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Abstract

A novel method is presented to build semi-crystalline polymer models used in molec-

ular dynamics simulations. The method allows controlling certain aspects of the molec-

ular morphology of the material. It relies on the generation of the polymer sections in

the amorphous phase of the semi-crystalline structure according to the statistical poly-

mer physics theory proposed by Adhikari and Muthukumar.1 The amorphous phase is

first built based on the method initially developed by Theodorou and Suter.2 Then,

the amorphous phase is stacked between crystallites, and a connection algorithm pro-

posed by Rigby et al.,3 initially developed to build polymer thermosets, is employed

to link two phases. For a given set of crystallinity degree, semi-crystalline long period,

densities of the crystalline and amorphous phases and polymer molecular weight, the

characteristic ratio is used to control the relative fractions of different types of polymer

sections in the amorphous phase as well as the distribution of their lengths. There are

three types of amorphous polymer sections: the ones that are reentering in the same

crystallite called loops, those that are bonding two different crystallites called tie chains,

and the chain tails ending in the amorphous region. The higher this characteristic ra-

tio is, the higher the fraction of tie chains is. The full implementation of the theory

is described and then applied to High-Density PolyEthylene (HDPE). Several samples

are generated. The obtained structures are characterized. Their elastic coefficients are

computed, and high uniaxial deformations are performed. It is shown that the higher

the crystallinity degree, the higher the elastic coefficients. An entanglement analysis

shows that the quantity of tie chains is more decisive than the entanglements in acting

as stress transmitters to rigidify the structure.
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1 Introduction and state of the art

Polymers can be manufactured into various shapes by a variety of industrial processes like

molding, thermoforming, 3D printing, making them ubiquitous.4 Many industries are using

them for their mechanical, permeation, dielectric, optical, thermal, and chemical properties,

among others.5 Polymers can solidify into vitreous or crystalline states but may also adopt a

semi-crystalline structure. However, the complete morphology of the semi-crystalline struc-

ture, with organization at different length scales, is still not fully understood. With the

help of material simulations, the present work aims to elucidate how the morphology in-

fluences the physico-chemical properties to design better materials and comprehend those

micro-structures at the fundamental level. While our study uses a polyethylene (PE) model,

the methodology is generic enough to be used for other semi-crystalline polymers. We focus

on model constructions at the molecular scale, the description of the obtained morphologies

and the computation of their mechanical properties.

In the 1970s, the path of a single deuterated polyethylene chain in the bulk semi-

crystalline structure obtained by quenching from the melt was studied with neutron scatter-

ing (NS).6–9 It was shown that the radius of gyration of the polymer in the semi-crystalline

structure is of the same length as the one in the melt, suggesting that the shape of the

molecules is not strongly modified by the crystallization process giving rise to the forma-

tion of a low proportion of adjacent chain reentries (see figure 1 for definitions). On the

other hand, the radius of gyration in the solution-grown pure polyethylene crystal is much

smaller, suggesting a high proportion of adjacent reentries,10 hence a more regular and com-

pact chain folding. In addition, folding patterns of deuterated chains in the solution-grown

single-crystals were studied using infrared spectroscopy (IR) and it was also concluded that

a high proportion of adjacent reentries11–14 exists, in agreement with the NS measurements.

Since the 2000s, new techniques were used to characterize the morphology: atomic force

microscopy (AFM) and solid-state nuclear magnetic resonance (ss NMR), the latter also

relying on isotope labeling of a small proportion of the chains. AFM images of polymer
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semi-crystalline films of isotactic poly(methyl methacrylate)15 and polyethylene16,17 allowed

to conclude to a high proportion of adjacent reentries contrary to the NS measurements on

semi-crystalline material obtained from the melt. Ss NMR18,19 studies showed a high propor-

tion of adjacent reentries on polypropylene solution-grown single-crystals and polypropylene

semi-crystalline obtained from the melt, adding the additional results that the morphology

was less dependent from the kinetic path to crystallization than from the entanglements in

the initial amorphous material. As we can see, results are still controversial depending on

the specific polymer and the sample type: single-crystal, semi-crystalline from the melt or

films. There is still a controversy regarding the fraction of adjacent reentries and lengths of

other folding or bridging patterns. The sample specific preparation for each experiment and

the limitations of the characterization methods are introducing biases.

