
HAL Id: hal-03854400
https://hal.science/hal-03854400

Submitted on 15 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The RED-BLUE SEPARATION problem on graphs
Subhadeep Ranjan Dev, Sanjana Dey, Florent Foucaud, Ralf Klasing, Tuomo

Lehtilä

To cite this version:
Subhadeep Ranjan Dev, Sanjana Dey, Florent Foucaud, Ralf Klasing, Tuomo Lehtilä. The RED-
BLUE SEPARATION problem on graphs. Theoretical Computer Science, 2023, 970, pp.114061.
�10.1016/j.tcs.2023.114061�. �hal-03854400�

https://hal.science/hal-03854400
https://hal.archives-ouvertes.fr

The RED-BLUE SEPARATION problem on graphs∗

Subhadeep Ranjan Dev† Sanjana Dey ‡ § Florent Foucaud¶‖ Ralf Klasing∗∗

Tuomo Lehtilä††‡‡

November 15, 2022

Abstract

We introduce the Red-Blue Separation problem on graphs, where we are given a graph G =
(V,E) whose vertices are colored either red or blue, and we want to select a (small) subset S ⊆ V ,
called red-blue separating set, such that for every red-blue pair of vertices, there is a vertex s ∈ S whose
closed neighborhood contains exactly one of the two vertices of the pair. We study the computational
complexity of Red-Blue Separation, in which one asks whether a given red-blue colored graph has
a red-blue separating set of size at most a given integer. We prove that the problem is NP-complete
even for restricted graph classes. We also show that it is always approximable in polynomial time
within a factor of 2 lnn, where n is the input graph’s order. In contrast, for triangle-free graphs
and for graphs of bounded maximum degree, we show that Red-Blue Separation is solvable in
polynomial time when the size of the smaller color class is bounded by a constant. However, on
general graphs, we show that the problem is W [2]-hard even when parameterized by the solution size
plus the size of the smaller color class. We also consider the problem Max Red-Blue Separation
where the coloring is not part of the input. Here, given an input graph G, we want to determine the
smallest integer k such that, for every possible red-blue coloring of G, there is a red-blue separating
set of size at most k. We derive tight bounds on the cardinality of an optimal solution of Max
Red-Blue Separation, showing that it can range from logarithmic in the graph order, up to the
order minus one. We also give bounds with respect to related parameters. For trees however we
prove an upper bound of two-thirds the order. We then show that Max Red-Blue Separation is
NP-hard, even for graphs of bounded maximum degree, but can be approximated in polynomial time
within a factor of O(ln2 n).

Keywords: separating sets, dominating sets, identifying codes

1 Introduction
We introduce and study the Red-Blue Separation problem for graphs. Separation problems for discrete
structures have been studied extensively from various perspectives. In the 1960s, Rényi [28] introduced the
Separation problem for set systems (a set system is a collection of sets over a set of vertices), which has been
rediscovered by various authors in different contexts, see e.g. [2, 6, 21, 27]. In this problem, one aims at selecting a
solution subset S of sets from the input set system to separate every pair of vertices, in the sense that the subset of

∗This study has been carried out in the frame of the “Investments for the future” Programme IdEx Bordeaux - SysNum
(ANR-10-IDEX-03-02). Ralf Klasing’s research was partially supported by the ANR project TEMPOGRAL (ANR-22-
CE48-0001). Florent Foucaud was partially financed by the IFCAM project “Applications of graph homomorphisms”
(MA/IFCAM/18/39), the ANR project GRALMECO (ANR-21-CE48-0004) and the French government IDEX-ISITE ini-
tiative 16-IDEX-0001 (CAP 20-25). Tuomo Lehtilä’s research was supported by the Finnish Cultural Foundation and by
the Academy of Finland grant 338797.

†ACM Unit, Indian Statistical Institute, Kolkata, India
‡National University of Singapore, Singapore
§Most of the work of this author was done when she was in Indian Statistical Institute, Kolkata
¶Université Clermont-Auvergne, CNRS, Mines de Saint-Étienne, Clermont-Auvergne-INP, LIMOS, 63000 Clermont-

Ferrand, France
‖Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, F-45067 Orléans Cedex 2, France

∗∗Université de Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR 5800, Talence, France
††University of Turku, Department of Mathematics and Statistics, Turku, Finland
‡‡Most of the work of this author was done when he was in Univ Lyon, Université Claude Bernard, CNRS, LIRIS - UMR

5205, F69622, France

1

S corresponding to those sets to which each vertex belongs to, is unique. The graph version of this problem (where
the sets of the input set system are the closed neighborhoods of a graph), called Identifying Code [22], is also
extensively studied. These problems have numerous applications in areas such as monitoring and fault-detection
in networks [30], biological testing [27], and machine learning [24]. The Red-Blue Separation problem which
we study here is a red-blue colored version of Separation, where instead of all pairs we only need to separate
red vertices from blue vertices.

In the general version of the Red-Blue Separation problem, one is given a set system (V,S) consisting of
a set S of subsets of a set V of vertices which are either blue or red; one wishes to separate every blue from
every red vertex using a solution subset C of S (here a set of C separates two vertices if it contains exactly one
of them). Motivated by machine learning applications, a geometric-based special case of Red-Blue Separation
has been studied in the literature, where the vertices of V are points in the plane and the sets of S are half-
planes [7]. The classic problem Set Cover over set systems generalizes both Geometric Set Cover problems
and graph problem Dominating Set (similarly, the set system problem Separation generalizes both Geometric
Discriminating Code and the graph problem Identifying Code). It thus seems natural to study the graph
version of Red-Blue Separation.

Problem definition. In the graph setting, we are given a graph G and a red-blue coloring c : V (G) →
{red, blue} of its vertices, and we want to select a (small) subset S of vertices, called red-blue separating set, such
that for every red-blue pair r, b of vertices, there is a vertex from S whose closed neighborhood contains exactly
one of r and b. Equivalently, N [r]∩S 6= N [b]∩S, where N [x] denotes the closed neighborhood of vertex x; the set
N [x]∩S is called the code of x (with respect to S), and thus all codes of blue vertices are different from all codes
of red vertices. The smallest size of a red-blue separating set of (G, c) is denoted by sepRB(G, c). Note that if a
red and a blue vertex have the same closed neighborhood, they cannot be separated. Thus, for simplicity, we will
consider only twin-free graphs, that is, graphs where no two vertices have the same closed neighborhood. Also,
for a twin-free graph, the vertex set V (G) is always a red-blue separating set as all the vertices have a unique
subset of neighbors. We have the following associated computational problem.

Red-Blue Separation
Input: A red-blue colored twin-free graph (G, c) and an integer k.
Question: Do we have sepRB(G, c) ≤ k?

It is also interesting to study the problem when the red-blue coloring is not part of the input. For a given
graph G, we thus define the parameter max-sepRB(G) which denotes the largest size, over each possible red-blue
coloring c of G, of a smallest red-blue separating set of (G, c). The associated decision problem is stated as follows.

Max Red-Blue Separation
Input: A twin-free graph G and an integer k.
Question: Do we have max-sepRB(G) ≤ k?

In Figure 1, to note the difference between sepRB and max-sepRB, a path of 6 vertices P6 is shown, where the
vertices are colored red or blue.

(a)

v1 v2 v3 v4 v5 v6

(b)

v1 v2 v3 v4 v5 v6

Figure 1: A path of 6 vertices where (a) sepRB(P6, c) = 1 and (b) max-sepRB(P6) = 3. The square
vertices are blue, the round ones are red; the members of the red-blue separating set are circled.

