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ISOPERIODIC MEROMORPHIC FORMS: TWO SIMPLE POLES

GABRIEL CALSAMIGLIA AND BERTRAND DEROIN

Abstract. In this paper we prove that isoperiodic moduli spaces of meromorphic
differentials with two simple poles on homologically marked smooth curves are non
empty and connected, unless they correspond to double covers of C/Z on curves
of genus at least two. We deduce dynamical consequences for the corresponding
isoperiodic foliation.

1. Introduction

1.1. Overview. This work is the second of a series aiming at study the dynamics and
topology of the isoperiodic foliations on moduli spaces of meromorphic one forms on
algebraic curves. The isoperiodic equivalence relation is defined locally by the condition
that the integrals on every closed cycle in the domain where the form is holomorphic
remain constant.

Moduli spaces of meromorphic forms with simple poles appear as boundary compo-
nents in the Deligne-Mumford compactification of moduli spaces of holomorphic one
forms (see [7, 8]). The understanding of these foliations will complete the picture of
the dynamics of isoperiodic foliations on moduli spaces of stable forms given in [11].

We consider here the case of moduli spaces of forms on curves of any genus with
two poles, both simple. It will constitute the initial step for an inductive argument to
similar statements in any number of simple poles (see work in progress in collaboration
with Liza Arzakhova in [5]).

There is a conceptual reason to treat this case separately: up to scaling, any form
with two simple poles has one of residue +1 and the other of residue −1 and therefore
the integral along a closed cycle defines an element in the topological group C/Z that
depends only on its homology class of the closed surface.

In the case of holomorphic one forms on compact curves, the dynamics of the isoperi-
odic foliation is related to the topology of the period mapping, defined on some Torelli
cover of the moduli space (see [31, 11]). In the present paper, we show that, apart from
isoperiodic sets consisting of double covers of a bi-infinite cylinder C/Z of genus at least
two, the isoperiodic moduli spaces of homologically marked meromorphic differentials
with two simple poles are non empty and connected. Related results have been proven
recently, see [31, 11, 35]. As in [11], this allows to show that the fundamental group of
the leaves of the isoperiodic foliation surjects onto the stabilizer in Sp(2g,Z) of their
associated period. Another consequence of interest for the dynamics is that we can
transfer the dynamical properties of the action of the group Sp(2g,Z) on (C/Z)2g to
properties satisfied by the isoperiodic foliation.
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As an application, we compute, using Ratner’s theory ( specifically [19]), the closed
subsets of moduli spaces that are saturated/invariant by the isoperiodic foliation, and
find that they are real analytic submanifolds. A qualitative difference with the case of
holomorphic differentials is that some transcendental leaves are closed in these quasi-
projective manifolds. They correspond to forms whose periods describe a given discrete
lattice in C. Such phenomenon occurs for some algebraic foliations, for instance, the
one defined by dy/dx = y in C2, but it seems to be quite rare to have a transcendental
leaf of an algebraic foliation which is closed in a Zariski open subset. See for instance
[13, 12] or the work of Cousin on the Garnier system [15]. We note that these leaves
are examples of affine manifolds (in the sense of [32]) that are not algebraic. Bakker
and Mullane have such an example in moduli spaces with marked points. We do not
know an example of a non algebraic affine manifold which is also invariant by the
SL(2,R)-action in the moduli space of meromorphic forms (such examples do not exist
in moduli spaces of abelian differentials by a result of Filip, see [18]).

Another consequence we derive is the ergodicity with respect to Lebesgue measure
of the restriction of the isoperiodic foliation to every closed saturated subset. A par-
ticularly interesting closed saturated subset that does not arise in the moduli space of
abelian differentials, is the moduli space of meromorphic differentials with two poles
and real periods. For every genus g this set identifies with a copy of moduli space Mg,2,
and plays a key role in the alternative proof [20] by Grushevsky and Krichever of Diaz’
theorem (the non existence of a complete subvariety of dimension ≥ g − 1 in moduli
space Mg of curves of genus g), and in its generalization by Krichever [28] that provides
a solution of Arbarello’s conjecture, stating that a compact holomorphic submanifold
of Mg of dimension g − n intersects the Weierstrass locus of curves admitting a mero-
morphic function with a single pole of order at most n. Recently, Krichever, Lando
and Skripchenko proved that the isoperiodic foliation on the moduli space of meromor-
phic differentials with a single double pole is ergodic, by studying the combinatorics of
cut diagrams, see [29]. Ergodicity of isoperiodic foliations on various moduli spaces of
holomorphic differentials have been established recently, see [31, 22, 11, 36, 14].

1.2. Statement of results. Let Mg,n denote the moduli space of smooth genus g
complex curves with nmarked ordered points. For g ≥ 1 consider the bundle Ω±Mg,2 →
Mg,2 whose fiber over a point (C, x−, x+) is the space of meromorphic forms ω on C
having simple poles on x−, x+ with residues −1,+1 respectively. It is an affine bundle
directed by the Hodge (vector) bundle ΩMg,2 →Mg,2 of holomorphic one forms, hence
a complex manifold of dimension 4g − 1.

The choice of (±1)-residues at the two poles of ω allows to define, for each homolog-
ical class of closed path γ in C, a class in C/Z, namely[ ∫

γ

ω
]
∈ C/Z.

A deformation of forms {ωt}t∈[0,1] in Ω±Mg,2 is said to be isoperiodic if the elements in
C/Z defined above are constant for any choice of homology class. The main aim of this
paper is the study of the topological and dynamical properties of the decomposition of
the total space in isoperiodic equivalence classes, the so-called isoperiodic foliation.

To be able to compare homology classes on different curves we need to identify
their homology groups. It is well known that the orbifold universal cover Tg,n →Mg,n

of the moduli space is biholomorphic to the Teichmüller space Tg,n. The fiber over
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a point (C, (q1, . . . , qn)) ∈ Mg,n is given by the different possible identifications of
the fundamental group of C with the fundamental group of a reference surface of
genus g with n marked ordered points Σg,n. In this representation, the covering group
is the mapping class group Mod(Σg,n) of isotopy classes of oreientation preserving
diffeomorphisms of Σg that fix each marked point.

Let Σg,2 = (Σg, p−, p+) be an oriented closed surface of genus g with two ordered
distinct marked points. Since we only want to keep the information of the identification
at the homology level of the curve without the information on the marked points, we
consider the quotient of Tg,2 by the subgroup I(Σg,2) ⊂ Mod(Σg,2) formed by the
elements that act trivially on H1(Σg,Z) 1. We denote by

Sg,2 =
Tg,2

I(Σg,2)

the quotient space. To each point in it there corresponds a tuple (C, x−, x+,m) where
(C, x−, x+) is a smooth complex curve of genus g with two marked points and m :
H1(Σg,Z) → H1(C,Z) is an isomorphism, up to the equivalence (C, x−, x+,m) ∼
(C ′, x′−, x

′
+,m

′) if there exists a biholomorphism h : (C, x−, x+) → (C ′, x′−, x
′
+) such

that m′ = h∗ ◦m. The mapping class group of Σg,2 acts on Sg,2 by precomposition on
the marking and the quotient map gives a covering map

(1) Sg,2 →Mg,2

with covering group Sp(2g,Z). The bundle Ω±Mg,2 → Mg,2 can be pulled back to
Sg,2 by using the map (1) producing a bundle Ω±Sg,2 → Sg,2 whose fiber over a point
(C, x−, x+,m) is the vector space Ω±C of meromorphic forms ω on C having two
simple poles of residues −1 and +1 at x− and x+ respectively. An element in Ω±Sg,2
will sometimes be denoted as a triple (C,m, ω), since the pole information is already
in ω.

Definition 1.1. The period of (C,m, ω) ∈ Ω±Sg,2 is the homomorphism

Per(C,m, ω) : H1(Σg,Z)→ C/Z defined by

γ 7→
[ ∫

m(γ)

ω
]
.

The period map Perg on Ω±Sg,2 is the map

Perg : Ω±Sg,2 → H1(Σg,C/Z)

defined by (C,m, ω) 7→ Per(C,m, ω) ∈ Hom(H1(Σg,Z);C/Z) ' H1(Σg,C/Z).

In Proposition 3.4 we will prove that Perg is a holomorphic submersion. The under-
lying foliation is therefore regular and holomorphic.

Definition 1.2. The degree of a homomorphism p : H1(Σg,Z) → C/Z with image Λ
is the cardinality of Λ, that we denote |Λ|.

Remark 1.3. If the period homomorphism of an element(C,m, ω) ∈ Ω±Sg,2 has finite

degree d <∞, then the map z 7→ e
1

2πi

∫ z
z0
ω

extends to a branched cover C → C ∪∞ of

1The notation is chosen to distinguish it from other known subgroups of Mod(Σg,2) characterized
by the (trivial) action on some other homology groups: I(Σg,2) is the subgroup that fixes every class
in the relative homology group H1(Σg, p−, p+;Z) and I(Σg,2∗) the subgroup that acts trivially on the
punctured surface homology group H1(Σg \ {p−, p+},Z)
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the Riemann sphere of topological degree d. In particular if d = 1 the only possibility
is g = 0.

This is actually the only obstruction.

Theorem 1.4. Let g ≥ 1. The fiber of the period map Perg over a non-trivial homo-
morphism is non-empty.

Aiming to applying a Transfer Principle analogous to the case of holomorphic forms
in [11] we consider the problem of the connectedness of the fibers of Perg:

Theorem 1.5. Let g ≥ 1. The fiber of the period map Perg over a homomorphism of
degree at least three is connected.

Theorem 1.6. The fiber of Perg over a degree two homomorphism is disconnected if
g ≥ 2 and connected if g = 1.

The mapping class group Mod(Σg,n) acts on source and target of the map Perg
equivariatly, that is, for every (C,m, ω) ∈ Ω±Sg,2 and ϕ ∈ Mod(Σg,n),

Perg(ϕ · (C,m, ω)) = Perg((C,m, ω)) ◦ ϕ−1
∗ .