Figure 1: “Multiscale” scheme of semi-crystalline polymers. Left: a micron-sized spherulite
consisting of crystalline lamellae emanating from a nucleation center in all directions. These
lamellae are aligned polymers forming a crystalline region. Middle: a single polymer chain
is represented crossing two lamellae in grey, the walks in the amorphous regions are of three
types: loops in blue, the polymer is reentering the same lamella, bridge or tie chains in green,
the polymer is bonding two lamellae, and tails in purple, the polymer ends in the unordered
phase. The red walk is called an adjacent reentry, also called a perfect fold. This is the
smallest possible loop. Right: a representation of two crystalline paralleled polyethylene
chains. The red rectangles show the successive magnification from left to right.

Molecular modeling has been employed to simulate nucleation from the melt with molec-
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ular dynamics.20–35 Those simulations provide valuable information about the process of

nucleation at the molecular scale, helping to understand the nature of the chain foldings

composing the crystallites. However, observing direct nucleation using molecular dynamics

is challenging because homogeneous nucleation is a rare event, anisotropic, necessitating the

concomitant creation of a surface normal to the direction of the chains and the lateral stack-

ing of parallel chains.24 Simulations have to be biased to accelerate the creation of a nucleus

large enough to survive and grow in an accessible simulation time. Biases include the use

of super-cooled short chains,20–25 pre-oriented chains,26–29 artificially stiffened chains.30,31

Coarse-graining32–36 was also used to speed up the simulation. Moreover, the small size of

the simulation boxes (≈ 100 Å) limits the apparition of the characteristic lamellar structure

observed in experiments i.e. the regular alternation of crystalline and amorphous phases

(see the middle image of figure 1). Thus the obtained systems are inappropriate for property

calculations. Therefore different procedures were proposed in the literature to build directly

semi-crystalline structures.

Balijepalli et al. proposed in 1998 the Interphase Monte Carlo method37–42 hereinafter

referred to as the Rutledge model. The method starts with a cuboid of pure crystal. In

a middle section of the cuboid, intended to become the amorphous phase, monomers or

large chain segments are deleted according to the target density of the amorphous region.

Then, a Monte Carlo procedure of slicing chain bonds, connecting chain ends, and classic

displacement-type moves of the chains is performed in the central cuboid section. Nilsson

et al. in 2012 proposed the Monte Carlo random walk model .43 This method creates chain

segments in the amorphous region using a random walk between two crystallites. When

the random walk reaches a crystallite, it automatically connects to a crystalline stem (chain

segment organized according to the crystallographic structure). The chains are emerging

from the lamellae and are folded back adjacently or are initiating a random walk forming

loops or tie chains (see figure 1). The target amorphous phase density is achieved by adjusting

the number of direct adjacent reentries. The methods of Nilsson and Rutledge use the
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amorphous phase density as the controlling parameter plus random walks or a Monte Carlo

connection algorithm.

Pandiyan and Rousseau44 proposed to start with a pure crystalline sample and to ran-

domly cut each chain in a central region followed by a relaxation above the melting tem-

perature to create a disordered region while keeping atoms in crystalline regions at a fixed

position. Two chain ends are then connected during a relaxation, creating a chemical bond

when falling within a cut-off distance. The connections are accepted or rejected according to

the fractions of polymer section types given as input. This method allows the investigation

of the role of each kind of polymer section (tie chains, loops, and tails) controlling their rel-

ative fractions.44 Starting with information about the morphology instead of starting with

the density as the controlling parameter was also proposed by Monasse and Queyroy,45,46

who chose specific reference systems with a complete morphology given as input and directly

built the structures “by hand”.

Nilsson and Rutledge’s methods do not control the morphologies. Nilsson’s Monte Carlo

random walk model relies on a high proportion of adjacent reentries to obtain the experimen-

tal density of the amorphous phase; this is a debatable choice looking at the experimental

literature. In Pandiyan et al. work,44 a large number of chains were not connected, result-

ing in an unrealistic high number of tails and thus a simulation box with unrealistically low

molecular weight molecules. Monasse and Queyroy construction is laborious; one has to know

all the morphological traits of the structure before building it and place monomers one by

one in the simulation cell, which is not convenient for systematic studies of semi-crystalline

samples.

When looking for a building method convenient to treat the relationship between the

morphology and the physico-chemical properties, three main criteria may be defined:

• The method has to be automated or automatable to generate multiple cells in a limited

amount of time.

• Some control on the morphologies is necessary.
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• The method has to have intrinsic randomness to build different models with the same

morphological characteristics as input.

