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Abstract: Samples of the carbonaceous asteroid Ryugu were brought to Earth by the Hayabusa2 
spacecraft. We analyzed seventeen Ryugu samples measuring 1-8 mm. There are CO2-bearing 
water inclusions within a pyrrhotite crystal, indicating that Ryugu’s parent asteroid formed in the 
outer Solar System. The samples contain objects formed at high temperatures such as chondrules 35 
and Ca, Al-rich inclusions with low abundances. The samples are rich in phyllosilicates and 
carbonates formed by aqueous alteration at low-temperature, high-pH, and water/rock ratios < 1 
by mass. Less altered fragments with olivine, pyroxene, amorphous silicates, calcite, and 
phosphide are identified. Numerical simulations based on mineralogical and physical properties 
of the samples indicate that the Ryugu parent body formed at ~ 2 million years after the birth of 40 
the solar system. 

 
Main Text 
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  The carbonaceous asteroid (162173) Ryugu is a rubble pile formed by reaccumulation of 
material ejected from a parent asteroid by a large impact (1). Remote sensing observations have 
shown that Ryugu is related to hydrous carbonaceous chondrite meteorites (2). However, there 
are some differences with those meteorites, suggesting later heating and partial dehydration of 
Ryugu (2, 3). Reflectance spectra are nearly uniform across Ryugu’s surface, indicating minimal 5 
compositional diversity at its surface (2, 3), except for some boulders (3, 4, 5). 
 We expect samples of Ryugu to retain a record of the formation and early evolution of the 
parent body and Ryugu itself. We analyzed samples collected by the Hayabusa2 spacecraft (6), 
seeking to determine i) when and where in the solar nebula Ryugu’s parent asteroid formed, ii) 
the initial mineralogy and water ice content, iii) how these original materials evolved through 10 

water-rock reactions, iv) how the asteroid was heated by the decay of short-lived radionuclides, 
and v) how the material was ejected from the parent body by an impact and re-accumulated to 
form Ryugu. 
  We analyzed seventeen Ryugu particles ranging from 1 to 8 mm in size (Fig. 1A shows 
the largest particle, C0002, and Fig. S1 shows all particles), consisting of seven particles from 15 
chamber A, collected at the first touchdown site (TD1), and ten particles from chamber C, 
collected at the second touchdown site (TD2) (6). We refer to these mm-sized particles as coarse 
samples. Finer-grained powder samples (<1 mm in size: Fig. S2) obtained from TD1 and TD2 
were also used for reflectance spectroscopy. 

 20 

Reflectance spectra 
Visible (Vis), near-infrared (NIR), and mid-infrared (MIR) [wavelength range (0.4 - 18 

μm)] reflectance spectra were measured from many of the coarse Ryugu samples packed together 
(seven particles from TD1 and seven particles from TD2: Fig. S1), from the powder samples, and 
from samples of meteorites Orgueil and Tagish Lake, without exposure to air in entire analysis 25 
procedures ((7) and Fig. S2). MIR and far-infrared (FIR, 17-100 µm) reflectance spectra were 
also measured in air for sample A0026 and samples of the meteorites Orgueil, Alais, Tagish 
Lake, and Murchison. 

All analyzed Ryugu samples exhibit similar Vis-NIR spectra (Fig. 2A). They have ~2.0-
2.5% reflectance (at 550 nm) with a slightly red slope of ~0.1-0.3% μm-1 (0.48 to 0.86 µm) and 30 
~0.2-0.3% μm-1 (2.0 to 2.5 μm). There are no strong absorption features blueward of 2.7 μm (Fig. 
2A). No 0.7 μm absorption, due to Fe3+-rich phyllosilicates (8), was detected. The Ryugu 
samples have an absorption band (~20% in depth) centered at ~2.71 μm (Fig. 2B), which is due 
to O-H stretching vibrations in Mg-rich phyllosilicates (9, 10). A weaker absorption band at ~3.1 
µm is possibly due to ammoniated salts or other nitrogen-bearing compounds (11). Absorptions 35 
at ~3.4–3.5 μm are due to aliphatic organics and carbonates, and those at ~3.8–3.95 μm are due 
to carbonates. In the MIR-FIR, the Christiansen feature, the reflectance minimum characteristic 
of the chemical composition, is present at ~9.1 μm. Reststrahlen bands, the reflectance peaks 
associated with Si-O stretching and bending modes, appear as strong peaks at ~9.8 μm, with a 
shoulder at ~10.75 μm, and as a doublet at ~22.3 µm (Fig. 2C).  40 

Visible spectra of the touchdown sites were obtained by the Optical Navigation Camera 
Telescope (ONC-T) (3) on the Hayabusa2 spacecraft at spatial resolution of 0.3-0.5 m pixel-1, 
before and after the sample collection. The location of TD1 showed higher reflectance than TD2 
(Fig. 2D). We find similar results: the coarse and powder Ryugu samples from TD1 both exhibit 
higher reflectance than those from TD2 (Fig. 2A). The surface reflectance decreased after the 45 
touchdowns because the spacecraft thrusters removed powder from the surface of Ryugu during 
ascent (Fig. 2D) (12). Visible spectra of the coarse and powder Ryugu samples have similar 
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reflectance values to the ONC-T spectra of the landing sites (7), and to the global average 
(Fig.2A), indicating that the samples are representative of the global spectral properties of Ryugu. 
Reflectance ratios of ONC-T to the powder samples at 0.55μm is ~0.9 for both TD1 and TD2 
(Fig. 2D). 

Spectra of the Ryugu samples are generally consistent with Ryugu average spectra 5 
measured with Hayabusa2’s ONC-T (3) and Near Infrared Spectrometer (NIRS3) (2) instruments. 
There are some differences between the NIRS3 and laboratory spectra (Fig.2A), even after 
converting both to the same wavelength resolution (Fig. 2B). The NIRS3 spectra have lower 
reflectance R relative to sample (R NIRS3 R sample-1 = 0.7 at 2.0 µm) and a shallower 2.7 µm 
absorption depth Depth (Depth NIRS3 Depth sample-1 = ~0.5 at 2.7μm), consistent with (13). 10 
This could be due to differences in particle size distribution and porosity between the laboratory 
samples and Ryugu’s surface, or the much larger field of view of NIRS3 (see also (13)). 

Ryugu and the laboratory samples have similar reflectance to asteroid Bennu (14) in the 
visible wavelength but opposite spectral slopes (Fig. 2A). The 2.7 μm feature (Fig. 2B) and the 
bands in the MIR-FIR spectrum (Fig. 2C) of Bennu (15) also differ from Ryugu.  15 

The Ryugu samples are much darker and have a flatter spectral slope than the meteorites  
Orgueil and Tagish Lake (Fig. 2A). Orgueil is classified as a CI1 meteorite, meaning an 
aqueously altered (modified by reactions with water) Ivuna-type carbonaceous chondrite, while 
Tagish Lake is a C2, a carbonaceous chondrite that was less altered so retains anhydrous 
minerals. The position of the OH absorption band in the Ryugu sample spectra is consistent with 20 
that in Orgueil, Tagish Lake, and the ungrouped C1 chondrite Flensburg in which sub-millimeter 
size anhydrous aggregates made of silicate and glass, chondrules, are totally replaced by 
phyllosilicates (16). The same feature appears at longer wavelengths in the Murchison CM2, 
carbonaceous chondrite meteorites of Mighei type, and asteroid Bennu (Fig. 2B; (2, 14)). The 
position of this band is known to correlate with Mg/Fe ratio in phyllosilicates, so we infer that 25 
Ryugu, Orgueil, Tagish Lake, and Flensburg contain Mg-rich phyllosilicates, while Murchison 
and Bennu contain Fe-rich phyllosilicates (9, 10).  
 
