A) by

r̂ch
(ϵn)

(Â(n)) := sup
{
r ∈ R+ : ∀a1, a2 ∈ Â(n), ||a2 − a1|| < 2r ⇒ b(a1, a2, r)ϵn ∩ Â(n) ̸= ∅

}
, (15)

where b(a1, a2, r)ϵn is the ball in (5) dilated by an amount ϵn. Then there exists n0 ∈ N+ such that

0 ≤ r̂ch
(ϵn)

(Â(n))− reach(A) ≤ K̃
√
ϵn, (16)

for all n ≥ n0, where K̃ :=
(
2 reach(A) + KA

8 + 1
2

)
, with KA defined in (12).

Proof of Theorem 4. In the following, we assume that A is not convex; for if it is convex, then r̂ch
(ϵn)

(Â(n)) =

supR+ = ∞ for all n ∈ N+. Fix n0 ∈ N+ be such that ϵn ≥ dH(Â(n), A) for all n ≥ n0. We begin by showing

first inequality in (16). If reach(A) = 0, then 0 ≤ r̂ch
(ϵn)

(Â(n)) holds trivially. Now, suppose that reach(A) > 0
and let r ∈ (0, reach(A)). By Equation (6) in Theorem 2, there exists an s ∈ [r, reach(A)] such that for all

a1, a2 ∈ Â(n), the implication ||a2 − a1|| < 2s ⇒ b(a1, a2, s) ∩ A ̸= ∅ holds. Moreover, for n ≥ n0, the implication

b(a1, a2, s) ∩ A ̸= ∅ ⇒ b(a1, a2, s)ϵn ∩ Â(n) ̸= ∅ holds. Therefore, for such n, we have r̂ch
(ϵn)

(Â(n)) ≥ s ≥ r, and
since r ∈ (0, reach(A)) was chosen freely, the first inequality in (16) holds.

Now, we show the second inequality in (16). Let n ≥ n0, and suppose that there exist a1, a2 ∈ Â(n) such that

δA
(
a1+a2

2

)
> ϵn. Then b(a1, a2, s)ϵn ∩ A = ∅ for s ≥ g||a2−a1||

(
δA
(
a1+a2

2

)
− ϵn

)
, and so r̂ch

(ϵn)
(Â(n)) ≤ s for all

such s. Indeed,

r̂ch
(ϵn)

(Â(n)) ≤ inf

{
g||a2−a1||

(
δA

(
a1 + a2

2

)
− ϵn

)
: a1, a2 ∈ Â(n), δA

(
a1 + a2

2

)
> ϵn

}
.

Now, we recall Equation (7) in Theorem 2, and split the analysis into two cases.

Case 1: There exists a1, a2 ∈ A such that a1 ̸= a2 and reach(A) = g||a2−a1|| ◦ δA
(
a1+a2

2

)
.

Let n ≥ n0, then for this pair a1, a2 ∈ A there exists p1, p2 ∈ Â(n) satisfying ||p2 − a2|| , ||p1 − a1|| ≤ ϵn.
This, in turn, implies ∣∣∣∣∣∣∣∣p1 + p2

2
− a1 + a2

2

∣∣∣∣∣∣∣∣ ≤ ϵn.

Let n be sufficiently large such that 2ϵn < x := δA
(
a1+a2

2

)
so that ϵn < x− ϵn ≤ δA

(
p1+p2

2

)
≤ x+ ϵn. Then,

r̂ch
(ϵn)

(Â(n))− reach(A) ≤ g||p2−p1||

(
δA

(
p1 + p2

2

)
− ϵn

)
− g||a2−a1||(x)

≤
(
(||a2 − a1||+ 2ϵn)

2

8(x− 2ϵn)
+
x

2

)
−

(
||a2 − a1||2

8x
+
x

2

)
= O(ϵn)

which is stronger than required.

Case 2: reach(A) < g||a2−a1|| ◦ δA
(
a1+a2

2

)
for all distinct a1, a2 ∈ A.

