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The widening interest over structured data and its representation calls to the
development of methods and techniques to better visualize and investigate its
complex relations and characteristics [8]. Graphs are mathematical structures
which model pairwise relations (edges) between entities (nodes). Graph Drawing
[5] methods focus on developing algorithmic techniques to generate drawings of
graphs via, for instance, the node-link paradigm [10], i.e. entities represented as
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Abstract. The generation of aesthetically pleasing graph layouts is the
main purpose of Graph Drawing techniques. Recent contributions delved
into the usage of Gradient-descent (GD) based schemes to optimize dif-
ferentiable loss functions, built to measure the graph layout adherence
to given layout characteristics. However, some properties cannot be eas-
ily expressed via differentiable functions. In this direction, the recently
proposed Graph Neural Drawer (GND) framework proposes to exploit
the representational capability of neural models in order to be able to
express differentiable losses, specifically for edge intersection, that can
be subsequently optimized via GD. In this paper, we propose to improve
graph layout readability leveraging linear splines. We exploit the princi-
ples behind GND and use a neural model both to identify crossing edges
and to optimize their relative position. We split crossing edges introduc-
ing linear splines, and threat the control points as novel “fake” vertices
that can be optimized via the underlying layout optimization process.
We provide qualitative and quantitative analysis over multiple graphs
and optimizing different aesthetic losses, that show how the proposed
method is a viable solution.

Keywords: Graph Drawing - Gradient Descent - Graph Neural
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nodes and their relation expressed by edges linking them.
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Fig. 1. Reducing the number of arc intersections via linear splines. On the left, a
Diamond Graph layout has been obtained via an optimization process that is not able
to fully avoid arc intersections. The proposed method introduce linear splines, whose
control points (fake nodes), plotted with an alpha color transparency, are treated as
additional nodes for the underlying optimization process. This approach ease the graph
drawing optimization process.

The prominent role of graph drawing is the improvement of graph readabil-
ity, which is generally evaluated with some aesthetic criteria such as community
preservation, crossing angles, edge length variance, number of crossing edges, etc.
[2]. The final goal is to devise appropriate coordinates for the node positions,
a goal that often requires to explicitly express and combine the aforementioned
criteria. Beyond the classic Graph Drawing methods that are based on energy
models [15,16] or spring-embedders [7,12], interesting directions are the ones
which try to express the graph aesthetics via a differentiable function that can
be optimized via Gradient Descent [2,29]. Machine learning applications have
been used also to inject the user preferences into the layout optimization process.
Such methods exploit evolutionary algorithms (e.g. genetic algorithms) to learn
user preferences [3,4] keeping the human interaction in loop — causing however an
inherent dependence on the user. Lately, given the increasing successes of Deep
Learning models in several research fields, several works applied these architec-
tures into the field of Graph Drawing. Neural networks are capable to learn the
layout characteristics from graph drawing techniques [25] or from the layout dis-
tribution itself [17]. A recent contribution from Tiezzi et al. [21] introduced the
general framework of Graph Neural Drawers (GNDs), where the main intuition
is that neural networks (i.e., Neural Aesthetes) can be used both to express in
a differentiable-manner the cross-intersection among arcs and to use this infor-
mation as a loss that can be optimized via Graph Neural Networks (GNNs)
[20,22,23]. In particular, the pre-trained Neural Aesthete exploited in the first
step predicts if any two edges cross. Then, since neural networks outputs are dif-
ferentiable, the well-trained edge crossing predictor serves as a guide to gradient
descent steps to move the node towards the direction of non-intersection.

We build on this principles, introducing a novel method to obtain better and
more pleasing layouts where the number of intersections is reduced. We propose
to use a Neural Aesthete to devise if two arcs are crossing, and, if that is the case,
we split one of the arc introducing a linear spline. The obtained control points
of the spline can be threated as additional nodes of the graph, what we refer to
as a fake vertex, that is added to the layout optimization process. This idea gives
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further freedom to the layout generation dynamics, with the final goal to move the
newly obtained segments (i.e., the fake node coordinates) into direction where the
number intersection is highly reduced. We depict this intuition in Fig. 1. We prove
that this approach can be further extended not only in optimizing the number
of intersecting arcs, but also with other relevant layout losses, such as the stress
function [29]. Our experimental findings show that our proof-of-concept is a viable
solution for several graphs. An identifiable decrease in number of cross intersection
of arcs is observed, overal several input graphs we tested, after the concept of linear
splines is introduced into the optimization process.