3D structure and density 

All our coarse Ryugu samples, except one sample A0058, were characterized using 30 
synchrotron X-ray computed tomography (SR-CT (7)), with a resolution of 0.85 micron/voxel 
(Table S1). Most of the samples had an irregular shape, but some exhibited one or two broad flat 
surfaces. Particles with flat surfaces were also observed during the sample collection process (6). 
The particle interiors have cracks; most are irregular, but some particles (e.g., C0055) contain 
parallel cracks with spacings of tens to hundreds of microns (Fig. S3).  35 

The mass of each coarse sample particle was measured under dry conditions in a glove 
box and the density was calculated from the sample volume determined using SR-CT (Table S1). 
The bulk density (mass/total volume, including cracks and pores) ranged from 1.7 to 1.9 g/cm3 
with an average of 1.79±0.08 g/cm3 (Table S1), which is higher than estimated from earlier 
measurements in the curation facility (1.3 g/cm3 (17)) which did not consider the full 3D 40 
structure. These densities are higher than the measured average density of Ryugu (1.2 g/cm3: (1)), 
indicating that the asteroid has high internal macro-porosity. The average bulk densities of CI 
(Ivuna-type) and CM (Mighei-type) chondrite meteorites are 2.12 and 2.21g/cm3, respectively 
(18), while the ungrouped C1 chondrite Flensburg has density 1.98 g/cm3  (16). Considering 
mineralogical similarities to CI chondrites, the lower density of Ryugu samples indicates a 45 
porosity higher than for CI chondrites. 
 



Submitted Manuscript: Confidential 
Template revised February 2021 

7 
 

Mechanical, thermal, electrical, and magnetic properties 
The Ryugu samples A0026 (TD1) and C0002 (TD2, our largest particle) were measured 

(7) to determine mechanical, thermal, electrical, and magnetic properties (Tables 1) to compare 
with carbonaceous chondrites (Table S2) and for use in numerical simulations.  

The resulting physical properties of the Ryugu samples are not identical to any known 5 
meteorite. Most properties are similar to hydrous CI and CM chondrites, but differ from 
anhydrous CV (Vigarano-type) and CO (Ornans-type) chondrites (Tables 1 and S2). The 
mechanical properties show that Ryugu samples are weaker in strength, especially Young’s 
modulus and Poisson’s ratio, than hydrous carbonaceous chondrites (Table S2) and have a larger 
volume change upon deformation (such as compression or impact). The thermal expansivity of 10 
the Ryugu samples differs from the nonlinear temperature-dependent results measured for some 
carbonaceous chondrites (19), but is linear in the temperature range of 220-370 K (Fig. S4).  

The thermal properties (Table 1) could be responsible for the low thermal inertia of 
Ryugu (20, 21). The thermal diffusivity (Table 1) and the bulk density of sample C0002 (Table 
S1) were used to calculate the thermal conductivity of 0.5 Wm-1K-1 and thermal inertia of 890 J 15 

m-2 s-0.5 K-1 (hereafter thermal inertia units, TIU) at a temperature of 298 K. The thermal inertia 
of the sample is higher than the mean of the asteroid surface observed by Hayabusa2 [225±45 
TIU (22)], and measured in situ at the Mobile Asteroid Surface Scout (MASCOT) landing site 
[295 ± 18 TIU (21)]. Remote sensing is sensitive to a thermal skin depth of ~10 mm, whereas the 
thickness of the sample measured in the laboratory is <1 mm, so a thermal shielding effect could 20 

arise on intermediate scales (e.g. cracks of several millimeters length).  
Thin sections of magnetite framboids (aggregates of equidimensional microcrystals of 

magnetite) with diameters of 300-1100 nm were observed using electron holography at a spatial 
resolution of 14 nm (7). These magnetite inclusions have vortex magnetic structures and 
magnetic flux leakage out of the particles (Figs. 3A-C and S5). The externally leaking magnetic 25 
flux was detected as remanent magnetization in macroscopic measurements. Mössbauer spectra 
showed that half of the iron in these samples is in magnetite, and the magnetic hysteresis 
parameter values (Table 1) similar to those of carbonaceous chondrites containing the 
submicron-sized equidimensional magnetite framboids (23, 24). Therefore, the magnetite 
framboids dominate the natural remanent magnetization (NRM) of asteroid Ryugu. Two Ryugu 30 
particles from different sampling sites (A0026 from TD1 and C0002 from TD2) record magnetic 
fields of 31–260 μT and 18-704 μT (Fig. S6), respectively, suggesting that the source magnetic 
field was homogeneous in Ryugu’s parent planetesimal size. 
 
Elemental abundances 35 

We used muon X-ray emission spectroscopy to measure the abundances of major 
chemical elements in the ten coarse Ryugu samples, including the largest sample C0002 (126.6 
mg in total) (7, 25, 26). Because the muon beam is > 3cm in diameter, we analyzed all ten 
samples together to obtain a mean bulk elemental abundance. Pellets of the meteorites Murray 
(CM2; 306.5 mg) and Orgueil (CI1; 195 mg) were measured for comparison.  40 

We detect carbon, nitrogen, oxygen, sodium, magnesium, silicon, sulfur, iron, and 
nickel (Fig. 4A). The Ryugu and Orgueil spectra are very similar, indicating similar major 
elemental abundances. However, the Ryugu samples contain less oxygen than Orgueil. 

We calculated elemental mass ratios M/Si (M=C, N, O, Na, Mg, S, and Fe) from the 
muon X-ray data (7). M/Si has previously been measured for the Murray meteorite (Table 3), so 45 

it was used as a standard. We determined Ryugu mass ratios of C/Si=0.338±0.008, 
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N/Si=0.019±0.009, O/Si=3.152±0.099, Na/Si=0.039±0.006, Mg/Si=0.890±0.021, 
S/Si=0.510±0.019, and Fe/Si=1.620±0.040. These elemental ratios are consistent with CI 
chondrites (27) and the Sun (28), except O/Si is 25% lower in Ryugu than CIs (Table S3 and Fig. 
S7). These abundances nevertheless classify Ryugu as a CI chondrite, consistent with other lines 
of evidence (29).  5 

CI chondrites contain 45 wt% oxygen (27); Ryugu is depleted in oxygen by 11.3 wt%, 
given its similar Si concentration to CI chondrites (29). The Ryugu samples were prepared and 
analyzed in low oxygen conditions (< 0.1 %) and in dry atmosphere (dew points < -50 °C), so 
the indigenous oxygen abundance of Ryugu samples was determined. The lower water content 
and sulfate abundance of Ryugu samples than CI chondrites (29) are probably the cause of the 10 

low oxygen abundance. 
Nitrogen-bearing molecules, such as NH3, CN, and N2, have low freezing points and 

could only have been incorporated into asteroids in the outer Solar System (30). The N/C ratio 
can therefore be used to infer the distance from the Sun of Ryugu’s parent body during its 
formation. We measured an average N/C atomic ratio of 0.047±0.022 from the ten coarse 15 

samples. This is higher than primitive anhydrous chondrites (N/C = 0.001 to 0.02), consistent 
with hydrated chondrites such CM and CI (N/C = 0.02 to 0.06), and lower than ultra-
carbonaceous micrometeorites of probable cometary origin (N/C = 0.06 to 0.2) (30). We 
conclude that Ryugu’s parent body formed at heliocentric distances similar to hydrated 
carbonaceous chondrites. 20 

 
Mineralogy and mineral chemistry 

The SR-CT image of C0002 (Fig. 1B) shows that it consists almost entirely of fine-
grained matrix material. No distinct objects formed at high temperatures (>1000 °C) in the early 
solar nebula such as chondrules (formed by melting of precursor silicate-rich dust) or Ca, Al-rich 25 
inclusions (CAIs: formed by condensation from hot nebular gas and were the earliest indigenous 
solid in the solar system) over 100 μm diameter were found from all coarse samples, but there 
are smaller examples (discussed below). 

