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SPREAD OF PARASITES AFFECTING DEATH AND DIVISION RATES

IN A CELL POPULATION

ALINE MARGUET AND CHARLINE SMADI

Abstract. We introduce a general class of branching Markov processes for the modelling
of a parasite infection in a cell population. Each cell contains a quantity of parasites which
evolves as a diffusion with positive jumps. The drift, diffusive function and positive jump
rate of this quantity of parasites depend on its current value. The division rate of the cells
also depends on the quantity of parasites they contain. At division, a cell gives birth to two
daughter cells and shares its parasites between them. Cells may also die, at a rate which
may depend on the quantity of parasites they contain. We study the long-time behaviour
of the parasite infection.

Key words and phrases: Continuous-time and space branching Markov processes, Struc-
tured population, Long-time behaviour, Birth and Death Processes

MSC 2000 subject classifications: 60J80, 60J85, 60H10.

Introduction

We introduce a general class of continuous-time branching Markov processes for the study
of a parasite infection in a cell population. This framework is general enough to be applied
for the modelling of other structured populations, with individual traits evolving on the
set of positive real numbers. Another application we can think of, similar in spirit, is the
modelling of the protein aggregates in a cell population. These latter, usually eliminated
by the cells, can undergo sudden increases due to cellular stress (positive jumps), and are
known to be distributed unequally between daughter cells (see [29] for instance).

The dynamic of the quantity of parasites in a cell is given by a Stochastic Differential
Equation (SDE) with drift, diffusion and positive jumps. Then, at a random time whose law
may depend on the quantity of parasites in the cell, this latter dies or divides. At division,
it shares its parasites between its two daughter cells. We are interested in the long-time
behaviour of the parasite infection in the cell population. More precisely, we will focus on
the quantity of parasites in the cells, including the possibility of explosion or extinction of
the quantity of parasites. We will see that those quantities are very sensitive to the way cell
division and death rates depend on the quantity of parasites in the cell, and to the law of
the sharing of the parasites between the two daughter cells at division.

In discrete time, from the pioneer model of Kimmel [16], many studies have been con-
ducted on branching within branching processes to study the host-parasite dynamics: on the
associated quasistationary distributions [5], considering random environment and immigra-
tion events [6], on multitype branching processes [1, 2]. In continuous time, host-parasites
dynamics have also been studied using two-level branching processes, in which the dynamics
of the parasites is modelled by a birth-death process with interactions [24, 25] or a Feller
process [9, 8] and the cell population dynamics by a structured branching process.

Some experiments, conducted in the TAMARA laboratory, have shown that cells distribute
unequally their parasites between their two daughter cells [30]. This could be a mechanism
aiming at concentrating the parasites in some cell lines in order to ‘save’ the remaining
lines. It is thus important to understand the effect of this unequal sharing on the long-
time behaviour of the infection in the cell population. This question has been addressed by
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Bansaye and Tran in [9]. They introduced and studied branching Feller diffusions with a cell
division rate depending on the quantity of parasites in the cell and a sharing of parasites at
division between the two daughter cells according to a random variable with any symmetric
distribution on [0, 1]. They provided some extinction criteria for the infection in a cell line,
in the case where the cell division rate is constant or a monotone function of the quantity
of parasites in the cell, as well as recovery criteria at the population level, in the constant
division rate case. In [8], Bansaye et al. extended this study by providing the long time
asymptotic of the recovery rate in the latter case. Our work further extends these results
in several directions. First, we allow the drift and the diffusion coefficient of the quantity
of parasites in a cell to vary with the quantity of parasites. Second, we add the possibility
to have positive jumps in the parasites dynamics, with a rate which may depend on the
current quantity of parasites in the cell. Third, we allow the cell division rate to depend not
monotonically on the quantity of parasites. This situation is more difficult to study than the
previous ones, as the genealogical tree of the cell population depends on the whole history
of the quantity of parasites in the different cell lines. Finally, we add the possibility for the
cells to die at a rate which may depend on the quantity of parasites they contain, which
complicates the underlying population process for the cells.

For the study of structured branching populations, a classical method to obtain infor-
mation on the distribution of a trait in the population is to introduce a penalized Markov
process, called auxiliary process, corresponding to the dynamics of the trait of a typical in-
dividual in the population, i.e. an individual picked uniformly at random. The link between
the auxiliary process and the population process is given by Many-to-One formulae. We
refer to [13, 4, 15, 7, 12, 21, 20] for general results on these topics in continuous time.

Part of our proof strategy consists thus in investigating the long-time behaviour of this
auxiliary process and deduce properties on the asymptotic behaviour of the process at the
population level, extending previous results derived for a smaller class of structured Markov
branching processes (see [9, 7, 12] for instance). In the case of a constant growth rate
for the cell population, the auxiliary process belongs to the class of continuous-state non-
linear branching processes that has been studied in [18, 22]. This case is explored in a
companion paper [23]. In the general case, the auxiliary process is time-inhomogeneous,
which makes the study of its asymptotic behaviour much more involved, even out of reach.
An alternative approach consists in introducing a Markov process with another penalization,
corresponding to the dynamics of the trait of an individual in the population, which is chosen
according to some weight, and not picked uniformly at random [12]. When this weight is a
positive eigenvector of a given operator, the alternative auxiliary process that we obtain is
time-homogeneous and its asymptotic study is easier. Additional work is needed to obtain
properties at the population level.

The paper is structured as follows. In Section 1, we define the population process and
give assumptions ensuring its existence and uniqueness as the strong solution to a SDE. In
Section 2, we provide sufficient conditions for the cell population to get rid of parasites or
for the quantity of parasites to explode in all the cells in the case of the population sur-
vival. Then, in Section 3, we explore asymptotics of the proportion of cells with a given
level of infection. In particular in Section 3.4, we investigate the case of a linear division
rate. We prove that this strategy of division allows the cell population to contain the in-
fection, and we give additional information on the asymptotic distribution of the quantity
of parasites in the cells under some assumptions. Sections 4 and 5 are dedicated to the proofs.

In the sequel N := {0, 1, 2, ...} will denote the set of nonnegative integers, R+ := [0,∞) the
real line, R+ := R+∪{+∞}, and R∗+ := (0,∞). We will denote by C2

b (R+) (resp. C2
0(R+)) the

set of bounded (resp. vanishing at 0 and infinity) twice continuously differentiable functions
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on R+. Finally, for any stochastic process X on R+ or Z on the set of point measures on
R+, we will denote by Ex [f(Xt)] = E

[
f(Xt)

∣∣X0 = x
]

and Eδx [f(Zt)] = E
[
f(Zt)

∣∣Z0 = δx
]
.

1. Definition of the population process

1.1. Parasites dynamics in a cell. Each cell contains parasites whose quantity evolves as
a diffusion with positive jumps. More precisely, we consider the SDE

Xt = x+

∫ t

0
g(Xs)ds+

∫ t

0

√
2σ2(Xs)dBs +

∫ t

0

∫ p(Xs− )

0

∫
R+

zQ̃(ds, dx, dz)

+

∫ t

0

∫ Xs−

0

∫
R+

zR(ds, dx, dz), (1.1)

where x is nonnegative, g, σ and p are real functions on R+, B is a standard Brownian

motion, Q̃ is a compensated Poisson point measure (PPM) with intensity ds ⊗ dx ⊗ π(dz),
π is a nonnegative measure on R+, R is a PPM with intensity ds ⊗ dx ⊗ ρ(dz), and ρ is a
measure on R+ with density:

ρ(dz) =
cbb(b + 1)

Γ(1− b)

1

z2+b
dz,

where b ∈ (−1, 0) and cb ≤ 0 (see [17, Section 1.2.6] for details on stable distributions and
processes). Finally, B, Q and R are independent.

We will provide below conditions under which the SDE (1.1) has a unique nonnegative
strong solution. In this case, it is a Markov process with infinitesimal generator G, satisfying
for all f ∈ C2

0 (R+),

Gf(x) = g(x)f ′(x) + σ2(x)f ′′(x) + p(x)

∫
R+

(
f(x+ z)− f(x)− zf ′(x)

)
π(dz) (1.2)

+ x

∫
R+

(f(x+ z)− f(x)) ρ(dz),

and 0 and +∞ are two absorbing states. Following [21], we denote by (Φ(x, s, t), s ≤ t) the
corresponding stochastic flow i.e. the unique strong solution to (1.1) satisfying Xs = x and
the dynamics of the trait between division events is well-defined.

1.2. Cell division. A cell with a quantity of parasites x divides at rate r(x) and is replaced
by two individuals with quantity of parasites at birth given by Θx and (1−Θ)x. Here Θ is
a nonnegative random variable on (0, 1) with associated distribution κ(dθ) symmetric with

respect to 1/2 (so that Θ and 1−Θ are identically distributed) satisfying
∫ 1

0 | ln θ|κ(dθ) <∞.

1.3. Cell death. Cells have a death rate q(x) which depends on the quantity of parasites
x they carry. The function q may be nondecreasing, because the presence of parasites may
kill the cell, or nonincreasing, if parasites slow down the cellular machinery (production of
proteins, division, etc.).

1.4. Existence and uniqueness. We use the classical Ulam-Harris-Neveu notation to iden-
tify each individual. Let us denote by U :=

⋃
n∈N {0, 1}

n the set of possible labels,MP (R+)

the set of point measures on R+, and D(R+,MP (R+)), the set of càdlàg measure-valued
processes. For any Z ∈ D(R+,MP (R+)), t ≥ 0, we write

Zt =
∑
u∈Vt

δXu
t
, (1.3)

where Vt ⊂ U denotes the set of individuals alive at time t and Xu
t the trait at time t of

the individual u, following (1.1) between divisions. By convention, if Vt = ∅, Zt is defined
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as the null measure. For u ∈ Vt, and s < t, Xu
s denotes the quantity of parasites in the

(only) ancestor of u alive at time s. We denote by Nt := Card(Vt) the number of cells in
the population at time t. Let E = U × (0, 1) × R+ and M(ds, du, dθ, dz) be a PPM on
R+ × E with intensity ds⊗ n(du)⊗ κ(dθ)⊗ dz, where n(du) denotes the counting measure
on U . Let

(
Φu(x, s, t), u ∈ U , x ∈ R+, s ≤ t

)
be a family of independent stochastic flows sat-

isfying (1.1) describing the individual dynamics. We assume that M and (Φu, u ∈ U) are
independent. We denote by Ft the filtration generated by the restriction of the PPM M to
[0, t]×E and the family of stochastic processes (Φu(x, s, t), u ∈ U , x ∈ R+, s ≤ t) up to time t.

We now consider assumptions to ensure the strong existence and uniqueness of the process.
We obtain a large class of branching Markov processes for the modelling of parasite infection
in a cell population. Points i) to iii) of Assumption EU. (Existence and Uniqueness) ensure
that the dynamics in a cell line is well-defined [26] (as the unique nonnegative strong solution
to the SDE (1.1) up to explosion, and with infinite value after explosion); points iv) and v)
ensure the non-explosion of the cell population size in finite time, as in [21].

Assumption EU. We assume that

i) The functions r and p are locally Lipschitz on R+, p is non-decreasing and p(0) = 0.
The function g is continuous on R+, g(0) = 0 and for any n ∈ N there exists a finite
constant Bn such that for any 0 ≤ x ≤ y ≤ n

|g(y)− g(x)| ≤ Bnφ(y − x), where φ(x) =

{
x (1− lnx) if x ≤ 1,
1 if x > 1.

ii) The function σ is Hölder continuous with index 1/2 on compact sets and σ(0) = 0.
iii) The measure π satisfies

∫∞
0

(
z ∧ z2

)
π(dz) <∞.

iv) There exist r1, r2 ≥ 0 and γ ≥ 0 such that for all x ≥ 0, r(x)− q(x) ≤ r1x
γ + r2.

v) There exist c1, c2 ≥ 0 such that, for all x ∈ R+,

lim
n→+∞

Ghn,γ(x) ≤ c1x
γ + c2,

where G is defined in (1.2), γ has been defined in iv) and hn,γ ∈ C2
b (R+) is a sequence

of functions such that limn→+∞ hn,γ(x) = xγ for all x ∈ R+.

Then the structured population process may be defined as the strong solution to a SDE.

Proposition 1.1. Under Assumption EU there exists a strongly unique Ft-adapted càdlàg
process (Zt, t ≥ 0) taking values in MP (R+) such that for all f ∈ C2

0 (R+) and x0, t ≥ 0,

〈Zt, f〉 =f (x0) +

∫ t

0

∫
R+

Gf(x)Zs (dx) ds+Mf
t (x0)

+

∫ t

0

∫
E
1{u∈Vs−}

(
1{

z≤r(Xu
s−

)
} (f (θXu

s−) + f ((1− θ)Xu
s−)− f (Xu

s−))

−1{
0<z−r(Xu

s−
)≤q(Xu

s−
)
}f (Xu

s−)

)
M (ds, du, dθ, dz) ,

where G is defined in (1.2) and for all x ≥ 0, Mf
t (x) is a Ft-martingale.

The proof is a combination of [26, Proposition 1] and [21, Theorem 2.1] (see Appendix
A for details). Note that we replaced (1) and (3) of Assumption A in [21] by iv) in As-
sumption EU. A careful look at the proof of [21, Theorem 2.1] (in particular (2.5) in [21,
Lemma 2.5]) shows that in our case, the growth of the population is governed by the function
x 7→ r(x)− q(x) so that our condition is sufficient. Note also that in [21] the exponent γ of
iv) in Assumption EU is required to be greater than 1 but this condition is not necessary
for conservative fragmentation processes as considered here. In what follows, we will assume
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that all the processes under consideration satisfy Assumption EU, but we will not indicate it.

2. Containment or explosion of the infection

In this section, we consider general cell division and death rates, and we look for sufficient
conditions for the quantity of parasites to become large (resp. small) in every alive cell. We
exhibit a function characterizing the parasites growth rate in a typical cell and compare it
to the growth rate of the cell population.

For a ∈ R+ \ {1}, we introduce when it is well-defined the function Ga, for x > 0 via

Ga(x) := (a− 1)

[
g(x)

x
− aσ

2(x)

x2
+ x−bCa − p(x)Ia(x)− 2r(x)

E[Θ1−a]− 1

a− 1

]
, (2.1)

where we recall that Θ is a random variable with distribution κ and use the notations

Ca =
1

2 + b

∫ ∞
0

zρ(dz)

(1 + z)a
, Ia(x) =

(
a+ 1{a=0}

)
x2

∫ ∞
0

(∫ 1

0

z2(1− v)dv

(1 + zvx−1)1+a

)
π(dz). (2.2)

From [22, Lemma 7.1] (see Lemma C.1 in our case), if Y denotes the auxiliary process
describing the behaviour of a ‘typical individual’, then the process

(Y 1−a
t e

∫ t
0 Ga(Ys)ds, t ≥ 0)

is a local martingale, which entails that, Y 1−a
t roughly behaves as e−

∫ t
0 Ga(Ys)ds and thus, Ga

contains informations on the dynamics of the quantity of parasites in a typical cell (see Section
4 for explanations and computations on auxiliary processes and Many-to-One formulae).
Moreover, the growth rate of a cell population with a constant quantity x of parasites is
r(x)− q(x). The next assumptions combine conditions on those two key quantities, leading
to results on the asymptotic behaviour of the infection in the entire population.

Assumption EXPL. There exist a > 1 such that E[Θ1−a] <∞ and 0 ≤ γ < γ′ such that

r(x)− q(x) ≤ γ < γ′ ≤ Ga(x), ∀x ≥ 0.

Assumption EXT. There exist a < 1 and 0 ≤ γ < γ′ such that

r(x)− q(x) ≤ γ < γ′ ≤ Ga(x), ∀x ≥ 0.

Note that for a > 1, the condition Ga(x) ≥ γ′ in Assumption EXPL is equivalent to

g(x)

x
− aσ

2(x)

x2
+ x−bCa − p(x)Ia(x)− 2r(x)

E[Θ1−a − 1]

a− 1
≥ γ′

a− 1
,

for all x ≥ 0, which can be interpreted as the growth of the parasites being stronger than
the growth of the cell population and the noise. On the contrary, for a < 1, the condition
Ga(x) ≥ γ′ of Assumption EXT is equivalent to

g(x)

x
− aσ

2(x)

x2
+ x−bCa − p(x)Ia(x)− 2r(x)

E[Θ1−a − 1]

a− 1
≤ − γ′

1− a
.