The fibration induced by Perg thus induces a regular holomorphic foliation Fg on the
quotient (moduli) space Ω±Mg,2 called the isoperiodic foliation. Theorem 1.5 immedi-
ately implies

Corollary 1.7. If L ⊂ Ω±Mg,2 is the leaf of Fg associated to a period p ∈ H1(Σg,C/Z)
of degree at least three, then

π1(L)→ Stab(p) ⊂ Aut(H1(Σg)) is surjective.

There are a few invariants that are well defined and constant along the leaves of Fg.

On the set of connected fibers of Perg we can apply the Transfer Principle to deduce
results on the dynamics of Fg. For this purpose, let us analyze some invariants of the
mapping class group action on H1(Σg,C/Z).

Definition 1.8. Given a point (C, ω) ∈ Ω±Mg,2, denote by Λω ⊂ C/Z the subgroup
formed by the periods of ω on cycles of C.

The map (C, ω) 7→ Λω is constant along a leaf L of Fg and has image ΛL.

Given a subset or subgroup Λ ⊂ C/Z we denote =Λ ⊂ R its projection in the
imaginary axis.

Definition 1.9. If p : H1(Σg,Z) → C/Z is a homomorphism with discrete imaginary
part =(p(H1(Σg,Z))) = αZ ⊂ R, the product <(p̃) · =(p) in H1(Σg,R) defines an
element degα(p) ∈ R/αZ that does not depend on the choice of lift p̃ of p to C.
Furthermore, degα is invariant under the action of the mapping class group of Σg on
the subset of H1(Σg,C/Z) with imaginary part αZ.

The map (C, ω) 7→ degα(Per(C,m, ω)) is well defined regardless of the choice of m,
and a constant degα(L) ∈ R/αZ on each leaf L satisfying =ΛL = αZ.

The next result classifies the closure of the leaves of the isoperiodic foliation.

Theorem 1.10. Let L be a leaf of Fg and Λ = ΛL ⊂ C/Z denote the topological closure
of ΛL. Then the closure of L in Ω±Mg,2 is the subset of forms (C, ω) with Λω ⊂ Λ,
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unless =Λ = αZ 6= 0 is discrete non-trivial, in which case the following extra conditions
must hold: =Λω = αZ and degα(C, ω) = degα(L).

In either case L is a real analytic subset and the restriction of Fg to it is ergodic.
The leaf L is closed if and only if Λ is discrete and algebraic if and only if Λ is finite
(it corresponds to a Hurwitz space of branched covers over the sphere of degree |Λ|).

1.3. Acknowledgements. We would like to thank Liza Arzhakova, Corentin Boissy,
Simion Filip, Selim Ghazouani, Igor Krichever, Sergei Lando, Frank Loray, Scott Mul-
lane, Luc Pirio and Sasha Skripchenko for sharing their viewpoints on the subject with
us. We also thank the France Brazil agreement in Mathematics for the support to
carry this project; IMPA (Rio de Janeiro), Universidad Federal Fluminense (Niterói)
and IMJ (Paris Sorbonne) for the stimulating working conditions. G.C. was partially
supported by CNPq, Faperj and Capes (Brasil).

2. Strategy of the proof of Theorem 1.5

The proof follows by induction on the genus.

The cases of genera one and two are treated separately by analytic methods and
the Torelli map. Each fiber of Per1 is biholomorphic to a Zariski open set of T1,1 and
is therefore connected. On the other hand, each fiber of Per2 is a branched double
cover, over a Zariski open subset of the Siegel space S2. The branch points correspond
precisely to odd forms with respect to the hyperelliptic involution. In the case of a fiber
over a degree two homomorphism, all forms are even and we manage to prove that the
cover is disconnected. In the case of degree at least three, we manage to construct an
example of branch point (see subsection 4.2) to deduce the connectedness of the cover.

Fix some g ≥ 3 and assume the inductive hypothesis, i.e. Theorem 1.5 is true
up to genus g − 1. Then run the following program for any given homomorphism
p ∈ H1(Σg,Z)→ C/Z of degree at least three:

1. Bordify Per−1(p) (see Section 6). The Teichmüller space Tg,2 admits a topological

bordification Tg,2 formed by marked stable curves of genus g with two marked points.
It is stratified by the number of nodes of the underlying curves and each stratum is a
complex manifold. The action of Mod(Σg,2) preserves the stratification and the quotient

is isomorphic to the Deligne-Mumford compactification Mg,2 of Mg,2. The added points,

called the boundary, form a normal crossing divisor in Mg,2 at the orbifold chart level.

Quotienting Tg,2 by I(Σg,2) produces a stratified bordification Sg,2 of Sg,2. The bundle of
stable meromorphic forms with two poles over the Deligne-Mumford compactification
of Mg,2 can be pulled back to a bundle Ω±Sg,2.

Any stable form in the boundary has a non-trivial local isoperiodic deformation
space. Two conditions that guarantee that this local isoperiodic deformation space
leaves the boundary are that the form has no zero components and the residue of the
form at each non-separating node is zero. The bordification of Per−1(p) that we are
interested in is its closure in the space Ω±,∗0 Sg,2 of forms in Ω±Sg,2 having zero residues
at all non-separating nodes and no zero components. In fact the local isoperiodic
deformation space projects to a smooth complex manifold in the orbifold charts of
the moduli space transverse to each boundary component of ΩMg,2 passing through
the point (See Theorem 6.13 and the Appendix). The stratification of the boundary
(defined by the number of nodes) induces a stratification of the bordification of the
isoperiodic set and for each stratum of the ambient space passing through the point



6 GABRIEL CALSAMIGLIA AND BERTRAND DEROIN

there is one isoperiodic component of the stratum that lies in it. Around a point having
only separating nodes, the local picture of the stratification is that of a normal crossing
divisor. The picture changes by an abelian ramified cover over the divisor when the
curve underlying the form has at least one non-separating node (see the local model of
this local branched cover in [11][Section 4.4]). The abelian ramified cover does not brake
a nice property of the local stratification of a normal crossing divisor: a point in the
codimension k ≥ 1 stratum lies at the intersection of the closure of k codimension one
(local) connected components of the divisor. Any other local connected component of
a non-open stratum accumulating the point has codimension 1 ≤ l ≤ k and is precisely
the set of points that belong to the closure of l of the k codimension one components
accumulating the point, and not more. Moreover, the open stratum is locally connected
at the point.

To any stratified space X that is a locally abelian ramified cover over a normal
crossing divisor we can define its dual boundary graph C(X) . It has a vertex for
each (global) connected component of the codimension one stratum, and a simplex
between k vertices for each connected component of the codimension k stratum lying
in the closure of the corresponding k components. It is well known that the boundary
complex associated to Tg,2 is isomorphic to the curve complex Cg,2 on the genus g
compact surface with two marked points Σg,2 (see [17]Chapter 4.1).

The closure of Per−1(p) in Ω±,∗0 Sg,2 is also shown to be stratified and a locally abelian
ramified cover over a normal crossing divisor. In particular, the connectedness of
Per−1(p) is equivalent to that of its bordification.

Moreover, the transversality condition allows to define a continuous map of com-
plexes

(2) C(Per−1(p))→ C(Ω±Sg,2)

that associates to each component of an isoperiodic stratum the component of the am-
bient stratification where it sits. There is a subfamily of components of the codimension
one stratum of the ambient space Ω±Sg,2 where we will be able to prove inductively
that there is a single connected isoperiodic component of the isoperiodic stratum of
codimension one associated to p. These are the so called p-simple boundary compo-
nents and they correspond to forms over stable curves with one node that leaves a
pole on each side, and moreover the form restricted to each part has degree at least
three. They define a subfamily of vertices of C(Per−1(p)) that span the subcomplex
C′(Per−1(p)) of p-simple boundary points.

2. Isoperiodic degeneration towards boundary points (see Section 7). We
will first prove that any point in Per−1(p) can be isoperiodically deformed in Ω±∗0 Sg,2
to a point belonging to a p-simple boundary component. In this step we use Schiffer
variations, a way of deforming the singular flat metric undelying a stable meromorphic
form with isolated zeros without changing the associated period homomorphism. To
achieve this step we first degenerate to any boundary point, and then prove that any
boundary point can be joined to a p-simple boundary point.

3. Connectedness of the boundary. This will be achieved by showing that the
complex C′(Per−1(p)) is connected. The inductive hypothesis of Theorem 1.5 allows to
prove that the restriction of the map (2) to the subcomplex C′(Per−1(p)) of p-simple
boundary points is injective at the level of the vertices. We will prove that it has
connected image under the map (2). The fact that there are only two poles allows
to rephrase the problem in algebraic terms: the complex C(Ω±Sg,2) is isomorphic to
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C(Sg,2) which in its turn is isomorphic to the quotient

(3)
Cg,2

I(Σg,2)

of the curve complex Cg,2 under the natural action of the group I(Σg,2). Each k-simplex
in (3) is characterized by a I(Σg,2)-orbit of a family of k disjoint essential simple closed
curves c = c1t . . .t ck in Σg,2. Whenever every ci separates the (two!) ordered marked
points (and therefore the surface), we can characterize the simplex by the ordered
splitting H1(Σg,2) = V1⊕· · ·⊕Vk+1 into pairwise orthogonal symplectic submodules of
rank at least two induced by the parts of Σg,2 \ c . We suppose that the first marked
point belongs to V1 and the other to Vk+1. The order of the rest of factors is determined
by imposing that Vj has a common boundary component with Vj−1 and another with
Vj+1.

