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Abstract— Industrial end users are currently facing an increasing 

need to reduce the risk of unexpected failures and optimize their 

maintenance. This calls for both short-term analysis and long-term 

ageing anticipation. At Schneider Electric, we tackle those two issues 

using both Machine Learning and First Principles models. Machine 

learning models are incrementally trained from normal data to predict 

expected values and detect statistically significant short-term 

deviations. Ageing models are constructed from breaking down 

physical systems into sub-assemblies, then determining relevant 

degradation modes and associating each one to the right kinetic law. 

Validating such anomaly detection and maintenance models is 

challenging, both because actual incident and ageing data is rare and 

distorted by human interventions, and incremental learning depends on 

human feedback. To overcome these difficulties, we propose to 

simulate physics, systems and humans – including asset maintenance 

operations – in order to validate the overall approaches in accelerated 

time and possibly choose between algorithmic alternatives. 

 

Keywords— Degradation models, Ageing, Anomaly detection, 

Soft Sensor, Incremental learning.  

I. INTRODUCTION 

OWADAYS, digitization and Industrial Internet of Things 

(IIoT) make it extremely easy to collect a vast amount of 

data concerning electrical assets during their operational life in 

real time conditions on customer plants. It allows users to get 

information on major environmental and usage conditions for 

products in real situations, together with data on observed 

failures. 

Collected data can be used to learn normal behavior models 

of assets. Such models are relevant to detect anomalies, 

characterized by a statistically significant deviation from the so-

called “current normal situation”. While this kind of anomaly 

detection method is suited for short term asset monitoring, it is 

not appropriate for long term degradation trends. To capture 

such trends, first principles degradation models can be used (i.e. 

physical degradation models such as Arrhenius law); they 

complete the monitoring system, to get a global view on asset 

health. Both approaches are detailed in [1]. 

Validating such approaches represents a significant 

challenge, as only little real incident data is available from the 

field while degradation spans across several years of normal 

operation. Long-term degradation data collection is impacted 

by actual maintenance operations that may not have happened 

at optimal time. Furthermore, in the Machine Learning-based 

approach, models are created from collected data using 

incremental learning strategies. During this process, useful data 
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may be accidentally dropped, while fault data may be 

mistakenly injected as “normal” in the update steps. 

Simulation and validation of maintenance models is first 

presented in section II; incremental learning-based short-term 

virtual sensor models are addressed in section III. We finally 

conclude in section IV. 

II. LONG-TERM 

In this part, we refer to a long-term approach to compute the 

ageing of assets with respect to time, environmental conditions, 

usage conditions, and maintenance operations. These ageing 

models can be used to define appropriate time-based 

maintenance. 

In the following sections we will present how these models 

can be used to simulate alternate system designs and 

maintenance scenarios, e.g. condition-based maintenance. 

A. Proposed approach 

Each asset to monitor is decomposed in sub-assemblies, all 

associated with one or several degradation modes [1]. These 

degradation modes act in competition for each concerned sub-

assembly. At each point in time, the most impacting 

degradation mode is selected for each sub-assembly, and the 

most impacted sub-assembly is used to compute the consumed 

lifetime. Maintenance operations may replace the currently 

most impacted sub-assembly with another one, or change the 

current most impacting degradation mode with another one. 

Fig. 1 illustrates a simulation run for a given asset, showing 

the Consumed lifetime (%) over time. Each spike is due to a 

maintenance operation of replacement of a sub-assembly,  

 

 
Fig. 1 Long term simulation 
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which resets the ageing value. The first maintenance operation 

is done on the most impacted sub-assembly. After this event, 

the consumed lifetime is reset to ~60% and the degradation 

speed (slope) changes, as the most impacted sub-assembly is 

now a different one (the first one has been maintained). 

What-if analysis is defined in the literature as a data-intensive 

simulation whose goals are to inspect the behavior of a complex 

system [11]. Initially focusing on scalar data, what-if scenarios 

nowadays embed more and more timeseries data to improve 

precision in the analysis [8]. Two kinds of what-if analysis can 

be considered: 

 

• Sensitivity analysis: by generating a great number of 

scenarios, we can test the sensitivity of the ageing models 

to refine them. This analysis allows verifying and quickly 

modifying the models, so as to be as reliable as possible; 

 

• Scenario analysis: it is also possible to generate realistic 

scenarios, to match reality as much as possible. Doing so, 

different choices can be simulated and confronted in order 

to find the best solution. 

