Boris Belin 
  
Marianna Yiannourakou 
  
Véronique Lachet 
  
Bernard Rousseau 
email: bernard.rousseau@cnrs.fr
  
  
  
A modeling method for semi-crystalline polymers controlling aspects of the morphology at the molecular scale for the study of mechanical and physico-chemical properties

  L'archive ouverte pluridisciplinaire

Introduction and state of the art

Polymers can be manufactured into various shapes by a variety of industrial processes like molding, thermoforming, 3D printing, making them ubiquitous. [START_REF] Birley | Plastics Materials: Properties and Applications[END_REF] Many industries are using them for their mechanical, permeation, dielectric, optical, thermal, and chemical properties, among others. [START_REF] Elias | An Introduction to Plastics[END_REF] Polymers can solidify into vitreous or crystalline states but may also adopt a semi-crystalline structure. However, the complete morphology of the semi-crystalline structure, with organization at different length scales, is still not fully understood. With the help of material simulations, the present work aims to elucidate how the morphology influences the physico-chemical properties to design better materials and comprehend those micro-structures at the fundamental level. While our study uses a polyethylene (PE) model, the methodology is generic enough to be used for other semi-crystalline polymers. We focus on model constructions at the molecular scale, the description of the obtained morphologies and the computation of their mechanical properties.

In the 1970s, the path of a single deuterated polyethylene chain in the bulk semicrystalline structure obtained by quenching from the melt was studied with neutron scattering (NS). [START_REF] Schelten | Small-Angle Neutron Scattering Studies of Molten and Crystalline Polyethylene[END_REF][START_REF] Sadler | Neutron Scattering Studies on the Molecular Trajectory in Polyethylene Crystallized from Solution and Melt[END_REF][START_REF] Schelten | Small-Angle Neutron Scattering Studies of Molecular Clustering in Mixtures of Polyethylene and Deuterated Polyethylene[END_REF][START_REF] Stamm | Chain Conformation in the Crystalline State by Means of Neutron Scattering Methods[END_REF] It was shown that the radius of gyration of the polymer in the semi-crystalline structure is of the same length as the one in the melt, suggesting that the shape of the molecules is not strongly modified by the crystallization process giving rise to the formation of a low proportion of adjacent chain reentries (see figure 1 for definitions). On the other hand, the radius of gyration in the solution-grown pure polyethylene crystal is much smaller, suggesting a high proportion of adjacent reentries, [START_REF] Spells | Neutron Scattering Studies on Solution-Grown Crystals of Polyethylene: A Statistical Preference for Adjacent Re-Entry[END_REF] hence a more regular and compact chain folding. In addition, folding patterns of deuterated chains in the solution-grown single-crystals were studied using infrared spectroscopy (IR) and it was also concluded that a high proportion of adjacent reentries [START_REF] Ching | Mixed-crystal Infrared Studies on Melt-crystallized Polyethylene[END_REF][START_REF] Jing | Mixed-crystal Infrared Studies of Chain Folding in Polyethylene Single Crystals: Effect of Crystallization Temperature[END_REF][START_REF] Cheam | Mixed-Crystal Infrared Studies of Chain-Folding in Polyethylene Single Crystals: Low-temperature and Molecular Weight Studies[END_REF][START_REF] Reddy | Cocrystallization Phenomenon between the H and D Species of Isotactic Polypropylene Blends As Revealed by Thermal and Infrared Spectroscopic Analyses for a Series of D/H Blend Samples[END_REF] exists, in agreement with the NS measurements.

Since the 2000s, new techniques were used to characterize the morphology: atomic force microscopy (AFM) and solid-state nuclear magnetic resonance (ss NMR), the latter also relying on isotope labeling of a small proportion of the chains. AFM images of polymer semi-crystalline films of isotactic poly(methyl methacrylate) [START_REF] Kumaki | Two-Dimensional Folded Chain Crystals of a Synthetic Polymer in a Langmuir-Blodgett Film[END_REF] and polyethylene [START_REF] Mullin | Direct Imaging of Polyethylene Films at Single-Chain Resolution with Torsional Tapping Atomic Force Microscopy[END_REF][START_REF] Savage | Molecular Conformation at the Crystal-Amorphous Interface in Polyethylene[END_REF] allowed to conclude to a high proportion of adjacent reentries contrary to the NS measurements on semi-crystalline material obtained from the melt. Ss NMR [START_REF] Hong | Chain-Folding Structure of a Semicrystalline Polymer in Bulk Crystals Determined by 13 C-13 C Double Quantum NMR[END_REF][START_REF] Hong | Chain Trajectory of Semicrystalline Polymers As Revealed by Solid-State NMR Spectroscopy[END_REF] studies showed a high proportion of adjacent reentries on polypropylene solution-grown single-crystals and polypropylene semi-crystalline obtained from the melt, adding the additional results that the morphology was less dependent from the kinetic path to crystallization than from the entanglements in the initial amorphous material. As we can see, results are still controversial depending on the specific polymer and the sample type: single-crystal, semi-crystalline from the melt or films. There is still a controversy regarding the fraction of adjacent reentries and lengths of other folding or bridging patterns. The sample specific preparation for each experiment and the limitations of the characterization methods are introducing biases. Figure 1: "Multiscale" scheme of semi-crystalline polymers. Left: a micron-sized spherulite consisting of crystalline lamellae emanating from a nucleation center in all directions. These lamellae are aligned polymers forming a crystalline region. Middle: a single polymer chain is represented crossing two lamellae in grey, the walks in the amorphous regions are of three types: loops in blue, the polymer is reentering the same lamella, bridge or tie chains in green, the polymer is bonding two lamellae, and tails in purple, the polymer ends in the unordered phase. The red walk is called an adjacent reentry, also called a perfect fold. This is the smallest possible loop. Right: a representation of two crystalline paralleled polyethylene chains. The red rectangles show the successive magnification from left to right.

