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Abstract

The problem of parameter estimation by i.i.d. observations of an inhomogeneous
Poisson process is considered in situation of misspecification. The model is that of
a Poissonian signal observed in presence of a homogeneous Poissonian noise. The
intensity function of the process is supposed to have a cusp-type singularity at the
change-point (the unknown moment of arrival of the signal), while the supposed
(theoretical) and the real (observed) levels of the signal are different. The asymptotic
properties of pseudo MLE are described. It is shown that the estimator converges
to the value minimizing the Kullback-Leibler divergence, that the normalized error
of estimation converges to some limit distribution, and that its polynomial moments
also converge.

MSC 2000 Classification: 62M02, 62G10, 62G20.
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1 Introduction

It is commonplace in statistics that the theoretical models do not coincide with the real
models generating the observations. The properties of the estimators constructed on the
base of the theoretical models in such situations do not coincide with their real properties.
Sometimes this difference between models can be important, and this requires a special
study. The study of such situations in statistics was initiated in the work of Huber [11].
There is a large diversity of publications devoted to different statistical models and different
types of misspecification. Special attention is paid to the case when the real models are close
to the theoretical models. A nice theory of robust estimation was developed in the book of
Huber [12]. The large majority of publication is devoted to regular statistical models, i.e.,
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to the case when both the theoretical and the real models are sufficiently smooth w.r.t.
the unknown parameter. The different cases of misspecification for change-point models
(with jump-type changes) were considered as well (see, e.g., the publications [4,5,18,21,23]
and the references therein). Note that in the works [4] and [21], the regularities of the
theoretical and of the real models are different, e.g., it is supposed that the model is
of change-point type, while the real model of observation is regular. It is known that
the maximum likelihood estimator (MLE) under misspecification converges to the value
which minimizes the Kulback-Leibler divergence between the measure corresponding to the
observations and the parametric family of theoretical measures. Usually this value does
not coincide with the true value, but in the change-point case, there exists a large class of
models admitting consistent estimation even under misspecification (see, e.g., [1, 5]).

A recently introduced class of models (cups-type change-point models, or models with
cusp-type singularity) can be considered as an intermediate between regular (smooth) and
change-point (discontinuous) models in the problem of estimation of the moment of arrival
of a signal (see [2, 3, 8]). In the case when the observations are inhomogeneous Poisson
processes, the front of the arrival of the signal in such models corresponds to a strongly
increasing continuous intensity function with infinite Fisher information. The examples of
intensity functions in regular (a), cusp-type change-point (b) and change-point (c) models
are given in Fig. 1.
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Figure 1: Intensities with three types of fronts of arrival of a signal

The mean-squared errors of the MLE ϑ̂n of the location parameter ϑ by n independent
observations of a Poisson process with these three types of fronts are

a) Eϑ

(
ϑ̂n − ϑ

)2 ≈ c

n
, b) Eϑ

(
ϑ̂n − ϑ

)2 ≈ c

nγ
, c) Eϑ

(
ϑ̂n − ϑ

)2 ≈ c

n2
,

where 1 < γ < 2 and c are some constants (see, e.g., [16]). That is why the cusp-
type change-point models are considered as intermediate between regular and change-point
models.
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It is reasonable to suppose that the real signals are continuous functions, and that the
cusp-type change-point models can provide a better fit of the mathematical model to the
real signals. An example of a discontinuous and a close to it cusp-type intensity functions
is given in Fig. 2.
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Figure 2: Discontinuous (solid line) and cusp-type (dashed line) intensity functions

Note that the statistical model of i.i.d. observations of a random variable having a cusp-
type singularity was first studied in [19]. Afterwards, the parameter estimation problems
for models with cusp-type singularities were studied by many authors. For inhomogeneous
Poisson processes this was done in [6, 7], for diffusions with small noise in [15], for er-
godic diffusions in [9, 10]. Nonparametric estimation of a signal with cusp-type front was
considered in [20].

In this work we consider the problem of estimation of the time of arrival of a signal
having cusp-type singularity in the situation of misspecification of the level of the signal.
An example of intensity functions corresponding to two signals (theoretical and real) with
two different levels is given in Fig. 3.
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Figure 3: Example of the theoretical (dashed line) and real intensities.

The main result of the paper are the asymptotic properties of the (pseudo) MLE.
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2 Asymptotic behavior of the pseudo MLE

Suppose that a statistician has n independent observations X(n) = (X1, . . . , Xn), where
Xj =

(
Xj(t), 0 6 t 6 τ

)
, for each j = 1, . . . , n, is an inhomogeneous Poisson process with

intensity function λ∗(ϑ, ·) =
(
λ∗(ϑ, t), 0 6 t 6 τ

)
, ϑ ∈ Θ. However, the function λ∗(ϑ, ·)

is unknown to the statistician and he uses a different model with an intensity function
λ(ϑ, ·) =

(
λ(ϑ, t), 0 6 t 6 τ

)
, ϑ ∈ Θ.

The unknown parameter ϑ is the time of arrival of a signal, the latter being observed
in presence of a homogeneous Poissonian noise of intensity λ0. We consider the case when
the front of the signal has a cusp-type singularity, i.e., the statistician supposes that the
intensity function (called theoretical) of the observed Poisson processes is

λ(ϑ, t) = S ψ(t− ϑ) + λ0, t ∈ [0, τ ], ϑ ∈ Θ, (1)

where the front of the signal S ψ(t− ϑ) is defined by the function

ψ(x) =
(x
δ

)κ
1{0<x<δ} + 1{x>δ}, x ∈ R. (2)

The parameters S > 0, λ0 > 0 and κ ∈ (0, 1/2) are supposed to be known.

However, the real intensity function of the observed processes is

λ∗(ϑ0, t) = (S + h)ψ(t− ϑ0) + λ0, t ∈ [0, τ ], ϑ0 ∈ Θ0, (3)

where h is the contamination of the signal. Here we use different sets Θ0 = (α, β) and
Θ = (α − δ, β + δ) with Θ0 ⊂ Θ ⊂ (0, τ − δ). The reason to consider in the theoretical
model a set Θ which is wider than the set Θ0 of possible values of the parameter ϑ0 will
become clear later.