 

In this study, we focus on scenario analysis to explore two 

dimensions: alternate usage contexts (B) and alternate 

maintenance scenarios (C).  

 

B. What-if analysis: alternate usage contexts 

By modeling various scenarios, we can simulate the ageing 

process in a long-term view. 

Our simulations of environmental conditions are based on 

weather simulation data [4] to provide the most realistic 

environmental scenarios. Naturally, these scenarios depend on 

the location of the customer site, together with the future usage 

of our products. We also have to link all the influencing factors 

and the customer events. For example, if a customer wants to 

add an air conditioner, it is possible to simulate the direct impact 

on environmental entries. In this case, the temperature remains 

constant; the humidity could be also static, but there are 

possible drawbacks like a raise of dust due to a new ventilation. 

So, with a realistic simulation, we can assess the impact of the 

air conditioner to advise the customer about this choice. An 

example of that case is provided in Fig. 2. 

 

 
Fig. 2 Air conditioning impact 

 

C. What-if analysis: alternate maintenance scenarios 

Concerning maintenance, what-if scenarios allow to 

optimize the frequency of maintenance plans that can be 

adapted to each customer. 

Most often, maintenance plans are extracted from 

maintenance guides, based on fixed periodicity 

recommendations [9]. The described approach enables the 

generation of adequate matches to plan maintenance operations, 

and advise our customers about the risk taken by withholding 

manufacturer maintenance. This is possible by simulating the 

life operations of the customer asset, and then performing 

maintenance on a subcomponent only when it reaches its end of 

life by comparing two scenarios : the standard maintenance plan 

and the custom one depending on ageing. We have compared 

these two scenarios in Fig. 3, where the effects of maintenance 

actions are reflected on the curve by sudden drops in lifetime 

consumption. 

 

 
 

Fig. 3 Maintenance impact 



 

 

Fig. 3 (a) shows the maintenance periodicity selector used to 

configure the maintenance scenario. (b) illustrates how the 

selected scenario differs from a reference scenario and provides 

maintenance periodicity fine-tuning capabilities. Finally, (c) 

provides a comparison of the selected scenario with the 

reference one in terms of ageing. 

 

D. Field deployment 

The previous section on what-if scenarios described how 

simulation helps the validation step, in terms of both ageing 

simulation and maintenance scenario. 

These simulation processes allow to transform traditional 

maintenance practices into a condition-based maintenance 

approach. Indeed, maintenance manufacturer periodicity 

recommendation described in maintenance guides are useful to 

provide an overview of the equipment lifetime. However, 

depending on type of segments (marine, mining-minerals-

metals, oil and gas, healthcare, food & beverage), constraints 

are not the same. Two examples are described below: 

• Marine customers have the specific constraint to make 

maintenance action when boats return to dock. Being able 

to estimate the ageing of the assets and consequence of 

maintenance actions facilitates the anticipation of required 

actions, ensuring confidence in the asset behavior waiting 

for the next maintenance while cruising. 

• Regardless of the type of segments, the number of 

equipment is not the same from one customer to another. 

When the number of equipment is high, this kind of 

simulation helps to manage the fleet maintenance 

management by anticipating consequence of maintenance 

rescheduling for part of the equipment. 

 

Therefore, combining manufacturer periodicity 

recommendation and simulation process allows to adapt the 

maintenance actions to each customer by adding more 

flexibility, more anticipation of end-of-life, and making timely 

maintenance. This condition-based maintenance approach 

makes operations more efficient while making business more 

resilient and sustainable [12]. 

With Schneider Electric, this approach is used by customers 

from different segments and for different kinds of assets, on low 

voltage or medium voltage domains. In the coming two years, 

we expect to grow by 200% the number of customers asking to 

transform traditional maintenance practices into condition-

based maintenance ones. By increasing the number of field 

experiments, we will continuously challenge and improve the 

current models of ageing estimation, leveraging the benefit to 

link simulation and validation by closing the loop from 

customer, fostering its data to improve the models. 