In this case, the cell population growth and the noise outweigh the growth of the parasites.

Proposition 2.1. Let K > 0. Then for every x > 0,

(i) Under Assumption EXPL, limt→∞ Pδx (∃u ∈ Vt, Xu
t ≤ K) = 0.

(ii) Under Assumption EXT, limt→∞ Pδx (∃u ∈ Vt, Xu
t ≥ K) = 0.

Thus, if the cell population survives with a positive probability, then, conditionally on
survival, the quantity of parasites goes to infinity in all cells in case (i), and in case (ii), the
quantity of parasites goes to zero in all cells with a probability close to one. The study of
the survival of the cell population for general dynamics is complex. However, if there exists
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c > 0 such that r(x) − q(x) > c for all x > 0, we can prove that the probability of survival
of the cell population is positive.

The assumptions of Proposition 2.1 may seem strong as global inequalities (for all x) are
required. But the strength of this result lies in its generality: it allows a large degree of
freedom in both the way cell division and death rates depend on the quantity of parasites
they contain, as well as in the rate of positive jumps in the dynamics of parasites inside the
cells. In particular, no monotonicity or concavity/convexity assumption is required.

To illustrate this result, we consider the following example for z ∈ R+, θ ∈ (0, 1):

π(dz) = απz
−1−βπdz, κ(dθ) = δ1/2(dθ), σ2(z) = ασz

2 + βσz, g(z) = αgz,

with αg, ασ, βσ, απ ∈ R+ and βπ ∈ (1, 2). Notice that using the change of variable dz = xdy
we get that Ia(x) defined in (2.2) may be rewritten

Ia(x) = απ

(
a+ 1{a=0}

)
xβπ

∫ ∞
0

(∫ 1

0

y1−βπ(1− v)dv

(1 + yv)1+a

)
dy =:

I
(π)
a

xβπ
.

For this example, Assumption EXPL writes: there exists a > 1 and 0 < γ < γ′ such that

q(x) ≥ r(x)− γ and r(x) ≤ a− 1

2a − 2

[
αg + x−bCa −

γ′

a− 1
− I(π)

a

p(x)

xβπ
− a(ασ +

βσ
x

)

]
.

As r(0) ≥ 0, we necessarily have βσ = 0. Hence, for this example,

EXPL⇔ ∃a > 1, 0 < γ < γ′,∀x ≥ 0,


βσ = 0,
q(x) ≥ r(x)− γ,
r(x) ≤ a−1

2a−2

[
αg + Ca

xb
− γ′

a−1 − I
(π)
a

p(x)
xβπ
− aασ

]
.

In particular, this implies that αg ≥ γ′/(a−1)+aασ, and thus the growth of parasites has to
be strong enough to compensate the population growth and the fluctuations. The freedom
in the choice of the function r(·) then depends on the equilibrium between the intensity of
stable jumps given by the term x−bCa and the fluctuations due to the (non stable) positive

jumps, given by the term I
(π)
a

p(x)
xβπ

. Similar computations for the other case give:

EXT⇔ ∃a < 1, 0 < γ < γ′,∀x ≥ 0,

{
q(x) ≥ r(x)− γ,
r(x) ≥ 1−a

2−2a

[
γ′

1−a + αg + Ca
xb
− I

(π)
a

p(x)
xβπ
− a
(
ασ + βσ

x

)]
.

which can be analysed in a similar fashion.

Proposition 2.1 applies to a large class of dynamics for the growth of parasites within
cells, but imposes a limited population growth (bounded r − q). In the next two sections,
we focus on more general cases for population growth, but we require more assumptions on
parasite dynamics. To ease the comparison with the results of the next sections, we give a
straightforward corollary on the convergence of the proportion of infected cells.

Corollary 2.2. Let K > 0. Then, for every x > 0,

(i) Under Assumption EXPL,

lim
t→∞

Eδx
[
1Nt≥1

∑
u∈Vt 1{Xu

t ≤K}

Nt

]
= 0.

(ii) Under Assumption EXT,

lim
t→∞

Eδx
[
1Nt≥1

∑
u∈Vt 1{Xu

t ≥K}

Nt

]
= 0. (2.3)
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Point (i) follows from Proposition 2.1 and the inequalities:

Eδx
[
1Nt≥1

∑
u∈Vt 1{Xu

t ≤K}

Nt

]
≤ Eδx

[
1Nt≥11∃u∈Vt,Xu

t ≤K
]
≤ Pδx (∃u ∈ Vt, Xu

t ≤ K) .

The proof of point (ii) is similar.

3. Asymptotics of the proportion of cells with a given level of infection

3.1. Running example. Before presenting the precise assumptions and results of this sec-
tion, we introduce a class of possible dynamics for the parasites and the cell population. This
running example will allow a simpler interpretation of the results as well as comparisons of
assumptions and results presented in the different subsections and in the previous section.

Let αg, ασ, βσ ∈ R+. We will consider a Feller diffusion in a Brownian environment:

Xt =X0 +

∫ t

0
αgXsds+

∫ t

0

√
2 (ασX2

s + βσXs)dBs, (3.1)

where X0 ∈ R+, B has been defined in (1.1). On top of the parasites dynamics, we consider
the framework of a linear division and death rate for the cell population and symmetric
partitioning: for α, β, αq, βq ∈ R+, and for x ≥ 0, let

r(x) = αx+ β, q(x) = αqx+ βq, κ(dθ) = δ1/2(dθ). (3.2)

For this example, Assumption EU holds and the structured branching process is well-defined.

3.2. The role of noise. We consider a simple case where the parasites follow a Geometric
Brownian motion. This is a particular case of CSBP in a Lévy environment. The case of
the Brownian environment, specifically studied in [11, 27], can be seen as an agitation or
disturbance due to the cell environment. The cells might, for example, tune the intensity
of this perturbation (quantified by the parameter σ) by modifying the temperature or the
fluidity of the cell medium. The assumptions of this first case are summarized below.

Assumption LGBE. (Linear growth, Brownian environment) We assume that

• There are no jumps in the parasites dynamics (p = cb = 0).
• There exist g, σ ∈ R+ such that g(x) = gx and σ2(x) = σ2x2.
• There exist γ ∈ [0,+∞) and c ∈ R such that γr(x)− q(x) = c for all x ≥ 0.

Under Assumption LGBE, we provide conditions under which the mean number of cells
with a small (resp. a large) quantity of parasites is equivalent to the mean number of cells
alive in the population. Let us define

α0 := inf {α < 0 s.t. E[Θα] <∞} ,

with the convention that α0 = −∞ if E[Θα] < ∞ for all α < 0. Then, for each γ ≥ 0, let
αγ > α0 to be such that 2E [Θαγ ] − 1 = γ, which is well-defined because ψ : α ∈ (α0, 1) 7→
2E [Θα]− 1 is decreasing, and ψ((α0, 1]) = [0,+∞).

Proposition 3.1. Let γ ∈ [0,+∞) be such that Assumption LGBE holds and recall that
αγ > α0 is such that 2E [Θαγ ]− 1 = γ. Then,

i) if γ ∈ [0, 1) (then αγ ∈ (0, 1]) and αγ < 1− g/σ2, for all K > 0 and t ≥ 0,

Eδx
[∑

u∈Vt 1{Xu
t >K}

]
Eδx [Nt]

≤
( x
K

)αγ
eαγ(g+(αγ−1)σ2)t.
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ii) if γ ∈ [0, 1) (then αγ ∈ (0, 1]) and there exist x0(αγ) ≥ 0 and η > 0 such that

g ≤ σ2(1− 2αγ) + 2E [Θαγ ln(1/Θ)] r(x)− η, ∀x ≥ x0(αγ), (3.3)

then for all ε, x > 0 there exists Kε,x such that K ≥ Kε,x implies

lim sup
t→∞

Eδx
[∑

u∈Vt 1{Xu
t ≥K}

]
Eδx [Nt]

≤ ε. (3.4)

iii) if γ > 1 (then αγ < 0) and there exist x0(αγ) ≥ 0 and η > 0 such that

g ≥ σ2(1 + 2|αγ |) + 2E [Θαγ ln(1/Θ)] r(x) + η, ∀x ≤ x0(αγ), (3.5)

then for all ε, x > 0 there exists Kε,x such that K ≤ Kε,x implies

lim sup
t→∞

Eδx
[∑

u∈Vt 1{Xu
t ≤K}

]
Eδx [Nt]

≤ ε.

This result shows the importance of noise in the process dynamics for the long-term be-
haviour of the infection. It implies that if the cells induce more fluctuations in the dynamics
of the parasites while maintaining the same rate of growth for the parasites, the cell popula-
tion may contain the infection. The first point of Proposition 3.1 corresponds to the case of
a growing cell population (r(x)−q(x) ≥ 0, if c ≥ 0), with a moderate growth of the parasites
compared to the noise of the environment (g < σ2). The condition αγ < 1 − g/σ2 links
the growth of the population and the growth of the parasites: if g/σ2 is small, there is no
additional restriction on the growth of the cell population (except that γ ∈ [0, 1)), but if g/σ2

is close to 1, then γ has to be close to 1 for the condition to be fulfilled, which corresponds
to a growth of the cell population independent of the quantity of parasites ((r − q)(x) close
to c). Notice again that if there exists c > 0 such that r(x)− q(x) > c for all x > 0, we can
prove that the probability of survival of the cell population is positive. This is in particular
the case in points (i)-(ii) as soon as c > 0.

Remark 3.2. The case γ = 1 (αγ = 0) corresponds to a constant r − q, and is studied in
details and in more generality in [23]. In our case, if r and q are constant, for the second
and third points, it amounts to look at the sign of

g − σ2 − 2rE [ln(1/Θ)] ,

and completes [8, Corollary 16] for the case of Geometric Brownian motion.

Running example. Let us illustrate the conditions of Proposition 3.1 using the running
example (3.1)-(3.2). To simplify the presentation, we will distinguish the cases α > 0 and
α = 0, which correspond to very different situations. Indeed, the cell division rate depends
on the intracellular quantity of parasites only when α > 0.

• α > 0; LGBE ⇔ βσ = 0 and γα = αq.
• if γ ∈ [0, 1) (corresponding to αq < α)

∗ if ασ ln(1 + γ) > αg ln 2, Proposition 3.1i) applies: the proportion of in-
fected cells tends to 0 for any level of infection.
∗ if ασ ln(1+γ) ≤ αg ln 2, the parasites spread quickly, but condition (3.3) al-

ways holds: the cell population contains the infection (Proposition 3.1ii)).
• if γ > 1 (corresponding to αq > α), Proposition 3.1iii) applies if

αg > ασ

(
2

ln(1 + γ)

ln 2
− 1

)
+ β(1 + γ) ln 2;

hence the parasite growth outweighs other mechanisms, and cells typically con-
tain a large quantity of parasites in the long run.

• α = 0; LGBE ⇔ βσ = αq = 0.
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– if ασ > αg, Proposition 3.1i) applies,
– if ασ ≤ αg < ασ + 2 ln 2β, Proposition 3.1ii) applies,
– if αg > ασ + 2β ln 2, Proposition 3.1iii) applies.

Notice that if α = 0, and ασ = 0, the last condition reads αg > 2β ln 2, which is the
condition for Assumption EXPL to hold, and Proposition 2.1i) applies.

3.3. Competition between division and parasites growth. We consider another case
where the mean growth of parasites is linked with the cell death rate (see Assumption PGCD
below). It may be the case when parasites kill the cell to be extruded in the cell medium.

Assumption PGCD. (Parasite Growth, Cell Death) We assume that

• There are no stable jumps in the parasites dynamic (cb = 0).
• There exists c ∈ R such that g(x)/x− q(x) = c for all x ≥ 0.

To state the next results, we introduce generalized conditions from [22] under which the
quantity of parasites reach the state∞ ((SN∞) for strong noise at∞). Recall the definition
of Ca and Ia in (2.2).

(SN∞) There exist a < 1 and f : R+ → R+ such that

g(u)

u
− aσ

2(u)

u2
+ u−bCa − r(u)

1− E[Θ1−a]

1− a
− p(u)Ia(u) = −f(u) + o(ln(u)), u→∞.

Under Assumption PGCD, Ca = 0, but we will use later the condition including Ca.

Proposition 3.3. Let c ∈ R be such that Assumption PGCD holds. Then,

i) if

lim sup
x→∞

{
σ2(x)

x4
+
r(x)

x2
+
p(x)

x3

}
<∞, (3.6)

and if there exists x0 > 0, η0 > 0 such that

g(x)

x
− σ2(x)

x2
− p(x)

2x2

∫
R+

z2

1 + z/x
π(dz)− r(x) (E [1/Θ]− 1/2) ≥ η0, ∀x ≤ x0, (3.7)

g(x)

x
+
σ2(x)

x2
+
p(x)

x2

∫
R+

z2π(dz) + 2r(x)
(
E
[
Θ2
]
− 1/2

)
≤ −η0, ∀x ≥ 1/x0, (3.8)

then for all ε, x > 0 there exists Kε,x such that K ≤ Kε,x implies

lim sup
t→∞

Eδx
[∑

u∈Vt 1{Xu
t ≤K}

]
Eδx [Nt]

≤ ε.

ii) if (SN∞) holds and if there exist x0 ≥ 0, η > 0 such that

g(x)

x
+
σ2(x)

x2
+ p(x)I0(x) + 2E [Θ ln Θ] r(x) ≤ −η, ∀x ≥ x0, (3.9)

then for all ε, x > 0 there exists Kε,x such that K ≥ Kε,x implies

lim sup
t→∞

Eδx
[∑

u∈Vt 1{Xu
t ≥K}

]
Eδx [Nt]

≤ ε.

Remark 3.4. The class of processes considered here includes, in particular, the case q(·) ≡ q,
g(x) = gx studied in previous works. Furthermore, assumptions on the cell division rate r(·),
and on the noise σ(·) in the parasite dynamics are only on their local behaviour (around 0
and ∞). This constitutes a strong generalisation of previous results.
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Remark 3.5. The results of Proposition 3.3 are weaker than the ones of Proposition 2.1
as they concern the normalized mean numbers of cells with given amounts of parasites, and
not the proportions of such cells in the population. But the assumptions of Proposition 3.3
are much more flexible than the assumptions of Proposition 2.1: they are in some way their
local versions.

A consequence of Proposition 3.3 is that if the cells are able to increase their rate of
division above an explicit threshold, this is sufficient to contain the infection. In the same
direction, if the parasites manage to slow down the rate of cell division sufficiently, this gives
them enough time to multiply and be numerous in a large proportion of the cells.

Running example. We consider again the case of parasites following (3.1) with cell
population dynamic given by (3.2). Assumption PGCD holds if αq = 0. In this case (see
[21, Section 2.2.3])

Eδx [Nt] = e(β−βq)t +
αx

αg − β

(
e(αg−βq)t − e(β−βq)t

)
.

• if α > 0,
– (SN∞) and (3.9) hold so that Proposition 3.3ii) applies. In particular, if βσ = 0,

we retrieve the result of Proposition 3.1ii) in the case γ = 0;
– (3.6) and (3.8) hold for every set of parameters and (3.7) holds if βσ = 0 and
αg > ασ + 3β/2. In this case, Proposition 3.3i) applies.

Therefore, if βσ = 0 and αg > ασ + 3β/2, there are no cells with very small or very
large amount of parasites in the longtime asymptotic.

Proposition 3.3 states that if α > 0 and αq = 0, we might have a basal level
of infection (Proposition 3.3i)) if the growth of the parasites is sufficiently strong
(αg > ασ + 3β/2) whereas using Proposition 3.1ii), for α > 0 and αq = 0, we could
only give condition leading to a moderate infection.
• if α = 0, (3.7) and (3.8) cannot hold simultaneously but as (SN∞) always holds

and (3.9) holds if αg < β ln 2 − ασ, in this case Proposition 3.3ii) applies and the
proportion of very infected cells goes to 0.

By applying Propositions 2.1, 3.1, 3.3 to the running example, we exhibited cases where
one result is a generalization of a result above. But this is not always the case. We can find
cases which satisfy the conditions of only one of the propositions. To illustrate this point, we
will focus on the case α > 0 and on the property (3.4). To prove that (2.3) implies (3.4) in
case ex-2.1ii) below, we refer to the adaptation of Lemma 5.3 (see p.24) and to the inequality

Eδx
[∑

u∈Vt 1{Xu
t ≥K}

]
Eδx [Nt]

≤

√√√√Eδx
[∑

u∈Vt 1{Xu
t ≥K}

Nt

]
Eδx

[
N2
t

E2
δx

[Nt]

]
.