Our results. We show that Red-Blue Separation is NP-complete even for restricted graph classes such as
planar bipartite sub-cubic graphs, in the setting where the two color classes1 have equal size. We also show that
the problem is NP-hard to approximate within a factor of (1 − ε) lnn for every ε > 0, even for split graphs2 of
order n, and when one color class has size 1. On the other hand, we show that Red-Blue Separation is always
approximable in polynomial time within a factor of 2 lnn. In contrast, for triangle-free graphs and for graphs of
bounded maximum degree, we prove that Red-Blue Separation is solvable in polynomial time when the smaller
color class is bounded by a constant (using algorithms that are in the parameterized class XP, with the size of the
smaller color class as parameter). However, on general graphs, the problem is shown to be W [2]-hard even when

1One class consists of vertices colored red and the other class consists of vertices colored blue.
2A graph G = (V,E) is called a split graph when the vertices in V can be be partitioned into an independent set and a

clique.

2

parameterized by the solution size plus the size of the smaller color class. (This is in contrast with the geometric
version of separating points by half-planes, for which both parameterizations are known to be fixed-parameter
tractable [3, 23].)

As the coloring is not specified, max-sepRB(G) is a parameter that is worth studying from a structural
viewpoint. In particular, we study the possible values for max-sepRB(G). We show the existence of tight bounds
on max-sepRB(G) in terms of the order n of the graph G, proving that it can range from blog2 nc up to n − 1
(both bounds are tight). For trees however we prove bounds involving the number of support vertices (i.e. which
have a leaf neighbor), which imply that max-sepRB(G) ≤ 2n

3
. We also give bounds in terms of the (non-colored)

separation number. We then show that the associated decision problem Max Red-Blue Separation is NP-hard,
even for graphs of bounded maximum degree, but can be approximated in polynomial time within a factor of
O(ln2 n).

An extended abstract of this paper was presented in the conference IWOCA’22 and appeared in the proceedings
as [9]. The present paper includes all the proofs that were missing from the conference version.

Related work. Red-Blue Separation has been studied in the geometric setting of red and blue points in
the Euclidean plane [3, 5, 26]. In this problem, one wishes to select a small set of (axis-parallel) lines such that
any two red and blue points lie on the two sides of one of the solution lines. The motivation stems from the
Discretization problem for two classes and two features in machine learning, where each point represents a
data point whose coordinates correspond to the values of the two features, and each color is a data class. The
problem is useful in a preprocessing step to transform the continuous features into discrete ones, with the aim
of classifying the data points [7, 23, 24]. This problem was shown to be NP-hard [7] but 2-approximable [5] and
fixed-parameter tractable when parameterized by the size of a smallest color class [3] and by the solution size [23].
A polynomial time algorithm for a special case was recently given in [26].

The Separation problem for set systems (also known as Test Cover and Discriminating Code) was
introduced in the 1960s [28] and widely studied from a combinatorial point of view [1, 2, 6, 21] as well as from
the algorithmic perspective for the settings of classical, approximation and parameterized algorithms [8, 11, 27].
The associated graph problem is called Identifying Code [22] and is also extensively studied (see [25] for an
online bibliography with almost 500 references as of January 2022); geometric versions of Separation have been
studied as well [10, 17, 19]. The Separation problem is also closely related to the VC Dimension problem [31]
which is very important in the context of machine learning. In VC Dimension, for a given set system (V,S), one
is looking for a (large) set X of vertices that is shattered, that is, for every possible subset of X, there is a set of
S whose trace on X is the subset. This can be seen as ”perfectly separating” a subset of S using X; see [4] for
more details on this connection.

Structure of the paper. We start with the algorithmic results on Red-Blue Separation in Section 2. We
then present the bounds on max-sepRB in Section 3 and the hardness result for Max Red-Blue Separation in
Section 4. We conclude in Section 5.

2 Complexity and algorithms for Red-Blue Separation
We will prove some algorithmic results for Red-Blue Separation by reducing to or from the following problems.

Set Cover
Input: A set of elements U , a family S of subsets of U and an integer k.
Question: Does their exist a cover C ⊆ S, with |C| ≤ k such that

⋃
C∈C C = U?

Dominating Set
Input: A graph G = (V,E) and an integer k.
Question: Does there exist a set D ⊆ V of size k with ∀v ∈ V,N [v] ∩D 6= ∅?

2.1 Hardness
Theorem 1. Red-Blue Separation cannot be approximated within a factor of (1 − ε) · lnn for any ε > 0
even when the smallest color class has size 1 and the input is a split graph of order n, unless P = NP. Moreover,
Red-Blue Separation is W[2]-hard when parameterized by the solution size together with the size of the smallest
color class, even on split graphs.

Proof. For an instance ((U,S), k) of Set-Cover, we construct in polynomial time an instance ((G, c), k) of Red-
Blue Separation where G is a split graph and one color class has size 1. The statement will follow from the
hardness of approximating Min Set Cover proved in [12], and from the fact that Set Cover is W[2]-hard when
parameterized by the solution size [13].

3

We create the graph (G, c) by first creating vertices corresponding to all the sets and the elements. We connect
a vertex ui corresponding to an element i ∈ U to a vertex vj corresponding to a set Sj ∈ S if ui ∈ Sj . We color
all these vertices blue. We add two isolated blue vertices b and b′. We connect all the vertices of type ui ∈ U to
each other. Also, we add a red vertex r and connect all vertices ui ∈ U to r. Now, note that the vertices U ∪ {r}
form a clique whereas the vertices vj along with b and b′ form an independent set. Thus, our constructed graph
(G, c) with the coloring c is a split graph. See Figure 2.

{}

{}
b
b′

Sets Elements
v1

vm

u1

un

r

Figure 2: Reduction from Set Cover to Red-Blue Separation of Theorem 1. Vertex r is red, the
others are blue.

Claim 1.1. S has a set cover of size k if and only if G has a red-blue separating set of size at most k + 1.

Proof of claim. Let C be a set cover of (U,S) of size k. We construct a red-blue separating set S of (G, c) of size
at most k+ 1 as follows. For each set sj ∈ S selected in the set cover C, we choose the corresponding vertex vj in
S. Also include the vertex r in S. Observe that some blue vertices may have the empty code and the red vertex
has itself as the code. Also, the vertices ui are dominated by the vertices vj and have some unique code different
from r. Therefore, S is a separating set of (G, c) of size at most k + 1.

Conversely, consider a red-blue separating set S of (G, c) of size k′. Since the vertices U ∪ {r} form a clique,
choosing any vertex from this set will not separate any two vertices of the clique. Let us assume that the red
vertex r of (G, c) gets the empty code. But then, we have the two isolated blue vertices, one of which also gets
the empty code. Thus, the red vertex has to be selected. But r, being part of the clique, has to be separated
from the blue vertices. Thus, we have to choose vertices from the independent set to separate the blue vertices
of the clique from r. So, we dominate the blue vertices of the clique by using the vertices in the independent set,
which gives our set cover of size at most k′ − 1 = k. (�)

This completes the proof of the theorem.

Theorem 2. Red-Blue Separation is NP-hard for bipartite planar sub-cubic graphs of girth at least 12 when
the color classes have almost the same size.

Proof. We reduce from Dominating Set, which is NP-hard for bipartite planar sub-cubic graphs with girth
at least 12 that contain some degree-2 vertices [32]. We reduce any instance (G, k) of Dominating Set to an
instance ((H, c), k′) of Red-Blue Separation, where k′ = k + 1 and the number of red and blue vertices in c
differ by at most 2.

Construction. We create two disjoint copies of G namely HB and HR and color all vertices of HB blue and
all vertices of HR red. Select an arbitrary vertex v of degree 2 in G (we may assume such a vertex exists in G
by the reduction of [32]) and look at its corresponding vertices vR ∈ V (HR) and vB ∈ V (HB). We connect vR
and vB with the head of the path u1, u2, u3, u4 as shown in Figure 3. The tail of the path, i.e. the vertex u4,
is colored blue and the remaining three vertices u1, u2 and u3 are colored red. Our final graph H is the union
of HR, HB and the path u1, u2, u3, u4 and the coloring c as described. Note that if G is a connected bipartite
planar sub-cubic graph of girth at least g, then so is H (since v was selected as a vertex of degree 2). We make
the following claim.