III. SHORT-TERM 

Section II showed how what-if simulations can help decide 

and validate some maintenance actions to reduce long-term 

failures, or increase expected lifetime. This section focuses on 

short term analysis to detect unexpected failures. We first 

remind the proposed approach using machine learning model, 

then describe the incremental learning strategies, and finally 

illustrate with experimental results. 

A. Proposed approach 

Virtual sensors are Machine Learning-based techniques used 

for short-term anomaly detection [1]. Virtual sensors predict 

various industrial data based on usage and environmental 

conditions. Such idea of “virtual sensor”, also known as “soft 

sensor”, is not new and has been described in many ways in the 

literature and implemented in industrial products (see [2] for a 

review). A virtual sensor can predict a category (classification) 

or a quantity (regression). Besides their use for better process 

control, virtual sensors are used to tackle many other problems, 

such as back-up of a real sensor, what-if analysis, sensor 

validation, and fault detection and diagnosis. 

The latter consists typically in monitoring a statistically 

significant deviation between the actual monitored data and the 

learnt reference provided by the virtual sensor. A usual way to 

perform this step is to model the prediction error (so-called 

residuals) and use this model to detect a statistical outlier [5]. 

Fig. 4 illustrates how such Virtual Sensor Fault Detection 

(VSFD) technologies can be assembled to create an adaptive 

temperature monitoring solution. 

 

 
Fig. 4 Virtual Sensor Fault Detection Principle 

 

B. Incremental learning framework 

1) Context 

Virtual sensor models are learnt on historical data capturing 

normal process operation. Such historical data spans over a 

limited period of time and therefore may describe a limited set 

of process operations. New data may contain unseen normal 

samples representing other or new aspects of the process. This 

notion known as concept drift is affecting the predictive 

accuracy of models over time. Adaptive Soft (Virtual) Sensors 

approaches [13] propose to update models using the new 

samples, or fully retrain models with the augmented dataset. 

Advanced sample selection and weighting techniques, as well 

as ensemble methods, are typically used to cope with 

challenging drifts [7]. Finally, recent uses of deep learning 

models to perform such tasks highlighted a specific issue 

known as the stability-plasticity dilemma, leading in extreme 

cases to catastrophic forgetting [10]. 

More general frameworks known as Online, Sequential,  

Incremental, Lifelong, or Continual learning [3] have recently 

emerged to describe applications where multiple aspects of the 

problem evolve with time. While the vast majority of work 

focuses on deep learning models for image classification, some 

papers mention regression tasks [6]. Adaptive virtual sensors 

can be seen as a particular case of incremental learning with a 

single task (regression), incremental on the data-domain. 



 

 

Based on this review, we can delineate three general 

concerns in incremental learning regarding updates: 

• When to update: model updates can be set to run 

periodically (e.g. weekly), or triggered whenever novelty 

is detected in the samples by a novelty detection model 

[14]. An alternate approach is to store novel samples in a 

buffer and update the model when maximum capacity is 

reached [6] 

• What samples to integrate: too large new sample batches 

may be sub-sampled; under-represented class labels may 

be boosted with sample generation techniques; etc. 

• How to inject the new samples: special update steps can 

include sample weighting for example 

 

Most of the literature on incremental learning considers all 

samples to be safe for reinjection and is concerned with how to 

inject them. Some applications of adaptative virtual sensors are 

concerned with what data to reinject ; they tackle the issue using 

specific models and architectures [14]-[15]. These studies focus 

on classification models; besides they do not try to evaluate and 

compare different update strategies – but implement one and 

assess its performance. 

There is no literature to date, to the best of our knowledge, 

comparing incremental learning strategies for regression virtual 

sensors for fault detection tasks (III.A). Process faults arising in 

operational data are an extreme case of outliers or concept drift: 

the statistical properties of the data during fault periods become 

different from the normal one used in the training set. However, 

as opposed to the usual concept drift handling approaches, the 

updated model should be protected from deviations so that it 

can still detect such faults in the future. In other words, new 

samples to integrate in the model should be carefully curated to 

eliminate abnormal samples and preserve its aim at modeling 

normal behaviors. 