The paper is organized as follows. Section 2 introduces some references on the
Graph Drawing literature. Section 3 describe the concepts of Neural Aesthete and
how to use it to introduce linear splines into the graph layout. Section 4 describes
our proof-of-concept and the obtained experimental findings. Conclusions are
drawn in Sect. 5.

2 Related Work

Literature provides a large variety of research methods aimed at improving graph
readability. Most of these algorithms are designed to optimize a single aesthetic
criteria. The main directions, depicted in the relevant survey by Gibson et al. [13]
(i.e. force-directed, dimension reduction, multi-level techniques), involve the gen-
eration of interesting and aesthetically pleasing layouts by methods which regard
a graph as a physical system, with forces acting on nodes with attraction and
repulsion dynamics up to a stable equilibrium state [16]. For instance, a classic
layout criterion is brought by the minimization of the stress function [16], where
the node positions are computed in such a way that the actual distance between
node pairs gets proportional to their graph theoretical distance. A very effective
approach that have been proved to enhance the human understanding of the lay-
outs and graph topologies, consists in reducing the number of cross intersections
in edges [19]. However, the computational complexity of the problem is NP-hard,
and several authors proposed complex solutions and algorithms to address this
problem [1].

Recently, several works moved towards the direction of improving multiple
layout criteria at once. Wang et al. [26] propose a revised formulation of stress
that can be used to specify ideal edge direction in addition to ideal edge lengths.
Devkota et al. [9] also use a stress-based approach to minimize edge crossings and
maximize crossing angles. Eades et al. [11] provided a technique to draw large
graphs while optimizing different geometric criteria, including the Gabriel graph
property. Such approaches are capable to optimize multiple aesthetic criteria, but
they cannot adapt naturally and dynamically to handle further optimization
goals. Some recent contributions in this specific context presented the advan-
tages of applying gradient based methodologies in graph drawing tasks. Zheng
et al. [28] efficiently applied the Sthocastic Gradient Descent (SGD) method
to reduce the stress loss, displacing pairs of vertices following the direction
of the gradient. The recent framework by Ahmed et al. [2], (GD)?, leverages
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Gradient Descent to optimize several readability criteria at once, as long as the
criterion can be expressed by smooth functions. Indeed, thanks to the power-
ful auto-differentiation tools available in modern machine learning frameworks
[18], several criteria such as ideal edge lengths, stress, node occlusion, angular
resolution and many others can be optimized smoothly and with ease. Finally,
we report some early attempts to leverage Deep Learning Models in the Graph
Drawing scenario. Wang et al. [26] proposed a graph-based LSTM model able to
learn and generalize the coordinates patterns produced by other graph drawing
techniques on certain graph layouts. Very recently, in DeepGD [24] a message-
passing Graph Neural Network (GNN) is leveraged to process starting positions
produced by graph drawing frameworks [6] to construct pleasing layouts that
minimize combinations of aesthetic losses (stress loss combined with others) on
arbitrary graphs. The Graph Neural Drawer framework [21] focus on the criteria
of edge crossing, proving that a Neural Network (regarded as a Neural Aesthete)
can learn to identify if two arcs are crossing or not. This simple model provides a
useful and flexible gradient direction that can be exploited by (Stochastic) Gra-
dient Descent methods. Moreover, the GND framework proved that GNNs, even
in the non-attributed graph scenario, if enriched with appropriate node posi-
tional features, can be used to process the topology of the input graph with the
purpose of mapping the obtained node representation in a 2D layout minimizing
several provided loss functions. We built on the Neural Aesthete component of
the framework, to introduce the concept of fake nodes, the linear splines control
points, that can be optimized via the same underlying optimization process of
the graph layout generation. Our contribution can be injected into heterogeneous
optimization schemes, in principle involving multiple criteria at once. The idea of
handling graph arcs as curves can be found in the very recent work by Yu et al.
[27], where a reformulation of gradient descent based on a Sobolev-Slobodeckij
inner product enables rapid progress toward local minima of loss functions.

3 Method

We denote a graph as G = (V, E), where V = {vy,....,v,} is a finite set of
N nodes and E C V x V is the edge set representing the arcs connecting the
nodes. We further represent each vertex v; € V with coordinates p; : V — R2,
mapping the ith node to a bi-dimensional space. The node coordinate matrix is
denoted as P € RV*2, Finally, the neighborhood of node ith is denoted by N;.