Claim 2.1. The instance (G, k) is a YES-instance of Dominating Set if and only if sepRB(H, c) ≤ k′ = k+ 1.

Proof of claim. (=⇒) Let D be a dominating set of G of size k. We construct a red-blue separating set S of
(H, c) of size at most k + 1 as follows. For each vertex in D, include its corresponding vertex in HR in S. Also
include in S, the vertex u2 ∈ V (H). Observe that all blue vertices have the empty code and all red vertices have
some non-empty code. Therefore S is a separating set of (H, c) of size at most k + 1.

4

HRG HB

construction

v vB vR

u1

u2

u3

u4

Figure 3: Reduction from Dominating Set to Red-Blue Separation of Theorem 2. Vertices vB and
u4 are blue, the others are red.

(⇐=) Consider a red-blue separating set S of (H, c) of size k′. Let us assume that the red vertices of (H, c)
did not get the empty code. The argument when the blue vertices do not get the empty code is similar. Then,
the set S also dominates V (HR) ∪ {u1, u2, u3}. Since u3 can only be dominated by a vertex x in {u2, u3, u4},
the vertices in V (HR) are dominated by S′ = S \ {x}. If S′ = S′ ∩ V (HG) then the set D formed by choosing
the corresponding vertices of S′ in G is a dominating set of size k = k′ − 1. Otherwise, S′ \ {u1} = S′ ∩ V (HR),
and the set D formed by choosing the corresponding vertices of S′ \ {u1} in G is a dominating set of G of size
k = k′ − 1. (�)

This completes the proof of the theorem.

In the previous reduction, we could choose any class of instances for which Dominating Set is known to
be NP-hard. We could also simply take two copies of the original graph and obtain a coloring with two equal
color class sizes (but then we obtain a disconnected instance). In contrast, in the geometric setting, the problem
is fixed-parameter-tractable when parameterized by the size of the smallest color class [3], and by the solution
size [23]. It is also 2-approximable [5].

We can also provide another reduction, as follows.

Theorem 3. Red-Blue Separation is NP-hard even when the input is a subcubic planar bipartite graph of
girth at least 12 and the size of the smallest color class is k + 1.

Proof. We reduce from Dominating Set.
Dominating Set is NP-hard when the input graph is a subcubic planar bipartite graph of girth at least 12 [32].

We reduce an instance (G, k) of the Dominating Set to an instance ((H, ck+1), k) of Red-Blue Separation
where ck+1 is a coloring of H with the minimum color class being of size at most k + 1.

G H

construction

...
k + 1 reds

G

Figure 4: Construction from an instance of Dominating Set to an instance of Red-Blue Separation
where size of the smaller color class is bounded. The square vertices are blue, the round ones are red.

Construction. Without loss of generality let us assume the smaller sized color class to be red. For H we
create a copy GH of G with all its vertices colored blue and an independent set I of size k + 1 all its vertices
colored red vertices. We now make the following claim.

5

Claim 3.1. (G, k) is a YES-instance of Dominating Set if and only if ((H, ck+1), k) is a YES-instance of
Red-Blue Separation.

Proof of claim. (=⇒) Let D be a dominating set of G. We construct a red-blue separating set of (H, ck+1) by
selecting the corresponding vertices of D in GH . Since D is a dominating set of G, all blue vertices receive a
non-empty code. The red vertices on the other hand receive the empty code and we have a valid separating set.

(⇐=) Let (H, ck+1) have a separating set C of size at most k. Since there are k+ 1 independent red vertices,
there will be at least one red vertex which receives the empty code. So, in order for C to be a valid separating
set, all blue vertices must receive some non-empty code. This implies that C ∩ V (GH) is a dominating set of GH

of size at most k and which implies a dominating set of G of size at most k. (�)

This completes the proof.

2.2 Positive algorithmic results
We start with a reduction to Set Cover implying an approximation algorithm.

r1

r2

r3

b1

b2

b3

ur1,b1
ur1,b3
ur2,b2
ur2,b3
ur3,b1
ur3,b3

S(r1)
S(r2)
S(r3)
S(b1)
S(b2)
S(b3)

elements of U sets of S(G, c)

Figure 5: A reduction instance from Red-Blue Separation of (G, c) (where the square vertices are
blue, the round ones are red) to Set Cover of (U,S). The separating set in the colored graph (G, c)
and the corresponding set cover in the set system (U,S) has been highlighted.

Proposition 4. Red-Blue Separation has a polynomial-time (2 lnn)-factor approximation algorithm, where
n is the input graph’s order.

Proof. We reduce Red-Blue Separation to Set Cover. Let ((G, c), k) be an input instance of Red-Blue
Separation. We reduce it to an instance ((U,S), k) of Set Cover. For each red-blue vertex pair (r, b) in G,
create an element in U . For each vertex v in G create a set in S with elements (r, b) in U such that v is in the
closed neighborhood of exactly one of r and b in G. See Figure 5. Observe that a set cover C of size k corresponds
to a separating set S of size at most k and vice versa. The greedy algorithm for Set Cover has an approximation
factor of ln |U |+ 1. Since, in our case |U | ≤ n2/4, the resulting approximation factor for Red-Blue Separation
is at most ln(n2/4) + 1 ≤ 2 lnn.

Proposition 5. Let (G, c) be a red-blue colored triangle-free and twin-free graph with the two color classes R and
B. Then, sepRB(G, c) ≤ 3 min{|R|, |B|}.

Proof. Without loss of generality, we assume |R| ≤ |B|. We construct a red-blue separating set S of (G, c). First,
we add all red vertices to S. It remains to separate every red vertex from its blue neighbors. If a red vertex v has
at least two neighbors, we add (any) two such neighbors to S. Since G is triangle-free, no blue neighbor of v is in
the closed neighborhood of both these neighbors of v, and thus v is separated from all its neighbors (see vertex v1

in Figure 6). If v had only one neighbor w, and it was blue, then we separate w from v by adding one arbitrary
neighbor of w (other than v) to S. Since G is triangle-free, v and w are separated (see vertex v2 in Figure 6).
Thus, we have built a red-blue separating set S of size at most 3|R|.

Proposition 6. Let (G, c) be a red-blue colored twin-free graph with maximum degree ∆ ≥ 3. Then, sepRB(G, c) ≤
∆ min{|R|, |B|}.

6

v1

v2

w1

w2

w3

Figure 6: Illustration of Proposition 5: here v1 has just one blue neighbor hence w1 is added in S. v2’s
neighbors w2 and w3 are also included in S. The square vertices are blue, the round ones are red.

v
w

w

v

z z

(a) (b)

Figure 7: Illustration of Proposition 6: the two cases when the vertices v and w are (a) not adjacent and
(b) adjacent. The square vertices are blue, the round ones are red.

Proof. Without loss of generality, let us assume |R| ≤ |B|. We construct a red-blue separating set S of (G, c).
Let v be any red vertex. If there is a blue vertex w whose closed neighborhood contains all neighbors of v (w
could be a neighbor of v), we add both v and w to S (see Figure 7(a)). If v is adjacent to w, since they cannot be
twins, there must be a vertex z that can separate v and w; we add z to S (see Figure 7(b)). Now, v is separated
from every blue vertex in G.

If such a vertex w does not exist, then we add all neighbors of v to S. Now again, v is separated from every
vertex of G. Thus, we have built a red-blue separating set S of size at most ∆|R|.

The previous propositions imply that Red-Blue Separation can be solved in XP time for the parameter
”size of a smallest color class” on triangle-free graphs and on graphs of bounded degree (by a brute-force search
algorithm). This is in contrast with the fact that in general graphs, it remains hard even when the smallest color
class has size 1 by Theorem 1.

Theorem 7. Red-Blue Separation on graphs whose vertices belong to the color classes R and B can be solved
in time O(n3 min{|R|,|B|}) on triangle-free graphs and in time O(n∆ min{|R|,|B|}) on graphs of maximum degree ∆.