Molecular modeling has been employed to simulate nucleation from the melt with molec-ular dynamics. [START_REF] Esselink | Molecular Dynamics Study of Nucleation and Melting of N-alkanes[END_REF][START_REF] Takeuchi | Structure Formation during the Crystallization Induction Period of a Short Chain-Molecule System: A Molecular Dynamics Study[END_REF][START_REF] Yi | Molecular Simulation of Crystal Nucleation in N-Octane Melts[END_REF][START_REF] Yi | Molecular Simulation of Bundle-like Crystal Nucleation from n-Eicosane Melts[END_REF][START_REF] Yi | Molecular Dynamics Simulation of Homogeneous Crystal Nucleation in Polyethylene[END_REF][START_REF] Zhang | Direct All-Atom Molecular Dynamics Simulations of the Effects of Short Chain Branching on Polyethylene Oligomer Crystal Nucleation[END_REF][START_REF] Koyama | Molecular Dynamics Simulation of Polymer Crystallization from an Oriented Amorphous State[END_REF][START_REF] Lavine | Molecular Dynamics Simulation of Orientation and Crystallization of Polyethylene during Uniaxial Extension[END_REF][START_REF] Ko | Characterization of Polyethylene Crystallization from an Oriented Melt by Molecular Dynamics Simulation[END_REF][START_REF] Jabbarzadeh | Crystallization of Alkanes under Quiescent and Shearing Conditions[END_REF][START_REF] Kavassalis | A Molecular-Dynamics Study of Polyethylene Crystallization[END_REF][START_REF] Liu | Langevin Dynamics Simulations of Early-Stage Polymer Nucleation and Crystallization[END_REF][START_REF] Hu | Chain Folding in Polymer Melt Crystallization Studied by Dynamic Monte Carlo Simulations[END_REF][START_REF] Meyer | Formation of Chain-Folded Structures in Supercooled Polymer Melts Examined by MD Simulations[END_REF][START_REF] Yamamoto | Molecular Dynamics Simulations of Steady-State Crystal Growth and Homogeneous Nucleation in Polyethylene-like Polymer[END_REF][START_REF] Yamamoto | Molecular Dynamics Simulations of Polymer Crystallization in Highly Supercooled Melt: Primary Nucleation and Cold Crystallization[END_REF] Those simulations provide valuable information about the process of nucleation at the molecular scale, helping to understand the nature of the chain foldings composing the crystallites. However, observing direct nucleation using molecular dynamics is challenging because homogeneous nucleation is a rare event, anisotropic, necessitating the concomitant creation of a surface normal to the direction of the chains and the lateral stacking of parallel chains. [START_REF] Yi | Molecular Dynamics Simulation of Homogeneous Crystal Nucleation in Polyethylene[END_REF] Simulations have to be biased to accelerate the creation of a nucleus large enough to survive and grow in an accessible simulation time. Biases include the use of super-cooled short chains, [START_REF] Esselink | Molecular Dynamics Study of Nucleation and Melting of N-alkanes[END_REF][START_REF] Takeuchi | Structure Formation during the Crystallization Induction Period of a Short Chain-Molecule System: A Molecular Dynamics Study[END_REF][START_REF] Yi | Molecular Simulation of Crystal Nucleation in N-Octane Melts[END_REF][START_REF] Yi | Molecular Simulation of Bundle-like Crystal Nucleation from n-Eicosane Melts[END_REF][START_REF] Yi | Molecular Dynamics Simulation of Homogeneous Crystal Nucleation in Polyethylene[END_REF][START_REF] Zhang | Direct All-Atom Molecular Dynamics Simulations of the Effects of Short Chain Branching on Polyethylene Oligomer Crystal Nucleation[END_REF] pre-oriented chains, [START_REF] Koyama | Molecular Dynamics Simulation of Polymer Crystallization from an Oriented Amorphous State[END_REF][START_REF] Lavine | Molecular Dynamics Simulation of Orientation and Crystallization of Polyethylene during Uniaxial Extension[END_REF][START_REF] Ko | Characterization of Polyethylene Crystallization from an Oriented Melt by Molecular Dynamics Simulation[END_REF][START_REF] Jabbarzadeh | Crystallization of Alkanes under Quiescent and Shearing Conditions[END_REF] artificially stiffened chains. [START_REF] Kavassalis | A Molecular-Dynamics Study of Polyethylene Crystallization[END_REF][START_REF] Liu | Langevin Dynamics Simulations of Early-Stage Polymer Nucleation and Crystallization[END_REF] Coarse-graining [START_REF] Hu | Chain Folding in Polymer Melt Crystallization Studied by Dynamic Monte Carlo Simulations[END_REF][START_REF] Meyer | Formation of Chain-Folded Structures in Supercooled Polymer Melts Examined by MD Simulations[END_REF][START_REF] Yamamoto | Molecular Dynamics Simulations of Steady-State Crystal Growth and Homogeneous Nucleation in Polyethylene-like Polymer[END_REF][START_REF] Yamamoto | Molecular Dynamics Simulations of Polymer Crystallization in Highly Supercooled Melt: Primary Nucleation and Cold Crystallization[END_REF][START_REF] Jabbari-Farouji | Role of the Intercrystalline Tie Chains Network in the Mechanical Response of Semicrystalline Polymers[END_REF] was also used to speed up the simulation. Moreover, the small size of the simulation boxes (≈ 100 Å) limits the apparition of the characteristic lamellar structure observed in experiments i.e. the regular alternation of crystalline and amorphous phases (see the middle image of figure 1). Thus the obtained systems are inappropriate for property calculations. Therefore different procedures were proposed in the literature to build directly semi-crystalline structures.