By Assumption 1, for all sufficiently large n, the function reachβ(A) is strictly increasing for β in a neigh-
bourhood of βn :=

√
ϵn + 2ϵn. For each of these values of n, there exists a sequence {(ψ1k, ψ2k)}k≥1 in

Ψn := {(a1, a2) ∈ A2 : δA
(
a1+a2

2

)
≥ βn} such that

g||ψ2k−ψ1k|| ◦ δA
(
ψ1k + ψ2k

2

)
→ reachβn(A), (17)
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as k → ∞. Since Ψn is compact, {(ψ1k, ψ2k)}k≥1 has a convergent subsequence in Ψn, and by the strict
monotonicity of reachβ(A) around βn, the subsequence converges to an element (a1n, a2n) ∈ A2 satisfying
δA
(
a1n+a2n

2

)
= βn. Thus, for all n sufficiently large, we have shown the existence of an element (a1n, a2n) ∈

A2 that satisfies δA
(
a1n+a2n

2

)
= βn and g||a2n−a1n|| ◦ δA

(
a1n+a2n

2

)
= reachβn

(A).

By Assumption 1,

reachβn
(A) =

||a2n − a1n||2

8βn
+
βn
2

= reach(A) +KAβn + o(βn).

Therefore,

||a2n − a1n||2 = 8βn reach(A) +KAβ
2
n + o(β2

n) = 8
√
ϵn reach(A) + (16 reach(A) +KA)ϵn + o(ϵn).

For sufficiently large n, the points in P(n) are sufficiently dense so that there exists p1, p2 ∈ Â(n) satisfying
||p2 − a2n|| , ||p1 − a1n|| ≤ ϵn. As argued before in Case 1,

r̂ch
(ϵn)

(Â(n)) ≤ (||a2n − a1n||+ 2ϵn)
2

8(βn − 2ϵn)
+
βn
2

= reach(A) +

(
2 reach(A) +

KA

8
+

1

2

)
√
ϵn + o(

√
ϵn).

Remark 6. The split of the proof of Theorem 4 into two cases is natural in the context of reach estimation. Recall
Theorem 3.4 in Aamari et al. (2019): For a compact set A with 0 < reach(A) < ∞, there is either a bottleneck
structure (two distinct points a1, a2 ∈ A such that ||a2 − a1|| = 2δA

(
a1+a2

2

)
= 2 reach(A)) or an arc-length

parametrized geodesic of A with curvature 1/reach(A). The convergence rate developed in Case 1 applies to sets
whose reach is decided by a bottleneck structure, and that of Case 2 applies to sets whose reach is decided by a
region of high curvature.

4.3 Simulations

The compact subsets of R2 that we study empirically are constructed such that their reach is unity and that
they are not r-convex for r > 1. This choice does not limit the generality of these simulation studies, since we
sample the sets on randomly oriented square lattices with varying lattice spacing. Indeed, to consider the lattice
of sampling points at various scales and orientations is equivalent to considering a fixed lattice and various scales
and orientations of the underlying set.

As discussed in Remark 6, there are two fundamental phenomena that limit the reach of set: maximal curvature
and bottleneck structures. In this section, to each of these two cases, we dedicate its own simulation study to
assess the rate of convergence of the approximation methods developed in Sections 4.1 and 4.2.

4.3.1 When the reach is determined by maximal curvature

Here, we study the compact set U := {(x, y) ∈ R2 : y ≤ x2/2} ∩ B(0, 10). It is easy to check that reach(U) =
rconv(U) = 1. Moreover, the reach is determined by a point of maximal curvature at 0 ∈ U . For this simulation
study, we suppose that U is sampled on a sequence of point clouds (P(n))n≥1, where P(n) is a square lattice with

a lattice spacing an = 0.7/n, and uniformly random position and orientation. For n ∈ N+, let Û (n) := U ∩ P(n).

See Figure 5 for a depiction of particular realizations of Û (2) and Û (10).