 

2) General Framework 

An initial model 𝑀1 is learnt on an initial dataset 𝐷1. 𝐷1 is 

considered safe: it only contains normal (non-fault) data. The 

following steps are then performed in sequence: 

1) Use model 𝑀1 to predict the target variable and detect 

faults during next period (dataset 𝐷2) 

2) Based on step 1 outcome, filter dataset 𝐷2 to keep only 

“safe” samples 𝐷2
′  

3) Update model 𝑀1 with 𝐷2
′  to create model 𝑀2 

4) Iterate: repeat step 1-3 with new model 𝑀2 and next period 

𝐷3 

 

Fig. 5 below illustrates this procedure. The curation step (2) 

is indicated with a star (*).  

Note that this procedure describes online learning-style 

update steps. It can be easily adapted to include full model 

retraining instead of model updates. Associated alternate Step 3 

becomes: 

3') Append 𝐷2
′  to previous dataset 𝐷1. Train new model 𝑀2 

using the merged dataset. 

 

 
Fig. 5 Incremental learning framework 

 

3) Considered implementation 

Within the framework described in III.B.2), we consider the 

particular implementation below. An initial training period of 4 

weeks is considered for 𝐷1. Incremental learning is done on a 

weekly calendar basis. The curation step (2) is composed of two 

sub-steps: 

- Automated faults filtering: even when the model predicts a 

fault, some samples are automatically re-tagged as normal. 

- Level 1: previously unseen (out-of-training range) data 

is re-tagged as normal, 

- Level 2: in addition to level 1, transient faults and faults 

tagged as unrealistic by an expert rule are re-tagged as 

normal. Such an expert rule includes physics-driven 

concerns, for example in some contexts an “under-

heating” fault is not likely to be an actual fault but rather 

a model prediction error. 

 

- Faults validation: faults are then presented to a human 

operator (expert). This operator is in charge of providing 

the final label: it can either “confirm the fault” or “discard 

the fault”. Discarded faults are re-tagged as normal. 

 

Finally, models are fully relearnt (3’.) instead of being 

updated (3.), so as to eliminate suboptimality issues related to 

partial updates. The size of the datasets is small and the 

considered model simple, thus full retraining is not prohibitive; 

and neither security nor storage are issues here. The overall 

process is described in Fig. 6. 

 

 
Fig. 6 Virtual Sensor Fault Detection orchestration 



 

 

C. Validation using simulation 

Validating the adaptive VSFD orchestration presented in 

III.B.3) is challenging, as only a little real incident data is 

available from the field. To overcome these difficulties, we 

propose to simulate the entire procedure on realistic datasets. 

This allows us both to validate correct behavior (overall 

feasibility) and to choose between algorithmic configurations. 

 

1) Annotated datasets 

Datasets injected in the simulator contain actual 

measurements (a multivariate timeseries) recorded from the 

field during several months of process operation. Each dataset 

is annotated: it is associated with zero, one or several fault 

periods. A fault period consists of a start and end date, and 

corresponds to a real incident observed on the field. Fault 

periods are usually defined as broader than the actual fault, 

because it is assumed that unobserved fault samples may 

already be present before the fault has been detected by a human 

operator. Also, logbooks from the field may be imprecise and 

contain vague fault period definitions. 

 

2) Algorithm configurations 

We consider eight alternate virtual sensor configurations 

related to the size of sliding window used: 1h, 2h, 3h, 6h, 9h, 

10h, 12h, and 24h. For a given virtual sensor configuration, we 

consider 4 alternate fault detection threshold multiplicator (see 

[5]): 2, 2.5, 3, and 3.5. 

 

3) Update strategies 

Although most steps described in previous section III.B.3) 

present no particular technical difficulties, a challenge comes 

with simulating the human expert contribution happening in 

step 2 (fault validation). Besides, the Level 2 automated faults 

filtering step may mistakenly re-tag actual fault samples as 

normal ones. We define below three strategies to simulate the 

fault filtering and validation process: conservative, realistic, 

and oracle. 

Conservative strategy: the conservative strategy represents 

a low-risk scenario. Only Level 1 fault filtering is active, and all 

other faults keep their label. Level 2 is inactive and the expert 

always confirms faults. In other words, only samples not tagged 

as fault by the VSFD and samples out-of-range of the training 

space are considered normal and used to relearn the model. In 

this scenario, a minimal volume of new data is reinjected for 

learning every week. 