Balijepalli et al. proposed in 1998 the Interphase Monte Carlo method [START_REF] Balijepalli | Simulation Study of Semi-Crystalline Polymer Interphases[END_REF][START_REF] Gautam | Molecular Simulations of the Interlamellar Phase in Polymers: Effect of Chain Tilt[END_REF][START_REF] Balijepalli | Conformational Statistics of Polymer Chains in the Interphase of Semi-Crystalline Polymers[END_REF][START_REF] Rutledge | Implications of Metastability for the Crystal/Amorphous Interface from Molecular Simulation[END_REF][START_REF] Veld | Temperature-Dependent Elasticity of a Semicrystalline Interphase Composed of Freely Rotating Chains[END_REF][START_REF] Veld | Temperature-Dependent Thermal and Elastic Properties of the Interlamellar Phase of Semicrystalline Polyethylene by Molecular Simulation[END_REF] hereinafter referred to as the Rutledge model. The method starts with a cuboid of pure crystal. In a middle section of the cuboid, intended to become the amorphous phase, monomers or large chain segments are deleted according to the target density of the amorphous region.

Then, a Monte Carlo procedure of slicing chain bonds, connecting chain ends, and classic displacement-type moves of the chains is performed in the central cuboid section. Nilsson et al. in 2012 proposed the Monte Carlo random walk model . [START_REF] Nilsson | Modelling Tie Chains and Trapped Entanglements in Polyethylene[END_REF] This method creates chain segments in the amorphous region using a random walk between two crystallites. When the random walk reaches a crystallite, it automatically connects to a crystalline stem (chain segment organized according to the crystallographic structure). The chains are emerging from the lamellae and are folded back adjacently or are initiating a random walk forming loops or tie chains (see figure 1). The target amorphous phase density is achieved by adjusting the number of direct adjacent reentries. The methods of Nilsson and Rutledge use the amorphous phase density as the controlling parameter plus random walks or a Monte Carlo connection algorithm.

Pandiyan and Rousseau [START_REF] Pandiyan | Factors Influencing Properties of Interfacial Regions in Semicrystalline Polyethylene: A Molecular Dynamics Simulation Study[END_REF] proposed to start with a pure crystalline sample and to randomly cut each chain in a central region followed by a relaxation above the melting temperature to create a disordered region while keeping atoms in crystalline regions at a fixed position. Two chain ends are then connected during a relaxation, creating a chemical bond when falling within a cut-off distance. The connections are accepted or rejected according to the fractions of polymer section types given as input. This method allows the investigation of the role of each kind of polymer section (tie chains, loops, and tails) controlling their relative fractions. [START_REF] Pandiyan | Factors Influencing Properties of Interfacial Regions in Semicrystalline Polyethylene: A Molecular Dynamics Simulation Study[END_REF] Starting with information about the morphology instead of starting with the density as the controlling parameter was also proposed by Monasse and Queyroy, [START_REF] Monasse | Molecular Dynamics Prediction of Elastic and Plastic Deformation of Semi-Crystalline Polyethylene[END_REF][START_REF] Queyroy | Effect of the Molecular Structure of Semicrystalline Polyethylene on Mechanical Properties Studied by Molecular Dynamics[END_REF] who chose specific reference systems with a complete morphology given as input and directly built the structures "by hand".

Nilsson and Rutledge's methods do not control the morphologies. Nilsson's Monte Carlo random walk model relies on a high proportion of adjacent reentries to obtain the experimental density of the amorphous phase; this is a debatable choice looking at the experimental literature. In Pandiyan et al. work, 44 a large number of chains were not connected, resulting in an unrealistic high number of tails and thus a simulation box with unrealistically low molecular weight molecules. Monasse and Queyroy construction is laborious; one has to know all the morphological traits of the structure before building it and place monomers one by one in the simulation cell, which is not convenient for systematic studies of semi-crystalline samples.

When looking for a building method convenient to treat the relationship between the morphology and the physico-chemical properties, three main criteria may be defined:

• The method has to be automated or automatable to generate multiple cells in a limited amount of time.

• Some control on the morphologies is necessary.

• The method has to have intrinsic randomness to build different models with the same morphological characteristics as input.