Here, we propose a method to generate an amorphous region respecting statistics for the

type of chain section fractions, and their lengths, and then connect the amorphous region

between two crystallites. Such a method requires a statistical theory of chain behavior in the

amorphous phase. The pioneer theory for the statistical physics of semi-crystalline polymers

was the gambler’s ruin model.47 Like the Nilsson Monte Carlo random walks, this theory

has the inconvenience of using the adjacent reentries to correct the density. The statistics of

ties, loops, and tails published by Adhikari1 in 2019 is a new proposition. Adhikari’s work

also relies on random walks in a polymer field-theoretic formalism but avoids the necessity

of a correction with adjacent reentries. The formalism relies on the freely jointed chain. The

segments of the freely jointed chains have the same length and are directed toward a random

direction. Changing the segment length of the freely jointed chain controls the morphology:

the more a chain emerging from the crystalline phase persists in its direction, i.e. the larger

the chain rigidity, the more the probability for the chain to dive in the opposite crystalline

phase is high thus giving rise to a high tie chain fraction. Changing the proportion of

chain segments in the amorphous section allows to study their influence on the mechanical

properties. By studying systems with different crystalline fractions and different tie fractions,

we can access the effect of morphological differences on semi-crystalline polymer properties.

Moreover, an entanglement analysis is performed to understand what is the more decisive

factor regarding the mechanical properties, entanglements or chain section types.

The paper is organized as follows. In section 2 we briefly present the statistical theory

proposed by Adhikari and Muthukumar1 to obtain the fraction of tie segments and the length

distribution of tie, loop and tail segments. Then we explain how this theory is used to build

real models of semi-crystalline polymers. In section 3, we present our results starting with

information regarding final morphologies of the samples, their elastic properties and finally

their behavior under large uniaxial deformations. We finally give a conclusion and suggest
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some future work in this area.

2 Methods

2.1 Theory of statistics of ties, loops and tails in semi-crystalline

polymers

In this section, we briefly recall Adhikari and Muthukumar theory.1 Please refer to the

original paper for a detailed presentation of this work. Adhikari and Muthukumar theory

enables to study the statistics of ties and loops for a reference chain of finite length allowing

its connectivity to multiple lamellae. It is assumed that polymer chains in amorphous regions

are in the equilibrium state and follow Gaussian statistics. Ties, loops and tails are obtained

from a three-dimensional random walk between “absorbing” walls. The walk of the reference

polymer chain starts at a point in an amorphous region until it touches a lamellar surface,

forming a first chain end, here referred to as a tail. Once the chain touches a lamellar surface,

the formation of a rigid and vertical crystalline stem is guaranteed. Then, the chain emerges

out of the crystalline lamella and enters into the other amorphous region. The random walk

is pursued, giving rise to loops or ties until the reference chain ends in the amorphous region.

By allowing the length of tails, loops and ties to vary, Adhikari and Muthukumar calculate

the probability of formation of a chain of length N with a number of ties ntie when nstem exist,

associated with an arbitrary number of lamellae and amorphous regions. Such probability

is given as:

Z(ntie, nstem, N) = L−1[(g̃tail(E))2(g̃tie(E))ntie(g̃loop(E))nstem−ntie−1] (1)

where L−1 is the inverse Laplace operator and g̃tie(E), g̃tail(E) and g̃loop(E) are the Laplace

transform of gtie(s) the probability of formation of tie of length s and similarly for gtail(s) and

gloop(s). The final expression for the probability (including a typo correction from Adhikari
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and Muthukumar paper) is:

Z(ntie, nstem, N) = L−1
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(D = 1/6 in our study) and d′ is the intercrystalline length expressed in Kuhn length

units. The fraction of tie segments is thus obtained from the probability Z(ntie, nstem, N).

When the number of stems formed is nstem, the number of ties can vary from zero to nstem−1.

Also, for a fixed number of stems, there are different ways of forming a given number of ties.

Then, the average number of ties formed per molecule, n̄tie is given by:

n̄tie =

nstem−1∑
ntie=0

ωntie
ntieZ(ntie, nstem, N)

nstem−1∑
ntie=0

ωntie
Z(ntie, nstem, N)

(3)

where ωntie
is the number of ways of forming ntie ties when the total number of ties and

loops per molecule is nstem − 1, which is:

ωntie
=

(nstem − 1)!

ntie!(nstem − 1− ntie)!
(4)

Finally, the fraction of ties ftie is given by:

ftie =
n̄tie

nstem + 1
(5)
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Knowing the average number of tie chains per molecule, we obtain the average number of

loop chains per molecule as n̄loop = nstem − 1− n̄tie. Obviously, the number of tail segments

per molecule is ntail = 2.