Realistic strategy: this strategy is quite similar to the 

conservative one. This time, both Level 1 and Level 2 fault 

filtering are active, but the expert cannot discard faults. In other 

words, in addition to the conservative strategy, samples 

representing non-physically valid or transient faults are 

reinjected too. In this scenario, a medium volume of data is 

reinjected for learning every week. 

Oracle strategy: in the oracle strategy, both Level 1 and 

Level 2 fault filtering are active, and the expert is omniscient 

and knows exactly when actual faults occur. In other words, in 

addition to the realistic strategy, samples detected as fault and 

not re-tagged by the filtering are automatically re-tagged as 

normal by the expert if they fall outside the actual fault period. 

In this scenario, a maximal volume of new data is reinjected for 

learning every week. 

The conservative and oracle strategies have opposite 

behaviors and serve as representative bounds of the reality. In 

the conservative and realistic strategies, the expert is not 

confident on its abilities to recognize faults, while in the oracle 

scenario, it never makes mistakes. In the real world, experts are 

somewhere between realistic and oracle. They can adapt their 

behavior to particular customers and assets, as well as use their 

expertise and analysis skills on the measurement timeseries to 

discard false alarms. Simulating such an adaptative strategy for 

experts is out of scope of this study. 

 

4) Assessment metrics 

We introduce the following performance metrics to evaluate 

how well a given simulation run has succeeded in terms of fault 

detection.  

Each sample is tagged as False Positive (𝐹𝑃), True Positive 

(𝑇𝑃), False Negative (𝐹𝑁) or True Negative (𝑇𝑁) depending 

on whether its label after the Automated faults filtering step 

matches the ground truth label (True/False) and if it is fault 

(Positive) or normal (Negative). 

The fault detection indicator 𝐹𝐷 is defined as a 

boolean/dummy variable, equal to 1 when at least one fault was 

detected within the fault period, and to 0 otherwise.  

The fault periods coverage 𝐹𝑃𝐶 (a.k.a. sensitivity or recall) 

is defined as the ratio between the number of samples tagged as 

fault in the fault periods and the total number of samples in the 

fault periods.  

The false alarm ratio 𝐹𝐴𝑅 (a.k.a. false positive rate) is 

defined as the ratio between the number of samples tagged as 

fault outside of the fault periods and the total number of samples 

outside the fault period. 

𝐹𝑃𝐶 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                  𝐹𝐴𝑅 =

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

 

5) Experimental results 

We use data from three customer assets: two low-voltage 

panels and one medium-voltage panel. Inside a panel, a data set 

may be representative of different sub-assemblies: cable, 

busbar or withdrawable circuit breaker connections. Datasets 

span several months and contain either zero or one annotated 

fault period, that may be approximate (see III.C.1). Table I 

describes the five datasets used in this study. 

We run the procedure described in (III.B.3): for each of the 

five cases, eight algorithm configurations, four fault detection 

threshold multiplicators, and three update strategies; giving in 

total 480 alternatives to evaluate. The FPC and FAR metrics are 

computed on each alternative. They are then averaged across all 

datasets, so that each model configuration is associated with a 

single pair of metrics. 

Fig. 7 presents the results obtained in this experiment. For 

each of the considered update strategy (subplots (a), (b), (c)), 

the FPC (x-axis) and FAR (y-axis) are displayed for all 

alternatives algorithm configurations. Alternatives are grouped 

by sliding window size (colored line), where each group



 

 

TABLE I 

DESCRIPTION OF USE CASES (15 MINUTES DATA SAMPLING RATE) 

Case Customer Asset Sub-assembly Fault period Dataset duration Observations 

1.1 1 LV Panel N° 1 01/03/2019 – 15/04/2019 04/06/2018 – 08/03/2021 96,799 

1.2 1 LV Panel N° 2 No fault 04/06/2018 – 08/03/2021 96,799 

2.1 2 LV Panel N° 1  No fault 10/07/2019 – 11/03/2020 23,497 

2.2 2 LV Panel N° 2 01/10/2019 – 31/10/2019 10/07/2019 – 11/03/2020 23,497 

3.1 3 MV Panel N° 1 01/09/2020 – 30/09/2020 14/11/2019 – 24/03/2021 47,620 

 

 
Fig. 7 Results for the Conservative (a), Realistic (b) and Oracle (c) strategies.  