We produced 31 polished sections cut from 11 samples (Table S4) including 2 plates from 
the largest sample C0002. Observations with field-emission electron microscopes show that most 30 
of the coarse samples are breccias consisting of fragments ranging in size from ~10 to ~500 
microns. Elemental abundance maps of Na and Mg show compositional differences between 
fragments (Fig. S8), usually with sharp boundaries. Most of the fragments consist primarily of 
fine-grained matrix material, with similar (though not identical) mineralogy and mineral 
chemistry, which we refer to as Ryugu’s major lithology. CI1 chondrites have similar properties, 35 
with Orgueil being the most brecciated, with the Ryugu samples having similar brecciation to 
Orgueil (31, 32).  

The major lithology of Ryugu (Fig. 1C) consists of minerals formed by aqueous 
alteration: the dominant phase is a phyllosilicate-rich matrix that contains minerals including 
abundant iron sulfides (pyrrhotite and pentlandite), carbonates (breunnerite and dolomite), 40 
magnetite, and hydroxyapatite. The phyllosilicates consist of the minerals saponite and 
serpentine. Chlorite was only detected in a limited area in C0076. Mg-Na phosphate occurs in 
some places and appears to have shrunk in volume since its formation, probably due to degassing 
of volatile species, such as water (Fig. S9). Dolomite is the most abundant carbonate mineral; 
breunnerite is less abundant but occurs as larger crystals, with one in C0002 measuring 940µm × 45 
450µm × 262 µm (Movie S1). Ca carbonate is rare. Pyrrhotite crystals with a pseudohexagonal 
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shape (1-100 µm) are abundant and sometimes include pentlandite. Nano- to submicron-size 
pyrrhotite and pentlandite crystals occur ubiquitously in the phyllosilicate matrix (Fig. S10). 
Magnetite is present in diverse morphologies (Fig. S11), which is typical of CI1 chondrites (31). 
The carbonates often contain small (< 10 µm) crystals of magnetite and pyrrhotite. Small (< 10 
µm) olivine and low-Ca pyroxene crystals are present but rare; they are completely absent from 5 
some of the coarse samples.  

Ferrihydrite was not observed, despite being a major component of Orgueil (33, 34). Nor 
was magnesium sulfate. Calcium sulfate (gypsum; CaSO4(H2O)2) was detected only as very 
small grains around larger crystals of calcite (Fig. S12) and probably formed after sample 
recovery on Earth, by reactions of calcite with sulfuric acid produced by oxidation of small 10 
pyrrhotite crystals within the Ryugu samples (35, 36). Small crystals of sodium sulfate grew on 
the surface of polished sections of Ryugu samples (Fig. S13), which is apparently of terrestrial 
origin. We infer that sulfates are likely absent on Ryugu, implying that sulfates in CI1 chondrites 
are terrestrial contamination (37). Additional minor minerals include chromite, Mn-rich ilmenite, 
spinel, ZnS, cubanite, and daubréelite. Carbonaceous material occurs as globules and diffuse 15 
objects in matrix. 

Phyllosilicates in the major lithology have Mg# (defined as atomic ratio of Mg/(Mg+Fe)× 
100) mostly in the range of 75-90, similar to Orgueil, but Ryugu phyllosilicates have more 
magnesium-rich varieties than in Orgueil, because parts of Ryugu data are plotted in the Mg#>85 
area (Fig. 4B). The compositions of the carbonates are very similar to CI1 chondrites (Fig. 4C). 20 
Breunnerite and dolomite contain 1-10 and 2-5 wt % MnO, respectively. Hydroxyapatite 
contains a small amount of fluorine (< 1 wt%), typical of chondrites (38). We performed high-
energy synchrotron X-ray fluorescence (XRF) tomographic analysis (39), finding enrichment of 
rare-earth elements (REEs) in hydroxyapatite, with mutually-consistent levels of each REE (Fig. 
S14). This is unlike apatite grains in ordinary chondrites (40) and Orgueil (32), which have 25 
higher levels of Eu and Gd, respectively, than other REEs. Ordinary chondrites and CK 
(Karoonda-type carbonaceous chondrites) have REE abundances that decrease from light to 
heavy atomics masses (40), unlike Ryugu. The magnetite does not contain detectable trace 
elements, while ilmenite contains various concentrations of MnO up to 10 wt%, both typical of 
CIs (34, 41). Pyrrhotite contains Ni up to 2 wt%. The Ni/Fe atomic ratio of pentlandite ranges 30 
from 1 to 1.2 in most cases. Representative compositions are listed in Table S5.  

Relative mineral abundances were estimated from two element maps of C0002 (~9.0 and 
~8.6 mm2 area) composed primarily of the major lithology. The abundances (Table S6) are 
broadly consistent with those of Orgueil (31, 32, 42).  

We performed X-ray diffraction (XRD) analysis of a whole sample of C0002 (Fig. S15), 35 
finding a large, broad peak at approximately 10 Å and a distinct peak at 7.45 Å, which we 
identify as due to saponite and serpentine, respectively. The 10 Å peak indicates a low abundance 
of interlayer H2O in saponite, as previously inferred using other techniques (29). To characterize 
the phyllosilicates, we applied ethylene glycol to 10 small particles separated from several coarse 
samples (7) and observed peak shifts in the XRD patterns, indicating expansion of interlayer 40 
spacings due to addition of glycol (Fig. S16). We identify reflections at 16.8, 13.3 and 7.28 Å as 
due to saponite-serpentine mixed-layer minerals based on the first two reflections and pure 
serpentine from the last reflection (7). The saponite-rich mixed-layer mineral is the most 
abundant followed by serpentine, but the relative abundances differ between samples. Similar 
results have previously been obtained for Orgueil (43). 45 

Although the bulk mineralogy of Ryugu samples is similar to Orgueil, we found above 
that the Ryugu samples are much darker. Possible explanations are the presence of bright Mg-
sulfate epsomite in Orgueil (37), and a lower Fe3+ abundance in phyllosilicates in the Ryugu 
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samples (Fe3+/Fe total is 0.4 for Ryugu and 0.9 for Orgueil). Mg-rich smectite becomes brighter as 
Fe3+/Fe total increases from 0.40 to 0.97 (44). The oxidation of phyllosilicates and the formation 
of epsomite can occur on Earth due to weathering, which we infer is the likely origin of the 
brightness of Orgueil. Ryugu samples also contain a high abundance of opaque, nano-size 
pyrrhotite, (Fig. S10) which acts as a darkening agent; Orgueil lacks these (34), possibly also due 5 
to oxidation on Earth (45). 
 The mineralogy, mineral chemistry, and relative mineral abundances of the major 
lithology indicate that Ryugu (or its parent body) experienced pervasive aqueous alteration. 
Except for the lack of sulfate and ferrihydrite, the petrological and mineralogical properties of 
Ryugu are consistent with the five CI chondrites (31, 32, 34, 46–48); we therefore classify the 10 

Ryugu samples as CI chondrites. 
 