3 Extremal values and bounds for max-sepRB
We denote by sep(G) the smallest size of a (non-colored) separating set of G, that is, a set that separates all pairs
of vertices. We will use the relation max-sepRB(G) ≤ sep(G), which clearly holds for every twin-free graph G.

3.1 Lower bounds for general graphs
We can have a large twin-free colored graph with solution size 2 (for example, in a large blue path with a single
red vertex, two vertices suffice). We show that in every twin-free graph, there is always a coloring that requires
a large solution.

Theorem 8. For any twin-free graph G of order n ≥ 1 and n 6∈ {8, 9, 16, 17}, we have max-sepRB(G) ≥ blog2(n)c.

Proof. Let G be a twin-free graph of order n with max-sepRB(G) = k. There are 2n different red-blue colorings
of G. For each such coloring c, we have sepRB(G, c) ≤ k. Consider the set of vertex subsets of G which are

7

separating sets of size k for some red-blue colorings of G. Notice that each red-blue coloring has a separating set
of cardinality k. There are at most

(
n
k

)
≤ nk such sets.

Consider such a separating set S and consider the set I(S) of subsets S′ of S for which there exists a vertex v
of G with N [v] ∩ S = S′. Let iS be the number of these subsets: we have iS ≤ 2|S| ≤ 2k. If S is a separating set
for (G, c), then all vertices having the same intersection between their closed neighborhood and S must receive
the same color by c. Thus, there are at most 2iS ≤ 22k

red-blue colorings of G for which S is a separating set.
Hence, we have

2n ≤
(
n
k

)
22k

, which implies
2n ≤ nk22k

, which implies
n ≤ k log2(n) + 2k

We now claim that this implies that k ≥ log2(n − log2(n) log2(n)). Suppose to the contrary that this is not
the case, then we would obtain:

n < log2(n− log2(n) log2(n)) log2(n) + n− log2(n) log2(n)
n < log2(n) log2(n) + n− log2(n) log2(n)

And thus n < n, a contradiction. Since k is an integer, we actually have k ≥ dlog2(n− log2(n) log2(n))e. To
conclude, one can check that whenever n ≥ 70, we have dlog2(n− log2(n) log2(n))e ≥ blog2(n)c. Moreover, if we
compute values for 2n −

(
n
k

)
22k

when 1 ≤ n ≤ 69 and k = blog2(n)c − 1, then we observe that this is negative
only when n ∈ {8, 9, 16, 17}. Thus, blog2(n)c is a lower bound for max-sepRB(G) as long as n 6∈ {8, 9, 16, 17}.

The bound of Theorem 8 is tight for infinitely many values of n.

Proposition 9. For any integers k ≥ 1 and n = 2k, there exists a graph G of order n with max-sepRB(G) = k.

Proof. We build G as follows. Let S = {s1, . . . , sk} be a set of k vertices. Let T be another set of vertices (disjoint
from S). For every subset S′ of S of size at least 2, we add a vertex vS′ to T and we join it to all vertices of S′

and T . The set T induces a clique. Finally, we add an isolated vertex v∅ to G. To see that max-sepRB(G) ≤ k,
notice that S is a separating set of G (regardless of the coloring).

If k = 1, the coloring with s1 Red and v∅ Blue shows that max-sepRB(G) ≥ 1.
If k = 2, color s1 and s2 Red and v{1,2} and v∅ Blue. To separate v{1,2} from s1 (respectively s2), s2 must

belong to any separating set (respectively s1), which shows that max-sepRB(G) ≥ 2.
If k ≥ 3, color vS Blue and the other vertices Red. For each subset S′ of S with |S′| = k−1, in order to separate

vS from vS′ , any separating set needs to contain si where {si} = S \ S′. This shows that max-sepRB(G) ≥ k.

We next relate parameter max-sepRB to other graph parameters.

Theorem 10. Let G be a graph on n vertices. Then, sep(G) ≤ min{dlog2(n)e ·max-sepRB(G), dlog2(∆(G) + 1)e ·
max-sepRB(G) + γ(G)}, where γ(G) is the domination number of G and ∆(G) its maximum degree.

Proof. Let G be a graph on 2k−1 + 1 ≤ n ≤ 2k vertices for some integer k. We denote each vertex by a different
k-length binary word x1x2 · · ·xk where each xi ∈ {0, 1}. Moreover, we give k different red-blue colorings c1, . . . , ck
such that vertex x1x2 · · ·xk is red in coloring ci if and only if xi = 0 and blue otherwise. For each i, let Si be
an optimal red-blue separating set of (G, ci). We have |Si| ≤ max-sepRB(G) for each i. Let S =

⋃k
i=1 Si. Now,

|S| ≤ k · max-sepRB(G) = dlog2(n)e · max-sepRB(G). We claim that S is a separating set of G. Assume to the
contrary that for two vertices x = x1x2 · · ·xk and y = y1y2 · · · yk, N [x] ∩ S = N [y] ∩ S. For some i, we have
yi 6= xi. Thus, in coloring ci, vertices x and y have different colors and hence, there is a vertex s ∈ ci such that
s ∈ N [y]4N [x], a contradiction which proves the first bound.

Let S be an optimal red-blue separating set for such a coloring c and let D be a minimum-size dominating set
in G; S ∪D is also a red-blue separating set for coloring c. At most ∆(G) + 1 vertices of G may have the same
closed neighborhood in D. Thus, we may again choose dlog2(∆(G) + 1)e colorings and optimal separating sets for
these colorings, each coloring (roughly) halving the number of vertices having the same vertices in the intersection
of separating set and their closed neighborhoods. Since each of these sets has size at most max-sepRB(G), we get
the second bound.

We do not know whether the previous bound is reached, but as seen next, there are graphs G such that
sep(G) = 2 max-sepRB(G).

Proposition 11. Let G = Kk1,...,kt be a complete t-partite graph for t ≥ 2, ki ≥ 5 odd for each i. Then
sep(G) = n− t and max-sepRB(G) = (n− t)/2.

8

Proof. Let us have t parts G1, . . . , Gt with vertex sets V (Gi) = {vi1, . . . , viki
}. Let c be such a coloring in G that

sepRB(G, c) = max-sepRB(G). Observe that S is a separating set in G if and only if |S ∩V (Gi)| ≥ ki− 1. Indeed,
if we have vij , vih 6∈ S, then N [vij] ∩ S = N [vih] ∩ S since N(vij) = N(vih). Moreover, each vertex in S is separated
from vertices not in S and each vertex in V (Gi) is separated from vertices in V (Gj). Thus, sep(G) = n− t.

Next we form a red-blue separating set S′ for coloring c. For each part, we choose to set S′ every vertex which
has the less common color in that part (however, we choose at least two vertices to S′ from each part). Observe
that |S′| ≤

∑t
i=1

ki−1
2

= (n − t)/2. Moreover as above, we can see that S′ is a red-blue separating set with the
help of fact that if vij 6∈ S′ and vih 6∈ S′, then vij and vih have the same color.

Finally, we show that max-sepRB(G) ≥ (n − t)/2. Observe that if we have u, v ∈ V (Gi) and u, v 6∈ S, then
N [u]∩S = N [v]∩S. Thus, any two vertices u, v ∈ V (Gi)\S must have the same color. If each part has (ki +1)/2
red vertices and (ki − 1)/2 blue vertices, then we require at least

∑t
i=1(k1 − 1)/2 = (n− t)/2 vertices in S.

3.2 Upper bound for general graphs
We will use the following classic theorem in combinatorics to show that we can always spare one vertex in the
solution of Max Red-Blue Separation.

Theorem 12 (Bondy’s Theorem [2]). Let V be an n-set with a family A = {A1,A2, . . . ,An} of n distinct subsets
of V . There is an (n− 1)-subset X of V such that the sets A1 ∩X,A2 ∩X,A3 ∩X, . . . ,An ∩X are still distinct.

Corollary 13. For any twin-free graph G on n vertices, we have max-sepRB(G) ≤ sep(G) ≤ n− 1.