The complex C′(Per−1(p)) has its vertices corresponding to separating essential sim-
ple closed curves that separate the marked points, any higher dimensional simplex in
it corresponds to marked stable forms having only separating nodes that separate the
marked points. Therefore the image of any k-simplex in C′(Per−1(p)) by (2) is char-
acterized by a splitting of H1(Σg,2) = V1 ⊕ · · · ⊕ Vk+1 into k + 1 pairwise orthogonal
symplectic submodules of rank at least two. Moreover for the vertices, i.e. when k = 1,
the restriction p|Vi has at least three points in the image. The condition on the size of
p(Vi)’s can be rephrased as follows:

Remark 2.1. A homomorphism p having image in C/Z has at least three points in
the image if and only if its composition with C/Z → C/1

2
Z is non-trivial. Call this

composition [p].

Definition 2.2. Given a homomorphism p : V → A from a symplectic unimodular
module to an abelian group A we define:

• a decomposition V = ⊕iVi into non-trivial symplectic unimodular submodules
is said to be p-admissible if p|Vi 6= 0 for all i.
• The graph of p-admissible decompositions has a vertex for every p-admissible

decomposition with two factors, and an edge between the vertices corresponding
to V1 ⊕ V2 and V ′1 ⊕ V ′2 if there exists a p-admissible decomposition with more
factors having one of the Vi’s as factor and also one of the V ′i ’s.

A word of warning about this definition: we do not regard the order of the factors.

Proposition 2.3. Let g ≥ 3 and p ∈ H1(Σg,C/Z). If the graph of [p]-admissible
decompositions is connected and Theorem 1.5 is true up to genus g−1 then the complex
C′(Per−1(p)) is connected.

The proof of this proposition is contained in Section 8. The following theorem
(proven in Section 9 ) allows to use the previous proposition to deduce the connected-
ness of Per−1(p).

Theorem 2.4. Given a non-trivial homomorphism p : V → A from a symplectic
unimodular Z-module V of rank at least six to an abelian group A, the graph of p-
admissible decompositions is nonempty and connected.

A posteriori it would have been enough to bordify only by adding the p-simple
boundary points to prove the connectedness of the bordification. Unfortunately we
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have not found a proof of the degeneration part that avoids passing through some
other boundary components in Ω±∗0 Sg,2 as explained at the end of step 2.

3. Some preliminary tools

3.1. Criterion for p-admissible elements.

Definition 3.1. Let p : V → A be a non-trivial homomorphism from a symplectic
unimodular Z-module V to an abelian group A. An element v ∈ V is p-admissible if
it belongs to a factor of a p-admissible decomposition.

Lemma 3.2. Suppose V has rank at least four and p : V → A is non-trivial. A
non zero element in V is p-admissible if and only if p does not vanish identically on
the orthogonal of v. In this case, it belongs to a factor of rank two of a p-admissible
decomposition. In particular, the set NA(p) ⊂ V of non p-admissible elements is a
submodule of rank at most one.

Proof. Let v be a non zero element of V . Assume v is p-admissible, namely v ∈ W1

where V = W1 ⊕W2 is a p-admissible decomposition. Then, the restriction of p to W2

does not vanish and W2 ⊂ v⊥ so p does not vanish on the orthogonal of v.

Reciprocally, assume that p is not identically zero on v⊥. We will assume that v is
primitive, and consider a symplectic basis a1, b1, . . . , such that v = a1.

1st case: p(a1) 6= 0. In this case, we are done if p is not identically zero on (Za1 ⊕
Zb1)⊥ since in this case we can take W1 = Za1 ⊕Zb1 and W2 = W⊥

1 . If p is identically
zero on (Za1⊕Zb1)⊥ = Za2⊕Zb2⊕ . . ., we define W1 = Za1⊕Z(b1−b2) and W2 = W⊥

1 .
The symplectic decomposition V = W1⊕W2 is p-admissible in this case since p(a1) 6= 0,
p(a2 + a1) 6= 0, and a1 ∈ W1, a2 + a1 ∈ W⊥

1 . We are done since v = a1 ∈ W1.

2d case: p(a1) = 0. In this case, p does not vanish on Za2⊕Zb2 + . . . since otherwise
it would vanish on a⊥1 = v⊥, and up to changing the basis a2, b2, . . . , we can assume
that p(a2) 6= 0. If p(b1) 6= 0 we are done by setting W1 = Za1 + Zb1 and W2 = W⊥

1 .
If p(b1) = 0, we consider W1 = Za1 ⊕ Z(b1 + a2) and W2 = W⊥

1 and we are done
since b1 + a2 ∈ W1 \ ker(p) and a2 ∈ W2 \ ker(p). So we conclude that v belongs to a
p-admissible submodule of rank two.

To end the proof of the Lemma, notice that if two non zero elements v, v′ are not p-
admissible, then both v⊥ and (v′)⊥ are contained in ker(p). Being corank one primitive
submodules, they need to be equal since otherwise they would generate the whole V ,
and so p would vanish identically. In particular, this proves that v and v′ are rationally
colinear, and the Lemma follows. �

Corollary 3.3. Let V be a symplectic unimodular submodule of rank at least four.
Then, for any non-trivial homomorphism p : V → A there exists a p-admissible decom-
position.

3.2. Preliminaries on Perg. We begin by proving

Proposition 3.4. The period map Perg on Ω±Sg,2 is a holomorphic submersion.

Proof. The statement can be checked locally. By the description of Ω±Sg,2 as affine
bundle over the Hodge bundle, the map Perg is, up to an adequate choice of local affine
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coordinate, defined by a germ of the map

ΩSg → Hom(H1(Σg,Z);C) given by (C,m, ω) 7→ {γ 7→
∫
m(γ)

ω}

where ΩSg → Sg denotes the Hodge bundle of holomorphic one forms over the Torelli
cover Sg → Mg. This map is holomorphic everywhere and submersive around any
non-zero form (see e.g. [11]). By appropriately choosing the base point of the affine
model, we get the desired result. �

Proposition 3.5. Given p ∈ H1(Σg,C/Z)\H1(Σg,R/Z), the set of lifts P ∈ H1(Σg,C)
that are the periods of a holomorphic differential on a smooth homologically marked
curve, and whose reductions modulo Z is p, is infinite countable. If p ∈ H1(Σg,R/Z)\0
the set is empty and if p = 0 the only possibility is P = 0.

Proof. Let P be one such lift for any p ∈ H1(Σg,C/Z) and write P = u + iv with
u, v ∈ H1(Σg,R). A necessary and sufficient condition on P to be the period of a
non-zero holomorphic one form on a homologically marked curve is that

1. the symplectic product u · v is positive, and

2. in the case the image of P in C, considered as a map from H1(Σg,Z) to C, is
discrete, that the symplectic product u · v is strictly greater than the covolume in C of
the image of P .

See Otto Haupt’s Theorem in [24]. Hence, in the case p = 0 the only possibility is
that the form is zero. The case where p has values in R has no lift that are periods of
holomorphic one-forms. Suppose p ∈ H1(Σg,C/Z) \H1(Σg,R/Z).

Let now P ′ = P + w another lift, where w ∈ H1(Σg,Z), and P ′ = u′ + iv′ where
u′ = u + w and v′ = v. Since u′ · v′ = u · v + w · v, and that v 6= 0 by assumption
(otherwise p would belong to H1(Σg,R/Z)), there is a half space in H1(Σg,Z) of choices
of w so that P ′ satisfies the volume positivity condition 1. of Haupt’s criterion.

Suppose now that for one P ′, say P , the first condition is satisfied but not the second.
In that case, we know that the kernel of P is a symplectic unimodular submodule of
H1(Σg,Z) of rank 2g−2, or equivalently that there exists two elements a, b ∈ H1(Σg,Z)
such that a · b = 1 and two elements α, β ∈ C such that =(βα) > 0 and P = aα + bβ.
Now let P ′ = P +w. Assume that P ′ is also of the form a′α′+ b′β′ with a′ · b′ = 1 and
=(β′α′) > 0. We then have a′α′ + b′β′ = aα+ bβ +w. This means that w is a rational
combination of aα and bβ. So, apart from a submodule of rank at most two, all the
elements w in a half-space of H1(Σg,Z) give rise to a period P ′ = P +w that satisfies
conditions 1. and 2.

The proposition follows. �

Let Sg,0 → Mg,0 denote the Torelli cover of the moduli space of genus g curves. Its
covering group is the Torelli group I(Σg,0) ⊂ Mod(Σg,0) formed by elements that act
trivially on the symplectic group H1(Σg). To each element in Sg,0 we can associate a
pair (C,m) where m is an isomorphism from H1(Σg) to H1(C). Denote by ΩSg,0 → Sg,0
the pull back of the Hodge (vector) bundle of abelian differentials over Mg,0. The pe-
riod map is well defined on ΩSg,0 and the restriction of the period map to a fiber of
ΩSg,0 → Sg,0 is linear and injective (recall that on a fixed compact Riemann surface a
holomorphic one-form is completely determined by its period homomorphism). There-
fore, the restriction of the bundle projection to a fiber of Per is a biholomorphism onto
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its image. The next Proposition describes the image of this projection by using the
injectivity of the Torelli map

J : Sg,0 → Sg

to Siegel space of symmetric complex g × g matrices with positive definite imaginary
part defined as follows: consider a symplectic basis a1, b1, . . . , ag, bg of H1(Σg,Z), i.e. a
basis such that the only non-zero symplectic products of its elements are ai ·bi = +1 and
bi · ai = −1. For each homologically marked compact type genus two curve (C,m), let
ω1, . . . , ωg be a basis of the space of holomorphic 1-forms on C such that

∫
m(ai)

ωj = δi,j,

δi,j being the Kronecker symbol. The Jacobian g × g matrix is J(C) = (
∫
m(bi)

ωj)i,j.

The fact that it belongs to the Siegel space Sg is a consequence of Riemann’s relations.

Proposition 3.6 (McMullen). Given p ∈ H1(Σg,C/Z)\H1(Σg,R/Z) for each lift P ∈
H1(Σg,C) as in Proposition 3.5, the set of elements of Sg,0 supporting a holomorphic
form having period equal to P is biholomorphic (via J) to a slice of the image of J by
by a linear Siegel subspace SP ⊂ Sg of genus g − 1 .