Less altered fragments 

While most Ryugu fragments have experienced extensive aqueous alteration, some 
fragments in samples of C0002, C0033, C0023, C0025, C0040, C0046, C0076, and C0103 show 15 
a considerably lesser degrees of alteration. Electron-microprobe analysis (7) indicates that these 
fragments contain higher abundances of olivine and pyroxene (Table S6). Electron diffraction 
(Fig. S17) shows that they also contain calcite or aragonite (not dolomite or breunnerite) and 
phosphides (schreibersite (Fe, Ni)3P and allabogdanite (Fe, Ni)2P) not hydroxyapatite. These are 
characteristic features of a less-altered lithology. These less-altered fragments are enriched in Na, 20 
with Na/Si ratios ~2 times that of the Sun (Table S7).  

We identified five less altered fragments in one of the thin sections of C0002. The Mg 
map of C0002 (fragment 1 in Fig. S8B) indicates a high abundance of olivine and low-Ca 
pyroxene, which are rich in Mg relative to surrounding phyllosilicates, and spinel grains with 
sizes < 30 µm (Fig. S18 and Table S6). Most olivine in the Ryugu samples occurs in these less 25 
altered fragments; it has Mg# > 97 (corresponding to FeO < 3 wt% in Fig. 4D), similar to olivine 
in CI chondrites (49–51). A similar, but more altered, fragment has previously been reported in 
Orgueil [(52), their clast 1]. 
  We identified the two fragments that exhibit the least alteration among our samples: 
labelled fragments 4 and 5 in Fig. S8B. The fragments are small (Fig. S19: 130 µm x 50 µm and 30 
200 µm x 90 µm for fragment 4 and 5, respectively) and embedded within the major lithology. 
They have a very porous texture, dominated by submicron particles of olivine, pyroxene, and 
other smaller silicate phases with numerous iron sulfide inclusions (Fig. 3D and E). They also 
contain micron-sized regions of Ca carbonate, pyrrhotite, Al spinel, magnetite spherules, small 
quantities of phosphides, MgNa phosphate, pentlandite, Cr spinel, and tochilinite, a hydrous 35 
sulfide that is abundant in CM2 chondrites (53) (Fig. S20). These mineral assemblages are 
similar to fragment 1, but the abundance of olivine and pyroxene is much higher (12.8 and 14.1 
vol % for olivine in fragments 4 and 5, respectively; see Table S6). Most of the olivine and 
pyroxene is enriched in Mg, but examples of Fe-rich olivine (Mg#<44) are also present. Several 
small areas in fragment 4 contain Na-rich phyllosilicate, indicating that aqueous alteration fluids 40 
were enriched in sodium. The high abundance of anhydrous silicates leads us to classify the least 
altered fragments as CI2 (a CI chondrite that was altered but still retains anhydrous minerals), 
rather than CI1 (in which almost all anhydrous silicates are replaced by phyllosilicates). 

We observed the least-altered fragments using transmission electron microscopy (TEM 
(7)), finding that the least-altered fragments also contain numerous partially rounded, mostly 45 
100-500 nm, amorphous silicate objects that contain abundant Fe sulfides (mainly < 50nm 
pyrrhotite and minor pentlandite) (Fig. 3F and S21A). These objects are similar in texture and 
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composition (Fig. S21A and B) to glass with embedded metal and sulfides (GEMS) that occur in 
anhydrous chondritic interplanetary dust particles (IDPs) of probable cometary origin (54). The 
silicates are mostly amorphous or very poorly crystalline material (the latter possibly 
phyllosilicates) with lattice spacings close to 2.6 and 1.5 Å (Fig. S21A). This is similar to fine-
grained fibrous material reported in the GEMS-like objects in the Paris CM chondrite (55, 56).  5 

However, there are differences between the least-altered Ryugu fragments and GEMS in 
IDPs. The GEMS-like objects we identify in Ryugu lack Fe metal, instead containing pyrrhotite, 
pentlandite, and tochilinite. The silicates have signs of incipient alteration to phyllosilicates (Fig. 
S21A). The Mg-rich silicate composition of the GEMS-like objects in Ryugu is similar to the 
silicates in GEMS in IDPs (Fig. S21B), but also to the phyllosilicate composition in the major 10 
lithology (Fig.4B). This indicates that the GEMS-like objects in Ryugu are at least partially 
altered, similar to the primitive clasts in the Paris CM chondrite (55-57).  
 
Chondrules, CAIs, and porous olivine 

We do not identify any normal sized chondrules (100-1000 µm) in the Ryugu samples 15 
analyzed using SR-CT. However, some smaller objects and fragments (Fig. 3G-I) have features 
characteristic of chondrules. Some of these (Fig. 3G and H) contain FeNi metal spheres 
embedded in Mg-rich olivine (Mg#>98), indicative of melting in very chemically reduced 
conditions, which is typical of type-I chondrules that consist mainly of olivine with Mg#>90. 
One object has a barred olivine texture in TEM observations (Fig. 3I) - a thin rim and many bars 20 
constituting a single crystal of Mg-rich olivine. Therefore, this object is a type-I barred olivine 
chondrule. No glass is present between the olivine bars, only pores, probably indicating glass 
was originally present but dissolved during the early stages of aqueous alteration. We also 
identified a small (~ 30 µm in size) chondrule that has been completely replaced by 
phyllosilicates (Fig. S22 and Movie S2). Similar completely altered chondrules have previously 25 
been found in the ungrouped C1 chondrite Flensburg, although they are larger (>300 µm) (16). 
The small size and low abundance of the chondrules in Ryugu are similar to those found in 
samples of the short-period comet 81P/Wild2 (58). 
 We also identified a few small (< 30 µm) CAIs in the Ryugu samples (Fig. 3K and L). 
Their sizes are smaller than CAIs in the Ivuna CI1 chondrite (~100 µm) (59). One of the CAIs 30 
(Fig. 3K) consists of half hibonite and half Al-rich Fe-free spinel, with a small perovskite 
inclusion. Another (Fig. 3L) consists solely of Al-rich Fe-free spinel, with a small hibonite and a 
perovskite inclusion. We interpret this as evidence that CAI material that is susceptible to 
aqueous alteration, such as melilite (60), was replaced by phyllosilicates. Several CAI-related 
spinel-rich aggregates, together with forsteritic olivine, were also observed (Fig. S18). 35 
 Forsterite (Mg#98-99) grains occur in the less-altered lithology, being < 30 µm in size 
with numerous micron-size pores. One (Fig. 3J) contains Al, Ti-bearing Ca, Mg-rich pyroxene, 
diopside. We analyzed 20 grains of porous forsterite by an electron microprobe, finding they all 
contain ~0.5 wt% MnO. Atomic ratios of Mn/Fe do not exceed 1 in most cases and thus they are 
not low-iron manganese-enriched (LIME) olivine (61). The pores suggest partial dissolution 40 
during aqueous alteration. The origin of this porous olivine is unclear; they could be 
condensation products, similar to amoeboid olivine aggregates (AOAs) found in carbonaceous 
chondrites (62), although the texture of the olivine crystals in Ryugu is different from AOAs (63). 
 