In literature, a number of graph drawing algorithms have been devised,
optimizing functions that express aesthetic index with the advantage of graph
topology, geometry, visualization and theory concepts in bi-dimensional or tri-
dimensional space [5]. The most typical aesthetic criteria take into account the
uniformity of vertex allocation [13], the degree of edge intersections, [19], or the
angles between crossing or adjacent edges. It is commonly assumed that graph
drawing consists of finding the best vertex allocation when given the adjacency
matrix. The latter drives the arcs drawing by connecting linked vertices with
segments. In this paper, however, we propose to employ non-uniform splines
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instead of segments to enhance the readability of the graph. For the sake of
simplicity, we restrict our work to linear splines computed by means of fake
vertices (control points). This allows to improve the readability of graph drawn
when employing different GD-based methods, such as the GND or the Stress
optimization. More precisely, we propose to introduce splines whenever the GD
algorithm is not capable of accomplishing a certain aesthetic criterion while just
employing segments. The ratio behind this idea is that the higher degree of free-
dom available to the optimization algorithm should allow achieving the required
aesthetic criterion. The latter is measured by means of the Neural Aesthete,
a neural network based model trained to measure the fulfillment of any (even
non-differentiable) aesthetic criterion, as explained in Sect. 3.1. In Sect. 3.2, we
better clarify how splines are introduced. In Sect. 3.3 we show how the same
Neural Aethete provides a loss function that can be employed for Graph Draw-
ing (as shown [21]). Finally, in Sect. 3.4 we show how we can also pair it with
other standard GD-based methods, such as Stress optimization.

3.1 Learning Non-differentiable Aesthetic Criteria: The Neural
Aesthete

As previously proposed in [21], we employ here the Neural Aesthete, a neural
network-based model, capable of learning - and therefore measuring - any aes-
thetic criteria. Standard GD methods, indeed, are limited by the requirement of
employing a differentiable aesthetic criterion to draw a graph. On the contrary,
the Neural Aesthete is capable of learning also non-differentiable criteria such
as the edge intersections. As done in [21] and without loss of generality, in this
paper we train a neural network to measure edge intersection.

To train the Neural Aesthete model, we provide in input a couple of arcs
x = (€y, €,) and the model return the probability that the arcs are intersecting or
not. Each arc is in turn defined as the couple of vertex coordinates e, = (p;, p;),
with e, € E and p; € [0,1]?. The model v(-,-,-) : E* x R™ — R is working on
the two arcs e, and e, and returns the output as

yeuyev = V(07eu’ev) (1)

where 6 € R" is the vector which represents the weights of the neural net-
work. The learning of the model is based on optimization of a cross-entropy loss
function L(ye,, e, s Je, e, ), Which is defined as:

L(Ye, s Uewes) = —(Jeue, ¥108(Ye,e,) + (1 = Teye,) ¥108(1 = ve,e,)),  (2)
where vy, ¢, is the target label:

1, if (ey,€y) do intersect

ew,v — . 3
Yeu, {O, otherwise (3)

Notice that the label y is computed by solving the system of equations of the
lines passing by the vertices of the arcs. The solution of this system, if exists,
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however, is either 0 or 1, therefore it cannot be directly optimized through gra-
dient descent. An artificial dataset composed of 100k input-target entries (z,y)
is employed for training the Neural Aesthete. The coordinates p; ; of the ver-
tices of the input arcs are randomly chosen in the interval [0, 1]2. The dataset is
balanced to have samples for both classes (cross/no cross). The model is imple-
mented as a MultiLayer Perceptron (MLP) composed of 2 hidden layers, each of
100 nodes with ReLu activation functions. The model is trained to minimize the
cross entropy loss in terms of target values, taking maximum advantage through
Adam optimizer. A dataset of 50k entries is taken to test the generalization
capabilities of the model and achieved an accuracy of 97%.

At test time, the learning process yields a model capable to calculate the
probability of intersection between any 2 given arcs. The Neural Aesthete is
therefore capable to provide a differential smooth function that guides the posi-
tioning of node coordinates via gradient descent. More in details, the provided
loss function is the cross-entropy towards respecting the given aesthetic critera
- i.e., in this case, towards non-intersection. The optimization parameters, how-
ever, are not anymore the weights of the neural networks, but the coordinates
of the vertices of the intersecting arcs (e, €,) = (pi,pj), (Pn, Pr) in input to the
model.