Proof. Let P be a lift of p. Suppose there exists a holomorphic 1-form ωP on (C,m)
such that (

∫
ω) ◦m = P . Since ω1, . . . , ωg is a basis of Ω(C) = H0(KC), we need to

have ωP = P (a1)ω1 + . . .+ P (ag)ωg so that we get the relations

P (bi) = P (a1)J(C)i,1 + . . .+ P (ag)J(C)i,g for i = 1, . . . , g.

Reciprocally, these relations clearly imply the existence of a holomorphic 1-form with
period P on (C,m). The set of Jacobians of homologically marked curves of compact
type satisfying these relations is a copy of the genus g − 1 dimensional Siegel space
denoted SP �

4. Proof of Theorem 1.5 for g = 1, 2

4.1. Genus one.

Lemma 4.1. Given an elliptic curve E, and a morphism p : H1(E,Z) → C/Z, there
exists a unique meromorphic form on E, up to translation, that satisfies

1) it is either holomorphic or it has two distinct simple poles,
2) its period modulo Z equals p,

If p takes real values and is non vanishing, then we are always in the second case.

Proof. To the period p one can associate the flat unitary line bundle (L,∇) having
monodromy exp(2iπp) : H1(E,Z) → C?. Depending on whether this bundle is trivial
or not, it has, up to multiplication by a non zero constant, a unique holomorphic
section, or a unique meromorphic section with a simple zero and a simple pole, which
can be explicitly described by the quotient of two theta series. Denote this section
s : E → L; the form defined by ∇s = ωs is either holomorphic or it has two distinct
poles and satisfies p(ω) = p.

In the case p is non zero but takes real values, the bundle L is never trivial, hence
the form ω cannot be holomorphic in that case. �

Corollary 4.2. A fiber of the period map Per1 is biholomorphic to a Zariski dense
subset of the Teichmüller space T1,1 of genus one curves with a marked point. If the
fiber is over a non zero homomorphism with real values, it is biholomorphic to T1,1. In
particular any fiber of Per1 is connected.
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Proof. This is an immediate corollary of Lemma 4.1, as soon as one sees that in a
level set of the period map, the one corresponding to case (1) is a Zariski closed set of
dimension zero. But this set is easily described: it corresponds exactly to the possible
lifts in H1(E,C) of p having positive volume, see subsection 3.2. In the case where
p takes real values, one cannot lift p to a period of positive volume, so the corollary
follows. �

Remark 4.3. A more geometric argument can be developed to connect every pair of
isoperiodic forms by a more explicit isoperiodic path. The argument uses a surgery
– Schiffer variations– to connect first every form to a form with a single zero in its
isoperiodic set. A few further Schiffer variations between forms with a single zero and
an analysis of the action of the mapping class group, allows to prove that all isoperiodic
forms with a single zero lie in the same connected component of the isoperiodic set. The
advantage of this geometric argument with respect to the previous analytic argument,
is that it can be generalized to the case of genus one with any number of poles. This
approach will be dealt with in [5].

4.2. Genus two. Recall that in the genus two case, there is a holomorphic embed-
ding J : S2,0 → S2 of the Torelli space –the cover of Mg,0 whose covering group
is the Torelli group I(Σg,0)– in the Siegel space consisting of symmetric two by two
matrices with complex coefficients and positive definite imaginary part. The map J
associates to a homologically marked smooth curve of genus two its Jacobian ma-
trix. The complement S2 \ J(S2,0) is the set of Jacobian matrices of a nodal genus
two homologically marked curve of compact type: this set is the union, parametrized
by Sp(4,Z)/ (Sp(2,Z)× Sp(2,Z)), of the images of the set of diagonal matrices with
coefficients in the upper half-plane by an element of the group Sp(4,Z).

Theorem 4.4. Given any p ∈ H1(Σ2,C/Z) of degree at least two, the restriction of
the forgetful map

Ω±S2,2 → S2,0 defined by (C, x−, x+,m, ω) 7→ (C,m)

to the isoperiodic set Per−1
2 (p) is a ramified double cover over the open (connected)

subset
S2,0 \

⋃
P lift of p

J−1(SP ).

The critical points correspond to homologically marked meromorphic 1-forms of period
p that are odd with respect to the hyperelliptic involution on the corresponding genus
two curve.

Before giving the proof, let us recall the following classical lemma

Lemma 4.5. Let C be a genus two smooth complex curve and i : C → C the hyperellp-
tic involution. The map (q1, q2) ∈ C2 7→ q1 − q2 ∈ J(C) is invariant by the involution
I(q1, q2) = (i(q2), i(q1)), and the induced map C2/I → J(C) is the blow-up of J(C) at
the point 0. The exceptional divisor is the quotient by I of the diagonal in C2.

Proof. Take two distinct couples of points of C, (q1, q2) 6= (q′1, q
′
2), such that q1 − q2 =

q′1 − q′2 in J(C). Then the divisor (q1 + q′2) − (q′1 + q2) is principal, namely either
{q1, q

′
2} = {q′1, q2}, or there exists a non constant meromorphic function f : X → P1

such that (q1 + q′2)− (q′1 + q2) = (f). The first case occurs when q2 = q1 and q′2 = q′1,
corresponding to the level set of the trivial bundle in the Jacobian. In the second case,
by uniqueness of the hyperelliptic involution on C, the function f is the quotient of the
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hyperelliptic involution post composed by a biholomorphism C/i → P1, and we then
have {q′1, q2} = i({q1, q

′
2}), which shows that (q′1, q

′
2) = I(q1, q2). �

Proof of Theorem 4.4. Let (C,m) ∈ S2,0 a homologically marked genus two curve. We
denote by iC : C → C the hyperelliptic involution on C, and by (Lp,∇p) the flat line
bundle over C whose monodromy is given by the character ρp = exp(2iπp) ◦ m−1 ∈
H1(Σg,C∗). Forgetting the flat connection, the line bundle Lp has degree zero, and
defines an element of the Jacobian J(C).

Given a meromorphic form ω on C with two poles, both simple and having peripheral

periods ±1, the function exp
(
2iπ
∫
ω
)

is a meromorphic function on C̃ which is ρp-
equivariant. Hence, it induces a meromorphic section sω : C → Lp, whose divisor is
2iπ times the residue divisor of ω. In particular, the bundle Lp is non trivial by Lemma
4.5.

Reciprocally, suppose that Lp is non trivial. Then Lemma 4.5 shows that it has
two meromorphic sections, both having one simple zero and one simple pole. The
logarithmic derivative of any such section with respect to ∇p gives the two desired
meromorphic one forms on C with two poles, both simple and with peripheral periods
±1, that have a period modulo Z equal to p.

Notice that if we denote by (q1, q2) the two poles of the first section and by (q′1, q
′
2)

the two poles of the second one, ordered so that the residues are 1/2iπ at q1 and q′1 and
−1/2iπ at q2 and q′2, then I(q1, q2) = (q′1, q

′
2). Hence the critical points of the projection

of the isoperiodic set Per−1(p) to the Torelli space S2,0 correspond to the meromorphic
differentials whose couple of ordered poles satisfy I(q1, q2) = (q1, q2). This means that
the two poles are exchanged by the hyperelliptic involution. Hence, if we denote by ω
such a meromorphic form, the form −i∗Cω has period p (this is because the hyperelliptic
involution acts by multiplication by −1 on the first cohomology group of C), and the
same residue divisor as ω. Hence, the sum ω + i∗Cω is a holomorphic one form with
trivial period homomorphism: it needs to be identically zero, and thus ω is odd with
respect to the hyperelliptic involution.

To conclude, notice that if Lp is trivial, then it has a section that is nowhere vanish-
ing. The logarithmic derivative of that section is a holomorphic one form on C whose
period modulo Z is equal to p. Hence the period of that differential is a lift P of p, and
J(C) belongs to SP . Reciprocally, each curve C whose Jacobian lies in SP for some
lift P of p has a holomorphic differential ω whose period is P . Then the multi-valued
function exp(2iπ

∫
ω) is ρp-equivariant and does not vanish, and defines a holomorphic

section of Lp that vanishes nowhere. Hence the bundle Lp is trivial in this case. �

Corollary 4.6. If p ∈ H1(Σ2,C/Z) has degree at least three (it might be infinite), then
the branched double cover of Theorem 4.4 has a branch point. It is therefore connected.
If p has degree two, there are no branch points.

In next section we will determine an invariant that shows that the branched cover is
disconnected when the degree is two

Proof. Recall that a branch point of the map is a homologically marked meromorphic
one form of period p which is odd with respect to the hyperelliptic involution on the
corresponding genus two curve (see Theorem 4.4).

As is well known (see [9] for details), there is a dictionary between meromorphic forms
on a smooth genus g curve and singular translation structures with some particular
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types of singularities on a compact topological surface of genus g. The period homo-
morphism of the form corresponds to the holonomy of the translation structure. The
’odd’ point will be realized by producing a translation structure with the prescribed
singularities, holonomy and symmetry (corresponding to the hyperelliptic involution).
One of the advantages is that the construction is not analytic, but geometric in spirit.
The complex structure is obtained a posteriori.

First assume that the image of p is not contained in the real line. Let P be a lift
of p for which there exists a homologically marked holomorphic differential (C,m, ω)
with period (

∫
ω) ◦m = P , whose existence has been established in Proposition 3.5.

The form ω is odd with respect to the hyperelliptic involution, namely it satisfies
i∗Cω = −ω. Among the six points fixed by the hyperelliptic involution on C, there are
at least four at which the form ω does not vanish. At one of these points, slit C along
a small vertical segment of length l invariant under the hyperelliptic involution, slit
the infinite cylinder C/Z along a vertical segment of length l, and glue these two slit
surfaces together in order to get a homologically marked meromorphic one form which
is odd with respect to the hyperelliptic involution. So we are done in this case.