Let us consider the following conditions: for γ′ > γ > 0 and a < 1,

ex-2.1ii): αq ≥ α > 0, βσ > 0, βq + γ > β ≥ max
((

1−a
2−2a

[
γ′

1−a + αg − aασ
])
, αg, βq

)
.

ex-3.1i-ii): α > αq > 0, βσ = 0, αg < βq,
ex-3.3ii): α > 0, αq = 0.

We can check that each set of parameters satisfies the conditions of the proposition indi-
cated at the beginning of the line, and does not satisfy the conditions of any other result.
Therefore, the different results are not redundant but complementary.

3.4. Linear division rate, constant death rate. In this section, we study in details the
case of a linear division rate. Let us first state the general assumptions of the section.
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Assumption LDCG. (Linear Division, Constant Growth) We assume that

• There are no stable jumps (cb = 0).
• There exist α, β > 0, g, q ≥ 0 such that max(g, β) > q and

g(x) = gx, q(x) ≡ q, r(x) = αx+ β.

• p is differentiable and for all x ≥ 0, xp′(x) ≥ p(x), and
∫
R+

(z2 ∧ z3)π(dz) <∞.

We first make three remarks on this assumption:

- If the division rate is linear in the quantity of parasites, the mean number of cells at
time t depends on the expectation of the total quantity of parasites in the population,
which is infinite if we consider stable jumps.

- In Lemma 5.3, we will see that the quantity max(g, β)− q is the Malthusian growth
rate of the population. Therefore, we only consider the case of a growing population.

- The last point is needed for the existence of an auxiliary process (see Prop. 4.1).

A linear increase of the division rate in order to get rid of the parasites is an efficient strategy
for the cell population, as stated in the next proposition. Recall that G has been defined in
(1.2). To get stronger convergence results, we also consider additional conditions to control
the noise in the dynamic of the parasites for large values.

Assumption LDCG+. We assume that Assumption LDCG holds and that

lim sup
x→∞

σ2(x)

x2
<∞ and lim sup

x→∞

p(x)

x2
<∞. (3.10)

Proposition 3.6. For all x ≥ 0:

i) Under Assumption LDCG, for all a > 0,

Eδx [#{u ∈ Vt : Xu
t ∈ [a, a+ da]}]

Eδx [Nt]
=

Px(Yt ∈ [a, a+ da])

aEx[Y−1
t ]

,

where Y has infinitesimal generator

Af(x) =Gf(x) + p(x)

∫ (
f(x+ z)− f(x)− zf ′(x)

) z
x
π(dz)

+

(
2
σ2(x)

x
+
p(x)

x

∫
z2π(dz)

)
f ′(x) + 2r(x)

[∫ 1

0
θ (f(θx)− f(x))κ(dθ)

]
. (3.11)

ii) Under Assumption LDCG+, for all ε > 0,

lim
K→∞

lim
t→∞

Pδx
(
1{Nt≥1}

#{u ∈ Vt : Xu
t > K}

Nt
> ε

)
= 0.

Point i) of Proposition 3.6 gives information on the distribution of the quantity of para-
sites in the cells in large time. Point ii) extends the results of [9] to a class of division rates
increasing with the quantity of parasites. It is similar in spirit to [9, Conjecture 5.2] in the
case of birth rates increasing with the quantity of parasites, but we relax the assumption of
bounded division rates. Moreover, we consider positive jumps and various diffusive functions
for the dynamics of the parasites, and add the possibility for the cells to die. Point ii) relies
on Proposition 3.3ii), but thanks to Assumption LDCG, which is stronger than Assumption
PGCD, we are able to give a more precise result on the convergence of the proportions.

From this result, we see that the proportion of highly infected cells goes to 0 as t tends to
infinity so that a linear division rate is sufficient to contain the infection.

Running example. In the case of parasites following (3.1) with cell population dynamic
given by (3.2), Assumption LDCG is satisfied if α > 0, αq = 0 and max(αg, β) > βq. Then,
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according to Proposition 3.6ii), the proportion of very infected cells tends to 0 in probability
as time goes to infinity, which is stronger than Proposition 3.3ii).

Under additional technical assumptions, we are able to establish a law of large numbers,
linking asymptotically the behaviour of a typical individual at time t, given by the auxiliary
process Y (t), with the behaviour of the whole population.

Assumption LDCG++. We assume that Assumption LDCG+ holds and that∫ ∞
0

(z ∨ z6)π(dz) <∞. (3.12)

Under this assumption, we obtain a convergence result for the branching process.

Theorem 3.7. Suppose that Assumptions LDCG++ holds. Then, for all bounded mea-
surable functions F : D([0, T ],X )→ R, for all x, y, T ≥ 0,

Eδx

1{Nt+T≥1}

(∑
u∈Vt+T F

(
Xu
t+s, s ≤ T

)
Nt+T

− E
[
F
(
Y

(t+T )
t+s , s ≤ T

) ∣∣∣Y (t+T )
0 = y

])2
 −→
t→∞

0,

where Y is a time-inhomogeneous Markov process solution of a SDE given below in (4.10).

Theorem 3.7 ensures that asymptotically, the trajectory of the traits of a sampling along
its ancestral lineage corresponds to the trajectory of Y . Hence, the study of the asymptotic
behaviour of the proportion of individuals satisfying some properties, such as the proportion
of infected individuals, is reduced to the study of the time-inhomogenous process Y .

To state the following results, we also need to introduce conditions under which the quan-
tity of parasites may (LN0) or may not (SN0) reach the state 0. They are almost necessary
and sufficient conditions (see [22, Remark 3.2 and Theorem 3.3]). Condition (SN0) (for small
noise at 0) writes

(SN0) There exist a > 1 and f : R+ → R+ such that E[Θ1−a] <∞ and

g(u)

u
− aσ

2(u)

u2
+ u−bCa − p(u)Ia(u) = f(u) + o(ln(u)), u→ 0,

where Ca and Ia are defined in (2.2). Under Assumption LDCG++, it reduces to σ2(u)/u2 =
o(ln(u−1)) close to 0. Condition (LN0) (for large noise at 0) writes

(LN0) There exist η > 0 and u0 > 0 such that for all u ≤ u0

g(u)

u
− σ2(u)

u2
≤ − ln(u−1)

(
ln ln(u−1)

)1+η
.

Under Assumption LDCG++ it reduces to σ2(u)/u2 ≥ ln(u−1)
(
ln ln(u−1)

)1+η
close to 0.

The following proposition states that, in the case of a division rate increasing linearly with
the quantity of parasites, at least two long-time behaviours are possible for the infection at
the cell population level: extinction or stabilization of the infection.

Proposition 3.8. Assume that Assumption LDCG++ holds.

i) If (LN0) holds, then

Eδ0

[
1{Nt≥1}

(
#{u ∈ Vt : Xu

t > 0}
Nt

)2
]
→ 0, (t→∞).

ii) If (SN0) holds, then for any x0, y0 > 0, 0 < a < b,

Eδx0

[
1{Nt≥1}

(∑
u∈Vt 1{a<Xu

t <b}

Nt
− P

(
a ≤ Y (t)

t ≤ b
∣∣∣Y (t)

0 = y0

))2
]
−−−−→
t→+∞

0,
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and there exist two processes (Y(1),Y(2)) satisfying Y
(1)
t ≤ Y

(t)
t ≤ Y

(2)
t a.s. ∀t ≥ 0

and admitting a proper limit (without atoms in 0 and ∞) at infinity.

Notice that point i) covers the classical diffusive function (σ2(x) = σ2x, σ > 0). The
cell population may thus recover if the dynamics of the parasites in a cell is such that the
probability of absorption of the infection process is positive (condition (LN0)).
Under condition (SN0), the parasites in the cell line do not get extinct, and point ii) gives
information on the distribution of the quantity of parasites in the cells for large times. The
auxiliary process Y of Theorem 3.7, describing the behavior of a typical quantity of parasites,
is time-inhomogeneous. The result is thus obtained by a coupling with Y(1) and Y(2) such
that our auxiliary process is sandwiched between the two processes Y(1) and Y(2), for which
we are able to prove convergence and some properties of the limit.

Running example. In the case of parasites following (3.1) with cell population dynamic
given by (3.2), if α > 0, αq = 0 and αg ∨ β > βq, Assumptions LDCG and LDCG++ are
satisfied. Moreover,

• if βσ > 0 then (LN0) holds so that Proposition 3.8i) applies and the proportion of
infected cells goes to 0 in L2 as times goes to infinity;
• if βσ = 0, then (SN0) holds so that Proposition 3.8ii) applies and the proportion of

cells with a quantity of parasites in a given interval converges to the corresponding
probability for the auxiliary process Y (t). Therefore, the infection remains but is
contained.

The rest of the paper is dedicated to the proofs of the results presented in previous sections.
As mentioned before, the proofs rely on the construction of an auxiliary process, which gives
information on the dynamics of the quantity of parasites in a ‘typical’ cell. But to have
information on the long-time behaviour of the infection at the population level, we need to
derive additional results on the number of cells alive, which is not an easy task due to both
the death rate and the dependence of the cell division rate in the quantity of parasites.

4. Many-to-One formula

4.1. Construction of the auxiliary process. Recall from (1.3) that the population state
at time t, Zt, can be represented by a sum of Dirac masses. We denote by (Mt, t ≥ 0) the
first-moment semi-group associated with the population process Z given for all measurable
functions f and x, t ≥ 0 by

Mtf(x) = Eδx

[∑
u∈Vt

f(Xu
t )

]
.

The trait of a typical individual in the population at time t is characterized by the so-called

auxiliary process (Y
(t)
s , s ≤ t) (see [21, Theorem 3.1] for detailed computations and proofs).

Its associated time-inhomogeneous semi-group is given for r ≤ s ≤ t, x ≥ 0 by

P (t)
r,s f(x) =

Ms−r(fMt−s1)(x)

Mt−r1(x)
, (4.1)

where 1 is the constant function on R+ equal to 1. More precisely, if we denote by
m(x, s, t) = Mt−s1(x) the mean number of cells in the population at time t starting from
one individual with trait x at time s with s ≤ t, then, for all measurable bounded functions
F : D([0, t],R+)→ R, we have:

Eδx

[∑
u∈Vt

F (Xu
s , s ≤ t)

]
= m(x, 0, t)Ex

[
F
(
Y (t)
s , s ≤ t

)]
. (4.2)
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The Markov process
(
Y

(t)
s , s ≤ t

)
is time-inhomogeneous and its law is characterized by its

associated infinitesimal generator (A(t)
s , s ≤ t) given for f ∈ D(A) and x ≥ 0 by:

A(t)
s f(x) =Ĝ(t)

s f(x) + 2r(x)

∫
R+

(f (θx)− f (x))
m(θx, s, t)

m(x, s, t)
κ(dθ), (4.3)

where D(A) =
{
f ∈ C2

b (R+) s.t. m(·, s, t)f ∈ C2
b (R+), ∀t ≥ 0, ∀s ≤ t

}
and

Ĝ(t)
s f(x) =

(
g(x) + 2σ2(x)

∂xm(x, s, t)

m(x, s, t)
+ p(x)

∫
R+

z

(
m(x+ z, s, t)−m(x, s, t)

m(x, s, t)

)
π(dz)

)
f ′(x)

+ σ2(x)f ′′(x) + p(x)

∫
R+

(f(x+ z)− f(x)− zf ′(x))
m(x+ z, s, t)

m(x, s, t)
π(dz)

+ x

∫
R+

(f(x+ z)− f(x))
m(x+ z, s, t)

m(x, s, t)
ρ(dz).

Those formulae come from [21, Theorem 3.1], with B(x) = r(x) + q(x) and m(x, dy) =

2r(x)(r(x)+q(x))−1
∫ 1

0 δθx(dy)κ(dθ). Note that explicit expressions for the mean population
size m(x, s, t) are usually out of range, except for particular cases (see Section 3.4).

4.2. Role of the death rate in the auxiliary process. In this section, we compare
the auxiliary process associated to a population with or without death. More precisely, we
demonstrate why the death rate does not appear in the generator of the auxiliary process.

Let (Z̃t, t ≥ 0) be the previously defined population process to which we add a trait Du
t

to each individual u in the population: Du
t = 0, the individual is still alive, Du

t = 1, the
individual is dead. To compare the population dynamics with or without death, we consider
that the trait of the dead individuals still evolves and that they can still divide but their
descendants will be born with the status Dt = 1. More precisely,

Z̃t :=
∑
u∈Vt

δ(Xu
t ,D

u
t ) =

∑
u∈V 0

t

δ(Xu
t ,0) +

∑
u∈V 1

t

δ(Xu
t ,1),

where V 0
t (respectively V 1

t ) denotes the alive (respectively dead) individuals in the population

at time t. We denote by N0
t (respectively N1

t ) its cardinal and introduce X̃u
t = (Xu

t , D
u
t ) for

all u ∈ U and t ≥ 0. Next, we consider the following dynamics:

- a death event for u leads to set Du
t = 1. Therefore, it does not affect dead cells.

- a division event does not change the status Du
t of an individual and its descendants

inherit the status of their ancestor.
- we extend the generator G to the functions f : R+ × {0, 1} → R+ such that
f(·, 0), f(·, 1) ∈ C2

b (R+).

Then, (Z̃t, t ≥ 0) is defined as the unique strong solution in MP (R+ × {0, 1}) to

〈Z̃t, f〉 = f (x0, 0) +

∫ t

0

∫
R+

Gf(x̃)Z̃s (dx̃) ds+Mf
t (x0, 0)

+

∫ t

0

∫
E
1{u∈Vs−}

(
1{

z≤r(Xu
s−

)
} (f (θXu

s− , D
u
s ) + f ((1− θ)Xu

s− , D
u
s )− f (Xu

s− , D
u
s ))

+1{
0<z−r(Xu

s−
)≤q(Xu

s−
)
} (f (Xu

s− , 1)− f (Xu
s− , D

u
s−))

)
M (ds, du, dθ, dz) ,
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for all f : R+×{0, 1} → R+ such that f(·, 0), f(·, 1) ∈ C2
b (R+), where Mf

· is an F̃t-martingale

(F̃t denotes the canonical extension of Ft). Let Nt = N0
t +N1

t . Introduce

m0(x, s, t) := E
[
N0
t

∣∣Z̃s = δ(x,0)

]
and consider the auxiliary process Ỹ

(t)
s = (Y

(t)
s , Ds) for all 0 ≤ s ≤ t and its associated

generator Ã(t)
s given for all ψ : R+ × {0, 1} → R+ such that ψ(·, 0), ψ(·, 1) ∈ D(A), and for

all (x, d) ∈ R+ × {0, 1}, by

Ã(t)
s ψ(x, d) =Ĝ(t)

s ψ(·, d)(x) + 2r(x)

∫
R+

(ψ(θx, d)− ψ(x, d))
m((y, d), s, t)

m((x, d), s, t)
κ(dθ)

+ q(x) (ψ(x, 1)− ψ(x, d)) . (4.4)

Using the Many-to-One formula (4.2), we get

m0(x, s, t) = E

[∑
u∈Vt

1{Dut =0}

∣∣∣Z̃s = δ(x,0)

]
= m((x, 0), s, t)P

(
Dt = 0

∣∣Ỹ (t)
s = (x, 0)

)
.

As we can see on the expression of the generator of the auxiliary process in (4.4), Dt switches
from 0 to 1 at rate q(x) and 1 is absorbing for Dt. Therefore,

m0(x, s, t) = E
[
exp

(
−
∫ t

s
q(Y (t)

u )du

) ∣∣∣Y (t)
s = x

]
m((x, 0), s, t),

and in the case q(x) ≡ q ≥ 0 for all x ≥ 0, we get m0(x, s, t) = e−q(t−s)m((x, 0), s, t). In
particular, for all x, y ≥ 0

m0(y, s, t)

m0(x, s, t)
=
m((y, 0), s, t)

m((x, 0), s, t)
. (4.5)

The expressions appearing in the generator of the auxiliary process given page 14 are identical
with or without death, but the difference is hidden in the ratios of m(y, s, t)/m(x, s, t). From
the previous computations, we obtain that in the case of a constant death rate, the auxiliary
process is the same as the auxiliary process of a population process without death and

E

∑
u∈V 0

t

f(Xu
s )
∣∣∣Zr = δx

 = m0(x, r, t)E
[
f (Y u

s )
∣∣Y (t)
r = x

]
= e−q(t−r)E

[∑
u∈Vt

f(Xu
s )
∣∣∣Zr = δx

]
.