The pseudo likelihood ratio (p-LR) used by the statistician (see, e.g., [17]) is

L
(
ϑ,X(n)

)
= exp

{
n∑

j=1

∫ τ

ϑ

ln
(
λ(ϑ, t)

)
dXj(t)− n

∫ τ

ϑ

[λ(ϑ, t)− 1] dt

}
, ϑ ∈ Θ.

We use the word “pseudo” since the intensity of the processes Xj, j = 1, . . . , n, is
not λ(ϑ0, ·), but λ∗(ϑ0, ·).

The pseudo maximum likelihood estimator (p-MLE) ϑ̂n is defined by the equation

L
(
ϑ̂n, X

(n)
)
= sup

ϑ∈Θ
L
(
ϑ,X(n)

)
.

As it is usually the case in misspecified problems, the limit of the p-MLE ϑ̂n will be
given by the value ϑ̂ which minimizes the Kullback-Leibler divergence

JK-L(ϑ) =

∫ τ

ϑ∧ϑ0

[
λ(ϑ, t)

λ∗(ϑ0, t)
− 1− ln

(
λ(ϑ, t)

λ∗(ϑ0, t)

)]
λ∗(ϑ0, t) dt, ϑ ∈ Θ.
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We need to introduce several notations. First, we introduce the random process

Ẑ(u) = exp

(
WH(u)− u2

2

)
, u ∈ R,

where H = κ + 1/2, and WH(·) is a two-sided fractional Brownian motion (fBm) with
Hurst parameter H , i.e., a centered Gaussian process with covariance

E
(
WH(u1)W

H(u2)
)
=

1

2

[
|u1|2H + |u2|2H − |u1 − u2|2H

]
, u1, u2 ∈ R.

Let us recall here that WH admits the representations

WH(u) = Γ−1
κ

∫ +∞

−∞

[
(v − u)κ+ − vκ+

]
dW (v) = Γ−1

κ

∫ +∞

−∞

[
(u− s)κ+ − (−s)κ+

]
dW̃ (s),

where W (·) and W̃ (·) are two-sided Wiener processes (Brownian motions).

Further, we introduce the random variable ûκ which is the (almost surely unique)
solution of the equation

Ẑ(ûκ) = sup
u∈R

Ẑ(u).

Finally, we introduce the constants

Γκ =

∫

R

[
(v − u)κ+ − (v)κ+

]2
dv and b =


S Γκ

√
λ∗(ϑ0, ϑ̂)

λ0 δκ J ′′
K-L(ϑ̂)




2

3−2κ

,

as well as the set

H =

{
h : h >

S

ln
(
1 + S

λ0

) − S − λ0

}
(4)

Note that the explicit expression of J ′′
K-L(ϑ̂) is given in Proposition 1 below, where it is

equally shown that if the contamination h ∈ H, then the Kullback-Leibler divergence has
a unique minimum at some point ϑ̂ ∈ Θ.

Note also that the condition h ∈ H can be rewritten as

S + h + λ0 >
(S + λ0)− λ0

ln(S + λ0)− ln(λ0)
,

and so it coincides with the condition providing the consistent estimation in a similar
misspecified problem for the change-point case [16].

Note finally, that the right hand side of the inequality in (4) belongs to the interval
(−S, 0) (this follows immediately from the elementary inequalities ln(x) < x − 1 and
ln(x) > 1 − 1

x
for x 6= 1), and so the contamination can be positive or negative. For the

case λ0 = 1 (we can always reduce ourselves to this case dividing h and S by λ0), the
region of admissible values of h (as function of S) is represented in Fig. 4.
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Figure 4: Possible values of the contamination h

Now we can state the main result of the present paper.

Theorem 1. Suppose that we have the model (1)–(3) and h ∈ H\{0}. Then the p-MLE ϑ̂n

is “consistent”: ϑ̂n
P−→ ϑ̂, converges in distribution:

n
1

3−2κ b−1
(
ϑ̂n − ϑ̂

)
=⇒ ûκ, (5)

and we have the convergence of polynomial moments: for any p > 0, it holds

n
p

3−2κ E
∣∣ϑ̂n − ϑ̂

∣∣p −→ bp E
∣∣ûκ
∣∣p.

Proof. To prove this theorem we use the approach developed by Ibragimov and Khasminskii
in [13], which is based on the weak convergence of the normalized likelihood ratio process
to some limit process. The particularity of the misspecified models concerns the study of
the corresponding random functions, which are not true likelihood ratios, and hence the
direct application of Theorem 1.10.1 of [13] is often impossible. In our case, we follow the
modification of this method introduced in [2, 4] (see as well [16]). Let us explain how it
works.

We put

ϕn = bn− 1

3−2κ −→ 0

and introduce the normalized p-LR

Zn(u) =
L
(
ϑ̂+ ϕnu,X

(n)
)

L
(
ϑ̂, X(n)

) , u ∈ Un =

(
α− δ − ϑ̂

ϕn
,
β + δ − ϑ̂

ϕn

)
.

Note that since ϑ̂ ∈ Θ, we have Un ↑ R. For any fixed u 6= 0, we have Zn(u) −→ ∞,
that is why we introduce a second normalization: we put

εn =
1

b2J ′′
K-L(ϑ̂)

n− 1−2κ
3−2κ −→ 0 and Ẑn(u) =

[
Zn(u)

]εn

Then we show the following three lemmas (the proofs are in the next section).
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Lemma 1. Under the hypotheses of Theorem 1, the finite dimensional distributions of the
process Ẑn(·) converge to those of the process Ẑ(·).
Lemma 2. Under the hypotheses of Theorem 1, there exist some constants c, C > 0 such
that

EẐ1/2
n (u) 6 C exp

{
−cu2

}
(6)

for all n ∈ N and u ∈ Un.

Lemma 3. Under the hypotheses of Theorem 1, there exist some constants C > 0 and
γ > 1 such that

E
[
Ẑ1/2

n (u1)− Ẑ1/2
n (u2)

]2
6 C |u1 − u2|γ

for all n ∈ N and u1, u2 ∈ Un.