For each n ∈ {2, . . . , 12}, we compute 50 independent realizations of Û (n), from which we obtain 50 independent

realizations of r̂(an/
√
2)(Û (n)) in (9). Here, ϵn = an/

√
2 was chosen since dH(P(n),R2) = an/

√
2. From the same

samples of Û (n), we obtain 50 independent realizations r̂ch
(
√
1.25an)

(Û (n)), where ϵn =
√
1.25an was chosen since

U ∩B(0, 9) ⊂ Û (n) ⊕B(0,
√
1.25an) almost surely. The mean estimates, along with the empirical 95% confidence

intervals, are plotted in Figure 7 (a). A linear regression on the log-log plot of the sample means shows that

E[̂r(an/
√
2)(Û (n))] ≈ 1 + 1.71n−0.59 and E[r̂ch

(
√
1.25an)

(Û (n))] ≈ 1 + 1.54n−0.62.
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(b)(a)

Figure 5: The set {(x, y) ∈ R2 : y ≤ x2/2} sampled on a randomly oriented square lattice with lattice spacing (a)
an = 0.35 and (b) an = 0.07. The orientation of the lattice is aligned with the orientation of each image.

(b)(a)

Figure 6: The set {(x, y) ∈ R2 : |y| ≥ x2/2+1} sampled on a randomly oriented square lattice with lattice spacing
(a) an = 0.35 and (b) an = 0.07. The orientation of the lattice is aligned with the orientation of each image.

These empirical convergence rates — O(ϵ0.59n ) for the bound on rconv(U) and O(ϵ0.62n ) for the bound on reach(U)
— are both slightly faster than the predicted rate of O(

√
ϵn) established in (16) for the bound on the reach. Since

the reach of U is determined by a region of maximal curvature, the convergence rate is governed by the analysis
in Case 2 in the proof of Theorem 4.

4.3.2 When the reach is determined by a bottleneck structure

Now, we study the compact set W := {(x, y) ∈ R2 : |y| ≥ x2/2+1}∩B(0, 10). Like the set U in Section 4.3.1, the
set W satisfies reach(W ) = rconv(W ) = 1. This time, the reach is determined by the minimal distance between
disconnected components of W . For this simulation study, we suppose that W is sampled on the same sequence of
point clouds (P(n))n≥1 described in Section 4.3.1. For n ∈ N+, let Ŵ (n) :=W ∩P(n). See Figure 6 for a depiction

of particular realizations of Ŵ (2) and Ŵ (10).

The experiment outlined in Section 4.3.1 is repeated for the samples Ŵ (n), and the results are plotted in
Figure 7 (b). A linear regression on the data shows that

E[̂r(an/
√
2)(Ŵ (n))] ≈ 1 + 2.81n−1.20 and E[r̂ch

(
√
1.25an)

(Ŵ (n))] ≈ 1 + 0.65n−1.50.

Again, these empirical convergence rates are faster than the anticipated rate of O(ϵn) established in Case 1 in the
proof of Theorem 4 for the bound on the reach, i.e., in the case where the reach is determined by a bottleneck
structure.
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(b)(a)

Figure 7: For each n ∈ {2, . . . , 12}, we compute 50 independent realizations of Û (n) (see Section 4.3.1), and plot the

mean and 95% confidence interval for the 50 corresponding values of r̂(an/
√
2)(Û (n)) (squares) and r̂ch

(
√
1.25an)

(Û (n))

(circles) in panel (a). In panel (b), we show the values of r̂(an/
√
2)(Ŵ (n)) (squares) and r̂ch

(
√
1.25an)

(Ŵ (n)) for 50

independent realizations of Ŵ (n) (see Section 4.3.2). In both panels, an = 0.7/n.

5 Proofs and technical results

Here, we provide the proofs and auxiliary lemmas that support the claims in Theorem 1, and Corollaries 1 and 2
in Section 3.1.

Proof of Theorem 1. We begin by showing (1). Suppose that r ∈ (0, reach(A)). By Lemma 1, A ⊆ A•r, so it
suffices to show that Ac ⊆ (A•r)

c. Let x ∈ Ac. If x ∈ (Ar)
c, then clearly, x ∈ (Ar)

c ⊕ B(0, r) = (A•r)
c. If

x ∈ Ar \A, then by Federer (1959, Corollary 4.9),

δ(Ar)c(x) = r − δA(x) < r,

and so x ∈ (Ar)
c ⊕B(0, r) = (A•r)

c, which proves (1). What remains to be shown is that if ∂A is C1 smooth and
(d−1)-dimensional, then rconv(A) ≤ reach(A). This inequality is shown via proof by contradiction. Suppose that

(i) r > reach(A) and

(ii) A•r = A.