Proof. Regardless of the coloring, by Bondy’s theorem, we can always find a set of size n − 1 that separates all
pairs of vertices.

This bound is tight for every even n for complements of half-graphs (studied in the context of identifying
codes in [15]).

Definition 14 (Half-graph [14]). For any integer k ≥ 1, the half-graph Hk is the bipartite graph on vertex sets
{v1, . . . , vk} and {w1, . . . , wk}, with an edge between vi and wj if and only if i ≤ j.

The complement Hk of Hk thus consists of two cliques {v1, . . . , vk} and {w1, . . . , wk} and with an edge between
vi and wj if and only if i > j.

Proposition 15. For every k ≥ 1, we have max-sepRB(Hk) = 2k − 1.

Proof. The upper bound follows from Corollary 13.
Consider the red-blue coloring c such that vi is Blue whenever i is odd and Red, otherwise. If k is odd, wi is

Red whenever i is odd and Blue, otherwise. If k is even, wi is Blue whenever i is odd and Red, otherwise.
For any integer i between 1 and k − 1, vi and vi+1 have different colors and can only be separated by wi.

Likewise, wi and wi+1 have different colors and can only be separated by vi+1. This shows that {w1, . . . , wk−1}
and {v2, . . . , vk} must belong to any separating set of (Hk, c). Finally, consider w1 and vk. They also have
different colors and can only be separated by either v1 or wk. This shows that we need at least n− 1 vertices in
any separating set.

3.3 Upper bound for trees
We will now show that a much better upper bound holds for trees.

Degree-1 vertices are called leaves and the set of leaves of the tree T is L(T). Vertices adjacent to leaves
are called support vertices, and the set of support vertices of T is denoted S(T). We denote `(T) = |L(T)|
and s(T) = |S(T)|. The set of support vertices with exactly i adjacent leaves is denoted Si(T) and the set
of leaves adjacent to support vertices in Si(T) is denoted Li(T). Observe that |L1(T)| = |S1(T)|. Moreover,
let L+(T) = L(T) \ L1(T) and S+(T) = S(T) \ S1(T). We denote the sizes of these four types of sets by
si(T), `i(T), s+(T) and `+(T), respectively.

For trees, we can show the following result, which is in contrast with the situation for general graphs (or even
split graphs, as highlighted by Theorem 1).

Theorem 16. Let T be a tree on n ≥ 3 vertices and let c be a coloring with exactly one red (or blue) vertex. We
have sepRB(T, c) ≤ 2.

Proof. Let T be a tree on at least three vertices with coloring c such that there is exactly one red vertex v ∈ V (T).
Let us assume first that v 6∈ L(T). Thus, v has at least two neighbors w and u. If we now include w and

u in the separating set S, then v is the only vertex in T which has two adjacent vertices in S and hence, S is a
red-blue separating set in T for coloring c.

On the other hand, if v ∈ L(T), u ∈ N(v) and w ∈ N(u) \ {v}, then S = {v, w} is a red-blue separating set
in T for coloring c, and sepRB(T, c) ≤ 2.

9

x u v C ′
1 x u vw C1

Figure 8: Construction of C1 from C ′
1 where the boxed elements represent members of the set.

To prove our upper bound for trees, we need Theorems 17 and 18.

Theorem 17. For any tree T of order n ≥ 5, we have max-sepRB(T) ≤ n+s(T)
2

.

Proof. Observe that the claim holds for stars (select the vertices of the smallest color class among the leaves, and at
least two leaves). Thus, we assume that s(T) ≥ 2. Let c be a coloring of T such that max-sepRB(T) = sepRB(T, c).

We build two separating sets C1 and C2; the idea is that one of them is small. We choose a non-leaf vertex
x and add to the first set C′1 every vertex at odd distance from x and every leaf. If there is a support vertex
u ∈ S1(T) ∩ C′1 and an adjacent leaf v ∈ L1(T) ∩ N(u), we create a separating set C1 from C′1 by shifting the
vertex away from leaf v to some vertex w ∈ N(u)\L(T). We construct in a similar manner sets C′2 and C2, except
that we add the vertices at even distance from x to C′2 (including x itself) and do the shifting when u ∈ S1(T)
has even distance to x. Sets C1 and C2 have been previously considered in [16, Theorem 6]. See Figure 8.

x u vw

x x

w

w

d(v, x) is even and v ∈ L1(T)

w /∈ L(T) and d(w, x) is odd w /∈ L(T) and d(w, x) is even

x

d(v, x) is odd and v ∈ L1(T)

xv

d(v, x) is odd and v ∈ L+(T)

x

u v

d(v, x) is even and v ∈ L+(T)

v

w

u

w

Figure 9: Illustration of various cases for C1 in Claim 17.1.

Claim 17.1. Both C1 and C2 are separating sets.

Proof of claim. Let us first consider set C1. See Figure 9 for helpful illustrations of different cases we go through
in the following arguments. Let us first show that each leaf v ∈ L(T) is separated from all other vertices by C1.
Let u ∈ N(v) be the adjacent support vertex. If d(x, v) is odd, then v ∈ C1 and |N(u) ∩ C1| ≥ 2. Hence, v is
separated from every other vertex. If d(v, x) is even and v ∈ L+(T), then v ∈ C1 and |N [u]∩C1| ≥ 3. Hence, v is
again separated from other vertices. If d(v, x) is even and v ∈ L1(T), then v 6∈ C1, u ∈ C1 and |N [u]∩C1| ≥ 2 due
to the shift when we form C1 from C′1. If we have N [w] ∩ C1 = {u} for some w 6= u and w 6∈ L(T), then d(w, x)
is even and we have |N [w] ∩ C1| ≥ 2, a contradiction. Thus, any leaf v is separated from each other vertex.

Let us then consider a vertex w 6∈ L(T) with odd distance d(w, x), then w ∈ C1. Moreover, each neighbor
u ∈ N(w) has even distance to x and is either a leaf which is separated from w or has at least two neighbors with

10

odd distances to x and hence, |C1 ∩ N(u)| ≥ 2 and u is separated from w. Finally, if w 6∈ L(T) and d(w, x) is
even, then w 6∈ C′1 and |N(w)∩C1| ≥ 2. Since there are no 3-cycles nor 4-cycles in a tree, w is separated from all
other vertices.

The proof that also C2 is a separating set is similar. We only swap evens and odds. Hence, the claim follows.
(�)

Let us denote by NS3(T) a smallest set of vertices in T such that for each vertex v ∈ S3(T) which has
N(v)∩S+(T) = ∅, we have at least one vertex u ∈ N(v)\L(T) in NS3(T) (such a set exists since T is not a star).

x u v C ′
1

x u v C ′
2

Figure 10: Comparison of the sets C ′
1 and C ′

2 where the vertices highlighted in green belong to the sets
C ′

1 \ (L(T) ∪ S+(T) ∪NS3(T)) and C ′
2 \ (L(T) ∪ S+(T) ∪NS3(T)), respectively.

We assume that out of the two sets C′1 and C′2, C′a (a ∈ {1, 2}) has less vertices among the vertices in
V (T) \ (L(T) ∪ S+(T) ∪ NS3(T)). In particular, it contains at most half of those vertices and we have |C′a \
(L(T)∪S+(T)∪NS3(T))| ≤ (n− `(T)− s+(T)− |NS3(T)|)/2. In Figure 10, a comparison of the sets C′1 and C′2
is shown. Next, we will construct set C from C′a. Let us start by having each vertex in C′a be in C. Let us then,
for each support vertex u ∈ S+(T), remove from C every adjacent leaf w ∈ L+(T) ∩N(u) such that w is in the
more common color class within the vertices in N(u) ∩ L+(T) in coloring c. We then add some vertices to C as
follows. For u ∈ Si(T), i ≥ 4, we add u to C and some leaves so that there are at least two vertices in N(u) ∩C.
We have at most |L(T) ∩N [u]|/2 + 1 vertices in C ∩ (N [u] ∩ L(T) ∪ {u}).