Now let us assume that p takes only real values and that its degree is at least three.
We begin by the following very elementary

Claim 1: there exists a symplectic basis a1, b1, a2, b2 of H1(Σ2,Z) such that none of the
periods p(a1), p(a2) nor p(a1 + a2) vanish.

Proof. Since p is not zero modulo 1
2
Z, by Corollary 3.3, there exists a symplectic decom-

position H1(Σ2,Z) = H1⊕H2 so that the restriction of p to each module Hk, k = 1, 2,
is not zero modulo 1

2
Z. In each of the symplectic submodules Hk, let ak, bk be a sym-

plectic basis so that p(bk) = 0. Then, p(ak) does not belong to 1
2
Z/Z by construction.

If p(a1 + a2) 6= 0, we are done. Otherwise, p(a2) = −p(a1), so define a′2 = −a2 and
b′2 = −b2. We then have p(a1 + a′2) = 2p(a1) 6= 0, and the basis a1, b1, a

′
2, b
′
2 works. �

Now let us denote by p−, p+ two distinct points in Σ2, and let ã1, b̃1, ã2, b̃2 ∈ H1(Σ2 \
{p−, p+},Z) lifts of the elements a1, b1, a2, b2. Denoting by π± ∈ H1(Σ2 \ {p−, p+},Z)

the peripheral homology classes around p±, the family ã1, b̃1, ã2, b̃2, π
+ is a basis of

H1(Σ2 \ {p−, p+},Z). We have the following

Claim 2: one can choose the symplectic basis a1, b1, a2, b2 and its lift and P ∈ H1(Σ2\
{p−, p+},R) whose reduction modulo Z equals p, and which is such that

P (ã1), P (ã2) > 0 and P (ã1) + P (ã2) < 1.

Proof. Consider the basis a1, b1, a2, b2 constructed in the Claim 1. Let P be any lift
of p satisfying that P (ãk) is the determination of p(ak) modulo Z that belongs to
(0, 1). Observe that P (ã1) + P (ã2) belongs to (0, 2) \ {1} since p(a1) + p(a2) 6= 0. If
P (ã1) + P (ã2) < 1 we are done. Otherwise, we have P (ã1) + P (ã2) > 1. In this case,

introduce the new symplectic basis a′k = −ak, b′k = −bk, and its lift ã′k = −ãk, b̃′k = −b̃k.
Define P ′ so that P ′(ã′k) is the determination of p(a′k) modulo Z lying in the interval

(0, 1). We have P ′(ã′k) = 1−P (ãk). Hence, P ′(ã′1) +P ′(ã′2) = 2− (P (ã1) +P (ã2)) < 1,
and we are done. �
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Let now ã3 ∈ H1(Σ2 \ {p−, p+},Z) be defined by the relation ã1 + ã2 + ã3 = π+.
Since P (π+) = 1, we have

P (ãk) > 0 for k = 1, 2, 3 and P (ã1) + P (ã2) + P (ã3) = 1.

Consider a translation surface X+ made of four vertical cylinders C0, C1, C2, C3. The
first one, C0, is a semi-infinite cylinder of circumference 1 isomorphic to H/Z, the other
three, C1, C2, C3, are compact cylinders of height 1 and of circumference P (ã1), P (ã2),
and P (ã3). We glue these three cylinders below C0, to form a translation surface
homeomorphic to a sphere minus three open discs and one puncture.

Figure 1. The surface with boundary X+

This translation surface is non compact and has three boundary components ∂kX
that are horizontal geodesics of length P (ãk). Choosing reversing orientation isometries
ik of the boundary components ∂kX

+, one construct a translation surface X in the
following way: let X− be the translation surface obtained from X+ by modifying
each charts of the translation structure by its composition with −id. The reversing
orientation isometries ik can be viewed as isometries from ∂kX

+ ⊂ ∂X+ to ∂kX
− ⊂

∂X−. Use these isometries to glue X+ to X− and set X to be the resulting translation
surface. The identifying map from X+ to X− and from X− to X+ defines an involution
iX : X → X which in the charts of the translation structure of X takes the form
z 7→ −z + cst. Let m : H1(Σg \ {q+, q−},Z) → H1(X,Z) be any marking of X
sending π± to the peripheral of C±0 , and ãk to the boundary ∂kX

+. If we denote by
ω the differential on X defined by ω = dz in any translation chart z, we then have∫
m(ãk)

ω = P (ãk).

This construction depends on some continuous parameters that are the isometries
ik. Conjugating ik by a rotation of angle θk results in twisting with angle θk along
the geodesic ∂kX

+. The periods of the new homologically marked holomorphic form
(X ′, ω′,m′) (the marking m′ is obtained from the marking m using the Gauss Manin
connection) can be computed by the following simple formula∫

m(γ̃)

ω′ =

∫
m(γ̃)

ω +
∑
l

θl ãl · γ̃,
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where as usual the symplectic product is denoted by a dot. We can then choose the
angles θk, for k = 1, 2, and θ3 = 0, in such a way that∫

m(b̃k)

ω′ = P (b̃k).

The form (X ′, ω′,m′) ∈ Ω±Sg,2 obtained from (X,ω,m) by adding two points at its
two ends is the desired element of Per−1(p) which is odd with respect to hyperelliptic
involution. Hence, Per−1(p) is connected in this case.

To conclude we need to show that if the degree of p is two there are no branch points
of the branched double cover. It suffices to establish that there is no meromorphic dif-
ferential with two simple poles on a genus two curve which is at the same time of degree
two and odd with respect to the hyperelliptic involution. Now, given a meromorphic
form ω of degree two, the function exp

(
2iπ
∫
ω
)

is the unique hyperelliptic function
up to post-composition, hence ω is even with respect to the hyperelliptic involution in
this case, not odd.

�

5. Proof of Theorem 1.6

Given a finite subset E ⊂ P1, the homology group H1(P1 \ E,Z/2Z) is naturally

isomorphic to ME =
⊕
e∈E Z/2Ze

Z/2Z
∑
e∈E e

. In the sequel, we will consider subsets of the Riemann

sphere that contain the points 0 and ∞ of cardinality 2g + 2. We will fix once for
all such a subset, that we denote E0. Observe that any bijection σ from E to E0

that map the points 0 and ∞ to themselves, induces a linear map ϕσ : ME → ME0 .
Two such linear maps differ by post-composition by a map of the form ϕσ, where σ
is a permutation of E0 that fixes 0 and ∞. Given a Z/2Z-module M , we say that
two morphisms f : M → ME0 are equivalent if they differ by post-composition by a
morphism of the form ϕσ where σ is a permutation of E0 that fixes the points 0 and
∞. The set of equivalence classes is denoted S2g\Hom(M,ME0).

Definition 5.1. Given a marked meromorphic form (C,m, ω) of degree two on a
smooth curve we define its Arnold invariant Ar = Ar(C,m, ω) as the class [A] in
S2g\Hom(H1(Σg,Z/2Z),ME0) of the homomorphism A = ϕσ ◦ f∗ ◦m, where

f∗ : H1(C,Z/2Z)→ H1(P1 \ VC(f),Z/2Z)

is the well defined homomorphism induced in the Z/2Z-homology of C by the restriction
of the branched double covering f = exp(2πi

∫
ω) : C → P1 to the complement of the

(2g + 2 simple) branch points (see [4]). In this formula, VC(f) is the set of critical
values of the covering f , and σ is a bijection from VC(f) to E0 mapping 0 to 0 and ∞
to ∞.

For each degree two homomorphism p ∈ H1(Σg,C/Z) the Arnold invariant is locally
constant on Per−1(p). On the other hand, the fact that ker(p) has rank 2g− 1, implies
that there is a non-trivial stabilizer Stab(p) of p in Sp(H1(Σg,Z)). This stabilizer acts
on Per−1(p) by pre-composition on the marking. The idea of the proof of Theorem
1.6 is to show that in the orbit of a point in Per−1(p) there are at least two values of
the Arnold invariant, and therefore Per−1(p) has at least as many components as the
number of values that the Arnold invariant takes.
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Note that we can recover the period p ∈ H1(Σg,
1
2
Z/Z) ' H1(Σg,Z/2Z) from the

Arnold’s invariant of a marked form (C,m, ω) of degree two. Indeed, the group M{0,∞}
is naturally isomorphic to Z/2Z (such a module have no non trivial automorphisms);
the period p is just the composition of a representative A of Ar(C,m, ω) with the
projection ME0 → M{0,∞} ' ME0/

⊕
e∈E0\{0,∞} Z/2Ze. In particular, the stabilizer of

the Arnold’s invariant of an element (C,m, ω) of degree two in the symplectic group
Sp(H1(Σg,Z/2Z)) is contained in the stabilizer of the period p = Per(C,m, ω).

Lemma 5.2. For any g ≥ 2, given any (C,m, ω) ∈ Ω±Sg,2 of degree two, the stabilizer
in the group Sp(H1(Σg,Z/2Z)) of the reduction modulo two of the period homomorphism
p = Per(C,m, ω) is larger than the stabilizer of the Arnold class Ar(C,m, ω).

Proof. Since p 6= 0 mod two, the stabilizer of the reduction modulo two of p in
Sp(H1(Σg,Z/2Z)) is in bijection of the set of symplectic basis of H1(Σg,Z/2Z) that
contain the element p as the first member. The number of such basis is the product

22g−1(22g−2 − 1)22g−3 × . . .× (22 − 1)× 2.

Let us now bound from below the number of elements in the stabilizer of the Arnold’s
class Ar = Ar(C,m, ω), representated by a map A : H1(Σg,Z/2Z)→ME0 .

Observe that the map A is injective, and that its image is the subset M even
E0
⊂ ME0

consisting of formal sums
∑

e∈F e, where F is a subset of E0 with an even number of
elements.