By (i), there exists p ∈ A r+reach(A)
2

with no unique point in A closest to p. In particular, since A is closed, there

exists two non-identical points a1, a2 ∈ ∂A ⊆ A such that ||p− a1|| = ||p− a2|| = δA(p) < r. Let n1 be the unit
normal vector to ∂A at a1, pointing towards p. Since a1 is a limit point of A, Ac ∩ B(a1, ϵ) ̸= ∅ for all ϵ > 0.
By (ii), Ac =

⋃
x∈(Ar)c

B(x, r), and so for all ϵ > 0, there exists x ∈ (Ar)
c such that

(iii) B(x, r) ∩B(a1, ϵ) ̸= ∅ and

(iv) B(x, r) ∩A = ∅.

The boundary ∂A is C1 smooth at a1, so it is easily checked that for ϵ close to 0, the locations x that satisfy
both (iii) and (iv) are necessarily contained in a small neighbourhood around a1 + rn1. That is, there exists a
mapping θ : ϵ 7→ θ(ϵ) ∈ R+ that tends to 0 as ϵ→ 0, such that if x ∈ (Ar)

c and ϵ ∈ R+ satisfy (iii) and (iv), then
x ∈ B(a1 + rn1, θ(ϵ)). Note that ||(a1 + rn1)− a2|| < r since a2 ∈ B(p, δA(p)) ⊂ B(a1 + rn1, r). Choose ϵ such
that θ(ϵ) < r − ||(a1 + rn1)− a2||. Then for any x ∈ (Ar)

c ∩B(a1 + rn1, θ(ϵ)),

||x− a2|| ≤ ||x− (a1 + rn1)||+ ||(a1 + rn1)− a2||
≤ θ(ϵ) + ||(a1 + rn1)− a2|| < r.

This contradicts (iv).
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Lemma 3. Let U be an open set in Rd, and let r ≥ 0. Then,

cl(U)•r = cl(U) =⇒ U•r = U.

Proof of Lemma 3. By Lemma 1, item (b), U ⊆ U•r ⊆ cl(U)•r. Note also that U•r is open. Suppose that
cl(U)•r = cl(U). Then U•r is an open subset of cl(U) that contains all of the interior points of cl(U). Therefore,
U•r = U .

Lemma 4. Let A ⊆ Rd be closed. It holds that

rconv(cl(Ac)) = sup{r ∈ R : A•−r = A}

Proof of Lemma 4. By Lemma 3 and item (a) in Lemma 1, {r ∈ R : cl(Ac)•r = cl(Ac)} ⊆ {r ∈ R : (Ac)•r =
Ac} = {r ∈ R : A•−r = A}. Therefore, rconv(cl(Ac)) ≤ sup{r ∈ R : A•−r = A}. Now we show the reverse
inequality. Let r, r̃ ∈ R+ satisfy r > r̃ > rconv(cl(Ac)). By Proposition 1, cl(Ac)•r̃ \ cl(Ac) contains a ball of
radius ϵ for some ϵ ∈ (0, r). Now, let δ = min(ϵ, 2(r − r̃)). Note that (Ac)δ/2 ⊇ cl(Ac), and so by Lemma 1,
((Ac)δ/2)•r−δ/2 = ((Ac)r)−(r−δ/2) ⊇ cl(Ac)•r−δ/2 ⊇ cl(Ac)•r̃, which contains the ball of radius ϵ. Now, eroding by
δ/2 preserves a ball of radius ϵ− δ/2 ≥ ϵ/2. That is, (((Ac)δ/2)•r−δ/2)−δ/2 = (Ac)•r contains a ball of radius ϵ/2
that does not intersect cl(Ac), and so (Ac)•r ̸= Ac which implies the desired A•−r ̸= A by Lemma 1, item (a).