2.2 Semi-crystalline samples construction

In this section, we present how we apply Adhikari and Muthukumar theory to the construc-

tion of semi-crystalline samples for molecular dynamics study. Computing the fraction of

ties using Adhikari and Muthukumar theory requires a small amount of input data: the ref-

erence chain length N , the amorphous thickness d and the crystalline lamellar thickness m.

The last two quantities are obtained using the degree of crystallinity χ. In1 it was assumed

equal density of the crystalline and amorphous phases. Length distribution of ties and loops

in Kuhn segment length and ties fractions are finally obtained from the theory.

In this work, we want to build semi-crystalline samples at the atomistic length scale and

provide a methodology applicable to different polymers. Our input parameters must thus

use some quantities specific of the polymer to model. We also need to account for accessible

computing ressources which give a limit to system sizes. Finally, we would like to define some

control parameter(s) which alters the fraction of ties and loops in the amorphous regions for

a given semi-crystalline degree.

The mass crystallinity degree χ is one of the most important parameter here. Together

with the so-called long period Lp, i.e. the period of amorphous and crystalline phases alter-

nation, a length scale can be obtained. We build molecular simulation boxes containing two

such periods, which means that the box initially contains two crystalline lamella separated

by amorphous regions along the z direction. Full periodicity of the box is assumed in all

three directions. The simulation box contains two polymer chains. Each crystalline region

is built using primitive cell informations48 with an integer number of primitive cells in the

x and y directions. The number of unit cells in the x and y directions imposes the initial

number of stems in the system. The total number of crystalline cells in the z direction is
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computed from the length of the crystalline regions m. For PE, each unit cell in the xy plane

contains two crystalline stems.

Contrarily to the work of Adhikari and Muthukumar, we want to account for the difference

between amorphous and crystalline densities, ρa and ρc respectively, where ρa is the average

density of the non-crystalline domain taking into account the interphase. ρa was taken to

be equal to 0.91 g/cm−3. ρc is computed from unit cell dimensions.

From the definition of the long period:

Lp = m+ d , (6)

and from the crystallinity degree:

χ =
ρcm

ρcm+ ρad
, (7)

we get values for m and d thicknesses:

m =
χLp

χ+ (1− χ)(ρc/ρa)
, (8)

d =
(1− χ)Lp

χ(ρa/ρc) + (1− χ)
. (9)

The Kuhn length is obtained from the knowledge of the characteristic ratio C∞, an in-

trinsic property of a polymer, and the backbone geometry. For polyethylene, we have:49

b =
C∞l

cos (θ/2)
(10)

where l is the carbon-carbon bond length and π − θ is the angle between two adjacent
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bonds along the polymer backbone.

The conversion from n, the number of CH2 groups to N , the number of Kuhn segments

is:

N =
n cos2 θ

2

C∞
. (11)

From the total density ρ and the simulation box size we obtain the chain molecular weight

Mw. Parameters are related quantities are given table 1. The last parameter to be fixed is

Table 1: Parameters used to build semi-crystalline samples with χ = 0.5 and
0.7. Also indicated the density of the boxes and the molecular weight of each
molecule in the final structures.

l (Å) 1.54
θ (°) 68
nstem 70

ρa (g/cm3) 0.91
ρc (g/cm3) 1
Lp (Å) 200
χ 0.5 0.7

ρ (g/cm3) 0.955 0.973
Mw (g/mol) 149432 147668

the characteristic ratio C∞. The characteristic ratio computed by Flory is 6.9 at 413 K.50 As

presented in the introduction, the length of the freely jointed segment, i.e. the Kuhn length,

has an influence on the fraction of ties in the system, ftie. Thus, by changing the value of

the characteristic ratio we can control the relative fractions of type of walks keeping the

other parameters identical. We believe that the chains in the amorphous regions are more

constrained than in a bulk amorphous system. Plus, the characteristic ratio was obtained

in the melt, at high temperature. We thus expect that C∞ = 6.8 is a lower bound for

the characteristic ratio describing chain segments in a semi-crystalline sample. Different

characteristic ratios: C∞ = 7, 9, 11 and 13, will be used to generate the structures at two

different crystallinity ratio χ = 0.5, 0.7. The corresponding fractions of tie chains are plotted

figure 2.