The properties of the normalized p-LR Ẑn(·) established in the Lemmas 1-3 allow us
to apply a modification of Theorem 1.10.1 in [13] and obtain all the desired properties of
the p-MLE. For example, the convergence (5) is proved as follows. Using the change of
variable ϑ = ϑ̂+ ϕnu, we can write

P

(
ϑ̂n − ϑ̂

ϕn
< x

)
= P

(
ϑ̂n < ϑ̂+ ϕnx

)
= P

(
sup

ϑ<ϑ̂+ϕnx

L
(
ϑ,X(n)

)
> sup

ϑ>ϑ̂+ϕnx

L
(
ϑ,X(n)

)
)

= P

(
sup

ϑ<ϑ̂+ϕnx

L
(
ϑ,X(n)

)

L
(
ϑ̂, X(n)

) > sup
ϑ>ϑ̂+ϕnx

L
(
ϑ,X(n)

)

L
(
ϑ̂, X(n)

)
)

= P

(
sup
u<x

Zn(u) > sup
u>x

Zn(u)

)
= P

(
sup
u<x

Ẑn(u) > sup
u>x

Ẑn(u)

)

−→ P

(
sup
u<x

Ẑ(u) > sup
u>x

Ẑ(u)

)
= P

(
ûκ < x

)
,

as soon as

P

(
sup
u<x

Ẑ(u) = sup
u>x

Ẑ(u)

)
= 0,

that is, as soon as P
(
ûκ = x

)
= 0.

3 Proof of the lemmas

We start with the following proposition which gives some properties of the Kullback-Leibler
divergence JK-L(·) in our case.

Proposition 1. Suppose that h ∈ H. Then the function JK-L(·) has the following proper-
ties.
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i) The function JK-L(·) is continuously differentiable, and

J ′
K-L(ϑ) =





λ0 ln
(
1 + S

λ0

)
− S, if ϑ 6 ϑ0 − δ,

λ0 ln
(
1 + S

λ0

(
ϑ0−ϑ

δ

)κ)− S
(
ϑ0−ϑ

δ

)κ
+ I1(ϑ), if ϑ ∈ [ϑ0 − δ, ϑ0],

λ+ ln
(

S+λ0

S(1−ϑ0−ϑ

δ )
κ
+λ0

)
+ S

(
1− ϑ0−ϑ

δ

)κ − S + I2(ϑ), if ϑ ∈ [ϑ0, ϑ0 + δ],

λ+ ln
(
1 + S

λ0

)
− S, if ϑ > ϑ0 + δ,

where λ+ = S + h+ λ0 and

I1(ϑ) =

∫ 1

ϑ0−ϑ

δ

Sκxκ−1 (S + h)
(
x− ϑ0−ϑ

δ

)κ − Sxκ

Sxκ + λ0
dx,

I2(ϑ) =

∫ 1−
ϑ−ϑ0

δ

0

Sκxκ−1 (S + h)
(
x+ ϑ−ϑ0

δ

)κ − Sxκ

Sxκ + λ0
dx.

In particular,

– J ′
K-L(ϑ) < 0 for ϑ 6 ϑ0 − δ,

– J ′
K-L(ϑ) > 0 for ϑ > ϑ0 + δ,

– J ′
K-L(ϑ0) = Ah with A = 1− λ0

S
ln
(
1 + S

λ0

)
> 0.

ii) The function JK-L(·) is twice continuously differentiable everywhere except at the
point ϑ0 (in which J ′′

K-L(ϑ0) = +∞), and

J ′′
K-L(ϑ) =





S(S + h)κ2

δ

∫ 1

ϑ0−ϑ

δ

xκ−1
(
x− ϑ0−ϑ

δ

)κ−1

Sxκ + λ0
dx, if ϑ ∈ [ϑ0 − δ, ϑ0),

S(S + h)κ2

δ

∫ 1−
ϑ−ϑ0

δ

0

xκ−1
(
x+ ϑ−ϑ0

δ

)κ−1

Sxκ + λ0
dx, if ϑ ∈ (ϑ0, ϑ0 + δ],

0, if ϑ /∈ (ϑ0 − δ, ϑ0 + δ).

In particular, J ′′
K-L(·) > 0 on (ϑ0−δ, ϑ0)∪ (ϑ0, ϑ0+δ), and hence the function J ′

K-L(·)
is strictly increasing on (ϑ0 − δ, ϑ0 + δ).

iii) The function JK-L(·) attains its unique minimum at the point ϑ̂ which is the (unique)
solution of the equation J ′

K-L(ϑ̂) = 0. Moreover, if h > 0, we have ϑ̂ ∈ (ϑ0 − δ, ϑ0),

and if h < 0, we have ϑ̂ ∈ (ϑ0, ϑ0 + δ) (of course ϑ̂ = ϑ0 for h = 0).

iv) If h 6= 0, there exist some constants m,M > 0 such that we have (for all ϑ ∈ Θ) the
estimates

m|ϑ− ϑ̂| 6 |J ′
K-L(ϑ)| 6 M |ϑ− ϑ̂|, (7)
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and consequently

m

2
(ϑ− ϑ̂)2 6 JK-L(ϑ)− JK-L(ϑ̂) 6

M

2
(ϑ− ϑ̂)2. (8)

Proof. Throughout the proof, C denotes a “generic” quantity not depending on ϑ, which
can vary from formula to formula (and even in the same formula). Note also that since we
have supposed ϑ0 ∈ Θ0 = (α, β), we have ϑ0 − δ, ϑ0 + δ ∈ Θ = (α− δ, β + δ).