Here, we propose a method to generate an amorphous region respecting statistics for the type of chain section fractions, and their lengths, and then connect the amorphous region between two crystallites. Such a method requires a statistical theory of chain behavior in the amorphous phase. The pioneer theory for the statistical physics of semi-crystalline polymers was the gambler's ruin model. [START_REF] Guttman | Modelling the Amorphous Phase and the Fold Surface of a Semicrystalline Polymer-the Gambler's Ruin Method[END_REF] Like the Nilsson Monte Carlo random walks, this theory has the inconvenience of using the adjacent reentries to correct the density. The statistics of ties, loops, and tails published by Adhikari 1 in 2019 is a new proposition. Adhikari's work also relies on random walks in a polymer field-theoretic formalism but avoids the necessity of a correction with adjacent reentries. The formalism relies on the freely jointed chain. The segments of the freely jointed chains have the same length and are directed toward a random direction. Changing the segment length of the freely jointed chain controls the morphology: the more a chain emerging from the crystalline phase persists in its direction, i.e. the larger the chain rigidity, the more the probability for the chain to dive in the opposite crystalline phase is high thus giving rise to a high tie chain fraction. Changing the proportion of chain segments in the amorphous section allows to study their influence on the mechanical properties. By studying systems with different crystalline fractions and different tie fractions, we can access the effect of morphological differences on semi-crystalline polymer properties.

Moreover, an entanglement analysis is performed to understand what is the more decisive factor regarding the mechanical properties, entanglements or chain section types.

The paper is organized as follows. In section 2 we briefly present the statistical theory proposed by Adhikari and Muthukumar 1 to obtain the fraction of tie segments and the length distribution of tie, loop and tail segments. Then we explain how this theory is used to build real models of semi-crystalline polymers. In section 3, we present our results starting with information regarding final morphologies of the samples, their elastic properties and finally their behavior under large uniaxial deformations. We finally give a conclusion and suggest some future work in this area.

Methods

Theory of statistics of ties, loops and tails in semi-crystalline polymers

In this section, we briefly recall Adhikari and Muthukumar theory. [START_REF] Adhikari | Theory of Statistics of Ties, Loops, and Tails in Semicrystalline Polymers[END_REF] Please refer to the original paper for a detailed presentation of this work. Adhikari and Muthukumar theory enables to study the statistics of ties and loops for a reference chain of finite length allowing its connectivity to multiple lamellae. It is assumed that polymer chains in amorphous regions are in the equilibrium state and follow Gaussian statistics. Ties, loops and tails are obtained from a three-dimensional random walk between "absorbing" walls. The walk of the reference polymer chain starts at a point in an amorphous region until it touches a lamellar surface, forming a first chain end, here referred to as a tail. Once the chain touches a lamellar surface, the formation of a rigid and vertical crystalline stem is guaranteed. Then, the chain emerges out of the crystalline lamella and enters into the other amorphous region. The random walk is pursued, giving rise to loops or ties until the reference chain ends in the amorphous region.

By allowing the length of tails, loops and ties to vary, Adhikari and Muthukumar calculate the probability of formation of a chain of length N with a number of ties n tie when n stem exist, associated with an arbitrary number of lamellae and amorphous regions. Such probability is given as:

Z(n tie , n stem , N ) = L -1 [(g tail (E)) 2 (g tie (E)) n tie (g loop (E)) nstem-n tie -1 ] (1) 
where L -1 is the inverse Laplace operator and gtie (E), gtail (E) and gloop (E) are the Laplace transform of g tie (s) the probability of formation of tie of length s and similarly for g tail (s) and g loop (s). The final expression for the probability (including a typo correction from Adhikari and Muthukumar paper) is:

Z(n tie , n stem , N ) = L -1      1 E - sinh ( E D ) E sinh (d E D ) - sinh ((d -1) E D ) E sinh (d E D )   2 ×   sinh ( E D ) sinh (d E D )   n tie   sinh ((d -1) E D ) sinh (d E D )   nstem-n tie -1    (2) 
(D = 1/6 in our study) and d is the intercrystalline length expressed in Kuhn length units. The fraction of tie segments is thus obtained from the probability Z(n tie , n stem , N ).

When the number of stems formed is n stem , the number of ties can vary from zero to n stem -1.

Also, for a fixed number of stems, there are different ways of forming a given number of ties.

Then, the average number of ties formed per molecule, ntie is given by:

ntie = nstem-1 n tie =0 ω n tie n tie Z(n tie , n stem , N ) nstem-1 n tie =0 ω n tie Z(n tie , n stem , N ) (3) 
where ω n tie is the number of ways of forming n tie ties when the total number of ties and loops per molecule is n stem -1, which is:

ω n tie = (n stem -1)! n tie !(n stem -1 -n tie )! (4) 
Finally, the fraction of ties f tie is given by:

f tie = ntie n stem + 1 (5) 
Knowing the average number of tie chains per molecule, we obtain the average number of loop chains per molecule as nloop = n stem -1 -ntie . Obviously, the number of tail segments per molecule is n tail = 2.

Semi-crystalline samples construction

In this section, we present how we apply Adhikari and Muthukumar theory to the construction of semi-crystalline samples for molecular dynamics study. Computing the fraction of ties using Adhikari and Muthukumar theory requires a small amount of input data: the reference chain length N , the amorphous thickness d and the crystalline lamellar thickness m.

The last two quantities are obtained using the degree of crystallinity χ. In 1 it was assumed equal density of the crystalline and amorphous phases. Length distribution of ties and loops in Kuhn segment length and ties fractions are finally obtained from the theory.

In this work, we want to build semi-crystalline samples at the atomistic length scale and provide a methodology applicable to different polymers. Our input parameters must thus use some quantities specific of the polymer to model. We also need to account for accessible computing ressources which give a limit to system sizes. Finally, we would like to define some control parameter(s) which alters the fraction of ties and loops in the amorphous regions for a given semi-crystalline degree.