For each structure, we compute the number of tie, loop, and tail chains. We determine
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Figure 2: Fraction of tie chains, ftie, as a function of the characteristic ratio C∞ as obtained
from the theory (full lines) and for the samples built in this study (symbols) for the two
crystalline ratios studied here.

the length distribution of the chain sections in the amorphous phase using the probability

distributions gtie, gloop and gtail. The distributions have to be truncated as in Adhikari

formalism, they are not bounded toward s → +∞. In a real system, chain extension must

be limited to the physical space allowed between crystalline regions. A coarse way to obtain

a range [1, P ] of Kuhn segments to bound the probability distribution is to consider the

weighted average of the length of tie, loop and tail chains in Kuhn segments: sPtie, sPloop and

sPtail and to write the following identity concerning the number of amorphous Kuhn segments

Na = (1− χ)N .

Na = n̄ties
P
tie + n̄loops

P
loop + 2sPtail . (12)

Na = n̄tie

P∑
s=1

gPtie(s)× s+ n̄loop

P∑
s=1

gPloop(s)× s+ 2
P∑
s=1

gPtail(s)× s , (13)

where the gPi are the final probabilities used in this study:

gPtie(s) =
gtie(s)∑P
s=1 gtie(s)

, (14)

gPloop(s) =
gloop(s)∑P
s=1 gloop(s)

, (15)

13



gPtail(s) =
gtail(s)∑P
s=1 gtail(s)

. (16)

Figure 3: Final probabilities of formation of tie chains, loops and tails for χ = 0.5 and
different values of C∞.

We find the correct P which gives the correct average number of amorphous segments

Na. Those probabilities are discret probabilities of the number of Kuhn segments per walk

in the amorphous phase. From equation (11), we express the length of the walks in the

amorphous phase according the number of atoms in the backbone: n = NC∞
cos2 θ/2

. We do not

want to have only multiples of C∞
cos2 θ/2

for n, thus we interpolate the cumulative distribution

functions of the probability distribution functions (14), (15), (16) and a procedure called

Inverse Transform Sampling was used to randomly pick a number from those non-analytical

numerical probability distributions (see figures 3 and 4). This procedure is well described in

this reference.51 It allows to pick a number according to a discrete probability distribution

as if it was a continuous function.
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Figure 4: Final probabilities of formation of tie chains, loops and tails for χ = 0.7 and
different values of C∞.

2.3 Connection algorithm and molecular dynamics

For each structure, we build the crystalline phases using unit cell information and box and

region dimensions. We build two amorphous phases using the MedeA Amorphous Materials

Builder52 which is based on the work by Theodorou and Sutter algorithm2 with the chain

sections taken in the probability distributions. The crystalline and the amorphous regions

are then stacked together. We label the ends of the chain segments in the amorphous

phases according to the desired connections. A tie chain will have one end labeled A and

the other B, a tail chain will have one of the ends only labeled A or B, loop chains will

have both ends labeled with the same letter A or B. The reactive sites (CH3) on one edge

of the crystallite stems are labelled C and those on the other edge D. Then a connection

algorithm is launched, originally designed for thermoset building.3 The algorithm is a tool

of the material simulation software MedeA,52 and is named Thermoset builder. Spheres of

capture centered on the labeled site grow incrementally with a chosen step. Every time it

meets an allowed connection (here A with C and B with D) it forms a bond, and performs a

few steps of an NVT relaxation. We keep the crystalline phases frozen during the connection

process. We obtain structures like the one on the figure 5. The structures were thermalized
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Figure 5: Structure with crystallinity degree χ = 0.5 after connection and before relaxation.

and mechanically equilibrated during 100 ns with LAMMPS53 and the forcefield TraPPE-

UA54 in the NPT ensemble with T = 300 K and P = 1 atm with a time step of 1 fs (see fig.

6). The NPT ensemble used here allows relaxation in each spatial direction to ensure correct

equilibration of box lengths in all directions (known as LAMMPS NPT aniso mode).

Figure 6: Structure with an initial crystallinity degree χ = 0.5 after relaxation.

3 Results

3.1 Structural characterization of the samples

In this work, 27 structures, i.e. 27 simulation boxes, were generated with different crys-

tallinity degrees and characteristic ratios (see table 2).

Table 2: Number of modeled structures for each χinit and C∞.