4.3. The case r(x) = αx + β, q(x) ≡ q. Assume that cb = 0 (no stable positive jumps).
Then under Assumption LDCG, a direct computation (see [21, Section 2.2.3] for details)
shows that if g 6= β, the mean number of individuals can be written

m(x, s, t) =
αx

g − β
e(g−q)(t−s) +

(
1− αx

g − β

)
e(β−q)(t−s). (4.6)

We introduce the following functions for y > 0, s, z ≥ 0, and θ ∈ [0, 1]:

f1(y, s) := gy +

(
2σ2(y) + p(y)

∫
R+

z2π(dz)

)
α
(
e(g−β)s − 1

)
g − β + αy

(
e(g−β)s − 1

) , (4.7)

f2(y, s, θ) := 2(αy + β)
g − β + αθy

(
e(g−β)s − 1

)
g − β + αy

(
e(g−β)s − 1

) and (4.8)

f3(y, s, z) := p(y)

(
1 +

αz
(
e(g−β)s − 1

)
(g − β) + αy

(
e(g−β)s − 1

)) . (4.9)
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We obtain that A(t) is the infinitesimal generator of the solution to the following SDE, when
existence and uniqueness in law of the solution hold. For 0 ≤ s ≤ t,

Y (t)
s =Y

(t)
0 +

∫ s

0
f1(Y (t)

u , t− u)du+

∫ s

0

∫ ∞
0

∫ f3(Y
(t)

u−
,t−u,z)

0
zQ̃(du, dz, dx)

+

∫ s

0

√
2σ2

(
Y

(t)
u

)
dBu +

∫ s

0

∫ 1

0

∫ f2(Y
(t)

u−
,t−u,θ)

0
(θ − 1)Y

(t)
u−N(du, dθ, dz), (4.10)

where Q̃, B are the same as in (1.1) and N is a PPM on R+ × R+ × [0, 1] with intensity
ds⊗ dx⊗ κ(dθ).

The auxiliary process Y (t) can be realised as the unique strong solution to the SDE (4.10)
under some moment conditions on the measure associated with the positive jumps. We also
need an additional assumption on p that ensures that the rate of positive jumps f3 of the
process Y is increasing with the quantity of parasites.

Proposition 4.1. Suppose that Assumption LDCG holds. Then, Equation (4.10) has a
pathwise unique nonnegative strong solution.

The proof of this proposition is given in Appendix D. The case g = β will not be considered
in this work, as it entails additional computations and does not bring new insights.

5. Proofs

5.1. Proofs of Section 2. Let us introduce the SDE

Yt = x+

∫ t

0
g(Ys)ds+

∫ t

0

√
2σ2(Ys)dBs +

∫ t

0

∫ p(Ys− )

0

∫
R+

zQ̃(ds, dx, dz)

+

∫ t

0

∫ Ys−

0

∫
R+

zR(ds, dx, dz) +

∫ t

0

∫ 2r(Ys− )

0

∫ 1

0
(θ − 1)Ys−N(ds, dx, dθ), (5.1)

where N is a PPM on R+ ×R+ × [0, 1] with intensity ds⊗ dx⊗ κ(dθ). Note that Y is well-
defined as the unique strong solution to (5.1) under Assumption EU (see [22, Proposition
2.2] and Appendix A). Then, Proposition 2.1 is a consequence of the following two lemmas.

Lemma 5.1. Assume that there exists a real number γ such that r(x) − q(x) ≤ γ for any
x ∈ R+, and let f be a nonnegative measurable function on R+. Then for x, t ≥ 0,

Eδx

[∑
u∈Vt

f (Xu
t )

]
≤ eγtEx [f (Yt)] ,

where Y is the unique strong solution to the SDE (5.1).

Lemma 5.2. Let ζ > 0.

i) If Assumption EXPL holds for some a > 1 such that E[Θ1−a] <∞ then

lim
t→∞

Eδx

[∑
u∈Vt

(Xu
t ∨ ζ)1−a

]
= 0, ∀x ≥ 0.

ii) If Assumption EXT holds for some a < 1 then

lim
t→∞

Eδx

[∑
u∈Vt

(Xu
t ∧ ζ)1−a

]
= 0, ∀x ≥ 0.
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Proof of Lemma 5.1. Let us introduce the generator

Af(x) = Gf(x) + 2r(x)

∫ 1

0
(f(θx)− f(x))κ(dθ). (5.2)

We normalize the population process similarly as in (4.1). Let γ ∈ R be such that for all
x ≥ 0, r(x)− q(x) ≤ γ. Let f ∈ C2

b and for x, t ≥ 0 let

δxγtf = e−γtE

[∑
u∈Vt

f(Xu
t )|Z0 = δx

]
be the renormalized first moment semigroup of Z. Then we have

∂

∂t
δxγtf =

∫
R+

(Gf(x)− γf(x)) γt(dx)

+

∫
R+

(
r(x)

∫ 1

0
(f(θx) + f((1− θ)x)− f(x))κ(dθ)− q(x)f(x)

)
δxγt(dx)

=

∫
R+

(Gf(x)− γf(x)) δxγt(dx)

+

∫
R+

(
2r(x)

∫ 1

0
(f(θx)− f(x))κ(dθ) + (r(x)− q(x))f(x)

)
δxγt(dx).

Using that r(x)− q(x) ≤ γ for all x ≥ 0, and recalling the definition of A in (5.2) we obtain

∂

∂t
δxγtf ≤δxγt(Af),

Finally, by unicity of the solution to the Kolmogorov’s backward equation,

δxγtf = E

[∑
u∈Vt

f(Xu
t )|Z0 = δx

]
e−γt ≤ Ex [f (Yt)] , (5.3)

where Y is the unique strong solution to the SDE (5.1). �

Proof of Lemma 5.2. Let Y be the unique strong solution to (5.1). First, we prove using a
coupling argument that under Assumption EXPL, for all y > 0, Py (τ−(0) <∞) = 0, where

τ−(0) = inf {t ≥ 0, Yt = 0} . (5.4)

Let K > 0. We consider the process Ỹ defined as the unique strong solution to

Ỹt = x+

∫ t

0
g(Ỹs)ds+

∫ t

0

√
2σ2(Ỹs)dBs +

∫ t

0

∫ p(Ỹs− )

0

∫
R+

zQ̃(ds, dx, dz)

+

∫ t

0

∫ Ỹs−

0

∫
R+

zR(ds, dx, dz) +

∫ t

0

∫ 2rK

0

∫ 1

0
(θ − 1)Ỹs−N(ds, dx, dθ),

where B, Q̃ and N are the same as in (5.1) and rK = supx∈[0,K] r(x). Then, as p is a
non-decreasing function,

Ỹt ≤ Yt for all t ≤ τ+(K) := inf {t ≥ 0, Yt ≥ K} . (5.5)

Let τ̃−(0) = inf{t ≥ 0, Ỹt = 0}. Adapting [22, Theorem 3.3] (see Appendix C.1), if (SN0)
holds, Py (τ̃−(0) <∞) = 0 for all y > 0. Let a > 1 be as in Assumption EXPL. Using that
Ga(x) ≥ γ′, we have

g(x)

x
− aσ

2(x)

x2
+ x−bCa − p(x)Ia(x) ≥ (a− 1)−1γ′ + 2r(x)

E[Θ1−a − 1]

a− 1
,
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so that (SN0) holds. We thus obtain that for all y > 0, Py (τ̃−(0) <∞) = 0. Then, from
(5.5) we get Py (τ−(0) < τ+(K)) = 0 and letting K tend to infinity yields

Py
(
τ−(0) <∞

)
= 0. (5.6)

Now, let ζ > 0 and ε > 0. Let T (ε) := τ−(ε) ∧ τ+(1/ε) where

τ−(ε) = inf {t ≥ 0, Yt < ε} . (5.7)

Then we have from (5.3), for every t ≥ 0, x > 0,

Eδx

[∑
u∈Vt

(Xu
t ∨ ζ)1−a

]
≤ eγtEx

[
1{t≤T (ε)}Y

1−a
t

]
+ eγtEx

[
1{t>T (ε)} (Yt ∨ ζ)1−a

]
.

For the first term, using that Ga(x) ≥ γ′ for all x ≥ 0 and the martingale property proved
in Lemma C.1, we have

eγtEx
[
1{t≤T (ε)}Y

1−a
t

]
= e(γ−γ′)tEx

[
Y 1−a
t∧T (ε)e

γ′(t∧T (ε))1{t≤T (ε)}

]
≤ e(γ−γ′)tEx

[
Y 1−a
t∧T (ε)e

∫ t∧T (ε)
0 Ga(Ys)ds

]
= xe(γ−γ′)t.

And for the second term,

Ex
[
1{t>T (ε)} (Yt ∨ ζ)1−a

]
≤ Ex

[
1{t>τ−(ε)} (Yt ∨ ζ)1−a

]
+ Ex

[
1{t>τ+(1/ε)} (Yt ∨ ζ)1−a

]
.

For any fixed t ≥ 0, as a > 1,

1{t>τ−(ε)} (Yt ∨ ζ)1−a ≤ ζ1−a

where ζ1−a is finite and does not depend on ε, and we know thanks to (5.6) that

lim
ε→0

1{t>τ−(ε)} = 0 almost surely.

Hence by the dominated convergence theorem, we obtain that

lim
ε→0

Ex
[
1{t>τ−(ε)} (Yt ∨ ζ)1−a

]
= 0 almost surely.

Let us finally consider the last term. First, notice that for every ε > 0

1{t>τ+(1/ε)} (Yt ∨ ζ)1−a ≤ ζ1−a (5.8)

where ζ1−a is finite and does not depend on ε. Now, let us consider the sequence of stopping
times (τ+(1/ε), ε > 0). This sequence increases when ε decreases, and there exists τ+(∞),
which may be infinite, defined by

lim
ε→0

τ+(1/ε) =: τ+(∞). (5.9)

There are two cases:

• If τ+(∞) ≤ t then Yt =∞ and 1{t>τ+(1/ε)} (Yt ∨ ζ)1−a = 0 forall ε > 0.

• If t > τ+(∞) then there exists ε0 > 0 such that for any ε ≤ ε0, τ+(1/ε) ≥ t, and

1{t>τ+(1/ε)} (Yt ∨ ζ)1−a = 0, ∀ε ≤ ε0.

We deduce that for any fixed t ≥ 0

lim
ε→0

1{t>τ+(1/ε)} (Yt ∨ ζ)1−a = 0 almost surely.

From (5.8) we may apply the dominated convergence theorem and obtain

lim
ε→0

Ex
[
1{t>τ+(1/ε)} (Yt ∨ ζ)1−a

]
= 0.
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To sum up, we proved that for any t ≥ 0, x > 0, and ε > 0,

Eδx

[∑
u∈Vt

(Xu
t ∨ ζ)1−a

]
≤ xe(γ−γ′)t + eγtEx

[
1{t>T (ε)} (Yt ∨ ζ)1−a

]
−−−→
ε→0

xe(γ−γ′)t.

Letting t tend to infinity ends the proof of point i), as γ < γ′.
Let us now turn to the proof of point ii). It is similar in spirit to the proof of point i). Let

a < 1 and γ′ > 0 be such that Assumption EXT holds. Adapting [22, Theorem 4.1i)] (see
Proposition C.3), under Condition (SN∞), we get for Y (defined as before as the unique
strong solution to (5.1)), and for all y > 0,

Py
(
τ+(∞) <∞

)
= 0, (5.10)

where τ+(∞) has been defined in (5.9). And as Ga(x) ≥ γ′ for all x ≥ 0, (SN∞) holds.
Let ε > 0. Similar computations as for point i) lead to

Eδx

[∑
u∈Vt

(Xu
t ∧ ζ)1−a

]
≤ xe(γ−γ′)t + eγt

(
Ex
[
1{τ−(ε)<t} (Yt ∧ ζ)1−a

]
+ Px(τ+(1/ε) < t)ζ1−a

)
.

From (5.10), the last term converges to 0 when ε goes to 0. Moreover, distinguishing between
the cases {τ−(0) ≤ t} and {τ−(0) > t} and applying the dominated convergence theorem,
the second term also converges to 0 when ε goes to 0. This ends the proof of ii). �

Proof of Proposition 2.1. Let K > 0, t ≥ 0. Under Assumption EXPL, as a > 1:

Pδx (∃u ∈ Vt, Xu
t ≤ K) = Pδx

(
∃u ∈ Vt, (Xu

t ∨K)1−a = K1−a
)

≤ Pδx

(∑
u∈Vt

(Xu
t ∨K)1−a ≥ K1−a

)
≤ Eδx

[∑
u∈Vt

(Xu
t ∨K)1−a

]
Ka−1.

The other case is similar. Proposition 2.1 follows from Lemma 5.2. �

5.2. Proofs of Section 3.2 and 3.3.

Proof of Proposition 3.1. Recall that αγ is well-defined because ψ : α 7→ 2E [Θα] − 1 is
decreasing on R, and ψ((−∞, 1]) = [0,+∞). Let B be the infinitesimal generator associated
with the first moment semigroup of the branching process given for all f ∈ C2

b (R+) by

Bf(x) = g(x)f ′(x) + σ2(x)f ′′(x) + p(x)

∫
R+

(
f(x+ z)− f(x)− zf ′(x)

)
π(dz) (5.11)

+r(x)

∫ 1

0
(f(θx) + f((1− θ)x)− f(x))κ(dθ)− q(x)f(x).

Let Vα(x) = xα. Under Assumption LGBE, we have

BVα(x) =

(
αg + α(α− 1)σ2 + r(x)

∫ 1

0
(2θα − 1)κ(dθ)− q(x)

)
Vα(x).

Then, as 2E [Θαγ ]− 1 = γ, we obtain

BVαγ (x) =
(
αγg + αγ(αγ − 1)σ2 + c

)
Vαγ (x) := λVαγ (x).

Then, according to [12, Lemma 3.3], we have for all x ≥ 0, f ∈ C2
b (R+),

Eδx

[∑
u∈Vt

f(Xu
t )

]
= xαγeλtEx

[
f(Yt)V −1

αγ (Yt)
]
, (5.12)
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where Y is a Markov process with infinitesimal generator given by

AVαγ f(x) =
(
g + 2σ2αγ

)
xf ′(x) + σ2x2f ′′(x) + 2r(x)

[∫ 1

0
θαγ (f(θx)− f(x))κ(dθ)

]
,

and FY its natural filtration (see Appendix B for details of the computation of AVαγ in the

case αγ = 1). In particular, we have

dY−αγt =

(
−αγ

(
g + 2σ2αγ

)
+ σ2αγ(αγ + 1) + 2r (Yt)

∫ 1

0
(1− θαγ )κ(dθ)

)
Y−αγt dt+ dM

(1)
t

= (r(Yt)− q(Yt)− λ)Y−αγt dt+ dM
(1)
t ,

where (M
(1)
t , t ≥ 0) is a FYt -martingale, and for the last equality, we used 2r(x)E [Θαγ ] =

γr(x) + r(x) = c+ r(x) + q(x) and λ = αγg+ αγ(αγ − 1)σ2 + c. Note also that taking f ≡ 1
in (5.12), we obtain

Eδx [Nt] = xαγeλtEx
[
Y−αγt

]
. (5.13)

Next, let K ≥ 0 and f(x) = 1{x>K}. Combining (5.12) and (5.18), we have

Eδx
[∑

u∈Vt 1{Xu
t >K}

]
Eδx [Nt]

=
Ex
[
1{Yt>K}Y

−αγ
t

]
Ex
[
Y−αγt

] .

First, we prove the point i) of Proposition 3.1. Let γ ∈ [0, 1). Then, αγ ∈ (0, 1] and

Eδx
[∑

u∈Vt 1{Xu
t >K}

]
Eδx [Nt]

≤ K−αγPx(Yt > K)

Ex
[
Y−αγt

] . (5.14)

Moreover, in this case

d

dt
Ex
[
Y−αγt

]
= Ex

[
((1− γ)r(Yt) + c− λ)Y−αγt

]
≥ (c− λ)Ex

[
Y−αγt

]
,

and by Grönwall’s lemma we obtain

Ex
[
Y−αγt

]
≥ x−αγe(c−λ)t.