The mass crystallinity degree χ is one of the most important parameter here. Together with the so-called long period L p , i.e. the period of amorphous and crystalline phases alternation, a length scale can be obtained. We build molecular simulation boxes containing two such periods, which means that the box initially contains two crystalline lamella separated by amorphous regions along the z direction. Full periodicity of the box is assumed in all three directions. The simulation box contains two polymer chains. Each crystalline region is built using primitive cell informations [START_REF] Bunn | The Crystal Structure of Long-Chain Normal Paraffin Hydrocarbons. The "Shape" of The[END_REF] with an integer number of primitive cells in the

x and y directions. The number of unit cells in the x and y directions imposes the initial number of stems in the system. The total number of crystalline cells in the z direction is computed from the length of the crystalline regions m. For PE, each unit cell in the xy plane contains two crystalline stems.

Contrarily to the work of Adhikari and Muthukumar, we want to account for the difference between amorphous and crystalline densities, ρ a and ρ c respectively, where ρ a is the average density of the non-crystalline domain taking into account the interphase. ρ a was taken to be equal to 0.91 g/cm -3 . ρ c is computed from unit cell dimensions.

From the definition of the long period:

L p = m + d , (6) 
and from the crystallinity degree:

χ = ρ c m ρ c m + ρ a d , (7) 
we get values for m and d thicknesses:

m = χL p χ + (1 -χ)(ρ c /ρ a ) , (8) 
d = (1 -χ)L p χ(ρ a /ρ c ) + (1 -χ) . (9) 
The Kuhn length is obtained from the knowledge of the characteristic ratio C ∞ , an intrinsic property of a polymer, and the backbone geometry. For polyethylene, we have:

49 b = C ∞ l cos (θ/2) ( 10 
)
where l is the carbon-carbon bond length and π -θ is the angle between two adjacent bonds along the polymer backbone.

The conversion from n, the number of CH 2 groups to N , the number of Kuhn segments is:

N = n cos 2 θ 2 C ∞ . ( 11 
)
From the total density ρ and the simulation box size we obtain the chain molecular weight M w . Parameters are related quantities are given table 1. The last parameter to be fixed is Table 1: Parameters used to build semi-crystalline samples with χ = 0.5 and 0.7. Also indicated the density of the boxes and the molecular weight of each molecule in the final structures.

l (Å) 1.54 θ (°) 68 n stem 70 ρ a (g/cm 3 ) 0.91 ρ c (g/cm 3 ) 1 L p (Å) 200 χ
0.5 0.7 ρ (g/cm 3 ) 0.955 0.973 M w (g/mol) 149432 147668 the characteristic ratio C ∞ . The characteristic ratio computed by Flory is 6.9 at 413 K. [START_REF] Flory | Statistical Mechanics of Chain Molecules[END_REF] As presented in the introduction, the length of the freely jointed segment, i.e. the Kuhn length, has an influence on the fraction of ties in the system, f tie . Thus, by changing the value of the characteristic ratio we can control the relative fractions of type of walks keeping the other parameters identical. We believe that the chains in the amorphous regions are more constrained than in a bulk amorphous system. Plus, the characteristic ratio was obtained in the melt, at high temperature. We thus expect that C ∞ = 6.8 is a lower bound for the characteristic ratio describing chain segments in a semi-crystalline sample. Different characteristic ratios: C ∞ = 7, 9, 11 and 13, will be used to generate the structures at two different crystallinity ratio χ = 0.5, 0.7. The corresponding fractions of tie chains are plotted figure 2.

For each structure, we compute the number of tie, loop, and tail chains. We determine the length distribution of the chain sections in the amorphous phase using the probability distributions g tie , g loop and g tail . The distributions have to be truncated as in Adhikari formalism, they are not bounded toward s → +∞. In a real system, chain extension must be limited to the physical space allowed between crystalline regions. A coarse way to obtain a range [1, P ] of Kuhn segments to bound the probability distribution is to consider the weighted average of the length of tie, loop and tail chains in Kuhn segments: s P tie , s P loop and s P tail and to write the following identity concerning the number of amorphous Kuhn segments

N a = (1 -χ)N .
N a = ntie s P tie + nloop s P loop + 2s P tail .

N a = ntie

P s=1 g P tie (s) × s + nloop P s=1 g P loop (s) × s + 2 P s=1 g P tail (s) × s , (13) 
where the g P i are the final probabilities used in this study: We find the correct P which gives the correct average number of amorphous segments N a . Those probabilities are discret probabilities of the number of Kuhn segments per walk in the amorphous phase. From equation (11), we express the length of the walks in the amorphous phase according the number of atoms in the backbone: n = N C∞ cos 2 θ/2 . We do not want to have only multiples of C∞ cos 2 θ/2 for n, thus we interpolate the cumulative distribution functions of the probability distribution functions ( 14), ( 15), ( 16) and a procedure called Inverse Transform Sampling was used to randomly pick a number from those non-analytical numerical probability distributions (see figures 3 and4). This procedure is well described in this reference. [START_REF] Devroye | Non-Uniform Random Variate Generation[END_REF] It allows to pick a number according to a discrete probability distribution as if it was a continuous function. 

g P tie (s) = g tie (s) P s=1 g tie (s) , (14) 
g P loop (s) = g loop (s) P s=1 g loop (s) , (15) 