χinit = 0.5 χinit = 0.7
C∞ = 7 3 3
C∞ = 9 6 3
C∞ = 11 3 3
C∞ = 13 3 3
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For all these structures, the crystallinity degree after relaxation was computed from the

density profile along the z axis, normal to the amorphous-crystalline interface (see figure 7).

A region is considered as amorphous when its density is smaller than 95% the crystalline den-

sity value, else it is considered as crystalline. After the NPT relaxation process, the average

crystallinity is close to the initial one. Average values over all structures and corresponding

standard deviations are given in table 3. Some fluctuations are observed, although the final

crystallinity degree remains within two standard deviations. Semi-crystalline density after

Table 3: Mean of the crystallinity degrees χrelax, and of the densities ρ̄relax after
relaxation, as well as their standard deviations σχrelax

and σρrelax.

χinit 0.5 0.7
χrelax 0.49 0.67
σχrelax

0.05 0.06
ρrelax 0.939 0.966
σρrelax 0.008 0.006

relaxation was also computed for all structures. Values are close from HDPE experimental

data: 0.941-0.965g/cm3.55 As expected, a strong correlation can be seen between crystallinity

degree and density (see figure 8).

0 100 200 300
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0.85
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0.95

1.00
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 (g
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m
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Figure 7: Density profile along the z axis, the axis of the long period, of the 3 structures
with χinit = 0.7 and C∞ = 7.

Thus, we have observed that our structures respect the original contraints imposed by

the building procedure for macroscopic observables. We now turn to the analysis of the
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molecular morphology of the samples, i.e. the amount of the different segment types and

an entanglement analysis. Figure 2 shows that the expected fraction of ties is well repro-

duced for each crystallinity at every C∞ value. The building procedure thus allows a fine

control of the imposed structural constraints. Occasionally some connection cannot be per-

formed. However this does not change significantly the imposed characteristics. Regarding

the distributions of the size of the loops, contrary to Nilsson’s samples43 or Monasse and

Queyroy’s ones,45 our structures have fewer small loops, i.e. adjacent reentries, roughly 1 to

2 per crystallite edge. As discussed in the introduction, the experimental literature shows

that the amount of adjacent reentries may vary significantly depending on both the investi-

gated samples and the employed characterization techniques. Thus, it is difficult to rely on

this morphological parameter to conclude on the reliability of the procedure. The Z1 code

0.92 0.94 0.96 0.98
Density (g/cm3)

0.4

0.5

0.6

0.7

0.8

χ re
la

x

χinit = 0.5
χinit = 0.7

Figure 8: Crystallinity degree as a function of density for all studied structures. Blue
and orange symbols correspond to structures with χinit = 0.5 and χinit = 0.7 respectively.
The two crosses indicate the average crystallinity and average density with corresponding
standard deviation.

from Martin Kröger56 is used to analyze the entanglements in the amorphous phases of each

structure in a similar way that Ranganathan et al.57 did on their semi-crystalline structures.

The obtained primitive paths for a typical structure is shown in figure 9. The primitive path

of a polymer chain immersed in a space of obstacles (usually other polymers) is defined as

the shortest path connecting the ends of the chain that does not violate the crossing of the
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Figure 9: Primitive path of chains in an amorphous region computed with the Z1 code,56
the segments belonging to loops are yellow and red, the segments belonging to tie chains are
blue, the tail segments are in green. The spheres represent the primitive path kinks and the
ends of the chains.

polymer chain.58 After relaxation, the density of topological entanglements, defined as the

number of links between two chain sections along their primitive path per unit volume of

amorphous phase, is identical for all crystallinity degree values, as shown in figure 10. An av-

erage value around 0.78 entanglements per nm3 is found, close to the value of 0.64±0.03 nm3

obtained by Lee and Rutledge.59 However, comparison with experimental data suggests that

amorphous region in semi-crystalline is more entangled than amorphous melt. The relation-

ship between crystallization and entanglement is still a matter of debate. Assuming slow

kinetics of crystallization, Hoffman and Miller60 consider that entanglements are eliminated

from the amorphous regions as crystallization proceeds, while Flory and Yoon61 consider

that chains cannot disentangle on the timescale of crystallization and entanglements are

segregated into the amorphous domains. In the Flory and Yoon picture an increase of the

density of entanglements in the amorphous phase is expected as crystallization proceeds. In

the view of Hoffman and Miller, some fraction of entanglements should disappear during

crystallization and the resulting entanglement density should be lower than expected from