For ϑ 6 ϑ0 − δ, we can write

JK-L(ϑ) =

∫ ϑ+δ

ϑ

[
S
(
t−ϑ
δ

)κ
+ λ0

λ0
− 1− ln

(
S
(
t−ϑ
δ

)κ
+ λ0

λ0

)]
λ0 dt

+

∫ ϑ0

ϑ+δ

[
S + λ0
λ0

− 1− ln

(
S + λ0
λ0

)]
λ0 dt+ C

= δ

∫ 1

0

[
Sxκ − λ0 ln

(
1 +

S

λ0
xκ
)]

dx+ (ϑ0 − ϑ− δ)

[
S − λ0 ln

(
1 +

S

λ0

)]
+ C

= ϑ

[
λ0 ln

(
1 +

S

λ0

)
− S

]
+ C.

Hence, in this case, J ′
K-L(ϑ) = λ0 ln

(
1+ S

λ0

)
−S and J ′′

K-L(ϑ) = 0. The fact that J ′
K-L(ϑ) < 0

follows immediately from the elementary inequality ln(x) < x− 1 for x 6= 0.

Similarly, for ϑ > ϑ0 + δ, we have

JK-L(ϑ) =

∫ ϑ

ϑ0+δ

[
λ0
λ+

− 1− ln

(
λ0
λ+

)]
λ+ dt

+

∫ ϑ+δ

ϑ

[
S
(
t−ϑ
δ

)κ
+ λ0

λ+
− 1− ln

(
S
(
t−ϑ
δ

)κ
+ λ0

λ+

)]
λ+ dt

+

∫ τ

ϑ+δ

[
S + λ0
λ+

− 1− ln

(
S + λ0
λ+

)]
λ+ dt + C

= (ϑ− ϑ0 − δ)

[
−S − h− λ+ ln

(
λ0
λ+

)]

+ δ

∫ 1

0

[
Sxκ − S − h− λ+ ln

(
Sxκ + λ0

λ+

)]
dx

+ (τ − ϑ− δ)

[
−h− λ+ ln

(
S + λ0
λ+

)]
+ C

= ϑ

[
λ+ ln

(
1 +

S

λ0

)
− S

]
+ C.

Hence, in this case, J ′
K-L(ϑ) = λ+ ln

(
1+ S

λ0

)
−S and J ′′

K-L(ϑ) = 0. The fact that J ′
K-L(ϑ) > 0

follows immediately from the condition h ∈ H.
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Now, in the case ϑ ∈ [ϑ0− δ, ϑ0], denoting for shortness φ(y) = (S+h)yκ+λ0, it comes

JK-L(ϑ) =

∫ ϑ0

ϑ

[
S
(
t−ϑ
δ

)κ
+ λ0

λ0
− 1− ln

(
S
(
t−ϑ
δ

)κ
+ λ0

λ0

)]
λ0 dt

+

∫ ϑ+δ

ϑ0

[
S
(
t−ϑ
δ

)κ
+ λ0

φ
(
t−ϑ0

δ

) − 1− ln

(
S
(
t−ϑ
δ

)κ
+ λ0

φ
(
t−ϑ0

δ

)
)]
φ

(
t− ϑ0
δ

)
dt

+

∫ ϑ0+δ

ϑ+δ

[
S + λ0

φ
(
t−ϑ0

δ

) − 1− ln

(
S + λ0

φ
(
t−ϑ0

δ

)
)]
φ

(
t− ϑ0
δ

)
dt + C

= δ

∫ ϑ0−ϑ

δ

0

[
Sxκ − λ0 ln

(
1 +

S

λ0
xκ
)]

dx

+ δ

∫ 1−
ϑ0−ϑ

δ

0

[
S

(
y +

ϑ0 − ϑ

δ

)κ

− (S + h)yκ − φ(y) ln

(
S
(
y + ϑ0−ϑ

δ

)κ
+ λ0

φ(y)

)]
dy

+ δ

∫ 1

1−
ϑ0−ϑ

δ

[
S − (S + h)yκ − φ(y) ln

(
S + λ0
φ(y)

)]
dy + C.

Therefore, differentiating with respect to ϑ, we get in this case

J ′
K-L(ϑ) = −

[
S

(
ϑ0 − ϑ

δ

)κ

− λ0 ln

(
1 +

S

λ0

(
ϑ0 − ϑ

δ

)κ)]

+

[
S − (S + h)

(
1− ϑ0 − ϑ

δ

)κ

− φ

(
1− ϑ0 − ϑ

δ

)
ln

(
S + λ0

φ
(
1− ϑ0−ϑ

δ

)
)]

+ δ

∫ 1−
ϑ0−ϑ

δ

0

[
−Sκ
δ

(
y +

ϑ0 − ϑ

δ

)κ−1

+ φ(y)
Sκ
δ

(
y + ϑ0−ϑ

δ

)κ−1

S
(
y + ϑ0−ϑ

δ

)κ
+ λ0

]
dy

−
[
S − (S + h)

(
1− ϑ0 − ϑ

δ

)κ

− φ

(
1− ϑ0 − ϑ

δ

)
ln

(
S + λ0

φ
(
1− ϑ0−ϑ

δ

)
)]

= λ0 ln

(
1 +

S

λ0

(
ϑ0 − ϑ

δ

)κ)
− S

(
ϑ0 − ϑ

δ

)κ

+

∫ 1

ϑ0−ϑ

δ

[
−Sκxκ−1 + φ

(
x− ϑ0 − ϑ

δ

)
Sκxκ−1

Sxκ + λ0

]
dx

= λ0 ln

(
1 +

S

λ0

(
ϑ0 − ϑ

δ

)κ)
− S

(
ϑ0 − ϑ

δ

)κ

+

∫ 1

ϑ0−ϑ

δ

Sκxκ−1 (S + h)
(
x− ϑ0−ϑ

δ

)κ − Sxκ

Sxκ + λ0
dx

= λ0 ln

(
1 +

S

λ0

(
ϑ0 − ϑ

δ

)κ)
− S

(
ϑ0 − ϑ

δ

)κ

+ I1(ϑ).