Combining this inequality with (5.14), we have

Eδx
[∑

u∈Vt 1{Xu
t >K}

]
Eδx [Nt]

≤
( x
K

)αγ
eαγ(g+(αγ−1)σ2)t

where we used that λ− c = αγ(g + (αγ − 1)σ2). This ends the proof of point i).
For the point iii), let γ > 1. Then, αγ < 0. Using Itô’s formula, we have for all t ≥ 0,

ln(Yt) = ln(Y0) + (g + σ2(2αγ − 1))t+ 2E [Θαγ ln(Θ)]

∫ t

0
r(Ys)ds+M

(2)
t ,

where (M
(2)
t , t ≥ 0) is a FYt -martingale. By assumption, there exist x0(αγ) > 0 (later noted

x0) and η > 0 such that (3.5) holds. Then, for 0 < y0 < x0,

ln
(
Yt∧τ+(x0)

)
− ln(y0) ≥ η

(
t ∧ τ+(x0)

)
+M

(2)
t∧τ+(x0)

, (5.15)
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where τ+(x0) has the same definition as in (5.5) except that it is for the process Y. Note that
Yτ+(x0) = x0. Therefore, for all t ≥ 0, ln

(
Yt∧τ+(x0)

)
≤ ln (x0) almost surely. Then, taking

the expectation in (5.17), using this inequality and letting t tend to infinity, we obtain

Ey0
[
τ+(x0)

]
≤ η−1 ln

(
x0

y0

)
<∞.

Applying [10, Theorem 7.1.4], Yt converges in law to a variable Y∞ on R+, satisfying

P(Y∞ ≤ A) =
1

Ex0 [τ+(x0)]
E

[∫ τ+(x0)

0
1{Ys≤A}ds

]
.

Moreover, as (SN0) is satisfied thanks to (3.5), applying [22, Theorem 3.3i)], we obtain
P(Y∞ = 0) = 0. Recalling that as αγ < 0, Fatou’s lemma implies that for any x > 0,

lim inf
t→∞

Ex
[
Y−αγt

]
≥ lim inf

t→∞
Ex[(Yt ∧ 1)−αγ ] = Ex[(Y∞ ∧ 1)−αγ ] > 0. (5.16)

Finally, as before, combining (5.12) and (5.18), we obtain for any K ≥ 0,

Eδx
[∑

u∈Vt 1{Xu
t ≤K}

]
Eδx [Nt]

=
Ex
[
1{Yt≤K}Y

−αγ
t

]
Ex
[
Y−αγt

] ≤ K−αγ

Ex
[
Y−αγt

] .
Using (5.16) ends the proof of iii).

The proof of point ii) is very similar, and we only give the main ideas. Assume that there
exist x0(αγ), η > 0 such that (3.3) holds. Then, one can prove as before that for y0 > x0 > 0,

Ey0 [τ−(x0)] ≤ (E[ln 1/Θ] + ln(y0/x0))/η,

where τ−(x0) has the same definition as in (5.7) except that it is for Y. Applying again [10,
Theorem 7.1.4], Yt converges in law to a variable Y∞ on R+. As (SN∞) is satisfied thanks
to (3.3), [22, Theorem 4.1i)] implies P(Y∞ =∞) = 0. Finally, as αγ ≥ 0,

Ex[Y−αγ∞ ] ≥ Ex
[
(Y∞ ∨ 1)−αγ

]
> 0.

Combining this with (5.12) and (5.18) ends the proof as before. �

Proof of Proposition 3.3. The proof is very similar to the proof of Proposition 3.1, we thus
only give the main ideas. Recall the definition of B in (5.11). Then for V1(x) = x, we obtain

BV1(x) = g(x)− q(x)V1(x) =

(
g(x)

x
− q(x)

)
V1(x) = cV1(x),

and (5.12) thus holds where Y is the Markov process with infinitesimal generator given by

AV1f(x) =

(
g(x) + 2

σ2(x)

x
+
p(x)

x

∫
R+

z2π(dz)

)
f ′(x) + σ2(x)f ′′(x)

+ p(x)

∫
R+

(
f(x+ z)− f(x)− zf ′(x)

) (x+ z)

x
π(dz) + 2r(x)

[∫ 1

0
θ (f(θx)− f(x))κ(dθ)

]
.

For more details on the computations of this generator, we refer to Appendix B.
Let us begin with the proof of point ii). We have

Eδx
[∑

u∈Vt 1{Xu
t ≥K}

]
Eδx [Nt]

=
Ex
[
1{Yt≥K}Y

−1
t

]
Ex
[
Y−1
t

] ≤ K−1

Ex
[
Y−1
t

] .
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Let us prove that lim inft→∞ Ex
[
Y−1
t

]
> 0. Using Itô’s formula and Taylor’s formula for the

term accounting for positive jumps, we have for all t ≥ 0,

ln(Yt) = ln(Y0) +

∫ t

0

(
g(Ys)
Ys

+
σ2(Ys)
Y2
s

+ p(Ys)I0 (Ys)
)
ds+ 2E [Θ ln(Θ)]

∫ t

0
r(Ys)ds+M

(3)
t ,

where (M
(3)
t , t ≥ 0) is a FYt -martingale. By assumption, there exist x0, η > 0 such that (3.9)

holds. Then, for 0 < x0 < y0,

ln
(
Yt∧τ−(x0)

)
− ln(y0) ≤ −η

(
t ∧ τ−(x0)

)
+M

(3)
t∧τ−(x0)

. (5.17)

Hence, taking the expectation in (3.9), we obtain Ey0 [τ−(x0)] ≤ (E[ln 1/Θ] + ln(y0/x0))/η.
Applying [10, Theorem 7.1.4], Yt converges in law to a variable Y∞ on R+, satisfying

P(Y∞ ≤ A) =
1

Ex0 [τ−(x0)]
E

[∫ τ−(x0)

0
1{Ys≤A}ds

]
.

As (SN∞) is satisfied, [22, Theorem 4.1i)] ensures P(Y∞ =∞) = 0. Fatou’s lemma implies
that for any x > 0,

lim inf
t→∞

Ex
[
Y−1
t

]
≥ lim inf

t→∞
Ex[(Yt ∨ 1)−1] = Ex[(Y∞ ∨ 1)−1] > 0,

which ends the proof of point ii).
For point i), applying the generator AV1 to the function f(x) = x−2 (as P(Yt = 0) = 0 for

all t ≥ 0 using (5.12) with f(x) = x1{x=0}), we obtain:

d
(
Y−2
t

)
= −2Y−2

t

(
g(Yt)
Yt
− σ2(Yt)
Y2
t

− p(Yt)
2Yt

∫
R+

z2π(dz)

Yt + z
− r(Yt)E

[
1

Θ
− 1

2

])
dt+ dM

(4)
t ,

where (M
(4)
t , t ≥ 0) is a FYt -martingale. From (3.6), there exists C1 <∞ such that

sup
x≥x0

{
2
σ2(x)

x4
+
p(x)

x3

∫
R+

z2π(dz)

x+ z
+
r(x)

x2
E
[

2

Θ
− 1

]}
= C1.

Adding condition (3.7), we thus obtain that

d

dt
E
[
Y−2
t

]
≤
(
−2η0E

[
Y−2
t

]
+

2

x2
0

eta0 + C1

)
,

which yields the existence of a finite constant C2 such that supt≥0 E
[
Y−2
t

]
= C2. Applying

the generator AV1 to the function identity and taking the expectation, we get

d

dt
E [Yt] = E

[
Yt
(
g(Yt)
Yt

+ 2
σ2(Yt)
Y2
t

+
p(Yt)
Y2
t

∫
R+

z2π(dz) + 2r(Yt)
(
E
[
Θ2
]
− 1

2

))]
.

Combining (3.8) with EU, there exists C3 > 0 such that d
dtE [Yt] ≤ −η0E [Yt] + C3, which

yields the existence of a finite constant C4 such that supt≥0 E [Yt] = C4. Using Jensen’s

inequality, we obtain E
[
Y−1
t

]−1 ≤ C4. Next, from the definition of Y we know that

Eδx
[∑

u∈Vt 1{Xu
t ≤K}

]
Eδx [Nt]

=
Ex
[
1{Yt≤K}Y

−1
t

]
Ex
[
Y−1
t

] .

Using the previous computations and Cauchy-Schwarz inequality, we obtain

Ex
[
1{Yt≤K}Y

−1
t

]
Ex
[
Y−1
t

] ≤ C4

√
P(Y−2

t ≥ K−2)E
[

1

Y2
t

]
≤ C2C4K,

which ends the proof of point i). �

5.3. Proof of Section 3.4.
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5.3.1. Proof of Proposition 3.6. First, we need to control the value of the second moment of
the population size relatively to the square of its mean.

Lemma 5.3. Suppose that Assumption LDCG holds. Then for all x > 0,

(i) if β > max(g, q),

Eδx
[
N2
t

]
∼

t→∞
C2

1 (x)e2(β−q)t, E2
δx [Nt] ∼

t→∞

(
1 +

αx

β − g

)2

e2(β−q)t,

where

C2
1 (x) = 1 +

αx

2β − g − q
− α2x2

(β − g)2
+

(
1 +

αx

β − g

)(
2αx

β − g
+
β + q

β − q

)
+

αx

g − β
(β + q)

2β − g − q
.

(ii) if g > max(β, q) and α > 0,

Eδx
[
N2
t

]
∼

t→∞
E2
δx [Nt] ∼

t→∞

(
αx

β − g

)2

e2(g−q)t,

Proof. From Proposition 1.1, we have for f ≡ 1,

Nt = N0 +

∫ t

0

∫
E
1{u∈Vs−}

(
1{z≤r(Xu

s−)} − 1{0<z−r(Xu
s−)≤q)}

)
M (ds, du, dθ, dz) (5.18)

where we recall that M(ds, du, dθ, dz) is a PPM on R+ × E with intensity ds ⊗ n(du) ⊗
κ(dθ)⊗ dz, where n(du) denotes the counting measure on U . Itô’s formula yields for t ≥ 0,

N2
t = N2

0 +

∫ t

0

∫
E
1{u∈Vs−}

(
1{z≤r(Xu

s−)}(1 + 2Nt) + 1{0<z−r(Xu
s−)≤q)}(1− 2Nt)

)
M (ds, du, dθ, dz) .

(5.19)

Then, for all t ≥ 0 and x > 0,

d

dt
Eδx

[
N2
t

]
= Eδx

[(
αxe(g−q)t + βNt

)
(1 + 2Nt)

]
+ Eδx [qNt (1− 2Nt)]

= αxe(g−q)t + 2αxe(g−q)tEδx [Nt] + (β + q)Eδx [Nt] + 2(β − q)Eδx
[
N2
t

]
.

Using (4.6) and variation of constants we obtain

Eδx
[
N2
t

]
=e2(β−q)t + αx

(
e(g−q)t − e2(β−q)t)

g − 2β + q
+

2α2x2

g − β

(
e2(g−q)t − e2(β−q)t)

2(g − β)

+ 2αx

(
1− αx

g − β

) (
e(g+β−2q)t − e2(β−q)t)

g − β
+ (β + q)

αx

g − β

(
e(g−q)t − e2(β−q)t)

g − 2β + q

−
(

1− αx

g − β

)
(β + q)

(
e(β−q)t − e2(β−q)t)

β − q
.

Therefore,

if g > max(β, q), Eδx
[
N2
t

]
∼

t→+∞
α2x2

(g−β)2
e2(g−q)t

if β > max(g, q), Eδx
[
N2
t

]
∼

t→+∞
C2

1 (x)e2(β−q)t.

Moreover,

Eδx [Nt]
2 =

α2x2

(g − β)2
e2(g−q)t +

(
1− αx

g − β

)2

e2(β−q)t − αx

β − g

(
1− αx

g − β

)
eg+β−2q,

so that
if g > max(β, q), Eδx [Nt]

2 ∼
t→+∞

α2x2

(g−β)2
e2(g−q)t

if β > max(g, q), Eδx [Nt]
2 ∼
t→+∞

(
1 + αx

β−g

)2
e2(β−q)t.

�
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Adaptation of Lemma 5.3 for the running example: Case αq > α, αg < β, β > βq.
First, from Proposition 1.1,

d

dt
Eδx

[∑
u∈Vt

Xu
t

]
= αgEδx

[∑
u∈Vt

Xu
t

]
− Eδx

[∑
u∈Vt

q(Xu
t )Xu

t

]
≤ (αg − βq)Eδx

[∑
u∈Vt

Xu
t

]
.

By (5.18) (with q(Xu
s−) instead of q), we have

d

dt
Eδx [Nt] = (α− αq)Eδx

[∑
u∈Vt

Xu
t

]
+ (β − βq)Eδx [Nt].

Combining the two previous equations and using that α ≤ αg, we obtain

(α− αq)xe(αg−βq)t + (β − βq)Eδx [Nt] ≤
d

dt
Eδx [Nt] ≤ (β − βq)Eδx [Nt],

hence

e(β−βq)t
(

1 +
α− αq
αg − β

(
e(αg−β)t − 1

))
≤ Eδx [Nt] ≤ e(β−βq)t.

Next, by (5.19) (with q(Xu
s−) instead of q), we have

d

dt
Eδx [N2

t ] =(α+ αq)Eδx

[∑
u∈Vt

Xu
t

]
+ (β + βq)Eδx [Nt] + 2(α− αq)Eδx

[
Nt

∑
u∈Vt

Xu
t

]
+ 2(β − βq)Eδx [N2

t ]

≤(α+ αq)xe
(αg−βq)t + (β + βq)e

(β−βq)t + 2(β − βq)Eδx [N2
t ],

which implies

Eδx [N2
t ] ≤ e2(β−βq)t +

α+ αq
αg + βq − 2β

x
(
e(αg−βq)t − e2(β−βq)t

)
+
β + βq
βq − β

x
(
e(β−βq)t − e2(β−βq)t

)
.

The previous computations show the existence of C <∞ such that

Eδx [Nt]
2 ≥ e2(β−βq)t

(
1 +

α− αq
αg − β

(
e(αg−β)t − 1

))2

,Eδx [N2
t ] ≤ Ce2(β−βq)t + o(e2(β−βq)t).

Then, as αg < β, Eδx [N2
t ]/Eδx [Nt]

2 is bounded for t large enough.

Proof of Proposition 3.6. Let a > 0, V1(x) = x for all x ≥ 0 and recall the definition of B in
(5.11). As in the proof of Proposition 3.3, using that BV1(x) = (g − q)V1(x), if we consider
the process Y with infinitesimal generator (3.11), we get from [12, Lemma 3.3] the following
Many-to-One formulae, when considering the functions f(x) = x1x∈[a,a+da] and f(x) ≡ 1,

aEδx

[∑
u∈Vt

1Xu
t ∈[a,a+da]

]
= xe(g−q)tPx (Y ∈ [a, a+ da]) and Eδx

[∑
u∈Vt

1

]
= xe(g−q)tEx

[
Y−1
t

]
.

It concludes the proof of point i).
We now prove point ii). First (SN∞) is satisfied because of the linear division rate. Next

(3.10) implies (3.9). Then, Proposition 3.3ii) and Markov’s inequality yield for any ε > 0,

lim
K→∞

lim
t→∞

Pδx
(
1{Nt≥1}

#{u ∈ Vt : Xu
t > K}

Eδx [Nt]
> ε

)
= 0.

To prove point ii), it is thus enough to prove that

lim
K→∞

lim
t→∞

Diff(K, t, ε) = 0, (5.20)
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where

Diff(K, t, ε) := Pδx
(
1{Nt≥1}

∣∣∣∣#{u ∈ Vt : Xu
t > K}

Eδx [Nt]
− #{u ∈ Vt : Xu

t > K}
Nt

∣∣∣∣ > ε

)
.

We use different strategies depending on whether g > max(β, q) and α > 0 or β > max(g, q).

Case g > max(β, q) and α > 0. Applying Markov’s and Cauchy-Schwarz inequalities,

Diff(K, t, ε) ≤ 1

εEδx [Nt]
Eδx

[
1{Nt≥1}

#{u ∈ Vt : Xu
t > K}

Nt
|Nt − E[Nt]|

]
≤
√

Varδx(Nt)

εEδx [Nt]

which goes to 0 as t goes to ∞ according to Lemma 5.3 and (5.20) holds.

Case β > max(g, q). Notice that in this case, from the proof of Proposition 3.3 Many-to-One

formula with the function f(x) = x writes Eδx [Pt] = xe(g−q)t, where Pt :=
∑

u∈Vt X
u
t , and

from Lemma 5.3,

Eδx [Nt] ∼
t→∞

(
1 +

αx

β − g

)
e(β−q)t.