Flory and Yoon approach. This view is re-enforced by Bartczak’s experimental work62 who

showed that a part of the entanglements was resolved during the crystallization depending
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on the chain length and their irregularities like branches; an increase of chain length and

irregularities both preventing the entanglement disparition. In our case, the large value of

the entanglement density is rather in favor of Flory and Yoon theory, although the process

involved to reach the semi-crystalline state is unphysical (building procedure rather than

crystallization from the melt). The relevant point here is that the entanglement density

should be larger than in the melt, a condition fulfilled by our building procedure.
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Figure 10: Density of topological entanglements in the amorphous regions as a function of
the crystallinity degree χrelax in all the generated semi-crystalline structures.

The entanglement length expressed in terms of number of CH2 groups is evaluated with

two estimators by the Z1 code: the classical kink entanglement length NeCK and the classical

coil entanglement length NeCC defined in.63 Averaged entanglement lengths are given in

table 4 along with the corresponding entanglement weights W a
e . Experimental data for

entanglement weight in the melt is64 Wmelt
e ≈ 800 to 1200 g/mol, a value two to three times

larger than the one observed in our simulations though in agreement with the increase in

entanglement density.

3.2 Elastic constants

The study focused on the three uniaxial coefficients of the elastic matrix c11, c22 and c33.

All structures were strained with an engineering tensile strain of ε = ±1% and ± 2%. The
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Table 4: Mean and standard deviation over all structures of two different estima-
tors developed by Kröger56 for the entanglement lengths in amorphous domains
expressed in number of CH2 groups and in molecular weights.

NeCK NeCC
mean 23.6 28.9
standard deviation 3.7 7.9
W a
e (g/mol) 330.5 405.9

results are shown figure 11. As expected from experimental studies,65 the elastic coefficients

increase with the crystallinity degree. The elastic coefficient c22 is higher than the c11 and

c33 coefficients. In order to understand why the c22 coefficient is slightly larger than c11 and
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)
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Figure 11: Tensile elastic coefficients cii as a function of the crystallinity degree χrelax of all
the modeled structures. Error bars represent statistical errors and are represented once for
each coefficient.

c33, is it important to look at the orientation of the structures relatively to the deformation

direction. As shown figure 12, crystalline stems are tilted in the yz plane while there are

normal to the x axis and parallel to the z axis in the xz plane.

When the sample is strained along the x or y directions, both crystalline and amor-

phous regions undergo the same deformation amplitude which imposes a deformation of the

crystalline regions. A deformation along the x axis mostly implies changes of van der Waals

interaction while a deformation along the y axis also implies changes of covalent interactions.

The latter being stronger, c22 is expected to be larger than c11. When the strain is applied
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along the z axis, crystalline and amorphous regions undergo different deformation ampli-

tudes and the elastic coefficient value c33 is mainly controlled by the elasticity of the soften

region, i.e. the amorphous phase. This implies mostly changes in van der Waals interaction

leading to a c33 value lower than c22. In sum, when the structures are stretched in the z and

(a)

(b)

Figure 12: A structure seen from different directions: a. the y direction is vertical, b. the x
direction is vertical.

x direction, essentially the weak non-covalent interactions oppose the deformation, when the

structure is stretched along the y direction, there is a contribution of the stronger covalent

interactions due to the tilt angle.

With the exception of the crystallinity ratio effect, we did not notice any correlation

between the elastic coefficients and other morphological specificities such as the amount of

tie chains or topological entanglements. Such behavior is expected in the small deformation

regime.

3.3 High deformations

To investigate further the role of entanglements and molecular morphology, the structures

were elongated with a strain rate ε̇ = 2.5 · 10−3 ns−1 along the z axis from 0% to 50%. A

strain of 0.5% per step was used followed by a relaxation in the NPT ensemble during 2 ns
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at each step. The stress-strain curves obtained present a peak between 0.6 and 0.8% then

a continuous decrease toward a plateau. Example of such curves can be found figure 13.

A typical structure after 50% deformation is shown figure 14. We notice that after such
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Figure 13: Stress-strain curve for the three structures with χinit = 0.5 and C∞ = 11.

large stretching, crystalline phases are still present. The atoms which were initially in the

crystalline phase (respectively in the amorphous phase) are colored in red (respectively in

grey). One can notice that the stretching occurs by sliding of the chains. Several atoms

previously in crystalline regions now appear in the amorphous phases and inversely. One

amorphous region is almost destroyed, with the formation of a cavity and fibrils. This

behavior is observed almost systematically in our samples.