Fluid inclusions in pyrrhotite 45 

We performed higher-resolution (~50 nm/voxel) synchrotron nano-computed 
tomography (SR-nanoCT) of a large pyrrhotite crystal taken from sample C0002. This crystal 
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showed probable fluid inclusions in the center (Fig. 5A and B), suggesting the fluids were 
trapped in the early stages of crystal growth. These inclusions are completely encapsuled in 
pyrrhotite and filled with a light-element material (Fig. S23). We performed Time-of Flight-
Secondary Ion Mass Spectrometry (TOF-SIMS) depth profiling and lateral mapping (<80 
nm/pixel) at a temperature of -120 °C to expose and measure, respectively, the composition of 5 

the (now frozen) fluids in five inclusions.  
The TOF-SIMS measurements show that the trapped fluids were solutions containing 

H2O, CO2, sulfur species, and nitrogen- and chlorine-bearing organic compounds. These were 
identified by their representative secondary ion species including O-, OH-, CO-, C2

-, C2H-, Cl-, S-, 
and CN- (Fig. 5C). The detection of CO-, C2

-, C2H- and C3
- suggests a complex molecular 10 

structure of organic molecules dissolved in the aqueous solution. Electron microscope 
observations of the largest inclusion show no phyllosilicates or other OH- bearing phases that 
could have contributed to the signal (Fig. 5D). The presence of CO2-bearing water in a crystal of 
pyrrhotite indicates that the Ryugu parent body formed beyond the snow lines, boundaries 
between gas and ice, of H2O and CO2 in the early Solar System, i.e. > 3-4 astronomical units (au) 15 

from the Sun (64). 
 
Flat surfaces and CuS tabular coral-shaped object 

We identified some features of the Ryugu samples that have not been observed in 
meteorites. These include very flat surfaces of coarse samples (Fig. 6A). We cut five slices (each 20 
10 × 10 × 0.1 µm) from the flat surface of A0067 to perform depth profiles. TEM observations 
show a 2 µm thick saponite-rich layer with high Mg#~90 running along the flat surface (Fig. 6B). 
The saponite layer is superposed on an irregular surface of the major lithology, indicating that it 
formed later. All five slices show similar features, which we infer are present across the whole 
flat surface. The formation of the saponite layer requires fluids were present. Pyrrhotite crystals 25 
on the flat surface are aligned with their pseudohexagonal facets parallel to the saponite layer 
(Fig. S24), implying a compressive force during formation. One possible explanation is ice 
lensing, formation and growth of subsurface ice crystals (65, 66), as occurs in permafrost soils. 
At the final stage of aqueous alteration, fluids could have been segregated in thin cracks as they 
froze. Ice in the cracks would then have grown to form ice lenses. The pressure exerted by the 30 

expanding ice lens would have squeezed the adjacent regolith, compacting and aligning 
phyllosilicates, especially expandable clays such as saponite (66). 

We also identified table coral-shaped growths of a CuS phase on the flat surface of 
A0067 (Fig. 6C). A thin section was made by cutting the CuS object perpendicular to the flat 
surface, then observed with TEM. The CuS has a morphology which resembles a table coral, 35 

with a root, several branches, and many disk-shape crystals on top (Fig. 6D). Electron diffraction 
suggests that the CuS phase is probably digenite (Cu9S5), which is of hydrothermal origin (67). 
We cannot determine the formation mechanism, but it might have grown from a solution that 
filled a crack exposed on the flat surface. 
 40 

Shock effects 
Most of our samples show no features indicating strong deformation or shock melting, 

indicating the collected material generally did not experience any intense shock. However, 
C0055 shows evidence of uniaxial compression and sets of parallel fractures perpendicular to the 
compaction axis (Fig. S3). Such features are common in shocked hydrous carbonaceous 45 
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chondrites (68) and appear in experiments that shocked the Murchison CM2 chondrite to a 
pressure of 20 GPa (69). Therefore, C0055 experienced a shock while the other 16 samples seem 
to free of shock effects. 
 
Aqueous alteration conditions 5 

The low abundance of Mg-chlorite suggests that aqueous alteration occurred at low 
temperature, below the ~ 100 °C (70) required to stabilize Mg-chlorite . All 10 pyrrhotite crystals 
observed by X-ray and electron diffraction show the monoclinic 4C structure, one of crystal 
structures of pyrrhotite having three unequal crystal axes with one oblique intersection, and 
indicates they formed below 254 °C (71). The Ryugu pentlandite and pyrrhotite compositions are 10 
most consistent with 25°C (Fig. S25) [ (67), see also (72, 73)], suggesting low-temperature 
formation. The site occupancy by Fe and Ni in pentlandite and its lattice constants are a function 
of temperature (74). We measured the pentlandite lattice constant of 10.0643±0.0009 Å using 
XRD analysis of a single pentlandite crystal, 5 μm in size, which was separated from sample 
C0040, following established methods (75). This lattice spacing, and the chemical composition, 15 
indicate an equilibrium temperature of 20 ± 29.5 °C (Table S9). O isotopes in dolomite indicate 
formation at 37±10 °C (29). All these temperature estimates are consistent. 

Mössbauer spectra (conventional and synchrotron) were collected from 1-mm size 
fragments taken from C0061 and A0026 in N2 conditions. These show that magnetite is not 
oxidized (Table S9). The Fe2+/Fetotal ratios measured from the phyllosilicates are approximately 20 
0.61 for C0061 and 0.48 for A0026 (Fig. S26). Magnetite, pyrrhotite, and silicates contain 40 to 
50, 15 to 30, and 25 to 40 % total iron, respectively (by atom, Table S9). Micro-X-ray 
Fluorescence  X-ray absorption Near Edge Structure (µ-XRF XANES) analysis of the Fe K-edge, 
a sudden increase of X-ray absorption just beyond the binding energy of the K-shell electrons of 
the Fe atom, using a 1.0 µm × 1.0 µm X-ray beam (76) was performed in N2 condition using a 25 
150-μm sized particle separated from sample C0025. The Fe2+/Fetotal ratio in phyllosilicates was 
determined to be 0.6 to 0.7 (Fig. S27), consistent with the Mössbauer data.  