Given any element M ∈ Sp(2g,Z/2Z) which fixes Ar, there exists a permutation σ
of the set E such that

(4) A ◦M−1 = ϕσ ◦ A.

Since ME0 has more than two elements, the action of ϕσ on M even
E0

completely deter-
mines σ, the permutation σ satisfying (4) is well-defined, and the induced map

(5) M ∈ StabSp(H1(Σg ,Z/2Z)(Ar) 7→ σ ∈ S2g

is a homomorphism. Now, because the map A is injective, the morphism (5) is injective.
We thus get that stabilizer of Ar in Sp(H1(Σg,Z/2Z)) has at most (2g)! elements. The
lemma follows. �

Corollary 5.3. If g ≥ 2 and (C,m, ω) ∈ Ω±Sg,2 has degree two period homomorphism
p = Per(C,m, ω), there exist at least two values of the Arnold invariant in the orbit

Stab(p) · (C,m, ω) ⊂ Per−1(p).

Proof. The reduction modulo two map Sp(H1(Σg,Z)) → Sp(H1(Σg,Z/2Z)) is surjec-
tive. From Lemma 5.2 we deduce that there exist two elements in the orbit that are
not equivalent by post-composition by an element in Sym2g. �

Theorem 1.6 follows from Corollary 5.3. The latter also implies that the branched
double cover of Theorem 4.4 is not only unbranched, as stated in Corollary 4.6, but
also disconnected.



ISOPERIODIC MEROMORPHIC FORMS: TWO SIMPLE POLES 17

6. Extension of the period map and bordification

6.1. Augmented Teichmüller space. As in [11], we need to extend the domain of
definition of the period map in to appropriate bordifications of the space Ω±Sg,2. For
the sake of completeness we have included a general theory of the period map for
moduli spaces of forms with simple poles and their extension to the augmented Torelli
spaces in the Appendix.

In this section we give a brief outline and focus on some particular features of the
case of two poles.

The moduli space of genus g smooth curves with n marked points Mg,n admits a

Deligne-Mumford-Knudsen compactification Mg,n as a complex orbifold (see [16, 25,

26, 27]). Each point in the boundary ∂Mg,n = Mg,n \Mg,n corresponds to a class under
conformal isomorphism of the following geometric object:

Definition 6.1. A connected complex curve C with nmarked distinct points q1, . . . , qn ∈
C is said to be stable if its singularities are nodes that do not coincide with any of the
marked points, and the closure Ci of each component of C∗ := C \ Sing(C), called a
part of C, has a group of automorphisms that fix the marked points and the boundary
points that is finite. The normalization of C is the (possibly disconnected) smooth

curve Ĉ = tCi marked by the points q1, . . . , qn and the pairs of points corresponding
to the nodes of C. A stable curve C is said of compact type if every node separates C
in two components. Otherwise C is said to be of non-compact type.

The arithmetic genus of a stable curve is g = h1(C,O). When C has δ nodes and
its normalization has ν components of genera g1, . . . , gν , the arithmetic genus satisfies
(see [23][p. 48])

g =
ν∑
i=1

(gi − 1) + δ + 1

The boundary ∂Mg,n is a normal crossing divisor and, as such, is stratified. Its
regular points correspond to the subset of curves with a single node.

There are natural attaching maps

(6) Mg1,n1∪∗ ×Mg2,n2∪? →Mn1+n2

and

(7) Mg,n∪{∗,?} →Mg+1,n

where the special points are identified into a new node. Their image is therefore in the
boundary.

There are also forgetful maps (forget last marked point with stabilization of the
resulting curve, i.e. collapse non-stable components)

(8) Mg,n∪∗ →Mg,n

All of the said maps are holomorphic. By convention we omit the zero subindex when
n = 0 and write Mg and Mg instead.

Recall from the introduction that the universal cover of Mg,n can be identified
with the Teichmüller space Tg,n and its covering group with the mapping class group
Mod(Σg,n) for a reference surface Σg,n = (Σg, p1, . . . , pn) of genus g with n ordered
marked points that we will sometimes denote as P = (p1, . . . , pn). When n = 0 we
omit the subindex and write Σg = Σg,0.
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The Teichmüller space can be bordified to the so called augmented Teichmüller space
Tg,n, a stratified topological space that is no longer a manifold but where the action

of Mod(Σg,n) extends naturally with quotient Tg,n/Mod(Σg,n) homeomorphic to Mg,n

(see [3]). The quotient map

Tg,n → Tg,n/Mod(Σg,n)

is a branched cover, branching over the boundary points. Let us recall its definition
and some properties.

Definition 6.2. A homotopical marking (or sometimes a collapse) of a connected
genus g stable curve C with n ordered pairwise distinct ordered marked points Q =
(q1, . . . , qn) ∈ (C∗)n is a continuous surjection f : Σg,n → (C, q1, . . . , qn) such that
f(pi) = qi, the preimage of each node is a simple closed curve on Σg \ P and on each
component of Σg \f−1(N) where N is the set of nodes, the map f is a homeomorphism
onto a part of C that preserves the orientation.

Definition 6.3. A homotopically marked stable curve with n marked points is a
marked stable curve (C, q1, . . . , qn) together with a homotopical marking f : (Σg, P )→
(C,Q). Two homotopically marked stable curves fi : (Σg, P ) → (Ci, Qi) for i = 1, 2
are said to be equivalent if there exists a conformal isomorphism g : C1 → C2 such
that g ◦ f1 is homotopic to f2 relative to P . The class of a Σg,n marked stable curve
will be denoted by {f : Σg,n → (C, q1, . . . , qn)} or by (C,Q, {f}).

When C is non-singular the homotopy class of a collapse corresponds to a unique
isotopy class of homeomorphisms.

Remark 6.4. If ∆ : Σg,n → Σg,n is a Dehn twist around a simple closed curve in Σg

that is collapsed by the marking f : (Σg, P ) → (C,Q) to a point, then (C,Q) marked
by f ◦∆ is equivalent to the same curve marked by f1.

Definition 6.5. The augmented Teichmüller space Tg,n is the set of all homotopically
marked stable genus g curves with n marked points up to equivalence. It contains the
Teichmüller space Tg,n of isotopy classes of marked smooth curves, and the boundary

∂Tg,n = Tg,n \ Tg,n.

The topology of Teichmüller space extends to a topology on Augmented Teichmüller
space in such a way that around a boundary point it is not locally compact. (see [3]
and references therein). There is a natural stratification of the boundary by complex
manifolds. Each stratum is defined by the number of nodes of the curves and that
number gives precisely the codimension of the manifold with respect to the dimension
of the open stratum Tg,n.

The local structure of the stratification is described in [3]. It is is a local abelian ram-
ified cover of a normal crossing divisor (we borrow the terminology from in Section 4 of
[11]). This property allows to mimic the description of the dual complex associated to a
normal crossing divisor as follows: a vertex is associated to each connected component
of the codimension one stratum. Each connected component of the stratum of codi-
mension k lies in the closure of precisely k connected components of the codimension
one stratum. We attach a k-simplex to k given vertices for each connected component
of the intersection of the closures of the k corresponding components of strata. The
resulting complex is denoted C(Tg,n). It is isomorphic to the curve complex Cg,n defined
on a genus g closed surface with n marked points. (see [11]).
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6.2. Homology quotients. In this paper we will need to work on some intermediate
quotients of Tg,2. associated to particular subgroups of Mod(Σg,2) characterized by
their (trivial) action on certain homology groups with integral coefficients.

The pointed Torelli group I(Σg,n∗) defined by the exact sequence

(9) 1→ I(Σg,n∗)→ Mod(Σg,n)→ Aut
(
H1(Σg \ {p1, . . . , pn})

)
and the classical Torelli group represented in Mod(Σg,n) by the exact sequence

(10) 1→ I(Σg,n)→ Mod(Σg,n)→ Aut
(
H1(Σg)

)
.

Both groups are related. Denote Πn the rank n − 1 submodule generated by the
n peripheral curves around the punctures in H1(Σg \ {p1, . . . , pn}) we have an exact
sequence

(11) 0→ Πn → H1(Σg \ {p1, . . . , pn})→
H1(Σg \ {q1, . . . , qn})

Πn

∼= H1(Σg)→ 0

The group Mod(Σg,n) acts on (11) preserving it, since it fixes every class in Πn. In
particular, I(Σg,n∗) ⊂ I(Σg,n) is a subgroup. We claim that there is an isormophism

I(Σg,n)

I(Σg,n∗)
∼= Hom(H1(Σg),Πn)

Indeed, take φ ∈ I(Σg,n). The endomorphism defined by φ∗−Id on H1(Σg\{p1, . . . , pn})
has image in Πn and Πn in its kernel. Thanks to the isomorphism in (11) it defines an
element in Hom(H1(Σg),Πn). The kernel of the group homomorphism φ 7→ φ∗ − Id is
precisely I(Σg,n∗).

The previous analysis implies that the quotient map

(12)
Tg,n

I(Σg,n∗)
→ Tg,n

I(Σg,n)

has covering group Hom(H1(Σg),Πn).

Define

Sg,n∗ = S(Σg,n∗) =
Tg,n

I(Σg,n∗)
and Sg,n =

Tg,n

I(Σg,n)

Then the quotient map (12) extends to a map

(13) Sg,n∗ → Sg,n

that has branch points possibly at points with non-separating nodes. An example of
branched point with (g, n) = (4, 2) is depicted in Figure 2.

6.3. Homological characterization of strata of curves of compact type. The
stratification by the number of nodes of Tg,n is invariant under the action of the group

I(Σg,n∗) (resp. I(Σg,n) ) and induces a stratification of Sg,n∗ (resp. Sg,n). Both stratifi-
cations are still locally abelian ramified covers of a normal crossing divisor. Therefore
we can define the dual boundary complex C(Sg,n∗) ( resp. C(Sg,n) ) which is isomorphic
to the quotient of the curve complex Cg,n/I(Σg,n∗) (resp. Cg,n/I(Σg,n)).