Hence Eδx [Pt]� Eδx [Nt] for large t. Let us introduce, for ε, t,K > 0, the event

Aε,t,K :=

{
1{Nt≥1}

#{u ∈ Vt : Xu
t > K}

Nt
> ε

}
.

We will make a reductio ad absurdum and assume that point ii) of Proposition 3.6 does not
hold. As a consequence, there exists ε0, a0 > 0 such that

lim sup
K→∞

lim sup
t→∞

Pδx (Aε0,t,K) ≥ a0. (5.21)

But for any K, t > 0, we have

Eδx [Pt] ≥ KEδx
[
1{Nt≥1}

∑
u∈Vt 1{Xu

t >K}

Nt
Nt

]
≥ Kε0Eδx [Nt1Aε0,t,K ]. (5.22)

The process (Nt, t ≥ 0) has the same law as a supercritical branching process, with individual
birth and death rates β and q, and a time inhomogeneous immigration (with rate αPt). Then,

(1) either there exists T0 <∞ such that there is no more immigration after time T0. In

this case, either Nt goes to 0 at infinity, or Nte
−(β−q)t converges almost surely when

t goes to infinity to a positive random variable W0 ([3, p.112]).
(2) or there is an infinite number of migrants, and as every birth-death process has prob-

ability 1−q/β > 0 to survive ([3, p.109]), there is a time T1 <∞ such that the immi-

grant arriving at time T1 has an infinite line of descent, and thus Nt−T1e
−(β−q)(t−T1)

is larger than a process which converges almost surely when t goes to infinity to a
positive random variable W0.

From this analysis, we deduce that lim inft→∞ E
[
Nte

−(β−q)t1{Nt≥1}
]
> 0. According to

(5.21), there are sequences (Kn, n ∈ N), (tn, n ∈ N) going to ∞ and n0 ∈ N such that
n ≥ n0 implies Pδx (Aε0,tn,Kn) ≥ a0/2. As for all n ≥ 0, Aε0,tn,Kn ⊆ {Nt ≥ 1}, there exists
C > 0 such that for all n ≥ n0

Eδx [Ntne
−(β−q)tn1Aε0,tn,Kn ] = Eδx [Ntne

−(β−q)tn1{Ntn≥1}]P(Aε0,tn,Kn) ≥ Ca0/2.

We deduce, using (5.22), that for any n ≥ n0,

xe(g−q)tn = Eδx [Ptn ] ≥ Knε0Eδx [Ntn1Aε0,tn,Kn ] ≥ Ca0

2
Knε0e

(β−q)tn ,

which is absurd because β > g. It concludes the proof. �
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5.3.2. Preliminary results on the auxiliary process. Recall that the auxiliary process (Y
(t)
s , s ≤

t) is well-defined as the unique strong solution to (4.10) under LDCG. In what follows, we

set Y
(t)
s = Y

(t)
t for all s ≥ t and f3(x, u, z) = 0 if u ≤ 0, for all x, z ≥ 0.

The next proposition is an analogue of the auxiliary process of [22, Theorem 3.3] Let

τ−t (0) := inf{0 < s ≤ t : Y (t)
s = 0}.

Proposition 5.4. Suppose that Assumptions LDCG holds, and that
∫∞

0 zπ(dz) <∞.

i) If Condition (SN0) holds, then Px
(
τ−t (0) <∞

)
= 0 for all x > 0.

ii) If Condition (LN0) holds, then for any x > 0 and s > 0, Px
(
τ−t (0) < s

)
> 0.

Proof of Proposition 5.4. This proof is very similar to the proof of [22, Theorem 3.3]. The
only modifications are due to the time-inhomogeneity, and to the fact that the time interval
is restricted to [0, t]. We proceed by coupling to overcome these two difficulties.

i) Introduce Ỹ the unique strong solution to

Ỹt = Ỹ0 + g

∫ t

0
Ỹsds+

∫ t

0

√
2σ2(Ỹs)dBs +

∫ t

0

∫
R+

∫ f3(Ỹs− ,t−s,z)

0
zQ̃(ds, dz, dx)

+

∫ t

0

∫ 2(αỸs−+β)

0

∫ 1

0
(θ − 1)Ỹs−N(ds, dz, dθ), (5.23)

where B, Q̃,N are the same as in (4.10), f3 is defined in (4.9). Notice that

f1(y, s) ≥ gy, f2(y, s, θ) ≤ 2(αy + β), ∀y, z, t ≥ 0, s ∈ [0, t], θ ∈ [0, 1].

and f3(x, t− s, z) is non-decreasing in x because xp′(x) ≥ x for all x ≥ 0. In particular this

implies that if Ỹ is a solution with Ỹ0 = Y
(t)

0 , then Ỹs ≤ Y
(t)
s for any s smaller than t. But

Ỹ satisfies the assumptions of a modified version of point i) of [22, Theorem 3.3] where the
rate of positive jumps depends on time (see Appendix C.3). Therefore, applying this result,

we proved that Ỹ does not reach 0 in finite time, so that Y (t) does not reach 0 before time t.

ii) First notice that for any x > 0 and s ≤ t, the function f1 defined in (4.7) satisfies

f1(x, s) ≤ gx+

(
2σ2(x) + p(x)

∫
R+

z2π(dz)

)
At

1 + xAt
=: ḡt(x),

where At = α(e(g−β)t − 1)/(g − β). Let (Ȳs, s ≥ 0) be the unique strong solution to

Ȳs =Y
(t)

0 +

∫ s

0
ḡt
(
Ȳu
)
du+

∫ s

0

√
2σ2

(
Ȳu
)
dBu +

∫ s

0

∫ 1

0

∫ r̄(θ)

0
(θ − 1)Ȳu−N(du, dθ, dz)

+

∫ s

0

∫ ∞
0

∫ f3(Ȳs− ,t−u,z)

0
zQ̃(du, dz, dx), (5.24)

where for all x, s ≥ 0 and θ ∈ [0, 1], r̄(θ) := 2θβ ≤ f2(x, s, θ), with f2 defined in (4.8), f3 in

(4.9), B, N and Q̃ are the same as in (4.10). Then, for all 0 ≤ s ≤ t, Ȳs ≥ Y
(t)
s . Then, for

τ̄−(0) := inf{s ≥ 0 : Ȳs = 0}, if we prove that

P(τ̄−(0) < v) > 0, ∀0 < v ≤ t, (5.25)

it will imply that P(τ−t (0) < v) ≥ P(τ̄−(0) < v) > 0 and end the proof. To prove (5.25),
we apply [22, Theorem 3.3iii)] to the process Ȳ . Notice that here, unlike in [22, Theorem
3.3], the division rate r̄ depends on θ. However, the dependence in θ in the division rate
can be removed by considering a new PPM N ′ with a modified fragmentation kernel so that
all the results derived above still hold. We refer the reader to Appendix E for more details,



PARASITE INFECTION 27

and to Appendix C.3 for the generalization of [22, Theorem 3.3iii)] to processes with rate of
positive jumps depending on time. �

In the case where the absorption of the auxiliary process occurs with positive probability,
we prove the convergence of the auxiliary process trajectory on a time window of any size.

Proposition 5.5. Let T ≥ 0. Suppose that Assumption LDCG+ and (LN0) hold, and
that

∫∞
0 zπ(dz). Then, there exist C, c > 0 and a probability measure Π on the Borel σ-field

of D ([0, T ],X ) endowed with the Skorokhod distance such that for all bounded measurable
functions F : D ([0, T ],X )→ R,∣∣∣E [F (Y (t+T )

t+s , s ≤ T
) ∣∣∣Y (t+T )

0 = x
]
−Π(F )

∣∣∣ ≤ Ce−ct ‖F‖∞ (1 + x), ∀x ≥ 0.

We prove the convergence of the auxiliary process by verifying a Foster-Lyapunov in-
equality and a minoration condition, both stated in Lemma 5.6 below. Those standard
conditions were exhibited in [20] as an extension of [14] to time-inhomogeneous processes.
The Foster-Lyapunov inequality (Condition i) in Lemma 5.6) ensures that

Ex
[
V
(
Y (t)
s

)]
≤ e−asV (x) +

d

a

(
1− e−as

)
,

where a and d are positive constants, so that the process is brought back to the sublevel
sets of V . The minoration condition (i.e. Condition ii) in Lemma 5.6) ensures some type of
irreducibility of the process on those sublevel sets. Let V (x) = x for x ∈ R+. Recall that

A(t)
s is defined in (4.3), f1 in (4.7), and f2 in (4.8).

Lemma 5.6. Under the assumptions of Proposition 5.5, we have the following:

i) There exist a, d > 0 such that for all 0 ≤ s ≤ t and x ∈ R∗+,

A(t)
s V (x) ≤ −aV (x) + d.

ii) There exists R > 2da−1 such that for all r < s ≤ t, there exist αs−r > 0 and a
probability measure ν on R+ such that for all Borel sets A of R+,

inf
x≤R

P
(
Y (t)
s ∈ A

∣∣Y (t)
r = x

)
≥ αs−rν(A).

Proof. i) We have

A(t)
s V (x) = f1(x, t− s)−

∫ 1

0
f2(x, t− s, θ)x(1− θ)κ(dθ)

≤ V (x)

(
g + 2

σ(x)2

x2
+
p(x)

x2

∫
R+

z2π(dz)− 2αxE [Θ(1−Θ)]

)
.

According to (3.10), there exist A > 0 and a > 0 such that for all x > A

2
σ(x)2

x2
+
p(x)

x2

∫
R+

z2π(dz)− 2αxE [Θ(1−Θ)] < −(a+ g).

Then,

A(t)
s V (x) ≤ −ax+ 1{x≤A}

(
2
σ(x)2

x
+
p(x)

x

∫
R+

z2π(dz)− 2αx2E [Θ(1−Θ)]

)
,

and according to Assumption EU, there exists d > 0 such that for every x ≥ 0,

A(t)
s V (x) ≤ −ax+ d.

ii) Let R > 2da−1, where a, d are given in i). We will prove the minoration condition with
ν = δ0, where δ0 is the Dirac measure at 0. Consider again Ȳ , defined as the unique strong
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solution to the SDE (5.24). We recall that Ȳs ≥ Y (t)
s , for all s ≤ t. Therefore for all r < s ≤ t

and all Borel sets A of R+,

P
(
Y (t)
s ∈ A

∣∣Y (t)
r = x

)
≥ P

(
Y (t)
s = 0

∣∣Y (t)
r = x

)
δ0(A) ≥ P

(
Ȳs = 0

∣∣Ȳr = x
)
δ0(A).

Next, notice that if Ȳ 1, Ȳ 2 are two solutions to (5.24) with respective initial conditions at
time r satisfying Ȳ 1

r ≤ Ȳ 2
r , then Ȳ 1

s ≤ Ȳ 2
s for all r ≤ s ≤ t. Hence, for all x ≤ R,

P
(
Ȳs = 0

∣∣Ȳr = x
)

= P
(
Ȳs−r = 0

∣∣Ȳ0 = x
)
≥ P

(
Ȳs−r = 0

∣∣Ȳ0 = R
)
.

Finally, as (LN0) holds, using [22, Theorem 3.3iii)] on Ȳ , there exists αs−r > 0 such that

P
(
Ȳs−r = 0

∣∣Ȳ0 = R
)
> αs−r,

which ends the proof. �

Proof of Proposition 5.5. This result is a direct application of [20, Proposition 3.3]. The
main assumptions are satisfied thanks to Lemma 5.6. Note that using the expression of m

given in (4.6), [20, Assumption 2.4] is satisfied because
∫ 1

0
m(θx,s,t)
m(x,s,t) κ(dθ) ≤ 1/2. �

This convergence result allows us to establish a law of large numbers, linking asymptoti-
cally the behaviour of a typical individual with the behaviour of the whole population.

5.3.3. Proof of Theorem 3.7. It is a direct application of [20, Corollary 3.7]. Assumptions
2.1, 2.3 and 2.4 in [20] are satisfied thanks to Assumption EU, using (4.5) and (4.6), and
the fact that β > 0. We proved that Assumption 3.1 in [20] is verified in Lemma 5.6. It
remains to check that Assumptions 3.4 and 3.6 in [20] are satisfied. Note that in our case,
the function c(x) defined in [20, Equation 3.3] is equal to max(g, β) − q and the first point
of Assumption 3.4 in [20] is satisfied.

Next, we set some notations, introduced in [20]. For all x, y ≥ 0 and s ≥ 0, we define

ϕs(x, y) = sup
t≥s

m(x, 0, s)m(y, s, t)

m(x, 0, t)
,

(which does not depend on q) and for all measurable functions f : R+ → R and x ≥ 0,

Jf(x) = 2

∫ 1

0
f (θx) f ((1− θ)x)κ(dθ).

The next lemma amounts to check the second point of Assumption 3.4 in [20].

Lemma 5.7. Under Condition LDCG++, then for all x ≥ 0,

sup
t≥0

Ex
[
r
(
Y

(t)
t

)
J ((1 ∨ V (·))ϕt (x, ·))

(
Y

(t)
t

)]
<∞.

Proof. Note that if x = 0, Y
(t)
t = 0 almost surely for all t ≥ 0. Therefore, we only need to

consider x > 0. First assume that α > 0. Notice that for all t ≥ 0 x > 0, and y ≥ 0,

ϕt(x, y) ≤
(

1 +
αx

|g − β|

)(
1 +

αy

|g − β|

)(
min

(
αx

|g − β|
, 1

))−1

,

where we simplified by emax(g,β)t in the fraction in the definition of ϕs. Next, for all x > 0,

Ex
[
r
(
Y

(t)
t

)
J ((1 ∨ V (·))ϕt (x, ·))

(
Y

(t)
t

)]
≤
(
|g − β|+ αx

min (αx, |g − β|)

)2

Ex

(αY (t)
t + β

)
2

∫ 1

0

(
1 ∨ θY (t)

t

)(
1 ∨ (1− θ)Y (t)

t

)(
1 +

αY
(t)
t

|g − β|

)2

κ(dθ)

 .
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For all k ≥ 0, we define

f
(t)
k (x, s) = Ex

[(
Y (t)
s

)k]
and we end the proof of the lemma by showing that, supt≥0 sups≤t f

(t)
5 (x, s) <∞. According

to Itô’s formula, we have for k ≥ 2,

f
(t)
k (x, s) =k

∫ s

0
Ex
[(
Y (t)
u

)k−1
f1

(
Y (t)
u , t− u

)]
du+ k(k − 1)

∫ s

0
Ex
[
σ2
(
Y (t)
u

)(
Y (t)
u

)k−2
]
du

+

∫ s

0

∫
R+

Ex
[
f2

(
Y (t)
u , t− u, θ

)(
Y (t)
u

)k
(θk − 1)

]
κ(dθ)du

+

∫ s

0

∫
R+

Ex
[
f3

(
Y (t)
u , t− u, z

)((
Y (t)
u + z

)k
−
(
Y (t)
u

)k
− kz

(
Y (t)
u

)k−1
)]

π(dz)du.

Differentiating with respect to s and using that for all x, s, z ≥ 0 and θ ∈ [0, 1], f2(x, s, θ) ≥
2θαx, f3(x, s, z) ≤ (x+z)p(x)/x, and xk−1f1(x, s) ≤ gxk+2σ(x)2xk−2+p(x)xk−2

∫
R+
z2π(dz).

Let H(k, y) = (k + 1)σ2(y)y−2 + kp(y)y−2
∫
R+
z2π(dz). Applying Taylor’s formula with

integral remainder, we obtain

∂sf
(t)
k (x, s) ≤gkEx

[(
Y (t)
s

)k]
+ kEx

[
H(k, Y (t)

s )(Y (t)
s )k

]
−
∫
R+

Ex
[
2α
(
Y (t)
s

)k+1
θ(1− θk)

]
κ(dθ)

+ k(k − 1)

∫
R+

∫ z

0
(z − u)Ex

p
(
Y

(t)
s

)
Y

(t)
s

(
Y (t)
s + u

)k−2 (
Y (t)
s + z

) duπ(dz).

Moreover, for all y > 0,∫
R+

∫ z

0
(z − u)

p (y)

y
(y + u)k−2 (y + z) duπ(dz)

≤
∫
R+

z2 p(y)

y
(y + z)k−1 π(dz) =

p(y)

y

∫
R+

z2
k−1∑
l=0

(
k − 1

l

)
ylzk−1−lπ(dz)

=
p(y)

y

∫
R+

z2
k−2∑
l=0

(
k − 1

l

)
ylzk−1−lπ(dz) +

p(y)

y2

(∫
R+

z2π(dz)

)
yk.