The determination of Fe2+/Fetotal ratio in other minerals, specifically saponite and 
serpentine, is required to determine the redox conditions during formation, because the stability 
of Fe2+ in each phase can be different. We used scanning transmission X-ray microscopy 30 
(STXM; (77)) analysis with a ~50 nm spatial resolution to measure Fe2+/Fetotal in the saponite 
layers in A0067 (Fig. 6B), finding 0. 68±0.05 (Fig. 4E and F). The sample must have been 
oxidized to some degree during its storage in a desiccator for more than five months, so we 
regard this ratio as a lower limit. Based on (i) the relationship between Fe2+/Fetotal ratio and 
oxidation reduction potential Eh determined for the minerals nontronite and high Fe-bearing 35 
montmorillonite (78); and (ii) a reduction experiment we performed on terrestrial saponite with 
Fe2+/ Fe3+ ratio determined by XANES (Fig. S28); we infer that the Fe2+/Fetotal (> 0.68) obtained 
from A0067 indicates that the Eh of saponite formation was likely lower than -0.45 V. If we 
assume that the this Eh value is valid at neutral to alkaline pH conditions, and combine it with 
other µ-XRF-XANES data on a dominant oxidized arsenic form (As3+) in As-bearing species in 40 
A0067 (Fig. S29), we infer fluid pH > ~9 based on the Eh-pH diagram of As compounds at 25°C 
(79). The presence of saponite on Ryugu also indicates an alkaline fluid (pH > 8) based on (i) the 
stability field of saponite in the Eh-pH diagram of Fe and (ii) the pH condition of terrestrial lakes 
where saponite has been found (80).  

We conclude that aqueous alteration proceeded at ~25°C in alkaline conditions.  45 

 
Chemical equilibrium modeling of aqueous alteration 
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Aqueous alteration cannot have begun until accreted ices melted in the interior of 
Ryugu’s parent body, and likely continued until temperatures reached ~40 ºC (this study and 
(29)). We therefore performed chemical equilibrium modeling of a water-gas-solid system at 0-
40 ºC (7). Consistent with the muon analysis (Table S3), we assumed the initial accreted rock 
had the elemental composition of CI chondrites, but with modified amounts of H, C, O, S and Cl. 5 

Our model mixes this rock in different proportions with a water-ice rich component, which 
contains CO2 and HCl, reflecting the presence of CO2 and Cl in the fluid inclusion (Fig. 5) and 
the inferred C and Cl sources in carbonaceous chondrites (81, 82). Although Ryugu material may 
not have reached chemical equilibrium during alteration, we ran our calculations to that stage.  

Figures 7A-D show our calculated equilibrium composition of the water-gas-solid 10 

system at 40 ºC, as a function of the initial melted ice/rock and the water/rock (W/R) mass ratios. 
Only 10 % of organic matter is allowed to react (7). The modeled mineralogy (Fig. 7A) at initial 
W/R of 0.06 to 0.1 reproduces the least-altered lithology we found in the Ryugu samples (Table 
S6). These and lower W/R ratios permit stable reduced phases (e.g. Fe-rich metal, phosphides), 
which could remain unaltered or form through alteration under water-poor and H2-rich 15 

conditions. A higher W/R ratio of 0.1 to 0.2 matches the less-altered lithology, and W/R of 0.2 to 
0.9 with pH > 9 (Fig. 7C) matches with the more extensively altered major lithology (Table S6). 
Analogues calculations were performed at temperatures below 40 ºC (0 ºC and 20 ºC) and the 
results are similar to those at 40 ºC (7). 

Our calculations show high Na concentrations at lower W/R, both in the fluid and in 20 

saponite (Fig. 7A and B), which are consistent with the Na-rich composition of the least- and 
less-altered lithologies of Ryugu (Table S7). The modeling suggests an initial Mg-Na-Cl solution 
with H2O-CO2 in the gas phase, which evolved towards a more reduced and Na-Cl alkaline brine 
that coexisted with a H2-rich gas phase (Fig. 7B-D). No sulfates form in the model, due to the 
reduced conditions, which is consistent with our observation of the Ryugu samples. The 25 

formation of sulfates requires strong oxidants, such as O2, H2O2 and H2SO4, in ices accreted on 
asteroids (83). 
 
Formation of Ryugu’s parent asteroid 

The asteroid Ryugu was formed in a different orbit than its current near-Earth one. 30 
Orbital dynamics calculations have shown that the most likely origin is two asteroid families 
(Eulalia or Polana C) in the inner main asteroid belt (3, 4, 84, 85). Our observation of CO2-
bearing aqueous fluid in Ryugu pyrrhotite is consistent with the parent asteroid having formed 
beyond the H2O and CO2 snow lines of the early Solar System, i.e. > 3-4 au from the Sun. This 
must have been followed by scattering inward, to the current orbit of the Polana and Eulalia 35 
families (< 2.5 au). We found many similarities between the Ryugu samples and CI chondrites, 
which suggests that CI chondrites might have a similar origin. 

 The Ryugu samples record a magnetic field (Fig. S6), which could have arisen from the 
nebular magnetic field, or the dynamo fields generated by differentiated objects (such as Jupiter). 
The homogeneous global reflectance spectra of Ryugu indicate its parent body was not 40 

differentiated (2, 3). The stable component of NRM is likely carried by the framboidal magnetite 
(Fig. 3A-C). If the source was the nebular field (86), then the solar nebula had not yet dispersed 
when magnetite formed on Ryugu’s parent body. 

Our interpretation that Ryugu’s parent asteroid formed far from the Sun is supported by 
the rarity and very small size of chondrules and CAIs in the samples (Fig. 3G-L), which are 45 
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similar to those observed in comets (58), the high abundance of carbonate (Table S6), and the 
presence of GEMS-like objects (Fig. 3F). However, the C/Si abundance ratio is not as high as 
those of comets (Table S3), based on measurements of cometary IDPs and ultra-carbonaceous 
micrometeorites (30, 87, 88). This indicates the parent body of Ryugu did not originate from 
comets themselves, but formed in the same region as CI chondrites, at a large heliocentric 5 
distance, possibly outside the orbit of Jupiter (89). 
 
Thermal model of Ryugu’s parent asteroid 

We used the physical properties obtained from the sample analysis (Table 1) to calculate 
a thermal model of Ryugu’s parent body. The radius of the parent body was chosen based on an 10 
estimate of the total mass of the Eulalia family (85). We set a radius of 50 km for the rocky part 
of the parent body, then added additional size according to the amount of water ice in each model. 
The initial internal and surface temperatures were set to – 200 ºC (70 K, see rationale (7)). The 
temperature was then allowed to increase due to heating by radioactive decay of 26Al, which 
melts the water ice at 0 ºC. Subsequent formation of hydrous minerals (assumed to occur at 20 15 
ºC) releases energy that causes further heating. We ran simulations for ranges of formation age 
(ts) and initial W/R ratio. 

Mn-Cr dating of Ryugu samples has indicated that carbonates formed at 37±10 °C, 5.2 
Myr after the formation of the first solid materials in the solar system (i.e., CAIs) (29). That 
temperature is consistent with our mineralogical constraints (mostly ≲ 50°C). Our chemical 20 
modeling of the aqueous alteration found that a W/R ratio of 0.2-0.9 reproduces the mineralogy 
of the major lithology (Fig. 7A). An example thermal model that satisfies these constraints (ts 
~2.2 Myr and W/R = 0.6) is shown in Figure 7E. Inside the parent body (~ 51 km radius from the 
center), ice melts, hydrous minerals form, and carbonate minerals precipitate at ~4.8 Myr. While 
hydrous and carbonate minerals form throughout, the subsequent temperature increase is limited 25 
(reaching a peak of ~75 ºC), and therefore dehydration of the hydrous minerals does not occur. 
Within 14 km of the cold surface, ice melting is limited, so the initial mineralogy experiences 
very little alteration at low W/R ratios and low temperature (~0 °C). Therefore, the least-altered 
lithology (Fig. 3D-F) we found in the Ryugu samples might have been located close to the 
surface of Ryugu’s parent body. 30 

The formation age in the model required to satisfy the constraints from the sample 
analysis varies depending on the initial W/R. The major lithology is consistent with W/R = 0.2 to 
0.9 (Fig. 7A), which corresponds to a range of formation ages from 1.8 Myr (W/R = 0.9) to 2.9 
Myr (W/R = 0.2) after CAI formation, the birth of the Solar System (see Fig. S30). We assume 
instantaneous accretion of the parent body at the time of formation. On the other hand, if we 35 
assume slow accretion of the parent body, then the formation would have started earlier. 
 