For i = 3, we add u and any v ∈ NS3(T)∩N(u)\C, depending on which one already belongs to C. Then, if all
leaves in N(u) have the same color, we add one of them to C. Hence, we have |C ∩ (L3(T)∪NS3(T))|/s3(T) ≤ 2.

Finally, for i = 2, if the two leaves have same color and u 6∈ C′a, we add u and one of the two leaves to C. If
the two leaves have the same color and u ∈ C′a, we add a non-leaf neighbor of u to C. If the leaves have different
colors, one of them, say v, has the same color as u. We add u to C and shift the vertex in C in the leaves so that
v is in C. We added at most two vertices to C in this case. Notice that now we have S+(T) ⊆ C.

Each time, we added to C at most half of the considered vertices in N(u), and at most one other additional
vertex. After these changes, we shift some vertices in C away from L1(T) the same way we built Ca from C′a. As
|C′a \ (L(T) ∪ S+(T) ∪NS3(T))| ≤ (n− `(T)− s+(T)− |NS3(T)|)/2, we get:

|C| ≤ n− `(T)− s+(T)− |NS3(T)|
2

+ `1(T) +
`+(T) + |NS3(T)|

2
+ s+(T)

=
n+ `1(T) + s+(T)

2
=
n+ s(T)

2
.

Claim 17.2. C is a red-blue separating set for coloring c.

Proof of claim. Since Ca is a separating set and Ca \ C ⊆ L+(T), if two vertices w, v are not separated by C,
then they were separated by a leaf in L+(T) in Ca. Moreover, there exists a support vertex u ∈ S+(T) such that
v, w ∈ N [u]. Recall that S+(T) ⊆ C and hence, u ∈ C. If w and v are both leaves, then they have the same color
and do not need to be separated. In the following, we go through all the other possibilities for w and v.

Assume first that w, v 6∈ L(T) and d(w, v) = 1 and let us say, without loss of generality, that d(w, x) is of such
parity that w ∈ C′a (and w ∈ C). Notice that we have w = u or v = u in this case. Moreover, since there are no
cycles in T , the parities of d(w, x) and d(v, x) differ. Thus, there exists some vertex b ∈ N(v) \ N [w] such that
the parity of d(b, x) equals to the parity of d(w, x). Thus, b ∈ C′a. If b is not a leaf, then b ∈ C and b separates w
and v. Thus, b ∈ L(T). However, if b ∈ L1(T), then b ∈ C and if b ∈ L+(T), then v ∈ S+(T) and there exists a
leaf in C adjacent to v separating v and w, a contradiction. When d(w, v) = 2, neither of w or v are in C since
they cannot be separated. Again, we can find some vertex b in C that will separate them as in the previous case.

Moreover, since there are no cycles in T , the parities of d(w, x) and d(v, x) differ. Thus, there exists some
vertex b ∈ N(v) \N [w] such that the parity of d(b, x) equals to the parity of d(w, x). If b is not a leaf, then b ∈ C
and b separates w and v. Thus, b ∈ L(T). However, if b ∈ L1(T), then b ∈ C and if b ∈ L+(T), then v ∈ S+(T)
and there exists a leaf in C adjacent to v separating v and w, a contradiction. When d(w, v) ≥ 2, we notice that
this case cannot occur since v, w ∈ N [u] and at least one of these two vertices is adjacent to a leaf in N(u).

11

Finally, we have the case where exactly one of the two vertices is a leaf, let us say v ∈ L(T) and since v ∈ N(u),
we have v ∈ L+(T). Assume first that d(v, w) = 2. Thus, v, w 6∈ C. However, then we again have b ∈ C such
that b ∈ N(w) \ {u}, either due to the parity of d(x, b) or because b is a leaf. As the last case we have u = w and
v ∈ L+(T)∩N(u). If u 6∈ C′a, then, by parity, u has an adjacent non-leaf vertex in C since T is not a star. On the
other hand, if u ∈ C′a, then if u ∈ S2(T) and the two leaves have the same color, there is again a non-leaf neighbor
in C. If u ∈ S2(T) and the two leaves have different colors, then there is a leaf of the same color, in N(u), as u
which is in C. If u ∈ S3(T), then u has a non-leaf neighbor in NS3(T) ∩ C or in S+(T) ∩ C. If u ∈ Si(T) for
i ≥ 4, then u has at least two adjacent leaves which are in C. Hence, w and v are either separated or they have
the same color. (�)

This completes the proof of the theorem.

The upper bound of Theorem 17 is tight. Consider, for example, a path on eight vertices. Also, the trees
presented in Proposition 20 are within 1/2 from this upper bound. In the following theorem, we offer another
upper bound for trees which is useful when the number of support vertices is large. Following theorem has been
previously considered for total dominating identifying codes (under term differentiating-total dominating set) in
[20].

Theorem 18. For any tree T of order n ≥ 5, sep(T) ≤ n− s(T).

Proof. Let us choose for each support vertex u ∈ S(T) exactly one adjacent leaf v ∈ L(T) and say that these
vertices form the set S′. Next, we form the separating set S = V (T) \ S′. Notice that |S| = n − s(T). In the
following, we show that S is a separating set in T .

Observe that if v 6∈ S, then v is a leaf and no support vertex has two adjacent leaves which do not belong to
S. Thus, vertices which do not belong to S are pairwise separated. Since S′ ⊆ L(T), T [S] is a connected induced
subgraph of T . Moreover, as n ≥ 5, we have |N [w] ∩ S| ≥ 2 for each vertex w ∈ S. Thus, vertices in S are
separated from vertices which are not in S. Finally, any two vertices w,w′ ∈ S are separated since |V (T [S])| ≥ 3;
hence, each closed neighborhood is unique in T [S].

The following corollary is a direct consequence of Theorems 17 and 18. Indeed, we have max-sepRB(T) ≤
min{n− s(T), (n+ s(T))/2}.

Corollary 19. For any tree T of order n ≥ 5, we have max-sepRB(T) ≤ 2n
3
.

We next show that Corollary 19 (and Theorem 17) is not far from tight.

Proposition 20. For any k ≥ 1, there is a tree T of order n = 5k+ 1 with max-sepRB(T) = 3(n−1)
5

= n+s(T)−1
2

.

Proof. Consider the tree T formed by taking k disjoint copies P 1, . . . , P k of a path of order 6 and identifying one
endpoint of each path into one single vertex x. We consider the coloring that colors x red, and all other vertices
are colored red-blue-red... following the bipartition of the tree. Let vi1, . . . , vi5 be the vertices of P i distinct from
x, where x is adjacent to vi1. In order to separate vi5 from vi4, we need vi3 in any red-blue separating set. To
separate vi4 from vi3, we need either vi2 or vi5. To separate vi3 from vi2, we need either vi1 or vi4. Thus, we need
at least three vertices of P i in any red-blue separating set, which shows that max-sepRB(T) ≥ 3k. To see that
max-sepRB(T) ≤ 3k, one can see that the set consisting of all vertices vi1, vi3, vi5 separates all pairs of vertices.
Finally, since s(T) = k and n− 1 = 5k, we get that n+s(T)−1

2
= 3k = 3(n−1)

5
.

4 Algorithmic results for Max Red-Blue Separation
The problem Max Red-Blue Separation does not seem to be naturally in the class NP (it is in the second
level of the polynomial hierarchy). Nevertheless, we show that it is NP-hard.

Theorem 21. Max Red-Blue Separation is NP-hard even for graphs of maximum degree 12.

Proof. We reduce from the following NP-hard version of 3-SAT [29].

3-SAT-2l
Input: A set of m clauses C = {c1, . . . , cm} each with at most three literals, over n Boolean variables X =
{x1, . . . , xn}, and each literal appears at most twice.
Question: Is there an assignment of X where each clause has a true literal?