Connection algorithm and molecular dynamics

For each structure, we build the crystalline phases using unit cell information and box and region dimensions. We build two amorphous phases using the MedeA Amorphous Materials Builder [START_REF]MedeA 3.4, Materials Exploration and Design Analysis[END_REF] which is based on the work by Theodorou and Sutter algorithm 2 with the chain sections taken in the probability distributions. The crystalline and the amorphous regions are then stacked together. We label the ends of the chain segments in the amorphous phases according to the desired connections. A tie chain will have one end labeled A and the other B, a tail chain will have one of the ends only labeled A or B, loop chains will have both ends labeled with the same letter A or B. The reactive sites (CH 3 ) on one edge of the crystallite stems are labelled C and those on the other edge D. Then a connection algorithm is launched, originally designed for thermoset building. [START_REF] Rigby | In Advanced Composites for Aerospace, Marine, and Land Applications[END_REF] The algorithm is a tool of the material simulation software MedeA, [START_REF]MedeA 3.4, Materials Exploration and Design Analysis[END_REF] and is named Thermoset builder. Spheres of capture centered on the labeled site grow incrementally with a chosen step. Every time it meets an allowed connection (here A with C and B with D) it forms a bond, and performs a few steps of an NVT relaxation. We keep the crystalline phases frozen during the connection process. We obtain structures like the one on the figure 5. The structures were thermalized 

Results

Structural characterization of the samples

In this work, 27 structures, i.e. 27 simulation boxes, were generated with different crystallinity degrees and characteristic ratios (see table 2). 

χ init = 0.5 χ init = 0.7 C ∞ = 7 3 3 C ∞ = 9 6 3 C ∞ = 11 3 3 C ∞ = 13 3 3
For all these structures, the crystallinity degree after relaxation was computed from the density profile along the z axis, normal to the amorphous-crystalline interface (see figure 7).

A region is considered as amorphous when its density is smaller than 95% the crystalline density value, else it is considered as crystalline. After the NPT relaxation process, the average crystallinity is close to the initial one. Average values over all structures and corresponding standard deviations are given in table 3. Some fluctuations are observed, although the final crystallinity degree remains within two standard deviations. Semi-crystalline density after Table 3: Mean of the crystallinity degrees χ relax , and of the densities ρrelax after relaxation, as well as their standard deviations σ χ relax and σ ρ relax .

χ init 0.5 0.7 χ relax 0.49 0.67 σ χ relax 0.05 0.06 ρ relax 0.939 0.966 σ ρ relax 0.008 0.006 relaxation was also computed for all structures. Values are close from HDPE experimental data: 0.941-0.965g/cm 3 . [START_REF] Lange | s Handbook of Chemistry[END_REF] As expected, a strong correlation can be seen between crystallinity degree and density (see figure 8). Thus, we have observed that our structures respect the original contraints imposed by the building procedure for macroscopic observables. We now turn to the analysis of the molecular morphology of the samples, i.e. the amount of the different segment types and an entanglement analysis. Figure 2 shows that the expected fraction of ties is well reproduced for each crystallinity at every C ∞ value. The building procedure thus allows a fine control of the imposed structural constraints. Occasionally some connection cannot be performed. However this does not change significantly the imposed characteristics. Regarding the distributions of the size of the loops, contrary to Nilsson's samples [START_REF] Nilsson | Modelling Tie Chains and Trapped Entanglements in Polyethylene[END_REF] or Monasse and Queyroy's ones, [START_REF] Monasse | Molecular Dynamics Prediction of Elastic and Plastic Deformation of Semi-Crystalline Polyethylene[END_REF] our structures have fewer small loops, i.e. adjacent reentries, roughly 1 to 2 per crystallite edge. As discussed in the introduction, the experimental literature shows that the amount of adjacent reentries may vary significantly depending on both the investigated samples and the employed characterization techniques. Thus, it is difficult to rely on this morphological parameter to conclude on the reliability of the procedure. The Z1 code The obtained primitive paths for a typical structure is shown in figure 9. The primitive path of a polymer chain immersed in a space of obstacles (usually other polymers) is defined as the shortest path connecting the ends of the chain that does not violate the crossing of the Figure 9: Primitive path of chains in an amorphous region computed with the Z1 code, [START_REF] Kröger | Shortest Multiple Disconnected Path for the Analysis of Entanglements in Two-and Three-Dimensional Polymeric Systems[END_REF] the segments belonging to loops are yellow and red, the segments belonging to tie chains are blue, the tail segments are in green. The spheres represent the primitive path kinks and the ends of the chains. polymer chain. [START_REF] Shanbhag | Primitive Path Networks Generated by Annealing and Geometrical Methods: Insights into Differences[END_REF] After relaxation, the density of topological entanglements, defined as the number of links between two chain sections along their primitive path per unit volume of amorphous phase, is identical for all crystallinity degree values, as shown in figure 10. An average value around 0.78 entanglements per nm 3 is found, close to the value of 0.64±0.03 nm 3 obtained by Lee and Rutledge. [START_REF] Lee | Plastic Deformation of Semicrystalline Polyethylene by Molecular Simulation[END_REF] However, comparison with experimental data suggests that amorphous region in semi-crystalline is more entangled than amorphous melt. The relationship between crystallization and entanglement is still a matter of debate. Assuming slow kinetics of crystallization, Hoffman and Miller 60 consider that entanglements are eliminated from the amorphous regions as crystallization proceeds, while Flory and Yoon 61 consider that chains cannot disentangle on the timescale of crystallization and entanglements are segregated into the amorphous domains. In the Flory and Yoon picture an increase of the density of entanglements in the amorphous phase is expected as crystallization proceeds. In the view of Hoffman and Miller, some fraction of entanglements should disappear during crystallization and the resulting entanglement density should be lower than expected from Flory and Yoon approach. This view is re-enforced by Bartczak's experimental work [START_REF] Bartczak | Evaluation of Effective Density of the Molecular Network and Concentration of the Stress Transmitters in Amorphous Layers of Semicrystalline Polyethylene[END_REF] who showed that a part of the entanglements was resolved during the crystallization depending on the chain length and their irregularities like branches; an increase of chain length and irregularities both preventing the entanglement disparition. In our case, the large value of the entanglement density is rather in favor of Flory and Yoon theory, although the process involved to reach the semi-crystalline state is unphysical (building procedure rather than crystallization from the melt). The relevant point here is that the entanglement density should be larger than in the melt, a condition fulfilled by our building procedure. The entanglement length expressed in terms of number of CH 2 groups is evaluated with two estimators by the Z1 code: the classical kink entanglement length N e CK and the classical coil entanglement length N e CC defined in. [START_REF] Hoy | Topological Analysis of Polymeric Melts: Chain-length Effects and Fast-Converging Estimators for Entanglement Length[END_REF] Averaged entanglement lengths are given in table 4 along with the corresponding entanglement weights W a e . Experimental data for entanglement weight in the melt is [START_REF] Ramos | Entanglement Relaxation Time in Polyethylene: Simulation versus Experimental Data[END_REF] W melt e ≈ 800 to 1200 g/mol, a value two to three times larger than the one observed in our simulations though in agreement with the increase in entanglement density.