Fault detection heatmap (d) 

 

contains results for the 4 fault detection multiplicator values. In 

addition, a fault detection heatmap for FD is computed for each 

strategy; however since all lead to identical results a single one 

is presented (d). 
 

From the fault detection (FD) heatmap, we can first discard 

configuration [1H] (models using a sliding window size of 1h): 

whatever the fault detection multiplicator, none was able to 

detect the fault in use-case 2.2. This is also the case for 

configuration [3H] with multiplicator 3.5. 

From the scatter plots, we see several trends. First, the 

amount of false alarms (FAR, y-axis) decreases as the strategy 

moves from Conservative (10-44%) to Realistic (5-25%) and 

finally Oracle (1-6%). This tends to confirm the role of a good 

expert feedback loop in the quality of incremental learning. 

Concerning the fault prediction coverage (𝐹𝑃𝐶, x-axis), 

• In the Oracle scenario (c), all models have similar values 

(~10%). This consensus seems to indicate that the actual 

fault period is much smaller than the one declared in the 

datasets. In addition, we see that large sliding windows 

have better coverage: they are closer to 10%, while small 

ones are close to 5%. For the rest of analysis below, we use 

10% as the optimal coverage to reach and consider higher 

values as “erroneously better”. 

• With the Realistic strategy (b), we see two groups of 

models with similar values (left: ~10%, same as in Oracle, 

or right: ~40%). The left group (“correct”) corresponds to 

high fault detection multiplicators values, while the right 

group corresponds to low ones. In this scenario, the results 



 

 

therefore tend to indicate that all models can be moved to 

the left group simply by increasing the fault detection 

multiplicator. 

• With the Conservative strategy (a), the same two groups 

are visible, with the same values. However this time, 

models with small sliding window sizes (6h or less) are not 

able to move to the left group, even when the fault 

detection multiplicator is increased. It seems to indicate 

that to tackle this worst-case scenario, large sliding 

windows are preferable. We also note on this chart the 

presence of an outlier point. 

 

Overall these results highlight a better stability of models 

using large sliding windows (>6h) and a large fault detection 

threshold multiplicator (3.5), even when the worst-case 

Conservative strategy is used. Adding Level 2 filtering (III.B.3) 

brings a lot of value in terms of false alarms rate reduction and 

models stability. Finally, since these results were obtained on 

only five datasets, two of which without fault periods, it might 

be relevant to pursue larger-scale analysis to see if these trends 

are confirmed. 

IV. CONCLUSION 

Condition monitoring of critical assets requires both a short-

term and a long-term perspective in order to both detect sudden 

anomalies and slow degradation. At Schneider Electric we 

combine Machine Learning methods for the short-term, and 

First principle statistical methods for the long-term. Validating 

such approaches is challenging. Indeed most of the real world 

collected data captures normal behavior and does not span for a 

long enough period of time to capture the asset degradation. 

 

In this paper we propose to use simulation to overcome these 

difficulties: 

• Long-term degradation simulation requires to simulate the 

environment and usage over decades of product life. 

Simulating the environmental conditions (Temperature, 

Humidity…) is performed using both timeseries modeling 

techniques (e.g. ARIMA) and modifications of real 

timeseries captured from sensors. Simulating usage is 

performed using modifications of real load profiles, 

representative of the diversity of use cases. Finally, several 

maintenance scenarios can be simulated in order to 

benchmark their efficiency: current field practices, 

optimized maintenance, etc. 

• For Short-Term Machine Learning-based approaches, we 

can use actual field data in the simulator as a few 

months/years are sufficient to see practical convergence 

and accurate fault detection. However the challenge is 

associated with simulating model incremental learning 

over time, especially when a human operator is supposed 

to confirm/discard faults. We propose to bound the space 

of exploration with a pessimistic and an optimistic human 

behavior simulator, as well as a “probable” median 

scenario. 
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