To every class of point (C,Q, {f}) ∈ Sg,n there corresponds a surjective homomor-
phism

m = [f ]∗ : H1(Σg,Z)→ H1(C,Z).

Lemma 6.6. If (C,Q, {f}) and (C,Q, {f ′}) satisfy
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Figure 2. An example of branch point of the extension (13) with
(g, n) = (4, 2). The Dehn twist around the two curves of the curve
system acts trivially on S4,2 and the depicted boundary point of S4,2∗ but
non-trivially in the neighbouring points outside the boundary

• [f ]∗ = [f ′]∗
• rank(ker[f ]∗) ≤ 1,

then both points define the same class in Sg,n.

Proof. There exists φ ∈ Mod(Σg,n) such that f ′ = f ◦ φ. By hypothesis [f ◦ φ]∗ =
[f ′]∗ = [f ]∗. The endomorphism of H1(Σg) defined by φ∗ − Id has its image in ker[f ]∗.
If ker[f ]∗ = 0 we are done.

If ker[f ]∗ has rank one, it is a primitive module, generated by the class [c] of a
non-separating simple closed curve c and

φ− Id = [c]ϕ where ϕ ∈ H1(Σg,Z)

By duality ϕ is the symplectic dual of some element of ker[f ]∗ ⊂ H1(Σg), hence there
exist k ∈ Z such that

φ(a) = a+ k(a · c)[c] ∀a ∈ H1(Σg).

This homomorphism is precisely the action in homology induced by the composition
∆◦kc of k times the Dehn twist around the curve c. By Remark 6.4, f ′′ = (f ◦φ)◦(∆−1

c )◦k

is an equivalent topological marking to f ′ that falls in the initial case. �

In particular, in Sg,2 every point over a curve of compact type C is characterized by
a tuple (C, x−, x+,m) where m : H1(Σg,Z)→ H1(C,Z) is a surjective homomorphism.
There is a natural direct sum decomposition into symplectic submodules

H1(C,Z) = H1(C1,Z)⊕ · · · ⊕H1(Ck,Z)

where C1, . . . , Ck are the parts of C, each of genus gi = genus(Ci). This decomposition
induces, via the marking m, a decomposition

(14) H1(Σg,Z) = W1 ⊕ · · · ⊕Wk

into pairwise orthogonal symplectic submodules of ranks rank(Wi) = 2gi.

As proven in [11], using the homological characterization of Lemma 6.6, the restric-
tion of attaching maps as in equation (6) can be defined at the level of the coverings

(15) Sg1,n1 ∪ ∗ × Sg2,n2 ∪ ? → Sg1+g2,n1 + n2

by the relation

(16) (C1, Q1 ∪ ∗,m1)× (C2, Q2 ∪ ?,m2) 7→ (C1 ∨∗=? C2, Q1 ∪Q2,m1 ⊕m2).
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All points in the image have the same associated symplectic decomposition. Moreover,
if n1 + n2 = 2 then the image is contained in Sg,2 and the range is a product of spaces
Sg,n where n = 0, 1 or 2.

Remark 6.7. Using Lemma 6.6 we can extend the domain of the map (15) to pairs
of curves with marked points such that at at most one has one non-separating node

6.4. Stable meromorphic forms with two simple poles.

Definition 6.8. A stable meromorphic form with two simple poles and residues ±1
on a stable curve with two marked points (C, x−, x+) ∈ Mg,2 is a meromorphic form
on each component of C∗ having at worst simple poles at the points corresponding to
the nodes, such that the sum of residues at the branches of C at any point x 6= x± is
zero. Moreover, the residue is −1 at x− and +1 at x+. The space of all such forms
on a given stable curve (C, x−, x+) is denoted by Ω±(C, x−, x+). It is an affine space
directed by the g-dimensional vector space Ω(C) of stable (holomorphic) forms on C
(with zero residue sum at all points).

On any component of C∗ the residue theorem holds for the restricted form, telling
us that the sum of residues in the component is zero. To be able to integrate ω along
a path in C it needs to avoid all poles of the restrictions to the components of C∗.

In contrast with meromorphic forms on smooth curves, a stable meromorphic form
can have a zero component, but not be zero globally. It can even have zero components
and poles. On the complement of the nodes, zeros and poles, integration defines a
translation structure. The underlying flat metric has the structure of a conical point
angle 2π(1 + ordz(ω)) at a point z of positive order or of an infinite half cylinder H±/Z
at a simple pole of residue ±1. At a node the metric is either a union of two conical
points of possibly different angle (if the residue of the node is zero) or the disjoint
union of two infinite half cylinders.

Definition 6.9. Ω±0 (C, x−, x+) is the subset of forms in Ω±(C, x−, x+) with zero
residues at non-separating nodes. Ω±∗0 (C, x−, x+) is the subset of forms in Ω±0 (C, x−, x+)
with isolated zeros.

If ω ∈ Ω±0 (C, x−, x+) has some separating node, then its residue is, up to sign, zero or
one depending on whether x−, x+ lie on the same side of the node or not, i.e. depending
on whether the node also separates the poles or not.

Remark that the form ω can be integrated along any path avoiding the poles of the
restrictions to components of C∗, hence any path avoiding x−, x+ and the nodes that
separate the poles x−, x+. Remark also that, thanks to the Mayer-Vietoris sequence,
any homology class in H1(C \{x−, x+},Z) is represented by some path avoiding points
with non-zero residue of ω (see the Appendix for details).

The rank g affine bundle

(17) Ω±Mg,2 →Mg,2

is the bundle that has Ω±(C, x−, x+) as fiber over the point (C, x−, x+). It is a natural
holomorphic extension of the affine bundle Ω±Mg,2 → Mg,2, directed by the Hodge

vector bundle ΩMg,2 → Mg,2 of stable (holomorphic) forms. An element in Ω±Mg,2

will be denoted as a tuple (C, x−, x+, ω) or, since the information of the poles is already
in ω, by (C, ω). In [7, 8] the reader can find more details on the structure of bundles of
meromorphic one-forms over the Deligne-Mumford compactification and on Augmented
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Teichmüller space. We are going to describe the relevant properties for our interest in
the covers where the period map is naturally defined.

The fiber bundle (17) can be pulled back via branched covers to topological bundles

Ω±Sg,2∗ → Sg,2∗ and Ω±Sg,2 → Sg,2 .

Elements in those covers will be denoted by (C, [f ], ω) where [f ] denotes an equivalence
class of topological marking under the covering group that defines the space.

Given a subset K of Mg,2 or any of its covers we denote by Ω±K the restriction of
the Ω±-bundle to the given subset. Its intersection with the set of forms having zero
residues at all non-separating nodes will be denoted by Ω±0 K, and the intersection of
the latter with the subset of forms isolated zeros by Ω±,∗0 K.

On Ω±0 Sg,2∗ there is a well defined period map (see Appendix for details)

Perg,2∗ : Ω±0 Sg,2∗ → Hom(H1(Σg \ {p−, p+},Z);C)

that is equivariant with respect to the action of Mod(Σg,2) on source and target. It is
defined by associating, to any class in the homology group, and a fixed marked form in
Ω±0 Sg,2∗ , the integral of the form along the corresponding class in the stable curve (up to
an appropriate choice of representative to allow for integration). The correspondence of
classes is induced by the marking in homology. By construction the peripheral module
Π2 has rank one and its generator is sent to ±1 ∈ C.

Similarly, we can define the period of an element in Ω±0 Sg,2 as follows

Definition 6.10. Given (C,m, ω) ∈ Ω±0 Sg,2 having zero residues at non-separating
nodes there is a well defined homomorphism

Per(C,m, ω) : H1(Σg,Z)→ C/Z by γ 7→
∫
m(γ)

ω mod 1

Definition 6.11. The period map on Ω±0 Sg,2 is the map

Perg : Ω±0 Sg,2 → H1(Σg,C/Z)

sending each point to its period homomorphism.

It extends the map Perg defined by Proposition 3.4 to a part of the boundary of

Ω±Sg,2 where it makes sense to talk about ’having the same period homomorphism’ as
a form in Ω±Sg,2.

Proposition 6.12. The branched cover Ω±Sg,2∗ → Ω±Sg,2 sends period fibers to period
fibers. Its restriction to a fiber of Perg,2∗ is a homeomorphism onto a fiber of Perg.

In particular the branch points of Ω±Sg,2∗ → Ω±Sg,2 do not occur at points with zero
residues at the non-separating nodes (compare with Figure 2).

Proof. The first part of the statement is a consequence of the isomorphism in (11)
and the fact that the condition on the residues implies that the peripheral module
Π2 ⊂ H1(Σg \{p−, p+}) has periods in Z. Remark also that, by (12), the monodromy of
the cover on the unbranched part is Hom(H1(Σg),Π2) and the branch points correspond
to some fixed point of this action. However, the action of the non-trivial elements of
the covering group does not leave any fiber of the period map invariant. Indeed, the
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action of h ∈ Hom(H1(Σg),Π2) on a homomorphism p : H1(Σg, \ {p−, p+})→ C is the
homomorphism p ◦ (Id + h ◦ π) where

π : H1(Σg \ {p−, p+})→
H1(Σg \ {p−, p+})

Π2

∼= H1(Σg).

Suppose p is the period of some element in Ω±Sg,2∗ . In particular p|Π2 : Π2 → Z is
injective. Suppose p is fixed by the action of h. Then p+ p ◦h ◦π = p, Since the image
of h lies in Π2 we deduce h ◦ π = 0. But since π is surjective, this implies h = 0.