3.2 Employing Splines to Improve Graph Readability

The major contribution of this research is the introduction of splines to connect
the arcs which are predicted to not satisfy a certain aesthetic criterion. To predict
the satisfaction degree, the previously trained Neural Aesthete model predicting
edge intersection is employed. To introduce splines, we add a fake vertex on one
of the intersecting arcs. Consequently, the arc will be optimized by employing
more nodes instead of only the two extremities, as it is split and considered
as two separated arcs. At each iteration, a batch of random arcs are chosen
as input and the trained Neural Aesthete outputs the degree of intersection of
the given arcs. Whenever two arcs are predicted as intersecting, a fake node is
generated to further help the optimization process and reduce the probability of
intersection. Since we want to create a spline, we add two arcs to the adjacency
matrix connecting the new node to the previous ones, and we remove the old arc.
The newly introduced spline will help the optimization process and by enhancing
the freedom of the layout generation process, resulting in more optimized results.
The Graph Drawing process is then conducted on all the vertices. For the sake
of simplicity, and to avoid degenerated solutions, we avoid introducing splines
during the first T iterations. Also, we limit to S,,4, the number of splits for each
starting arc in the input graph.

Going into more details, the Neural Aesthete v process a random arc pair
(ew,€y) picked from the arc list F, to predict their degree of intersection
Uen.en = V(0,€ey,€,). If the two arcs are intersecting each other, the first arc
is split with the creation of a fake vertex p; = %. The arc list E' is updated,
and the node coordinates of the created vertex are added to the parameters of
the optimization process. In case the arcs created when introducing the spline
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are randomly chosen, the coordinates of the new vertex is also processed. This
is due to the fact that we want to further optimize the spline. This helps in
optimizing edges while using more points and possibly by further splitting the
arcs.

3.3 Edge Crossing Optimization with Splines

As previously introduced, the same Neural Aesthete can be employed in a gradi-
ent descent-based optimization process to display an input graph. The employed
loss function L(+,-) is the cross entropy loss introduced in Eq. 2 computed on the
randomly chosen arcs ey, e, with respect to the non-intersection y., /., = 0.

Hu,v - L(gemevayeu//ev) = - log(l - g€u7ev> (4)

This smooth and differential loss function increases the utilization of gradient
descent methods to optimize edge coordinates (e, €,) with respect to any learned
aesthetic criterion. This is process is replicated for all graph edges,

H(P) = Z L(Qeu,ev 5 yeu//eq;) (5)

(ew,ev)EE
A possible scheme for graph drawing is then:
P* = argminp H(P) (6)

A feasible solution to carry out this is by using optimization methods as gradient
descent:
P« P-nvp H({P) (7)

where 7 represents the learning rate.

The remarkable progress given by this framework is the computational effi-
ciency and parallelization capabilities of neural networks, since the prediction
of edge crossing can be carried out for multiple arc pairs in parallel. However,
the optimization process is greatly facilitated when introducing splines, since
both new arcs are moved in the directions where they are no more intersecting,
participating in reducing the number of cross intersections and improving the
graph layouts.

3.4 Stress Optimization with Splines

The Stress function [7], is one of the empirically proved techniques to be of
great importance in drawing aesthetically pleasing graph layouts through pleas-
ing node coordinate selection. The optimized loss function is defined as:

STRESS(P) = wi;(|| pi — p; || —di;)?, (8)
n=1

where p;,p; € [0; 1]? are the coordinates of vertices 7 and j respectively. The
graph theoretic distance d;; is the shortest path between node i and j, and wy;
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is a normalization factor balancing the impact of the pairs, and it is defined
as w;; = d;;* with a € [0, 1, 2]'. The graph drawing capabilities of stress opti-
mization allows generating pleasing layouts even when employing segments to
connect vertices. However, in this work, we also tested the employment of splines
along with stress optimization. The steps exposed in Sect. 3.2 to generate splines
are performed in this case as well.

We perform stress optimization on the vertices coordinates by minimizing
the stress function (see Eq. 8). For each graph, we compute the shortest path d;;
among every node pair (i, j) and the loss is calculated based on the shortest path
and the distance calculated for each node pair. The graph layouts clearly presents
pleasing layouts as a result of the stress optimization. Further, a decreased num-
ber of cross intersection of arcs is observed in the graphs after splines are intro-
duced in the model.