Catastrophic collision of Ryugu’s parent body 

Ryugu’s parent body was disrupted by a large-scale impact to form the Eulalia or Polana 
asteroid family, including Ryugu itself (3, 90). Using the physical properties measured from the 40 
samples (Table 1), we constructed an equation of state consistent with the Ryugu material and 
used it to calculate a destructive collision with the parent body (7) using the impact-Simplified 
Arbitrary Lagrangian Eulerian (iSALE) software (91–93). Figure 7F shows the head-on collision 
of a 6 km-radius impactor onto a 50-km-radius parent body at an impact speed of 5 km/s, typical 
for the main asteroid belt (94). In this simulation, the parent body is largely destroyed, with the 45 
diameter (D) of the largest surviving body being ~ 50 km (Fig. S31). This is consistent with the 
measured sizes of Eulalia (D = 40 km) or Polana (D = 55 km) (85). 
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Figure 7F illustrates that, during the impact disruption of the parent body, regions that 
experienced high shock pressure and temperature are limited in volume. 10 and 0.2 volume % of 
the parent body experienced pressures higher than 1 and 10 GPa, respectively. The temperature 
near the impact site (approximated as the size of the impactor) rises above 700 ºC, while regions 
away from the impact site do not rise above 90 ºC. The latter temperature is consistent with the 5 

amount of interlayer water found in Ryugu saponite (29). With this temperature limitation and 
the absence of evidence for shocks in most of our samples, we propose that Ryugu might have 
formed from fragments excavated from areas far from the impact site, such as on the far side. It 
is likely that some of the reaccumulated material originated from the surface and sub-surface 
layer of the parent body; such material would have experienced limited degrees of aqueous 10 

alteration at low temperature and low W/R ratio, consistent with the least-altered and the less-
altered fragments found in our samples.  

We conclude that the samples collected by the Hayabusa2 mission originating from 
multiple depths within Ryugu’s parent body, which formed beyond the H2O and CO2 snow lines, 
possibly beyond the orbit of Jupiter. 15 
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Fig. 1. Morphology and internal texture of C0002. (A) Optical micrograph of entire C0002 
sample. (B) CT image of the largest cross section, showing the absence of chondrules and CAIs. 
(C) Back-scattered electron (BSE) image of typical internal texture. Dolomite (Dol), breunnerite 5 
(Br), pyrrhotite (Po), and magnetite framboids (Mag) are labelled; these are embedded in a fine-
grained phyllosilicate matrix. 
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Fig. 2. Reflectance spectra of coarse and powder samples of Ryugu. (A) Vis-NIR reflectance 
spectra of coarse (dotted lines) and powder (solid lines) samples from the TD1 (red) and TD2 
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(blue) sites on Ryugu, compared to hydrated carbonaceous chondrites (dashed and dotted black 
lines), Hayabusa2 remote sensing observations of Ryugu (solid green lines) (2, 3), and remote 
sensing observations of Bennu (solid black line) (14). The vertical gray lines are at 2.71, 3.1, 3.4 
and 3.95 μm. (B) Same data as panel A, but normalized at 2.595 µm and shifted arbitrary in the 
NIR wavelength region. (C) MIR-FIR spectra of TD1/TD2 coarse and powder samples, the flat 5 
surface of sample A0026, remote sensing observations of Bennu (95), pressed powders of 
meteorites (Alais and Tagish Lake), and meteorite coarse samples (Orgueil and Murchison). All 
spectra are scaled to have the same difference between reflectance minimum and maximum and 
shifted arbitrary. The vertical gray lines at 9.1, 9.8, 10.75, and 22.3 μm indicate respectively the 
Christiansen feature, an Si-O stretching peak, an additional shoulder of the main Si-O peak, and 10 
a peak of the doublet from saponite (96). The peaks at 10.5 µm in the powder samples are 
scattered light from the sapphire dish. (D)Visible reflectance spectra of Ryugu TD1/TD2 powder 
samples measured in the laboratory compared to the TD1/TD2 landing sites before and after the 
touchdowns (7). 
  15 
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Table 1. Summary of the physical properties measured from the Ryugu samples (7).  
Mechanical 
properties 

value uncertainty  unit measurement condition measured sample(s) 

compressive 
hardness 

0.18 0.1 GPa ambient #C0002 plate 3 

Young's modulus 5.3 1.6 GPa ambient #C0002 plate 3 
bending strength 4.9 1.9 MPa ambient C0002 plate 3 and 4 

longitudinal 
velocity 

2.08 0.13 km/s ambient 
*avg. of C0002 plate 3 

and 4 

shear velocity 1.37 0.15 km/s ambient 
*avg. of C0002 plate 3 

and 4 
thermal 

expansivity 
2.6 × 10-5 2×10-6 /K 

210-400K, nitrogen 
gas

C0002 plate 3 

cohesive force 0.17 0.02 μN ambient $C0002 plate 4 
Thermal 

properties 
          

heat capacity at 
298K 

865 16 J/kg/K
213-373 K,  avg. of C0002 plate 4 

and A0026 nitrogen gas 
thermal 

diffusivity 
3.2 × 10-7 0.3×10-7 m2/s 300 K, vacuum 

avg. of C0002 plate 3 
and 4 

Electrical 
properties 

          

resistivity 2.5 × 106 0.3×10-6 
ohm・

m
300 K, vacuum 

avg. of C0002 plate 3 
and 4 

relative 
permittivity 

6.8 0.8 - 300 K, vacuum 
avg of C0002 plate 3 

and 4 
Magnetic 
properties 

          