Proof of Corollary 1. If rconv(A) = 0, then by Theorem 1, reach(A) = 0 and we are done. Now assume rconv(A) >
0 and rconv(cl(Ac)) > 0, then by Lemma 4, there exists δ > 0 such that A•r = A for all r ∈ (−δ, δ). Theorem 1 in
Walther (1999) states that ∂A is (d− 1)-dimensional and C1 smooth, which implies Equation 2 in our Theorem 1.

Proof of Corollary 2. By Theorem 1, the statement holds if ∂(Aϵ) is C
1 smooth and (d−1)-dimensional. Otherwise,

if there is indeed a point c on the boundary of Aϵ =
⋃
a∈AB(a, ϵ) that does not have a continuous derivative, then

c is an intersection point of two distinct d-spheres centered in A of radius ϵ. In other words, c is at cusp that
points inwards towards the interior of Aϵ, making reach(Aϵ) = rconv(Aϵ) = 0.

Remark 7. Remark that (Aϵ)•−ϵ = Aϵ. Therefore, if the hypotheses of Corollary 2 are strengthened to those
of Corollary 1, then the proof of Corollary 2 holds by applying Theorem 1 in Walther (1999) followed by our
Theorem 1.

Here, we present an auxiliary lemma, and use it in our proof of Proposition 1 in Section 4.1.

Lemma 5. For closed A ⊆ Rd and r ∈ R+, it holds that

A•r =
{
p ∈ Rd : ∀x ∈ B(0, r), B(p+ x, r) ∩A ̸= ∅

}
. (18)

Proof of Lemma 5. By manipulating the expressions in Definition 1, one obtains

A•r =

 ⋃
y∈(A⊕B(0,r))c

B(y, r)

c

, (19)

which reads: the elements of A•r are the p ∈ Rd such that p is not contained in any closed ball of radius r that
does not intersect A. This statement is equivalent to: p /∈ A•r if and only if there exists a closed ball of radius r
that contains p but does not intersect A. Thus, we have shown that (A•r)

c is equal to the compliment of the RHS
of (18), which proves the desired result.

Proof of Proposition 1. Let r̃ := (r + rconv(A))/2 and fix p ∈ A•r̃ \ A. Since A is closed, there is an open
neighbourhood containing p that does not intersect A. Choose ϵ ∈ R+ such that B(p, ϵ) ∩ A = ∅. There exists a
sufficiently small δ ∈ (0, ϵ) such that for every y ∈ Rd satisfying B(y, r) ∩ B(p, δ) ̸= ∅, there exists an x ∈ B(0, r̃)
that satisfies B(p+x, r̃) \B(p, ϵ) ⊂ B(y, r). By Lemma 5, each B(p+x, r̃) \B(p, ϵ) contains an element of A, and
therefore so does each B(y, r). With a final application of Lemma 5, we have shown that B(p, δ) ⊆ A•r \A
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Justification for Equations (13) and (14). Recall (Aamari et al., 2019, Theorem 3.4). Equation (13) holds
since the curvature of f at x = 0 is f ′′(0) = 2h′(0). Without loss of generality, suppose h(0) = f(0) = 0. Consider
the points a1 = (x, f(x)) and a2 = (−x, f(x)) in G for x close to 0, and remark that g||a2−a1|| ◦ δG

(
a1+a2

2

)
=

x2

2f(x) +
f(x)
2 . For sufficiently small x, we claim without proof that the choice of a1 and a2 is minimal in the sense

that for all ã1, ã2 ∈ G satisfying δG

(
ã1+ã2

2

)
≥ f(x), it holds that g||ã2−ã1|| ◦ δG

(
ã1+ã2

2

)
≥ g||a2−a1|| ◦ δG

(
a1+a2

2

)
.

There is a δ > 0 such that h has an inverse on [0, δ], and so for β ∈ [0, δ], choose x such that f(x) = β. Remark
that

x2 = h−1(β) =
β

h′(0)
− β2h′′(0)

2h′(0)3
+ o(β2)

by Taylor’s theorem. Thus, we have found the minimal pair a1, a2 ∈ G satisfying δG
(
a1+a2

2

)
= β and with

g||a2−a1|| ◦ δG
(
a1+a2

2

)
corresponding to the RHS of (14).
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