10



For ϑ ∈ [ϑ0 − δ, ϑ0), differentiating once more with respect to ϑ, we obtain

J ′′
K-L(ϑ) =

−Sκ
δ

(
ϑ0−ϑ

δ

)κ−1

1 + S
λ0

(
ϑ0−ϑ

δ

)κ +
Sκ

δ

(
ϑ0 − ϑ

δ

)κ−1

+ I ′1(ϑ)

=
Sκ

δ

(
ϑ0 − ϑ

δ

)κ−1[
1− 1

1 + S
λ0

(
ϑ0−ϑ

δ

)κ
]
+
Sκ

δ

(
ϑ0 − ϑ

δ

)κ−1 −S
(
ϑ0−ϑ

δ

)κ

S
(
ϑ0−ϑ

δ

)κ
+ λ0

+

∫ 1

ϑ0−ϑ

δ

Sκxκ−1
(S+h)κ

δ

(
x− ϑ0−ϑ

δ

)κ−1

Sxκ + λ0
dx

=
S(S + h)κ2

δ

∫ 1

ϑ0−ϑ

δ

xκ−1
(
x− ϑ0−ϑ

δ

)κ−1

Sxκ + λ0
dx.

Note that for ϑ ∈ (ϑ0 − δ, ϑ0) the last integral is strictly positive, and that for ϑ = ϑ0 it

would become
∫ 1

0
x2κ−2

Sxκ+λ0
dx and diverge to +∞ (since 2κ− 2 < −1).

The calculation of J ′
K-L(ϑ) and J ′′

K-L(ϑ) in the remaining case ϑ ∈ [ϑ0, ϑ0 + δ] can be
carried out in a similar way.

So, to conclude the proof of the parts i) and ii) of the lemma, it remains to show
that J ′

K-L(ϑ0) = Ah. Indeed,

J ′
K-L(ϑ0) = I1(ϑ0) = I2(ϑ0) =

∫ 1

0

Sκxκ−1 hxκ

Sxκ + λ0
dx =

∫ 1

0

Shy

Sy + λ0
dy

= h

∫ 1

0

[
1− λ0

Sy + λ0

]
dy = h

[
y − λ0

S
ln

(
1 +

S

λ0
y

)]1

0

= h

[
1− λ0

S
ln

(
1 +

S

λ0

)]
.

The parts iii) of the lemma follows directly from the parts i) and ii). So, it remains
to prove the part iv).

As h 6= 0, we have ϑ̂ 6= ϑ0, and hence J ′′
K-L(ϑ̂) > 0. So, there exist some vicinity of ϑ̂

and some constants m,M > 0, such that we have m < J ′′
K-L(ϑ) < M for ϑ belonging to

this vicinity. Hence, as

|J ′
K-L(ϑ)| = |J ′

K-L(ϑ)− J ′
K-L(ϑ̂)| = J ′′

K-L(ϑ̃)|ϑ− ϑ̂|,

where ϑ̃ is some intermediate value between ϑ and ϑ̂, the estimates (7) are valid for ϑ
belonging to this vicinity. Noting that the function J ′

K-L(·) is non-decreasing and bounded,
this inequalities can be clearly extended to the whole Θ by adjusting the constants m
and M .

The estimates (8) follow easily from the estimates (7). For example, the upper estimate
in the case ϑ < ϑ̂ can be obtained as follows

JK-L(ϑ)− JK-L(ϑ̂) = −
∫ ϑ̂

ϑ

J ′
K-L(t) dt =

∫ ϑ̂

ϑ

|J ′
K-L(t)| dt 6 M

∫ ϑ̂

ϑ

(ϑ̂− t) dt =
M

2
(ϑ̂− ϑ)2.

The proposition is proved.
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Now we turn to the proof of the lemmas.

Proof of Lemma 1. Let us note that the theoretical intensity function can be rewritten as

λ(ϑ, t) = S

(
t− ϑ

δ

)κ

1{0<t−ϑ<δ} + S 1{t−ϑ>δ} + λ0 = S

(
t− ϑ

δ

)κ

+

+ ψ̃(t− ϑ),

where the function

ψ̃(x) = S
[
1−

(x
δ

)κ]
1{x>δ} + λ0, x ∈ R,

is Lipschitz continuous:

∣∣ψ̃(x)− ψ̃(y)
∣∣ 6 C|x− y|, x, y ∈ R,

with C =
∣∣ψ̃′(δ)

∣∣ = Sκ
δ
.

Denoting ϑu = ϑ̂+ ϕnu and

Wn(t) =
1√
n

n∑

j=1

[
Xj(t)−

∫ t

0

λ∗(ϑ0, s) ds

]
,

we can write

ln Ẑn(u) = εn

n∑

j=1

∫ τ

0

ln

(
λ(ϑu, t)

λ(ϑ̂, t)

)
dXj(t)− nεn

∫ τ

0

[
λ(ϑu, t)− λ(ϑ̂, t)

]
dt

= εn

n∑

j=1

∫ τ

0

ln

(
λ(ϑu, t)

λ(ϑ̂, t)

)[
dXj(t)− λ∗(ϑ0, t)dt

]

− nεn

∫ τ

0

[
λ(ϑu, t)− λ(ϑ̂, t)− λ∗(ϑ0, t) ln

(
λ(ϑu, t)

λ(ϑ̂, t)

)]
dt

= εn
√
n

∫ τ

0

ln

(
λ(ϑu, t)

λ(ϑ̂, t)

)
dWn(t)− nεn

[
JK-L(ϑu)− JK-L(ϑ̂)

]

= An(u)−Bn(u)

with evident notations.

For Bn(u), we have

Bn(u) = nεn
[
JK-L(ϑ̂+ uϕn)− JK-L(ϑ̂)

]
= nεn

J ′′
K-L(ϑ̂)

2
(uϕn)

2 + o(nεnϕ
2
n) =

u2

2
+ o(1).