4 Experiments

We devised two different experimental settings to prove the effectiveness of our
proposal. We compare the graph layouts produced by different combinations
of loss functions, optimized by Gradient Descent. We implemented our method
exploiting the PyTorch framework and we used the NetworkX [14] python pack-
age for the graph visualization utilities.

The main goal of the first experiment is the reduction of the number of
arc intersections by injecting our spline-based method into an optimization pro-
cess guided by the Neural Aesthete. Hence, the Neural Aesthete is exploited
both to identify the crossing edges and to move the node coordinates (both
the real and fake vertices, once they are introduced) towards the direction of
non-intersection. In order to prove the efficiency of our method, we tested our
approach over 9 heterogeneous graph classes (see Table 1), considering graphs
with different characteristics and properties. Overall, we focused on graphs hav-
ing small sizes, given that previous works highlighted how node-link layouts and
cross-intersection based losses are more suitable to graphs with small size [25].

We compare the number of arc intersections produced, at the end of the
layout optimization process, by optimizing solely the Edge-crossing (EC) loss
provided by the Neural Aesthete, with the case in which we combine this opti-
mization process with the proposed spline-based method (EC+SPLINES). We
carried on the optimization via mini batches composed by 2 arc-couples, for an
amount of 10k iterations (gradient steps), with a learning rate n = 1072, The
initial node coordinates are randomly picked in the interval (0,1). We provide
in Table1 a quantitative comparison of these two approaches in the considered
graph classes.

! We tested our work with stress optimization of graphs using different weighing factor
«a. However, the best graph layouts were empirically observed with o = 2.
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Table 1. Cross intersection reduction. We tested the proposed approach in 9 different
graph classes (first column). We report the number of arc intersections at the end of the
drawing optimization process, when minimizing the edge-crossing loss from the Neural
Aesthete only (EC column), and when combining it with the proposed spline-based
method (EC+SPLINES column).

Graph Class | EC | EC+SPLINES

Karate 142|118
Circular 25 |18
Cube

Tree

3 0

3 2
Diamond 0 0
Bull 0 0
Simple 1 1
Cycle 1 1
Barbell 22 |22

Thanks to the adoption of the proposed method, the number of intersection
is reduced in most of the considered settings. We remark that the introduction of
fake vertices and the corresponding arcs hinders, in principle, the optimization
process, given that the amount of edges and arc is increased. Nevertheless, in
most of the cases, the Neural Aesthete is capable to produce improved layouts
at the end of the learning process. We show in Fig. 2 qualitative examples of the
produced layouts. First column depicts the node positions produced by the stan-
dard EC loss optimization. When injecting the EC+SPLINES loss, the number of
intersections is reduced thanks to inherited improved freedom in node position
selection.

To further show the general nature of our proposal, we injected the pro-
posed fake vertices creation into an optimization process minimizing the stress
loss. We tested this method over the same graph classes of the previous exper-
imental setup, with mini batches having the size of half the arc numbers of
the input graph. We optimized the loss for an amount of 10k iterations (gra-
dient steps). We set the learning rate n = 107'. We report in the third and
fourth column of Fig. 2 the layouts obtained via optimizing the stress loss solely
(STRESS column) and combining the stress loss with the proposed spline-based
method (STRESS+SPLINES column). We can see how the obtained graphs still
hold the visual characteristics specfi to the stress minimization, while reducing
the number of intersecting arcs (evident in Diamond, Circular ladder).
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Fig. 2. Qualitative analysis on the obtained graph layouts. Different graph classes
(rows: Diamond, Cube, Circular-Ladder and Barbell graphs) are plot using the 4 opti-
mization paradigms (columns) investigated in the experimental experience.

5 Conclusion

We proposed a framework that improves graph layouts leveraging the tool of
linear splines. We exploit a Neural Aesthete to devise if arcs are crossing, and if
it is the case, we split them into spline-based segments. We show how this app-
roach can be injected into a common Graph Drawing scenario based on gradient
Descent optimization, both when optimizing the number of arcs intersections
and common aesthetic losses such as the stress function. Future work will be
focused on extending the proposed solution into Graph Neural Drawers powered
by Graph Neural Networks, in order to speed up the graph drawing pipeline and
the optimization processing time.
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