Combining the last two inequalities, we get

∂sf
(t)
k (x, s) ≤k

(
A

(k)
t +B

(k)
t − C

(k)
t +D

(k)
t

)
,

with

A
(k)
t = gf

(t)
k (x, s), B

(k)
t = Ex

[
H(k, Y (t)

s )(Y (t)
s )k

]
, C

(k)
t =

2α

k
E
[
Θ(1−Θk)

]
f

(t)
k+1(x, s),

D
(k)
t = (k − 1)

∫
R+

Ex

 p(Y (t)
s )(

Y
(t)
s

)2

k−2∑
l=0

(
k − 1

l

)
(Y (t)
s )l+1zk+1−l

π(dz).

To end the proof we consider the case k = 5. According to (3.10) and using that σ and p
are continuous (Assumption EU), there exist C1, C2, A > 0 such that for all y ≥ 0,

H(5, y)y5 = H(5, y)y51{y>A} +H(5, y)y51{y≤A} ≤ C1y
51{y>A} + C21{y≤A} ≤ C1y

5 + C2.
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Moreover, lim sup0+ p(x)/x <∞ as p(0) = 0 and p is locally Lipschitz, lim sup∞ p(x)/x2 <∞
thanks to (3.10) and

∫
R+
z6π(dz) <∞, which yields

D
(5)
t ≤ C3(f

(t)
5 (x, s) + 1),

for some C3 ≥ 0. Combining the last two inequalities, there exists D1 > 0 such that

∂sf
(t)
5 (x, s) ≤ D1(f

(t)
5 (x, s) + 1)−D2f

(t)
6 (x, s),

where D2 = 2α
5 E
[
Θ(1−Θ5)

]
. Applying Jensen inequality, we have f

(t)
6 (x, s) ≥ f (t)

5 (x, s)6/5.
Finally, we obtain

∂sf
(t)
5 (x, s) ≤ F

(
f

(t)
5 (x, s)

)
,

with F (y) = D1(y + 1) −D2y
1+1/5. Any solution to the equation y′ = F (y) is bounded by

y(0) ∨ x0, where x0 = (5D1/6D2)5 and so is f
(t)
5 (x, ·). It ends the proof for this case. �

Adding Lemma 5.3 (which corresponds to Assumption 3.6 in [20].) we have all required
assumptions to apply [20, Corollary 3.4]. This ends the proof of Theorem 3.7.

5.3.4. Proof of Proposition 3.8. i) The first step consists in proving that for every x ≥ 0,

Px(∃t <∞, Y (t)
t = 0) = 1. (5.26)

A direct application of [22, Theorem 6.2] is not possible because of the time-inhomogeneity

of Y (t). Therefore, we couple Y (t) with a process Ŷ defined as the unique strong solution to

Ŷs =Y
(t)

0 +

∫ s

0
ĝ(Ŷu)du+

∫ s

0

√
2σ2(Ŷu)dBu +

∫ s

0

∫ 1

0
(θ − 1)

∫ r̂(Ŷu,θ)

0
ŶuN(du, dθ, dx)

+

∫ s

0

∫ ∞
0

∫ f3(Ŷu,t−s,z)

0
zQ̃(du, dz, dx), (5.27)

where B, N and Q̃ are the same as in (4.10) and for x, s ≥ 0, 0 ≤ θ ≤ 1,

f1(x, s) ≤ ĝ(x) := gx+

(
α1{β>g}

β − g + αx
+

1{g>β}

x

)(
2σ2(x) + p(x)

∫
R+

z2π(dz)

)
f2(x, s, θ) ≥ r̂(x, θ) := 2θ(αx+ β).

Then, for all t ≥ 0 and 0 ≤ s ≤ t, Y (t)
s ≤ Ŷs. In particular, for all t ≥ 0,

Y
(t)
t ≤ Ŷt. (5.28)

According to Lemma E.1, there exists a PPM N ′ on R+ × [0, 1] × R+ with intensity du ⊗
κ̂(dθ)⊗ dx where κ̂(dθ) = 2θκ(dθ), such that Ŷ is also a strong pathwise solution to

Ŷs = Y
(t)

0 +

∫ s

0
ĝ
(
Ŷu

)
du+

∫ s

0

√
2σ2

(
Ŷu

)
dBu +

∫ s

0

∫ r(Ŷu)

0

∫ 1

0
(θ − 1)ŶuN

′(du, dx, dθ)

+

∫ s

0

∫ ∞
0

∫ f3(Ŷu,t−s,z)

0
zQ̃(du, dz, dx),

where we used that
∫ 1

0 2θκ(dθ) = 1 as κ is symmetrical with respect to 1/2. The jump rate
f3 depends on jump size and time, but we have

f3(x, s, z) ≤ p(x)

(
1 + αz

(e(g−β)s − 1)

g − β

)
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so that (6.3) in [22, Theorem 6.2] holds for Ŷ (see Appendix C.5) if (SN∞), (LN0) and
(LSG) are satisfied, where

(LSG) There exist η1, x1 > 0 such that for all x > x1

Ĥ(x) :=
ĝ(x)

x
− σ2(x)

x2
+ r̂(x)E [ln Θ] < −η1.

First, (LN0) is satisfied by assumption. Let us check that (LSG) holds. We have

Ĥ(x) ≤ g +

(
1{β>g}αx

β − g + αx
+ 1{g≥β}

)(
2
σ2(x)

x2
+
p(x)

x2

∫
R+

z2π(dz)

)
+ 2(αx+ β)E [Θ ln Θ] .

According to Assumptions EU and (3.10), there exist x1, C > 0 such that for all x > x1

Ĥ(x) ≤ g + C

(
1{β>g}αx

β − g + αx
+ 1{g≥β}

)
+ 2(αx+ β)E [Θ ln Θ] ,

and as E [Θ ln Θ] < 0, condition (LSG) is satisfied. Finally, we check that (SN∞) is satisfied

for Ŷ . And it is the case according to (3.10) as

ĝ(x)

x
= g +

(
1{β>g}

αx

β − g + αx
+ 1{g>β}

)(
2
σ2(x)

x2
+
p(x)

x2

∫
R+

z2π(dz)

)
.

Hence [22, Eq. (6.3)] holds for Ŷ , and (5.28) gives (5.26). Applying Theorem 3.7 to the
function F (Xu

t+s, s ≤ T ) = 1{Xu
t+T>0} concludes the proof of point i).

Let us now prove point ii). The convergence result stems directly from Theorem 3.7. For

the bounds on the process (Y
(t)
t , t ≥ 0), the idea is to use the same couplings as before, and

apply the generalization of [22, Theorem 6.2(i)] proved in Appendix C.5.

First, we consider again Ŷ defined as the unique strong solution to (5.27). Recall that for

all t ≥ 0 and all 0 ≤ s ≤ t, Y
(t)
s ≤ Ŷs. To apply [22, Theorem 6.2(i)], we have to check that

(SN0), (SN∞) and (LSG) are satisfied. By assumption, (SN0) holds for Ŷ . We refer the

reader to the proof of i) for the two other conditions. According to [22, Theorem 6.2(i)], Ŷ

converges in law to Ŷ∞ as t goes to infinity.

Next, we consider again Ỹ , defined as the unique strong solution to (5.23). Recall that

for all t ≥ 0 and 0 ≤ s ≤ t, Ỹs ≤ Y
(t)
s . Let us check that (SN0), (SN∞) and (LSG) of

[22] holds for Ỹ . Again, (SN0) holds by assumption. Then, (SN∞) holds combining (3.10)

with the fact that the division rate of Ỹ is linear in x. Finally, let

H̃(x) := g − σ2(x)

x2
+ 2(αx+ β)E [ln Θ] .

From (3.10), there exist η, x1 > 0 such that for x > x1, H̃(x) ≤ −η. Hence (LSG) of [22]

holds for Ỹ and according to [22, Theorem 6.2(i)], Ỹ converges in law to Ỹ∞ as t goes to ∞.

Finally, we have for all t ≥ 0 Y
(1)
t := Ỹt ≤ Y (t)

t ≤ Y
(2)
t := Ŷt, which yields the result.

Appendix A. Proof of Proposition 1.1

To prove that the SDE (1.1) admits a unique nonnegative strong solution with generator
G defined in (1.2), we apply [26, Proposition 1]. The proof is the same as the proof of [22,
Proposition 2.1], except that we have to take into account the extra stable term. To prove
that the result still holds, it is enough to check that for any n ∈ N, there exists a finite
constant An such that for any 0 ≤ x, y ≤ n,∫

R+

∣∣1{x≤u}z ∧ n− 1{y≤u}z ∧ n
∣∣ dz

z2+β
du ≤ An|x− y|,
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where we recall that β ∈ (−1, 0). This is a consequence of the following series of equalities:∫ ∣∣(1{x≤u} − 1{y≤u}
)
z ∧ n

∣∣ dzdu
z2+β

=

∫
|x− y| z ∧ ndzdu

z2+β
= |x− y|

(∫ n

0

dz

z1+β
+ n

∫ ∞
n

dz

z2+β

)
.

To prove that it gives the existence and uniqueness of the process at the cell population level,
we apply [21, Theorem 2.1].

Appendix B. Detailed computation of the infinitesimal generator AV1
In the proof of Proposition 3.3, we apply [12, Lemma 3.3] to our branching process, where

the dynamics of the cells between the jumps are given by (1.2), with cb = 0 (no stable
jumps). Recall that V1(x) = x. For all x ≥ 0, f ∈ C2

b (R+), we have

Eδx

[∑
u∈Vt

f(Xu
t )

]
= xeλtEx

[
f(Yt)V −1

1 (Yt)
]
,

where Yt is a Markov process with infinitesimal generator AV1 = M1 + J1, where for all

x ≥ 0, f ∈ C2
b (R+), J1f(x) = 2r(x)

[∫ 1
0 θ (f(θx)− f(x))κ(dθ)

]
, and

M1f(x) = (G(f × V1)(x)− f(x)GV1(x)) /V1(x)

=

(
g(x) + 2

σ2(x)

x
+
p(x)

x

∫
R+

z2π(dz)

)
f ′(x) + σ2(x)f ′′(x)

+ p(x)

∫
R+

(
f(x+ z)− f(x)− zf ′(x)

) (x+ z)

x
π(dz).

Appendix C. Extension of results of [22]

C.1. Proof of [22, Theorem 3.3] with stable jumps. In this section we give the proof of
the generalization of [22, Theorem 3.3i)] to processes with stable jumps defined as the unique
solution (see [26, Proposition 1]) to (5.1). Recall that Ga is defined in (2.1), and τ+, τ− in
(5.4), (5.5) and (5.7).

Lemma C.1. [22, Lemma 7.1] Suppose that Assumption EU holds. For all b > c > 0, let
T = τ−(c) ∧ τ+(b). Then, for all a ∈ (0, 1) or a > 1 such that E[Θ1−a] <∞, the process

Z
(a)
t∧T := (Yt∧T )1−a exp

(∫ t∧T

0
Ga (Ys) ds

)
is a Ft-martingale, where Y is the unique solution of (5.1).

Proof of Lemma C.1. First notice that using Taylor’s formula, we have

Ca = (2 + b)−1

∫
R+

z(1 + z)−aρ(dz) = (1− a)−1

∫
R+

(
(1 + z)(1−a) − 1

)
ρ(dz), (C.1)

and (1− a)Ia(x) =

∫
R+

(
(1 + zx−1)(1−a) − 1− (1− a)zx−1

)
π(dz). (C.2)

We follow the proof of [22, Lemma 7.1]. Let a ∈ (0, 1) ∪ {a > 1, E[Θ1−a] <∞}. Combining
Itô’s formula with jumps, (C.1), (C.2), we have for all t ≥ 0

Y 1−a
t = Y 1−a

0 −
∫ t

0
Y 1−a
s Ga(Xs)ds+Mt,
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where (Mt, t ≥ 0) is a local martingale. Next, using integration by parts we obtain that

(Z
(a)
t∧T , t ≥ 0) is a local martingale. Similarly to [18], combining Assumptions EU and [28,

Theorem 51 p.38] ends the proof. �

Proposition C.2. Suppose that Assumption EU holds and let Y be the pathwise unique
solution to (5.1). If (SN0) holds then Px (τ−(0) <∞) = 0 for all x > 0.

Proof. ([22, Theorem 3.3i)]) Let n ≥ 2 and let 0 < ε < b < 1 and a > 1 such that
E[Θ1−a] < ∞ be such that (SN0) holds for all u ≤ b. Let Tn = τ−(εn) ∧ τ+(b). As in [22,
Theorem 3.3i)], combining Lemma C.1 and (SN0), we have that for all 0 < ε < b,

Pε
(
τ−(0) =∞ or τ+(b) < τ−(0)

)
= 1. (C.3)

We use a coupling to show that Pε(τ−(0) <∞) = 0. Let for N ∈ N, r[0,N ] := sup0≤x≤N 2r(x),

which is finite as r is a continuous function. Let Ỹ be the unique strong solution to

Ỹt =Ỹ0 +

∫ t

0
g(Ỹs)ds+

∫ t

0

√
2σ2(Ỹs)dBs +

∫ t

0

∫ p(Ỹs− )

0

∫
R+

zQ̃(ds, dx, dz)

∫ t

0

∫ Ỹs−

0

∫
R+

zR(ds, dx, dz) +

∫ t

0

∫ r[0,N ]

0

∫ 1

0
(θ − 1)Ỹs−N(ds, dx, dθ),

where the Brownian motion B and the Poisson random measures Q̃ and N are the same as
in (5.1). We will use four properties of this equation.

a) It has a unique strong solution (see [26, Proposition 1] and Assumptions EU).

b) If Ỹ (1) and Ỹ (2) are two solutions with Ỹ
(1)

0 ≤ Ỹ (2)
0 , then Ỹ

(1)
t ≤ Ỹ (2)

t for any t ≥ 0.

c) If Ỹ is a solution with Ỹ0 = Y0, then Ỹt ≤ Yt for any t smaller than τ−(0) ∧ τ+(N).

d) Equation (C.3) holds for both Y and Ỹ .

Following the proof of [22, Theorem 3.3i)], we obtain that Pε (τ̃−(0) <∞) = 0, where the τ̃ ’s

are defined as the τ ’s in (5.7) and (5.4) but for the process Ỹ . Using the coupling described
in point c), it implies that Pε (τ+(N) ≤ τ−(0)) = 1, and letting N tend to infinity, we get
Pε (τ−(0) =∞) = 1. �

C.2. Proof of [22, Theorem 4.1] with stable jumps. We consider again Y being a solution
(5.1) and define τ+(∞) = limn→+∞ τ

+(n), where τ+(n) = inf{t ≥ 0, Yt ≥ n}.

Proposition C.3. Suppose that Assumption EU holds and let Y be the pathwise unique
solution to (5.1). If (SN∞) holds, then Px (τ+(∞) <∞) = 0 for all x > 0.

Proof. ([22, Theorem 4.1i))]) Similarly as in the proof of [22, Theorem 4.1i))], for b−1 small
enough and ε satisfying 0 < b < ε−1, we have for any ε−1 ≤ y ≤ 2ε−1,

Py(τ+(∞) =∞ or τ−(b) < τ+(∞) <∞) = 1. (C.4)

Now, we have to take into account that Y has two different types of positive jumps, from

the PPMs Q̃ or R. Let

Jπ(ε) = {A jump associated to Q̃ occurs at τ+(ε−1)},
Jρ(ε) = {A jump associated to R occurs at τ+(ε−1)}.

Let us fix λ > 0 and introduce the following real number:

A(ε) := sup
ε−1≤y≤2ε−1

Ey
[
e−λτ

+(∞); τ+(∞) <∞
]
.