magnetic 
susceptibility 

8.39×10-5 4.0×10-6 m3/kg 
300 K, direct current, 

avg. of C0002 and 
A0026 alternating current (1-

1000 Hz)
saturation 

magnetization 
11.6 5.1×10-3 Am2/kg 300 K 

avg. of C0002 and 
A0026 

saturation 
remanence 

1.05 6.3×10-3 Am2/kg 300 K 
avg. of C0002 and 

A0026 

coercivity 12.2 9.3×10-2 mT 300 K 
avg. of C0002 and 

A0026 
coercivity of 
remanence 

61.3 4.1×10-1 mT 300 K 
avg. of C0002 and 

A0026 
# Average of 26 analysis of fine-grained matrix 
* Two fragments from plate 4. 
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Fig. 3. Characteristic textures, magnetic structures, and embedded objects in the Ryugu 
samples. (A) TEM image of typical magnetite framboids (dark-grey rounded objects) from 5 
A0064. The light-grey area is phyllosilicate from the major lithology, and the upper black area is 
tungsten contamination.  (B, C) Color maps of the magnetic flux direction obtained from the 
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reconstruction of remanent magnetism, for the magnetite framboids in red boxes in panel A 
observed using electron holography (7). Each particle has a concentric circular magnetic field 
(vortex structure) indicated by white arrows, which show the direction of the magnetic flux as 
shown in the color-wheel in C. Figure S5 shows the composition and electron diffraction data for 
this region. (D) Enlarged view of the least-altered fragment 4 in sample C0002, showing high 5 
porosity. (E) Compositional map of (D), showing high abundances of Mg-rich olivine and Mg-
rich low-Ca pyroxene (magenta), magnetite and pyrrhotite (green), and minor Ca carbonate (light 
blue). (F) TEM image of a part of the least-altered fragment 5 in C0002, showing a very porous 
aggregate with labelled GEMS-like objects, Fe sulfide (Fe-sul), Mg-rich olivine (Ol), and 
tochilinite (Toch). (G, H, I) Chondrule-like objects. Objects in (G) and (H), both from C0002, 10 
show textures similar to type-I chondrules, consisting of Mg-rich olivine (Ol) and an FeNi metal 
inclusion. An FeS inclusion occurs only in (H). The object in (I) from C0076 shows a barred-
olivine texture, consisting of several sets of parallel olivine bars and an olivine rim. (J) 
TEM/energy-dispersive spectrometer (EDS) color map of a porous olivine (yellow) from C0076, 
including a small Al, Ti-rich diopside crystal (green). RGB indicates the concentration of Mg, Si, 15 
and Fe, respectively. (K, L) Small CAIs-like objects. Object in (K) from C0040 consists of Al 
spinel (Sp), hibonite (Hb), and a small inclusion of perovskite (Pv). Object in (L) from C0002 
consists of Al spinel (Sp), hibonite (Hb), a small inclusion of perovskite (Pv) and phyllosilicate 
(Ph). (A, F, I) are bright-field TEM images and (D, G, H, K, L) are BSE images. 
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Fig. 4. Results of chemical analyses using muon, electron, and X-ray spectroscopy. (A) 
Muonic X-ray spectra, normalized by μSi 3d-2p X-ray (76 keV) intensities, for Ryugu (red) and 
Orgueil (blue). µSi 3d-2p X-ray represents the muonic Si X-ray emitted by transition of 3d to 2p 
muon atomic orbit. (B) Ternary diagrams of Mg, Fe and Si+Al, showing the chemical 5 
composition of Ryugu phyllosilicates (cyan, 774 analyses), compared with Orgueil (yellow). The 
blue line corresponds to Mg# = 85. The contribution from FeS was corrected based on S content 
(7). (C) Ternary diagrams of Mg, Ca, and Fe+Mn showing the chemical composition of Ryugu 
carbonates (653 analyses), compared with CI chondrites (48, 52). (D) MnO and FeO abundances 
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measured from Ryugu olivine (611 analyses). The inset shows an enlargement of the blue box 
area in the range from 0 to 5 FeO wt%. A blue line indicates MnO/FeO=1 and most olivine data 
are MnO/FeO < 1. (E) Fe L2,3-edge XANES (X-ray absorption near-edge structure at Fe L2-edge 
(706.8 eV) and L3-edge (719.9 eV) regions) spectra of a saponite-rich layer (blue), 
phyllosilicates of the major lithology (red), and pyrrhotite (green). (F) XANES color map of the 5 
region shown in Fig. 6B, where three Fe species were found by the singular value decomposition 
analysis (97), including Fe in saponite (pink), in serpentine-saponite (blue), and in pyrrhotite 
(green). 
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Fig. 5.  A fluid inclusion in a Ryugu pyrrhotite crystal. TOF-SIMS and SR-CT measurements 
were performed on a crystal separated from sample C0002. (A, B) Slices through the SR-CT 
scan, showing the fluid inclusion (arrows) is unconnected to the surface, ~1.5 μm deep in (A). 5 
(C) TOF-SIMS maps of the fluid inclusion after being frozen (-120 ºC) and opened. 
Representative secondary ion species are labeled on each image pair, which are measured at the 
top (left images) and  the mid-plane (right images) of the fluid inclusion. OH- and CO- are 
secondary ions of water and CO2, respectively. S- is an ion in the aqueous solution. The presence 
of CN- indicates N-bearing organic compounds in the fluid, and Cl– indicates that the trapped 10 

fluid was a brine. Differences in the distribution of each species within the inclusion, both within 
each map and between the top and midplane maps, are a result of the distribution of the various 
fluid components between the different solid phases (solid carbon dioxide, carbon dioxide 
clathrate, H2O ice) that form during cooling of the fluid inclusion to -120°C. (D) BSE image of 
the final surface following the TOF-SIMS measurements, with the opened fluid inclusion in the 15 
yellow box. Insets show Fe, S, Si and O element maps by EDS of the region within the box, 
indicating FeS as the host phase. 
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Fig. 6. Flat surface structures and a CuS table coral-shaped object. (A) Optical microscope 
images of flat surfaces (arrows) from two Ryugu samples. (B) Depth profile from a TEM image 
of a slice cut from the flat surface of A0067 to 5 μm depth. The black layer is contamination by 
Pt coating. A layer of saponite (interlayer spacing d= ~10 Å) makes the surface flat. (C) 5 
Secondary-electron image of a tabular coral-shaped CuS object on the flat surface of A0067, 
formed of a stack of submicron-sized disk-like crystals. (D) Scanning TEM dark-field image of a 
slice taken from the white box in (C), perpendicular to the surface to a depth of 10 μm using a 
focused-ion beam. The object has morphologies similar to a root, several branches, and a stack of 
disk-like crystals on top. The thin white layer on the top surface of the object is contamination by 10 
a Pt coating. 
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Fig. 7. Calculated models of the aqueous alteration, thermal history, and catastrophic 
impact. (A)-(D) Modeled chemical equilibrium of solid, solution, and gas phases during aqueous 
alteration on the Ryugu parent body at 40 ºC, the pressure of water saturation (7.4 × 10-2 bar), 
and 10 % chemically active organic matter. Each line indicates a different species or the pH, as 5 
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labelled. The vertical dashed lines indicate boundaries between aqueous and water-free 
conditions. Two horizontal scales: melted ice/rock and W/R. The ice includes CO2 and HCl in 
addition to water and thus the melted ice/rock is larger than the W/R (The W/R is 0.835 times 
melted ice/rock). (E) Temperature evolution of the Ryugu parent body. The calculation assumes 
a 65 km radius with W/R = 0.6 and formation 2.23 Myr after CAI formation. Color shows the 5 
temperature at each location and time. The black dashed line indicates the boundary between the 
hydrous rock and anhydrous rock, where the highly altered lithology shifts to the less altered 
lithology. (F) Impact shock model (7), with coordinates measured from the center of the parent 
body. The images show peak temperature (left) and peak pressure (right) during the impact. The 
grid of tracer points, placed at multiples of the impactor radius, is shown as grey lines. Isotherms 10 
of the peak temperatures are shown as colored curves at 500 ºC, 300 ºC, 100 ºC, and 0 ºC. 
Isobaric lines of the peak pressures are shown at 9, 5, 3, and 1 GPa. We infer that the material 
that later accumulated to form Ryugu was further from the impact than the 100 ºC isotherm and 
the 1 GPa isobar in each panel. 
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