12

Construction: Given an instance σ of 3-SAT-2l with m clauses and n variables, we create an instance (H, k)
of Max Red-Blue Separation, where k = 4m+ 9n. We first explain the construction of a domination gadget.

A domination gadget on vertices v1 and v2, denoted by H(v1, v2), consists of 16 vertices including v1 and
v2. This gadget will ensure that v1, v2 are dominated by the local solution of the gadget (and thus, separated
from the rest of the graph). See Figure 11 for reference. The vertices v1 and v2 may be connected to each other
or to some other vertices outside the domination gadget as represented by the dashed edges incident to them.
Both v1 and v2 are also connected to the vertices u1 to u4 as shown in the figure. Next we have a clique K10

consisting of the vertices {p1, p2, . . . , p6, q1, q2, . . . , q4}. Every vertex pi is connected to a unique pair of vertices
from {u1, u2, u3, u4} and every vertex qj is connected to a unique triple of vertices from {u1, u2, u3, u4}. For
example in the figure we have p4 connected with the pair of vertices u2 and u3 and q3 connected with the triplet
of vertices u1, u3 and u4.

domination gadget H(v1, v2)

v1

v2

u1

u2

u3

u4

v1

v2

p4

q3

schematic

K10

Figure 11: A domination gadget on vertices v1 and v2 and its schematic representation.

The graph H consists of one variable gadget per variable and one clause gadget per clause. The variable
gadget for a variable x consists of the graph H(xa, xb) and H(x, x) with additional edges (xa, xb), (xa, x) and
(xa, x). The clause gadget for a clause C = (x ∨ y ∨ z) (say) is H(ca, cb), where ca is connected to the vertices
cb, x, y and z. See Figure 12 for an illustration. Observe that since each literal can appear at most twice therefore,
the maximum degree of H is 12, determined by the qi’s in each domination gadget.

Let us illustrate an example instance for the reduction (see Figure 13). In this example, we have the formula
as (w ∨ x∨ y)∧ (x∨ y ∨ z). Thus, we have two clauses c1 = w ∨ x∨ y and c2 = x∨ y ∨ z and four variables w, x, y
and z. Corresponding to each clause and each variable, we have a clause gadget and a variable gadget respectively
(as described earlier). The domination gadget attached with both the clause and variable gadgets is shown below
to increase readability. We have shown one possible coloring in this instance with a large solution size.

Claim 21.1. max-sepRB(H) = sep(H).

Proof of claim. It is clear that max-sepRB(H) ≤ sep(H), since any set that separates all pairs of vertices also
separates all red-blue pairs, for any possible coloring.

We will now prove that sep(H) ≤ max-sepRB(H) by providing a specific coloring, and showing that for this
coloring, any (optimal) solution also separates all pairs of vertices.

Consider a coloring c of H, where for each domination gadget H(v1, v2), all pi’s are colored blue and all qj ’s
are colored red, or vice versa. For each variable x, the vertices xa and xb are given different colors. For each
clause C, the vertices ca and cb are also colored differently. The rest of the vertices are colored arbitrarily.

Consider a (minimum) red-blue separating set S of H with respect to the coloring c. For each domination
gadget H(v1, v2), the vertices u1 to u4 must be included in S. This is because for each uh ∈ H(v1, v2), there exist
pi, qj ∈ H(v1, v2) such that N [pi]4N [qj] = {uh}, where 4 denotes the symmetric difference between two sets.
Since pi and qj are given different colors, uh is the only vertex which separates them and has to be included in S.

Observe that, for each variable x, the vertices u1 to u4 of the domination gadget H(xa, xb) separate the
vertices xa and xb from the rest of H. Therefore, they only need to be separated between themselves. The same
reasoning holds for the vertices x and x, for each variable x, as well as for the vertices ca and cb, for each clause
C.

For each variable x, at least one of the vertices x or x must be included in S in order to separate the vertices
xa and xb as they are colored differently. This also separates vertices x and x, if they are assigned different colors.
For each clause C = (x∨y∨ z) (say), at least one of the vertices x, y or z needs to be included in S (if not already
included) in order to separate the vertices ca and cb as they are also colored differently. The set S must contain
a subset of vertices from the set {x, x | x ∈ X} which separates the vertices ya and yb for all variables y, and the
vertices ca and cb for all clauses C.

13

x x

xa

xb

y y

ya

yb

za

zb

z z

ca

cb

variable gadget

clause gadget

Figure 12: Variable and clause gadgets.

Since the size of set S is minimum, it is a minimum red-blue separating set of H with respect to the coloring
c. We will now show that S is also a separating set of (uncolored) H. Observe that for each domination gadget
H(v1, v2), the vertices from u1 to u4 (which are in S) separate all (uncolored) pi’s and qj ’s from the rest of the
vertices in H. This is because the intersection of the set {u1, u2, u3, u4} and the closed neighborhood of each pi
or qj is unique. The vertices u1 to u4 are also separated from the remaining vertices.

Also, since the vertices u1 to u4 are included in S for all domination gadgets of H, therefore going by the
previous explanation we only need to separate the vertex pairs (xa, xb), (x, x) and (ca, cb). But the construction
of S is such that all these pairs of vertices are already separated by S. Therefore S is also a separating set of H.
This proves our claim. (�)

Claim 21.2. If σ is satisfiable, sep(H) = k and otherwise, sep(H) > k, where k = 4m+ 9n.

Proof of claim. Consider a separating set S of H. For each domination gadget H(v1, v2), the vertices u1 to u4 must
be included in S as these are the only vertices which can separate all the pi’s and qj ’s of H(v1, v2) and themselves.
Also, for each variable x, one of the vertices x or x must also be included in S in order to separate xa and xb.
Thus, a total of 4(m+ 2n) + n = 4m+ 9n vertices are needed in S. This implies that sep(H) ≥ k = 4m+ 9n.

If σ is satisfiable, then with respect to a satisfying assignment, we include for each variable x, the vertex x if
it is assigned true, or the vertex x, if it is assigned false. These vertices also separate ca and cb for all clauses C.
Therefore, S is a separating set of H and sep(H) = k.

On the contrary, if σ is not satisfiable, then S is not a separating set of H as there exists some clause C for
which ca and cb are not separated. Since all vertices in S are necessary to be included, any separating set of H
is a strict superset of S, and sep(H) > k. (�)

From Claim 21.1 and Claim 21.2 it follows that σ is satisfiable if and only if max-sepRB(H) ≤ k = 4m+ 9n.
Since the maximum degree of H is 12 and 3-SAT-2l is NP-hard, Max Red-Blue Separation is also NP-hard
for graphs with maximum degree 12.

We can use Theorem 10 and a reduction to Set Cover to show the following algorithmic result.

14

x x

xa

xb

y y

ya

yb

za

zb

z z

c2a

c2b

w w

wa

wb

c1a

c1b

u1

u2

u3

u4

v1

v2

p1
p2
p3
p4
p5
p6
q1
q2
q3
q4

v1

v2

{u1, u2}
{u1, u3}
{u1, u4}
{u2, u3}
{u2, u4}
{u3, u4}
{u1, u2, u3}
{u1, u2, u4}
{u1, u3, u4}
{u2, u3, u4}{u1, u2, u3, u4}

{u1, u2, u3, u4}

F = (w ∨ x ∨ y) ∧ (x ∨ y ∨ z)

K10

Figure 13: An example to show the reduction from 3-SAT-2l to Max Red-Blue Separation. The
square vertices are blue, the round ones are red.

Theorem 22. Max Red-Blue Separation can be approximated within a factor of O(ln2 n) on graphs of order
n in polynomial time.

Proof. Let A be a polynomial-time (2 lnn + 1)-approximation algorithm for the Separation problem [18]. For
any graph G, let S(G) denote the separating set returned by A on the input graph G. Using Theorem 10, we
have

15

|S(G)| ≤ (2 lnn+ 1) · sep(G)

≤ (2 lnn+ 1) · dlogne ·max-sepRB(G)

Hence, algorithm A is a polynomial-time O(ln2 n)-approximation algorithm for Max Red-Blue Separation.