Here we used the Taylor expansion of the function JK-L in the vicinity of the point ϑ̂, the
fact that J ′

K-L(ϑ̂) = 0, and the equality nεnϕ
2
nJ

′′
K-L(ϑ̂) = 1.
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For An(u), using the Taylor expansion of the function x 7−→ ln(1 + x), we get

An(u) = εn
√
n

∫ τ

0

ln

(
λ(ϑ̂+ uϕn, t)

λ(ϑ̂, t)

)
dWn(t)

= εn
√
n

∫ τ

0

λ(ϑ̂+ uϕn, t)− λ(ϑ̂, t)

λ(ϑ̂, t)
dWn(t)

(
1 + oP(1)

)

= εn
√
n

∫ τ

0

S
(
t−ϑ̂−uϕn

δ

)κ
+
− S

(
t−ϑ̂
δ

)κ
+

λ(ϑ̂, t)
dWn(t)

(
1 + oP(1)

)

+ εn
√
n

∫ τ

0

ψ̃(t− ϑ̂− uϕn)− ψ̃(t− ϑ̂)

λ(ϑ̂, t)
dWn(t)

(
1 + oP(1)

)
.

Taking into account the Lipschitz continuity of ψ̃, the inequality λ(ϑ̂, t) > λ0 and the
fact that εn

√
nϕn −→ 0, the last term clearly converges to zero in probability.

So, An(u) has the same limit as

Ãn(u) = εn
√
n

∫ τ

0

S
(
t−ϑ̂−uϕn

δ

)κ
+
− S

(
t−ϑ̂
δ

)κ
+

λ(ϑ̂, t)
dWn(t)

= εn
√
nϕκ+1/2

n

S

√
λ∗(ϑ0, ϑ̂)

δκ

∫ (τ−ϑ̂)/ϕn

−ϑ̂/ϕn

(v − u)κ+ − vκ+

λ(ϑ̂, ϑ̂+ vϕn)
dwn(v)

= εn
√
nϕκ+1/2

n

S

√
λ∗(ϑ0, ϑ̂)

λ0 δκ

∫ (τ−ϑ̂)/ϕn

−ϑ̂/ϕn

[
(v − u)κ+ − vκ+

]
dwn(v)

(
1 + oP(1)

)

= Γ−1
κ

∫ (τ−ϑ̂)/ϕn

−ϑ̂/ϕn

[
(v − u)κ+ − vκ+

]
dwn(v)

(
1 + oP(1)

)
,

where we used the change of variable t = ϑ̂+ vϕn and denoted

wn(v) =
Wn(ϑ̂+ vϕn)−Wn(ϑ̂)√

λ∗(ϑ0, ϑ̂)ϕn

.

Therefore, noting that wn(·) =⇒ W (·), where W is a two-sided Wiener process, we
obtain

An(u) =⇒ Γ−1
κ

∫ +∞

−∞

[
(v − u)κ+ − vκ+

]
dW (v) =WH(u),

and hence

ln Ẑn(u) =⇒ WH(u)− u2

2
= ln Ẑ(u),

which yields the convergence of one-dimensional distributions of Ẑn(·) to those of Ẑ(·).
Clearly, the convergence of multi-dimensional distributions equally holds.
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Proof of Lemma 2. Throughout the proof, c and C denote “generic” strictly positive con-
stants, which can vary from formula to formula (and even in the same formula).

Using the Taylor-Lagrange formula

yε = 1 + ε ln y +
ε2

2
(ln y)2 yγε,

where y > 0 and 0 < γ < 1, and denoting for shortness

D =
ε2n
8

[
ln

(
λ(ϑu, t)

λ(ϑ̂, t)

)]2(
λ(ϑu, t)

λ(ϑ̂, t)

)γεn/2

,

we can write

EẐ1/2
n (u) = E exp

{
εn
2

n∑

j=1

∫ τ

0

ln

(
λ(ϑu, t)

λ(ϑ̂, t)

)
dXj(t)− n

εn
2

∫ τ

0

[
λ(ϑu, t)−λ(ϑ̂, t)

]
dt

}

= exp

{
n

∫ τ

0

[(
λ(ϑu, t)

λ(ϑ̂, t)

)εn/2

− 1

]
λ∗(ϑ0, t) dt− n

εn
2

∫ τ

0

[
λ(ϑu, t)−λ(ϑ̂, t)

]
dt

}

= exp

{
n

∫ τ

0

[
εn
2

ln

(
λ(ϑu, t)

λ(ϑ̂, t)

)
+D

]
λ∗(ϑ0, t) dt− n

εn
2

∫ τ

0

[
λ(ϑu, t)−λ(ϑ̂, t)

]
dt

}

= exp

{
−n εn

2

[
JK-L(ϑu)− JK-L(ϑ̂)

]
+ n

∫ τ

0

Dλ∗(ϑ0, t) dt

}

= exp
{
−Fn(u) +Gn(u)

}

with evident notations.

For the first term, using (8), we obtain

−Fn(u) 6 −n εn
2

m

2
(ϑu − ϑ̂)2 = −c u2 nεnϕ2

n = −c u2.

For the second term, we have

Gn(u) = n
ε2n
8

∫ τ

0

[
ln

(
λ(ϑu, t)

λ(ϑ̂, t)

)]2(
λ(ϑu, t)

λ(ϑ̂, t)

)γεn/2

λ∗(ϑ0, t) dt

6 C nε2n

∫ τ

0

[
ln
(
λ(ϑu, t)

)
− ln

(
λ(ϑ̂, t)

)]2
dt

= C nε2n

∫ τ

0

[
λ(ϑu, t)− λ(ϑ̂, t)

λ̃

]2
dt

6 C nε2n

∫ τ

0

[
λ(ϑu, t)− λ(ϑ̂, t)

]2
dt

6 C nε2n |ϑu − ϑ̂|2κ+1 (9)

= C |u|2κ+1 nε2nϕ
2κ+1
n = C |u|2κ+1.
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Here λ̃ is some intermediate value between λ(ϑu, t) and λ(ϑ̂, t), we use the fact that the
intensities λ and λ∗ are bounded and separated from zero, and the inequality (9) is a
particular case of the following more general inequality (which will be also needed in the
proof of the next lemma): for any p > 1, there exist a constant C such that

∫ τ

0

∣∣λ(ϑ1, t)− λ(ϑ2, t)
∣∣2p dt 6 C |ϑ1 − ϑ2|2pκ+1 (10)

for all ϑ1, ϑ2 ∈ Θ.