Elastic constants

The study focused on the three uniaxial coefficients of the elastic matrix c 11 , c 22 and c 33 .

All structures were strained with an engineering tensile strain of = ±1% and ± 2%. The x direction, essentially the weak non-covalent interactions oppose the deformation, when the structure is stretched along the y direction, there is a contribution of the stronger covalent interactions due to the tilt angle.

With the exception of the crystallinity ratio effect, we did not notice any correlation between the elastic coefficients and other morphological specificities such as the amount of tie chains or topological entanglements. Such behavior is expected in the small deformation regime.

High deformations

To investigate further the role of entanglements and molecular morphology, the structures were elongated with a strain rate ˙ = 2.5 • 10 -3 ns -1 along the z axis from 0% to 50%. A strain of 0.5% per step was used followed by a relaxation in the NPT ensemble during 2 ns at each step. The stress-strain curves obtained present a peak between 0.6 and 0.8% then a continuous decrease toward a plateau. Example of such curves can be found figure 13.

A typical structure after 50% deformation is shown figure 14. We notice that after such What is considered to influence the mechanical properties are the so called stress transmitters. [START_REF] Jabbari-Farouji | Role of the Intercrystalline Tie Chains Network in the Mechanical Response of Semicrystalline Polymers[END_REF][START_REF] Lee | Plastic Deformation of Semicrystalline Polyethylene by Molecular Simulation[END_REF][START_REF] Bartczak | Evaluation of Effective Density of the Molecular Network and Concentration of the Stress Transmitters in Amorphous Layers of Semicrystalline Polyethylene[END_REF][START_REF] Seguela | Critical Review of the Molecular Topology of Semicrystalline Polymers: The Origin and Assessment of Intercrystalline Tie Molecules and Chain Entanglements[END_REF][START_REF] Takayanagi | Application of a Tie Molecule Model to the Postyielding Deformation of Crystalline Polymers[END_REF][START_REF] Moyassari | Simulation of Semi-Crystalline Polyethylene: Effect of Short-Chain Branching on Tie Chains and Trapped Entanglements[END_REF] The term encompasses bridging entanglements and tie chains. Bridging entanglements link polymer chains emerging from two different crystalline phases. We have considered here only loop-loop bridging entanglements, neglecting those including tail chains due to their small number.

To further investigate the high deformations, two criteria were used to characterize the stress-strain curves:

• the ultimate strength σ U S being the maximum stress the material withstands along the stress-strain curve, ters. An increase of both stress quantities is expected with an increase of the number of stress transmitters. This increase is indeed observed for σ U S and σ 25-50 versus the tie chain number. However, the opposite trend is observed versus loop-loop bridging entanglement number. The quantity of tie chains is the decisive factor over the entanglements to act as stress transmitters. This result confirms recent experimental work by McDermott. [START_REF] Mcdermott | Measuring Tie Chains and Trapped Entanglements in Semicrystalline Polymers[END_REF] It would be however interesting to quantitatively investigate the magnitude of loop-loop entanglements contribution. This implies to control the number of loop-loop entanglements at constant number of other stress transmitters (tie chains). This is not possible as in our building procedure, ntie and nloop are not independent quantities (see figure 17). However when looking qualitatively at structures with the same amount of tie chains in each amorphous region, it is the region with the most loop-loop bridging entanglements which is the least deformed. The bridging entanglements are thus secondary stress transmitters behind the tie chains. 