5 Conclusion
We have initiated the study of Red-Blue Separation and Max Red-Blue Separation on graphs, problems
which seem natural given the interest that their geometric version has gathered, and the popularity of its ”non-
colored” variants Identifying Code on graphs or Test Cover on set systems.

When the coloring is part of the input, the solution size of Red-Blue Separation can be as small as 2,
even for large instances; however, we have seen that this is not possible for Max Red-Blue Separation since
max-sepRB(G) ≥ blog2(n)c for twin-free graphs of order n. Moreover, max-sepRB(G) can be as large as n− 1 in
general graphs, yet, on trees, it is at most 2n/3 (we do not know if this is tight, or if the upper bound of 3n/5,
which would be best possible, holds). However, the upper bound of Theorem 17, which is based on the number
of support vertices, is tight for trees. It would also be interesting to see if other interesting upper or lower bounds
can be shown for other graph classes.

We have shown that sep(G) ≤ dlog2(n)e · max-sepRB(G). Is it true that sep(G) ≤ 2 max-sepRB(G)? As we
have seen, this would be tight.

We have also shown that Max Red-Blue Separation is NP-hard, yet it does not naturally belong to NP.
Is the problem actually hard for the second level of the polynomial hierarchy?

References
[1] B. Bollobás and A. D. Scott. On separating systems. European Journal of Combinatorics 28:1068–1071,

2007.

[2] J. A. Bondy. Induced subsets. Journal of Combinatorial Theory, Series B 12(2):201–202, 1972.

[3] É. Bonnet, P. Giannopoulos and M. Lampis. On the parameterized complexity of red-blue points separation.
Journal of Computational Geometry 10(1):181–206, 2019.

[4] N. Bousquet, A. Lagoutte, Z. Li, A. Parreau and S. Thomassé. Identifying codes in hereditary classes of
graphs and VC-dimension. SIAM Journal on Discrete Mathematics 29(4):2047–2064, 2015.

[5] G. Cǎlinescu, A. Dumitrescu, H. J. Karloff and P. Wan. Separating points by axis-parallel lines. Interna-
tional Journal Of Computational Geometry & Applications 15(6):575–590, 2005.

[6] E. Charbit, I. Charon, G. Cohen, O. Hudry and A. Lobstein. Discriminating codes in bipartite graphs:
bounds, extremal cardinalities, complexity. Advances in Mathematics of Communications 2(4):403–420,
2008.

[7] B. S. Chlebus and S. H. Nguyen. On finding optimal discretizations for two attributes. Proceedings of the
1st International Conference on Rough Sets and Current Trends in Computing (RSCTC 1998). Lecture
Notes in Computer Science 1424:537–544, 1998.

[8] R. Crowston, G. Gutin, M. Jones, G. Muciaccia and A. Yeo. Parameterizations of test cover with bounded
test sizes. Algorithmica 74(1):367–384, 2016.

[9] S. R. Dev, S. Dey, F. Foucaud, R. Klasing and T. Lehtilä. The Red-Blue Separation problem on graphs.
Proceedings of the 33rd International Workshop on Combinatorial Algorithms (IWOCA 2022). Lecture
Notes in Computer Science 13270:285–298, 2022.

[10] S. Dey, F. Foucaud, S. C. Nandy and A. Sen. Discriminating codes in geometric setups. Proceedings of
the 31st International Symposium on Algorithms and Computation (ISAAC 2020). Leibniz International
Proceedings in Informatics 181, 24:1–24:16, 2020.

[11] K. M. J. De Bontridder, B. V. Halldórsson, M. M. Halldórsson, C. A. J. Hurkens, J. K. Lenstra, R. Ravi
and L. Stougie. Approximation algorithms for the test cover problem. Mathematical Programming Series
B 98:477–491, 2003.

[12] I. Dinur and D. Steurer. Analytical approach to parallel repetition. ACM Symposium on Theory of com-
puting, 46:624–633, 2014.

[13] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer Verlag, 1999.

16

[14] P. Erdős. Some combinatorial, geometric and set theoretic problems in measure theory. In Measure Theory
Oberwolfach 1983, pp. 321–327. Springer, 1984.

[15] F. Foucaud, E. Guerrini, M. Kovše, R. Naserasr, A. Parreau and P. Valicov. Extremal graphs for the
identifying code problem. European Journal of Combinatorics 32(4):628–638, 2011.

[16] F. Foucaud and T. Lehtilä. Revisiting and improving upper bounds for identifying codes. SIAM Journal
on Discrete Mathematics 36(4):2619–2634, 2022.

[17] V. Gledel and A. Parreau. Identification of points using disks. Discrete Mathematics 342:256–269, 2019.

[18] S. Gravier, R. Klasing and J. Moncel. Hardness results and approximation algorithms for identifying codes
and locating-dominating codes in graphs. Algorithmic Operations Research 3(1):43–50, 2008.

[19] S. Har-Peled and M. Jones. On separating points by lines. Discrete and Computational Geometry 63:705–
730, 2020.

[20] T. W. Haynes, M. A. Henning and J. Howard. Locating and total dominating sets in trees. Discrete Applied
Mathematics 154(8):1293–1300, 2006.

[21] M. A. Henning and A. Yeo. Distinguishing-transversal in hypergraphs and identifying open codes in cubic
graphs. Graphs and Combinatorics 30(4):909–932, 2014.

[22] M. G. Karpovsky, K. Chakrabarty and L. B. Levitin. On a new class of codes for identifying vertices in
graphs. IEEE Transactions on Information Theory 44:599–611, 1998.

[23] S. Kratsch, T. Masařík, I. Muzi, M. Pilipczuk and M. Sorge. Optimal discretization is fixed-parameter
tractable. Proceedings of the 32nd ACM-SIAM Symposium on Discrete Algorithms (SODA 2021), pp.
1702-1719, 2021.

[24] J. Kujala and T. Elomaa. Improved algorithms for univariate discretization of continuous features. Pro-
ceedings of the 11th European Conference on Princi ples and Practice of Knowledge Discovery in Database
(PKDD 2007). Lecture Notes in Computer Science 4702:188–199, 2007.

[25] A. Lobstein. Watching systems, identifying, locating-dominating and discriminating codes in graphs: a
bibliography. https://www.lri.fr/~lobstein/debutBIBidetlocdom.pdf

[26] N. Misra, H. Mittal and A. Sethia. Red-blue point separation for points on a circle. Proceedings of the
32nd Canadian Conference on Computational Geometry (CCCG 2020), pp. 266–272, 2020.

[27] B. M. E. Moret and H. D. Shapiro. On minimizing a set of tests. SIAM Journal of Scientifical and Statistical
Computation 6(4):983–1003, 1985.

[28] A. Rényi. On random generating elements of a finite Boolean algebra. Acta Scientiarum Mathematicarum
Szeged 22:75–81, 1961.

[29] C. A. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied Mathematics 8(1):85–89,
1984.

[30] R. Ungrangsi, A. Trachtenberg and D. Starobinski. An implementation of indoor location detection systems
based on identifying codes. Proceedings of Intelligence in Communication Systems, INTELLCOMM 2004.
Lecture Notes in Computer Science 3283:175–189, 2004.

[31] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies of events to
their probabilities. Theory of Probability & Its Applications 16(2):264–280, 1971.

[32] I. E. Zvervich and V. E. Zverovich. An induced subgraph characterization of domination perfect graphs.
Journal of Graph Theory 20(3):375–395, 1995.

17

https://www.lri.fr/~lobstein/debutBIBidetlocdom.pdf

	Introduction
	Complexity and algorithms for Red-Blue Separation
	Hardness
	Positive algorithmic results

	Extremal values and bounds for `39`42`"613A``45`47`"603Amax-sepRB
	Lower bounds for general graphs
	Upper bound for general graphs
	Upper bound for trees

	Algorithmic results for Max Red-Blue Separation
	Conclusion