Before continuing the proof of the lemma, let us prove the inequality (10). Without
loss of generality we can suppose that ϑ1 > ϑ2. Using the elementary inequality

|a+ b|q 6 2q−1
[
|a|q + |b|q

]
(11)

(valid for all a, b ∈ R and q > 1), the Lipschitz continuity of ψ̃ and the change of variable
t = ϑ2 + v (ϑ1 − ϑ2), we get

∫ τ

0

∣∣λ(ϑ1, t)− λ(ϑ2, t)
∣∣2p dt 6 C

∫ τ

0

∣∣∣∣S
(
t− ϑ1
δ

)κ

+

− S

(
t− ϑ2
δ

)κ

+

∣∣∣∣
2p

dt

+ C

∫ τ

0

∣∣ψ̃(t− ϑ1)− ψ̃(t− ϑ2)
∣∣2p dt

6 C

∫ τ

0

∣∣(t− ϑ1)
κ
+ − (t− ϑ2)

κ
+

∣∣2p dt + C (ϑ1 − ϑ2)
2p

= C (ϑ1−ϑ2)2pκ+1

∫ τ−ϑ2
ϑ1−ϑ2

−
ϑ2

ϑ1−ϑ2

∣∣(v − 1)κ+ − vκ+
∣∣2p dv + C (ϑ1−ϑ2)2p.

As κ < 1/2 and p > 1, we have

∫ τ−ϑ2
ϑ1−ϑ2

−
ϑ2

ϑ1−ϑ2

∣∣(v − 1)κ+ − vκ+
∣∣2p dv 6

∫ +∞

−∞

∣∣(v − 1)κ+ − vκ+
∣∣2p dv < +∞

and (noting that ϑ1 − ϑ2 6 τ − δ and 2p− 2pκ− 1 > 0)

C (ϑ1 − ϑ2)
2p = C (ϑ1 − ϑ2)

2pκ+1(ϑ1 − ϑ2)
2p−2pκ−1

6 C (ϑ1 − ϑ2)
2pκ+1,

which yields the inequality (10).

Now, combining the bounds obtained for −Fn(u) and Gn(u), we have

EẐ1/2
n (u) 6 exp

{
−cu2 + C|u|2κ+1

}
. (12)

This concludes the proof of the lemma, since taking c′ = c/2 and noting that the function
− c

2
u2 + C|u|2κ+1 is bounded, we obtain (6).

Note also that the moments EẐq
n(u), u ∈ Un, of an arbitrary order q > 0 can be

bounded by the same inequalities (6) and (12) (with constants depending on q). Indeed,
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it is clear from the proof above that only the order of the rate at which εn −→ 0 is

important, and so it is sufficient to apply the lemma to Z̃n(u) =
[
Zn(u)

]ε′n with ε′n = 2qεn,

and note that Z̃
1/2
n (u) =

[
Zn(u)

]qεn
= Ẑq

n(u). In particular, for any q > 0, there exist some
constants c′ = c′(q) > 0 and C ′ = C ′(q) > 0 such that

EẐq
n(u) 6 C ′ exp

{
−c′u2

}
(13)

for all n ∈ N and u ∈ Un.

Proof of Lemma 3. Throughout the proof, once more c and C denote “generic” strictly
positive constants, which can vary from formula to formula (and even in the same formula).

First of all, let us note that in the case |u1 − u2| > 1, using the inequality (13), we get

E
[
Ẑ1/2

n (u1)− Ẑ1/2
n (u2)

]2
6 2EẐn(u1) + 2EẐn(u2) 6 C 6 C |u1 − u2|γ.

Hence, we can suppose from now on that |u1−u2| 6 1 and, without loss of generality, that
|u1| > |u2| (and, henceforth, |u1| 6 |u2|+ 1).

Using the elementary inequality

|ex − ey| 6 |x− y| max{ex, ey}

(valid for all x, y ∈ R), we obtain

E
[
Ẑ1/2

n (u1)− Ẑ1/2
n (u2)

]2
6 E

(∣∣ln Ẑ1/2
n (u1)− ln Ẑ1/2

n (u2)
∣∣2max

{
Ẑn(u1), Ẑn(u2)

})
.

Now, let us fix some p > 1 (the choice of p will be precised later) and put q = p
p−1

> 1

(so that 1
p
+ 1

q
= 1). Using the Hölder inequality, we can write

E
[
Ẑ1/2

n (u1)− Ẑ1/2
n (u2)

]2
6

[
E
∣∣ln Ẑ1/2

n (u1)− ln Ẑ1/2
n (u2)

∣∣2p
] 1

p
[
Emax

{
Ẑq

n(u1), Ẑ
q
n(u2)

}] 1

q

6

[(εn
2

)2p
E
∣∣lnZn(u1)− lnZn(u2)

∣∣2p
] 1

p
[
E
(
Ẑq

n(u1) + Ẑq
n(u2)

)] 1

q

6 C
[
ε2pn E

∣∣lnZn(u1)− lnZn(u2)
∣∣2p
] 1

p
[
e−cu2

1 + e−cu2
2

] 1

q

6 Ce−cu2
2

[
ε2pn E

∣∣lnZn(u1)− lnZn(u2)
∣∣2p
] 1

p

,

where we used again the inequality (13).

Introducing a centered Poisson process of intensity function nλ∗(ϑ0, t), t ∈ [0, τ ], by

πn(t) =

n∑

j=1

Xj(t)− n

∫ t

0

λ∗(ϑ0, s) ds,
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we can write

lnZn(u1)− lnZn(u2) =

n∑

j=1

∫ τ

0

ln

(
λ(ϑu1

, t)

λ(ϑu2
, t)

)
dXj(t)− n

∫ τ

0

[
λ(ϑu1

, t)− λ(ϑu2
, t)
]
dt

=

∫ τ

0

ln

(
λ(ϑu1

, t)

λ(ϑu2
, t)

)
dπn(t)

− n

∫ τ

0

[
λ(ϑu1

, t)− λ(ϑu2
, t)− λ∗(ϑ0, t) ln

(
λ(ϑu1

, t)

λ(ϑu2
, t)

)]
dt

=

∫ τ

0

ln

(
λ(ϑu1

, t)

λ(ϑu2
, t)

)
dπn(t)− n

[
JK-L(ϑu1

)− JK-L(ϑu2
)
]

= An(u1, u2)− Bn(u1, u2)

with evident notations. Therefore, using the inequality (11), it comes

E
[
Ẑ1/2

n (u1)− Ẑ1/2
n (u2)

]2
6 Ce−cu2

2

[
ε2pn E

∣∣An(u1, u2)− Bn(u1, u2)
∣∣2p
] 1

p

6 Ce−cu2
2

[
ε2pn E

∣∣An(u1, u2)
∣∣2p + ε2pn

∣∣Bn(u1, u2)
∣∣2p
] 1

p

.