Conclusion

This work presents a new modeling method for building atomistic semi-crystalline polymer models. Specifically, using a robust connection algorithm, [START_REF] Rigby | In Advanced Composites for Aerospace, Marine, and Land Applications[END_REF] it was feasible to implement Adhikari's theory of tie chains, loops, and tails. [START_REF] Adhikari | Theory of Statistics of Ties, Loops, and Tails in Semicrystalline Polymers[END_REF] The crystallinity degree and the fraction of tie chains are adjustable degrees of freedom of the method. Although chain length distributions for ties, loops and tails are provided by the theory, different choices could be used to investigate limiting cases. Hence, structures with, for example, a high or low proportion of adjacent reentries could be modeled, as the one described by Nilsson. [START_REF] Nilsson | Modelling Tie Chains and Trapped Entanglements in Polyethylene[END_REF] When the methodology is applied to a model of semi-crystalline polyethylene, the initial constraints, i.e. the number of tie chains and the initial crystallinity degree, are well respected. Thus, the influence of these parameters onto morphological and mechanical properties can be studied. We observed that the density of topological entanglements in the amorphous regions is larger than the one observed in the melt, a result in agreement with Yoon and Flory [START_REF] Flory | Molecular Morphology in Semicrystalline Polymers[END_REF] and Hoffman and Miller 60 theories. Also, this quantity is independent of the crystallinity ratio, though more studies would be needed to understand the relationship between topological entanglements and crystallinity ratio. The elastic coefficients are independent of the entanglements and the molecular morphology. This was shown by previous experimental work studies [START_REF] Bartczak | Effect of Chain Entanglements on Plastic Deformation Behavior of Linear Polyethylene[END_REF] and are mostly correlated with the crystallinity degree as expected from experimental studies. [START_REF] Addiego | Effect of Microstructure on Crazing Onset in Polyethylene under Tension[END_REF] With this knowledge, computing semi-crystalline structure mechanical properties in the linear regime does not require controlling the fraction and distribution of the amorphous chains and the entanglement quantity but only the crystallinity degree. Thus a similar method to the one presented in this work with more simple analytical probability distributions may be sufficient to compute elastic coefficients.

For deformations far from the linear regime, the tie chains are the most critical stress transmitter; nevertheless, for structures with equal number of tie chains for both amorphous phases, the amorphous phase with the most bridging entanglements is the least deformed.

The tie chains seem to be the primary stress transmitters, and the bridging entanglements

Figure 2 :

 2 Figure2: Fraction of tie chains, f tie , as a function of the characteristic ratio C ∞ as obtained from the theory (full lines) and for the samples built in this study (symbols) for the two crystalline ratios studied here.

Figure 3 :

 3 Figure 3: Final probabilities of formation of tie chains, loops and tails for χ = 0.5 and different values of C ∞ .

Figure 4 :

 4 Figure 4: Final probabilities of formation of tie chains, loops and tails for χ = 0.7 and different values of C ∞ .

Figure 5 :

 5 Figure 5: Structure with crystallinity degree χ = 0.5 after connection and before relaxation.
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 6 . The NPT ensemble used here allows relaxation in each spatial direction to ensure correct equilibration of box lengths in all directions (known as LAMMPS NPT aniso mode).

Figure 6 :

 6 Figure 6: Structure with an initial crystallinity degree χ = 0.5 after relaxation.

3 )Figure 7 :

 37 Figure 7: Density profile along the z axis, the axis of the long period, of the 3 structures with χ init = 0.7 and C ∞ = 7.

Figure 8 :

 8 Figure 8: Crystallinity degree as a function of density for all studied structures. Blue and orange symbols correspond to structures with χ init = 0.5 and χ init = 0.7 respectively. The two crosses indicate the average crystallinity and average density with corresponding standard deviation.

Figure 10 :

 10 Figure 10: Density of topological entanglements in the amorphous regions as a function of the crystallinity degree χ relax in all the generated semi-crystalline structures.

Figure 11 :

 11 Figure 11: Tensile elastic coefficients c ii as a function of the crystallinity degree χ relax of all the modeled structures. Error bars represent statistical errors and are represented once for each coefficient.

Figure 12 :

 12 Figure 12: A structure seen from different directions: a. the y direction is vertical, b. the x direction is vertical.

Figure 13 :

 13 Figure 13: Stress-strain curve for the three structures with χ init = 0.5 and C ∞ = 11.

Figure 14 :

 14 Figure 14: 50% stretched structure along the z direction. The red atoms are the atoms which were initially in the crystalline phase.

Figure 15 :

 15 Figure 15: σ U S (red data) and σ 25-50 (green data) as a function of the crystallinity degree χ relax . Dashed lines are linear regressions of each data set. Error bars are stress fluctuations and are given on a single point.

Figure 16 :

 16 Figure 16: σ U S and σ 25-50 as a function of the number of ties chains and loop-loop bridging topological entanglements. Error bars are stress fluctuations and are given on a single point.

Figure 17 :

 17 Figure 17: Relationship between the number of tie chains and loop-loop bridging entanglements.

  

Table 2 :

 2 Number of modeled structures for each χ init and C ∞ .

Table 4 :

 4 Mean and standard deviation over all structures of two different estimators developed by Kröger[START_REF] Kröger | Shortest Multiple Disconnected Path for the Analysis of Entanglements in Two-and Three-Dimensional Polymeric Systems[END_REF] for the entanglement lengths in amorphous domains expressed in number of CH 2 groups and in molecular weights. As expected from experimental studies,[START_REF] Addiego | Effect of Microstructure on Crazing Onset in Polyethylene under Tension[END_REF] the elastic coefficients increase with the crystallinity degree. The elastic coefficient c 22 is higher than the c 11 and c 33 coefficients. In order to understand why the c 22 coefficient is slightly larger than c 11 and

		N e CK N e CC
	mean	23.6	28.9
	standard deviation	3.7	7.9
	W a e (g/mol)	330.5 405.9
	results are shown figure 11.		
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