Let ∆Xτ+(ε−1) = Xτ+(ε−1) −Xτ+(ε−1)−. For any ε < 1, y ≤ ε−1, we have

Py(Xτ+(ε−1) > 2ε−1) ≤ Py(∆Xτ+(ε−1) > ε−1) = Aπ +Aρ,
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where

Aπ := Py(Jπ(ε), ∆Xτ+(ε−1) > ε−1) = Py
(
Jπ(ε),

(
∆Xτ+(ε−1)

)2 ∧∆Xτ+(ε−1) > ε−1
)

≤ ε
∫ ∞

0
(z ∧ z2)π(dz),

and for α > 0 such that α < 1 + b < 1,

Aρ := Py(Jρ(ε), ∆Xτ+(ε−1) > ε−1) = Py
(
Jρ(ε),

(
∆Xτ+(ε−1)

)α ∧∆Xτ+(ε−1) > ε−α
)

≤ εα
∫ ∞

0
(zα ∧ z)ρ(dz)

where we used the Markov inequality.
Using Equation (C.4) and the strong Markov property, we get, for any ε−1 ≤ y ≤ 2ε−1:

Ey
[
e−λτ

+(∞); τ+(∞) <∞
]

= Ey
[
e−λτ

+(∞); τ−(b) < τ+(∞) <∞
]

≤ Ey
[
e−λτ

−(b)EXτ−(b)

[
e−λτ

+(∞); τ+(∞) <∞
]

; τ−(b) <∞
]
.

Using again the strong Markov property, we get for all x ≤ b ≤ ε−1

Ex
[
e−λτ

+(∞); τ+(∞) <∞
]

= Ey
[
e−λτ

+(∞); τ−(b) < τ+(∞) <∞
]

= Ey
[
e−λτ

+(∞); τ−(b) < τ+(ε−1) < τ+(∞) <∞
]

= Ex
[
e−λτ

+(ε−1)EXτ+(ε−1)

[
e−λτ

+(∞); τ+(∞) <∞
]

; τ+(ε−1) <∞
]

≤ A(ε) + εα
(
ε1−α

∫ ∞
0

(z ∧ z2)π(dz) +

∫ ∞
0

(zα ∧ z)ρ(dz)

)
︸ ︷︷ ︸

Cπ,ρ

,

where the last inequality is obtained by considering the event {ε−1 ≤ Xτ+(ε−1) ≤ 2ε−1} and
its complement. Finally, combining the last two inequalities, we obtain

Ey
[
e−λτ

+(∞); τ+(∞) <∞
]
≤ Ey

[
e−λτ

−(b); τ−(b) <∞
]

(A(ε) + εαCπ,ρ) .

But there exists C(b) < 1 such that for 2b ≤ y,

Ey
[
e−λτ

−(b); τ−(b) <∞
]
< C(b).

Otherwise we would have

lim
y→∞

Ey
[
e−λτ

−(b); τ−(b) <∞
]

= 1,

and thus τ−(b) would converge to 0 when the initial condition of the process goes to∞ which
would contradict our assumptions on the regularity of the negative jumps. Hence, as for ε

small enough, 2b ≤ ε−1, we obtain for such an ε that A(ε) ≤ C(b)Cπ,ρεα

1−C(b) . We thus deduce that

lim
y→∞

Ey
[
e−λτ

+(∞); τ+(∞) <∞
]

= 0.

Now, let us take x, µ > 0. Then, there exists N0 such that for any N ≥ N0,

EN
[
e−λτ

+(∞); τ+(∞) <∞
]
≤ µ.

Hence,

Ex
[
e−λτ

+(∞); τ+(∞) <∞
]
≤ Ex

[
EXτ+(N0)

[
e−λτ

+(∞); τ+(∞) <∞
]]
≤ µ
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and thus for all x > 0

Ex
[
e−λτ

+(∞); τ+(∞) <∞
]

= 0,

which completes the proof. �

C.3. Proof of [22, Theorem 3.3] with time dependent positive jump rate. Let t > 0
and consider the process Y solution to

Yt = Y0 +

∫ t

0
g(Ys)ds+

∫ t

0

√
2σ2(Ys)dBs +

∫ t

0

∫
R+

∫ pt(Ys− ,s,z)

0
zQ̃(ds, dz, dx) (C.5)

+

∫ t

0

∫ r(Ys− )

0

∫ 1

0
(θ − 1)Ys−N(ds, dx, dθ),

where Q̃, B are the same as in (1.1), N is a PPM on R+ × R+ × [0, 1] with intensity
ds ⊗ dx ⊗ κ(dθ), and for x, z ≥ 0 and s ≤ t, we assume that pt(·, s, z) is non-decreasing on
R+ and that there exists a finite and positive constant ct depending on t such that

pt(x, s, z) = p(x)(1 + p(x, s, z)) ≤ p(x)(1 + ctz). (C.6)

For the existence of a unique pathwise solution to (C.5), we refer to Appendix D.

Theorem C.4. [22, Theorem 3.3i) and iii)] Suppose that
∫
R+
zπ(dz) <∞ and that LDCG

holds. Let Y be a pathwise unique solution to (C.5). Then,

i) If there exist a > 1 and a non-negative function f on R+ with E
[
Θ1−a] <∞ and

g(x)

x
− aσ

2(x)

x2
= f(x) + o(ln(x)), (x→ 0), (C.7)

then Px(τ−(0) <∞) = 0 for all x > 0.
ii) If (LN0) holds and r(x) > 0 for all x ≥ 0, then for any x > 0, Px(τ−(0) <∞) > 0.

Proof. [22, Theorem 3.3i) and iii)]

i) Let us define for a > 1

G(s)
a (x) :=(a− 1)

g(x)

x
− a(a− 1)

σ2(x)

x2
− r(x)E[Θ1−a − 1]

−
∫
R+

pt(x, s, z)
(
(zx−1 + 1)1−a − 1− (1− a)zx−1

)
π(dz). (C.8)

First, applying Itô’s formula with jumps, we can check that Lemma C.1 ([22, Lemma

7.1 and Equation (7.1)]) holds for Y , replacing Ga by G
(s)
a . Next, Using (C.6) we

can show (see the proof of [22, Remark 3.2]) that under (3.12)

lim sup
x→0+

(
x−2

∫ ∞
0

pt(x, s, z)z
2

(∫ 1

0
(1 + zx−1v)−1−a(1− v)dv

)
π(dz)

)
≤ Ct

(
lim sup
x→0+

p(x)x−1

)(∫ ∞
0

(z + z2)π(dz)

)
<∞

where Ct is a finite constant. Hence, the integral corresponding to the positive jumps
is bounded in the neighborhood of 0, and Condition (C.7) is enough to control the
behaviour of the process around 0. The proof of [22, Theorem 3.3i)] is thus unchanged
and the results hold also for processes whose rate of positive jumps satisfy (C.6).
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ii) First, we have to prove that [22, Theorem 3.3ii)] still holds for processes whose
rate of positive jumps satisfy (C.6). Using that for a < 1 and for all x, s ≥ 0,

G
(s)
a (x) ≥ Ga(x), the proof of [22] is unchanged. Next, because of the product form

of the jump function, the positive jumps of Y can be seen as occurring at rate p(x),
with a size given by the measure (1 + p(x, s, z))π(dz). Therefore, as the proof of [22,
Theorem 3.3iii)] relies only on computation on the jump rate, and not on the size of
the jumps, the proof is unchanged.

�

C.4. Proof of [22, Theorem 4.1.i)] with time dependent positive jump rate. Let t > 0
and consider again the process Y solution to (C.5) under condition (C.6).

Theorem C.5. [22, Theorem 4.1.i)] Suppose that Assumption LDCG+ holds and that∫
z3π(dz) < ∞ and let Y be a pathwise unique solution to (C.5). If (SN∞) holds, then

Px(τ+(∞) <∞) = 0 for all x > 0.

Proof. [22, Theorem 4.1.i)] Let us recall the definition of G
(s)
a in (C.8). We have using

Taylor’s formula and (C.6) that

lim sup
x→∞

∫
R+

pt(x, s, z)
(
(zx−1 + 1)1−a − 1− (1− a)zx−1

)
π(dz)

=a(1− a) lim sup
x→∞

x−2

∫
R+

pt(x, s, z)z
2

(∫ 1

0
(1 + zx−1v)−1−a(1− v)dv

)
π(dz)

≤ Ct lim sup
x→∞

p(x)

x2

∫
R+

(z2 + z3)π(dz) <∞

for some Ct > 0, combining LDCG, (3.10) and the fact that
∫
R+

(z2 ∨ z3)π(dz) < ∞.

Therefore, the integral corresponding to the positive jumps is bounded for large values of x,
and Condition (SN∞) is enough to control the behaviour of the process near infinity. The
proof of [22, Theorem 4.1.i)] is thus unchanged and the results hold also for processes whose
rate of positive jumps satisfies (C.6). �

C.5. Proof of [22, Theorem 6.2] with time dependent positive jump rate. Let t > 0
and consider again the process Y solution to (C.5) where for x > 0, z ≥ 0 and s ≤ t,
pt(x, s, z) ≤ p(x)(1 + ctz) and pt(x, s, z) ≤ p(x)(1 + zx−1) with ct a finite and positive
constant depending on t.

Theorem C.6. [22, Theorem 6.2.ii)] Suppose that Assumption LDCG+ and (SN∞) hold
and that

∫
z3π(dz) <∞ and let Y be a pathwise unique solution to (C.5). Assume also that

(LSG) holds (with g, r instead of ĝ, r̂).

(i) If (SN0) holds, then Y converges in law as t tends to infinity to Y∞ and for every
bounded and measurable function f , almost surely

lim
t→+∞

1

t

∫ t

0
f(Xs)ds = E [f(X∞)] .

(ii) If (LN0) holds, then Px (∃t <∞, Yt = 0) = 1.

We first prove a lemma, as in [22]. Let x0, t0 > 0. For all i ≥ 0, we consider the stopping
times Ti(x0), given by T0 = 0 and for all i ≥ 1, Ti(x0) = inf{t ≥ Ti−1(x0) + t0, Yt ≤ x0}.

Lemma C.7. [22, Lemma 7.2.] Suppose that Assumption LDCG+ holds and that
∫
z3π(dz) <

∞. Then, if (SN∞) and (LSG) hold, then E [Ti(x0)] <∞ for all i ≥ 0.
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Proof. ([22, Lemma 7.2]) Let us choose 0 < x0 < x1 and let τ = τ−(x0) ∧ τ+(x1) (recall
(5.5) and (5.7)). Following the same steps as in the proof of [22, Lemma 7.2] we have,

lnYt∧τ ≤ lnY0 +

∫ t∧τ

0

g(Ys)

Ys
ds−

∫ t∧τ

0

σ2(Ys)

Y 2
s

ds+ E[ln Θ]

∫ t∧τ

0
r(Ys)ds+Mt∧τ

where (Ms∧τ , s ≥ 0) is a martingale. According to (LSG), we have ln(Yt∧τ ) − ln(Y0) ≤
−η(t ∧ τ) +Mt∧τ , and following the proof of [22, Lemma 7.2], we obtain

Ex(τ) ≤ 1

η
ln

(
x

Θx0

)
.

For the end of the proof, we follow exactly [22, Lemma 7.2], using the generalization of [22,
Theorem 4.1.i)] proved in Appendix C.4. �

Proof of Theorem C.6. [22, Theorem 6.2.] The first point follows directly from Lemma C.7
and [10, Theorem 7.1.4] as in [22]. For the second point, let a < 1 be such that Condition
(LN0) is satisfied, and let δ < (3 − 2a)−1. Following the proof of [22, Theorem 3.3.ii)],

replacing Ga by G
(s)
a defined in (C.8), and using that for a < 1, under (LN0),

G(s)
a (x) ≥ (a− 1)

g(x)

x
− a(a− 1)

σ2(x)

x2
≥ (1− a) ln(x−1)

(
ln
(
ln(x−1)

))1+η2 ,

we get that there exist t and p such that for all ε small enough, and z ∈ (ε1+δ, ε1−δ),

Pz
(
τ−(0) ≤ t(ε)

)
≥ p(ε).

From this result, we can prove [22, Eq. (7.29)]. Next, the proof of [22, Eq. (6.3)] requires
[22, Eq.(7.18)]. To prove [22, Eq.(7.18)] in our case, we have to deal with the dependence
on the jump size of the jump rate pt to obtain a lower bound on the probability to have no
positive jump during a time interval of the form [0, t∧ τ+(y)∧ τ−(x)] with 0 < x < y. Hence
the idea is to bound the expectation of the sum of positive jumps on [0, t ∧ τ+(y) ∧ τ−(x)]
and use Markov inequality. Let T = τ+(y) ∧ τ−(x). Then, for any y0 ∈ (x, y),

Py0 (Yt∧T ≥ y) ≤ Py0
(∫ t∧T

0
g(Ys)ds+ IQ(t ∧ T ) +

∫ t∧T

0

√
2σ2(Ys)dBs ≥ y − y0

)
,

where

IQ(t ∧ T ) :=

∫ t∧T

0

∫
R+

∫ pt(Ys,s,z)

0
zQ(ds, dz, dx)

≤
∫ t∧T

0

∫ Ys

0

∫ 2p(Ys)

0
zQ(ds, dz, dx) +

∫ t∧T

0

∫ ∞
Ys

∫ 2zp(Ys)/Ys

0
zQ(ds, dz, dx)

≤
∫ t∧T

0

∫
R+

∫ 2p(Ys)

0
zQ(ds, dz, dx) +

∫ t∧T

0

∫
R+

∫ 2zp(Ys)/Ŷs

0
zQ(ds, dz, dx). (C.9)

Then, as in [22] p.19, if we denote by J(t, x, y) the event of having no positive jumps due to

the first integral in (C.9), we have for all y0 ∈ (x, y), Py0(J(t, x, y)) ≥ e−2tp(y), because p is
non-decreasing according to Assumption EU. Next,

Py0 (Yt∧T ≥ y, J(t, x, y))

≤ Py0

(∫ t∧T

0
g(Ys)ds+

∫ t∧T

0

∫ 2p(Ys)/Ys

0

∫
R+

zQ(ds, dx, dz) +

∫ t∧T

0

√
2σ2(Ys)dBs ≥ y − y0

)
,
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where Q is a PPM with intensity ds⊗ dx⊗ zπ(dz) (see Appendix E). Considering as before
the event that there is no positive jumps associated to Q, we get

Py0 (Yt∧T ≥ y) ≤ 2− e−2tp(y) − e−2tp(y)/y + Py0
(∫ t∧T

0
g(Ys)ds+

∫ t∧T

0

√
2σ2(Ys)dBs ≥ y − y0

)
.

We conclude as in [22], that supx≤v≤z g(v) < ∞ according to Assumption EU and that
infx≤v≤y r(v) > 0 holds under Assumption LDCG. �

Appendix D. Proof of Proposition 4.1

The proof is a direct application of [26, Proposition 1]. Notice that in the statement of [26,
Proposition 1], the functions b, g and h do not depend on time, unlike the present case of our
process. However this additional dependence does not bring any modification to the proofs
(which are mostly derived in the earlier paper [19]). First according to their conditions (i)
to (iv) on page 60, our parameters are admissible. Second, we need to check that conditions
(a), (b) and (c) are fulfilled. It follows directly from Assumption EU.

Appendix E. Generalization to a division rate depending on the
fragmentation parameter θ

In some proofs, we need to consider a slight generalization of the SDE (5.1) where an
individual with trait x dies and transmits a proportion θ ∈ [0, 1] of its trait to its left
offspring at a rate r(x)l(θ), that depends on θ, where l : [0, 1] → R+ is a nonnegative
function. However, using the properties of Poisson random measures we can prove that a
solution to such an SDE can be rewritten as the solution to (5.1) by modifying the death
rate r and the fragmentation kernel κ.

Lemma E.1. Assume that
∫ 1

0 l(θ)κ(dθ) <∞. Let

κ̂(dθ) = l(θ)

(∫ 1

0
l(θ)κ(dθ)

)−1

κ(dθ), r̂(x) = r(x)

∫ 1

0
l(θ)κ(dθ),

and Q̃, B and N be defined as in (5.1). Then, there exists a Poisson random measure N ′

with intensity ds⊗ dz ⊗ κ̂(dθ) such that X is the pathwise unique solution to

Xt = X0 +

∫ t

0
g(Xs)ds+

∫ t

0

√
2σ2(Xs)dBs +

∫ t

0

∫ p(Xs− )

0

∫
R+

zQ̃(ds, dx, dz)

+

∫ t

0

∫ r̂(Xs− )

0

∫ 1

0
(θ − 1)Xs−N

′(ds, dz, dθ),

if and only if X is the pathwise unique nonnegative strong solution to

Xt = X0 +

∫ t

0
g(Xs)ds+

∫ t

0

√
2σ2(Xs)dBs +

∫ t

0

∫ p(Xs− )

0

∫
R+

zQ̃(ds, dx, dz)

+

∫ t

0

∫ 1

0

∫ r(Xs− )l(θ)

0
(θ − 1)Xs−N(ds, dz, dθ).
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