What is considered to influence the mechanical properties are the so called stress trans-

mitters .36,59,62,66–68 The term encompasses bridging entanglements and tie chains. Bridging

entanglements link polymer chains emerging from two different crystalline phases. We have

considered here only loop-loop bridging entanglements, neglecting those including tail chains

due to their small number.

To further investigate the high deformations, two criteria were used to characterize the

stress-strain curves:

• the ultimate strength σUS being the maximum stress the material withstands along

the stress-strain curve,
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Figure 14: 50% stretched structure along the z direction. The red atoms are the atoms
which were initially in the crystalline phase.

• the average stress from 25% to 50% strain, σ25−50.

As shown figure 15, the ultimate strength σUS and the average stress between 25 and 50%

strain, σ25−50 are increasing with the crystallinity degree, as observed for the elastic coef-

ficients cii. σUS and σ25−50 are plotted figure 16 as a function of the number of tie chains
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Figure 15: σUS (red data) and σ25−50 (green data) as a function of the crystallinity degree
χrelax. Dashed lines are linear regressions of each data set. Error bars are stress fluctuations
and are given on a single point.

and loop-loop bridging entanglements to investigate the importance of the stress transmit-

ters. An increase of both stress quantities is expected with an increase of the number of

stress transmitters. This increase is indeed observed for σUS and σ25−50 versus the tie chain

number. However, the opposite trend is observed versus loop-loop bridging entanglement

number. The quantity of tie chains is the decisive factor over the entanglements to act

as stress transmitters. This result confirms recent experimental work by McDermott.69 It

would be however interesting to quantitatively investigate the magnitude of loop-loop en-

tanglements contribution. This implies to control the number of loop-loop entanglements
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at constant number of other stress transmitters (tie chains). This is not possible as in our

building procedure, n̄tie and n̄loop are not independent quantities (see figure 17). However

when looking qualitatively at structures with the same amount of tie chains in each amor-

phous region, it is the region with the most loop-loop bridging entanglements which is the

least deformed. The bridging entanglements are thus secondary stress transmitters behind

the tie chains.
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Figure 16: σUS and σ25−50 as a function of the number of ties chains and loop-loop bridging
topological entanglements. Error bars are stress fluctuations and are given on a single point.
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Figure 17: Relationship between the number of tie chains and loop-loop bridging entangle-
ments.
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4 Conclusion

This work presents a new modeling method for building atomistic semi-crystalline polymer

models. Specifically, using a robust connection algorithm,3 it was feasible to implement Ad-

hikari’s theory of tie chains, loops, and tails.1 The crystallinity degree and the fraction of tie

chains are adjustable degrees of freedom of the method. Although chain length distributions

for ties, loops and tails are provided by the theory, different choices could be used to investi-

gate limiting cases. Hence, structures with, for example, a high or low proportion of adjacent

reentries could be modeled, as the one described by Nilsson.43 When the methodology is ap-

plied to a model of semi-crystalline polyethylene, the initial constraints, i.e. the number

of tie chains and the initial crystallinity degree, are well respected. Thus, the influence of

these parameters onto morphological and mechanical properties can be studied. We observed

that the density of topological entanglements in the amorphous regions is larger than the

one observed in the melt, a result in agreement with Yoon and Flory61 and Hoffman and

Miller60 theories. Also, this quantity is independent of the crystallinity ratio, though more

studies would be needed to understand the relationship between topological entanglements

and crystallinity ratio. The elastic coefficients are independent of the entanglements and the

molecular morphology. This was shown by previous experimental work studies70 and are

mostly correlated with the crystallinity degree as expected from experimental studies.65

With this knowledge, computing semi-crystalline structure mechanical properties in the

linear regime does not require controlling the fraction and distribution of the amorphous

chains and the entanglement quantity but only the crystallinity degree. Thus a similar

method to the one presented in this work with more simple analytical probability distribu-

tions may be sufficient to compute elastic coefficients.

For deformations far from the linear regime, the tie chains are the most critical stress

transmitter; nevertheless, for structures with equal number of tie chains for both amorphous

phases, the amorphous phase with the most bridging entanglements is the least deformed.

The tie chains seem to be the primary stress transmitters, and the bridging entanglements
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the secondary ones.
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