For the term containing Bn(u1, u2), using the mean value theorem and the upper bound
of (7), we get

ε2pn
∣∣Bn(u1, u2)

∣∣2p =
∣∣∣nεn

[
JK-L(ϑu1

)− JK-L(ϑu2
)
]∣∣∣

2p

=
∣∣nεn (ϑu1

− ϑu2
) J ′

K-L(ϑũ)
∣∣2p

6 C
∣∣nεnϕn (u1 − u2) (ϑũ − ϑ̂)

∣∣2p = C
∣∣nεnϕ2

n (u1 − u2) ũ
∣∣2p

6 C |u1 − u2|2p
(
max{|u1|, |u2|}

)2p
6 C |u1 − u2|2p (1 + |u2|)2p.

Here ũ is some intermediate value between u1 and u2.

For the term containing An(u1, u2), using Rosenthal’s inequality (see, for example, [22])
and proceeding similarly as while bounding Gn(u) in the proof of the previous lemma, we
have

ε2pn E
∣∣An(u1, u2)

∣∣2p 6 C ε2pn

(
n

∫ τ

0

[
ln

(
λ(ϑu1

, t)

λ(ϑu2
, t)

)]2
λ∗(ϑ0, t) dt

)p

+ C nε2pn

∫ τ

0

∣∣∣∣ln
(
λ(ϑu1

, t)

λ(ϑu2
, t)

)∣∣∣∣
2p

λ∗(ϑ0, t) dt

6 C

(
nε2n

∫ τ

0

[
λ(ϑu1

, t)− λ(ϑu2
, t)
]2
dt

)p

+ C nε2pn

∫ τ

0

∣∣λ(ϑu1
, t)− λ(ϑu2

, t)
∣∣2p dt

6 C
(
nε2n |ϑu1

− ϑu2
|2κ+1

)p
+ C nε2pn |ϑu1

− ϑu2
|2pκ+1

6 C |u1 − u2|(2κ+1)p + C |u1 − u2|2pκ+1.
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Here we equally used the inequality (10), the fact that nε2nϕ
2κ+1
n = C and the boundedness

of nε2pn ϕ
2pκ+1
n = o(nε2nϕ

2κ+1
n ) = o(1).

So, finally, we obtain

E
[
Ẑ1/2

n (u1)− Ẑ1/2
n (u2)

]2
6 Ce−cu2

2

[
|u1 − u2|(2κ+1)p + |u1 − u2|2pκ+1

+ |u1 − u2|2p (1 + |u2|)2p
] 1

p

6 Ce−cu2
2 |u1 − u2|2κ+

1

p (1 + |u2|)2

6 C |u1 − u2|2κ+
1

p ,

since the function u 7−→ e−cu2

(1 + |u|)2 is bounded.

To conclude the proof of the lemma, it remains to notice that choosing p > 1 sufficiently
close to 1, we can make γ = 2κ + 1

p
< 2κ + 1 arbitrary close to 2κ + 1 and, in particular,

strictly grater than 1.

4 Discussion

Recall that if we have a cusp-type singularity of order κ ∈ (0, 1/2) and there is no misspec-
ification, the mean square error of the MLE has the following asymptotics (see [6]):

E
(
ϑ̂n − ϑ

)2
= c n− 2

2κ+1

(
1 + o(1)

)
.

Therefore, the smaller is the value of κ, the better is the rate of convergence. It is interesting
to compare this rate with the rate of convergence for the model with misspecification.
According to Theorem 1, the corresponding mean square error is

E
(
ϑ̂n − ϑ

)2
= c n− 2

3−κ

(
1 + o(1)

)
,

and so we have an opposite situation: the smaller is the value of κ, the worse is the rate
of convergence.

The plots of the rate exponents γ = 2
2κ+1

and γ = 2
3−κ

with and without misspecification
are given in Fig. 5. Note that for κ > 1/2 (regular case), the plotted value is γ = 1,
since in this case the mean square error goes to zero at rate 1/n both with and without
misspecification (see [16]).
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Figure 5: Rate exponents γ with (dashed line) and without (solid line) misspecification

The limit at κ = 0 of the solid line corresponds well to the rate exponent γ = 2 of the
change-point problem with discontinuous intensity function (see [14]). In the case of mis-
specification the situation is essentially different. If the intensity function is discontinuous,
then the p-MLE converges to the true value (is consistent) and γ = 2 (see [16]), while the
limit at κ = 0 of the dashed curve is only 2/3.

Note that the case κ = 1/2 was not included in this study. If there is no misspecification
and κ = 1/2, we are in the almost smooth case, and the error is

E
(
ϑ̂n − ϑ

)2
=

c

n lnn

(
1 + o(1)

)

(see [13,16]). The properties of the p-MLE for the model with misspecification and κ = 1/2
were not yet studied. Of course, this can be done with the help of the developed in this
work approach.

Note also that it is possible to generalize the presented in this work results to the case of
non constant signals, i.e., when the theoretical and real intensity functions of the observed
inhomogeneous Poisson processes are given by

λ(ϑ, t) = S(t)ψ(t− ϑ) + λ0,

λ∗(ϑ, t) = S∗(t)ψ(t− ϑ) + λ0,

with functions S(·) and S∗(·) satisfying the condition

inf
t∈Θ

∣∣S(t)− S∗(t)
∣∣ > 0.

The main difference will be in the proof of Proposition 1.
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