Let F be a non-empty fiber of Perg and F̂ its preimage under the branched map, a

union of fibers. The restriction of the branched cover to F̂ → F has no branch points
and trivial monodromy. This concludes the proof. �

6.5. The stratification of augmented Teichmüller space and period fibers.
The stratification of the ambient space Ω±Sg,2∗ induces a partition of the fibers of the
period map. The next theorem describes this partition

Theorem 6.13. The local fiber L of the period map in Ω±Sg,2∗ (resp. Ω±Sg,2) at a

point with isolated zeros projects to the orbifold chart of ΩMg,2 as a complex manifold
transverse to all boundary divisors through the point. Therefore, L is an abelian rami-
fied cover of a normal crossing divisor in (C2g−2, 0) having precisely one component of
codimension one in each component of codimension one of the ambient space through
the point.

The statement is not true in general for forms with zero components.

Proof. The proof in Ω±Sg,2∗ (and more generally for Ω0Sg,n∗ with n ≥ 2, i.e. for forms
with at least two simple poles whose non-serparating nodes have zero residue) follows
exactly the same lines of the proof of the equivalent Theorem for abelian differentials
in Section 4.18 of [11]. For completeness and future reference, we include a proof in
the appendix.

As for the case of Ω±Sg,2, the restriction of the homeomorphism of Proposition 6.12
to the neighbourhood of a point provides a homeomorphism that preserves boundary
points. Hence the result. �

Corollary 6.14. Let F ⊂ Ω±Sg,2 be a fiber of Perg and F its closure in Ω±∗0 Sg,2. Then
F is connected if and only if F is connected.

Proof. The homeomorphism of Proposition 6.12 sends boundary points to boundary
points, so it suffices to prove the equivalent statement for a fiber of the period map
on the cover Ω±Sg,2∗ and its closure in the space Ω±∗0 Sg,2∗ of homologically marked
meromorphic stable forms with zero residues at non-separating nodes and isolated
zeros. This equivalent statement is proven in Corollary 11.12 of the Appendix.

�

Definition 6.15. The closure of the fiber of Perg in Ω±∗0 Sg,2 is what we consider as

bordification of the fiber. It coincides with the fiber of Perg on Ω±∗0 Sg,2.

6.6. Smoothings, simple boundary points, and the proof of Theorem 1.4.

Definition 6.16. A path in Ω±0 Sg,2 is said to be isoperiodic if the value of Perg is
constant along it (i.e. it lies in a fiber of Perg). To simplify the notations, two marked
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forms ω1 and ω2 in Ω±∗0 Sg,2 are equivalent and denoted ω1 ∼ ω2 if they can be joined
by an isoperiodic path in the total space.

Recall that every node of a stable curve C determines a boundary component of Sg,2
passing through C.

Definition 6.17. A smoothing of a node of a stable form is an equivalent form that
does not belong to the boundary component corresponding to the node but that belongs
to the other boundary components passing through the point.

The metric description of the neighbourhood of the node when smoothing it is a flat
cylinder of finite area. If the residue at the node is non-zero, when we get closer to the
form ω, the circumference of the annulus stays constant but its volume tends to grow,
so the cylinder becomes long.

Definition 6.18. A smoothing of a boundary point ω with isolated zeros is an equiv-
alent form on a non-singular curve. They do always exist thanks to Theorem 6.13.

Remark that the dual graph of a curve of compact type supporting a meromorphic
form with two simple poles, each of whose nodes separate the two poles is a segment.
We denote such a form as an ordered sequence ω1∨ · · · ∨ωk where ωi is a meromorphic
form with two poles on a smooth curve Ci, ω1 (resp. ωk) has a pole of residue −1 (resp.
+1) and the pole of residue +1 of ωj is glued to the pole of residue −1 of ωj+1 to form
a node. Each ωi is called a part of the form and has isolated zeros.

The maps (15) extend at the level of forms:

(18) Ω±Sg1,n1 ∪ ∗ × Ω±Sg2,n2 ∪ ? → Ω±∗0 Sg1+g2,n1 + n2

by the relation

(19) (C1, Q1∪∗,m1, ω1)×(C2, Q2∪?,m2, ω2) 7→ (C1∨∗=?C2, Q1∪Q2,m1⊕m2, ω1∨ω2).

by imposing that the two marked points where we glue are of opposite residue. In
particular if one of the poles is chosen chosen as marked point, the other is completely
determined.

Remark 6.19. The map (18) is continuous and sends products of period fibers to
period fibers. In particular it sends products of isoperiodic paths to an isoperiodic
path. We use the following shorthand notation

(20) ω1 ∼ ω′1, ω2 ∼ ω′2 ⇒ ω1 ∨ ω2 ∼ ω′1 ∨ ω′2

A generalization of the following remark motivates the inductive proof of Theorems
1.4 and 1.5:

Remark 6.20. Given a holomorphic form ω on an elliptic curve E the form ω ∨ dz
2iπz

on the stable curve E ∨ P1 defines a boundary point in Ω±
∗

0 S1,2, and the same periods
in C/Z as ω. The smoothing of the latter defines an isoperiodic form with two poles
on a smooth elliptic curve.

Definition 6.21. A boundary point of Ω±∗0 Sg,2 is said to be simple if the underlying
nodal curve is of compact type, each node separates the poles, and the degree of each
part is at least three.



ISOPERIODIC MEROMORPHIC FORMS: TWO SIMPLE POLES 25

Simple boundary points do not exist for fibers corresponding to periods of degree
two. Let us analyze the existence of simple boundary points for other fibers. Recall
the following definition

Definition 6.22. Let g ≥ 2 and p : H1(Σg) → A be non-trivial homomorphism of
abelian groups. A symplectic decomposition H1(Σg) = V1 ⊕ · · · ⊕ Vk is said to be
p-admissible if none of the restrictions p|Vi is trivial.

A simple boundary point (C1 ∨ · · · ∨ Ck,m, ω1 ∨ . . . ∨ ωk) induces a [p]-admissible
ordered decomposition of the homology group H1(Σg)

V1 ⊕ · · · ⊕ Vk where Vi = m−1(H1(Ci))

where [p] is the class modulo 1
2
Z of the period homomorphism

p = Perg(C1 ∨ · · · ∨ Ck,m, ω1 ∨ . . . ∨ ωk) : H1(Σg)→ C/Z.
The order of the factors is determined by the order of the forms, baring in mind that
the first one (resp. last one) has a pole of −1-residue (resp. +1-residue)

Lemma 6.23. For g ≥ 2 and p : H1(Σg,Z) → C/Z non-trivial, there exists a p-
admissible decomposition. If deg p ≥ 3 there exists a p-admissible decomposition whose
factors have also degree at least three.

Any such decomposition is induced by some stable meromorphic form with two poles
on a curve of compact type whose nodes separate the two poles.

Proof. The algebraic part is proven in Corollary 3.3. By inductively applying the
algebraic result we can find a sub-decomposition H1(Σg,Z) = V1⊕ . . .⊕Vk of any given
decomposition into symplectic submodules of rank two such that p|Vi is non-trivial.
Lemma 4.1 implies that there is either a form with two simple poles or a holomorphic
form ωi realizing p|Vi . By Remark 6.20 we can suppose that ωi has two simple poles. By
considering forms on smooth genus one curves Ei with two poles ωi and periods pi we
can construct the boundary form of compact type ω1∨. . .∨ωk of period p by connecting
the negative pole of one with the positive of the next to a stable meromorphic form.
Smoothing the relevant nodes, we can realize any decomposition obtained by joining
factors of the one induced by V ′i s.

�

Proof of Theorem 1.4. For g = 1 we use Remark 6.20. For g ≥ 2 we realize p as the
period of a form on a marked stable curve of compact type by using Lemma 6.23. By
smoothening its nodes, we obtain the desired form on a smooth curve. �

7. Degenerating to a simple boundary point

A Schiffer variation (see [11] and references therein for details) allows to define isope-
riodic paths in Ω±Mg,n (and its cover Ω±∗0 Sg,2) by deforming any marked stable mero-
morphic form having an isolated zero continuously in its fiber of the period map.
It is defined by a continuous surgery for any given family of twin paths, i.e. paths
γ1, γ2, . . . , γk with parameter space [0, 1) starting at an isolated zero (nodes with zero
residue are allowed) of a meromorphic form (C, ω) such that the k paths in C defined
by integration

t 7→
∫
γi|[0,t]

ω coincide for i = 1, . . . , k.
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It actually deforms the flat structure underlying the form. For more details and exam-
ples of deformations that include nodal curves, we refer to [11]. If the form is marked,
the surgery allows to follow the marking along the surgery. In this section we use
Schiffer variations to connect any meromorphic form to some form on a nodal curve.

Proposition 7.1. Any meromorphic form on a smooth genus g ≥ 2 Riemann sur-
face with two simple poles of residues ±1 can be deformed via a sequence of Schiffer
variations to a stable meromorphic form on a singular stable curve with one node and
isolated zeros. If the periods are real we can further suppose that the node is separating
and separates the poles. Otherwise we can suppose that the node has zero residue.

7.1. Proof of Proposition 7.1 in the case of real periods. The integral of the
imaginary part of a meromorphic form ω with real periods and two poles provides a
harmonic surjective first integral hω : X → R for the horizontal foliation. We claim
that up to a Schiffer variation we can suppose that hω has a regular connected fiber
(that is necessarily a closed leaf) that separates X in two surfaces of positive genera.
The cylinder it generates has a height. By moving all zeroes in each side of the leaf, in
the imaginary direction, towards the pole in the corresponding side, at the same speed,
we have that the height of the cylinder of closed leaves generated by the chosen leaf is
growing. In the limit we get a stable form on a singular nodal curve with a separating
node none of whose components is the zero form.

Figure 3. Isoperiodic stretching of a cylinder by appropriate Schiffer variations

To get the desired closed leaf, first apply some Schiffer variations in the imaginary
direction to guarantee that all zeroes of ω are simple and have different values −∞ <
x1 < x2 < . . . < x2g <∞ of the first integral hω. The fiber h−1

ω (x) over a point x 6= xi
is a disjoint union of circles. The number of circles in each fiber is constant in each
interval of t2g

i=0Ii = R \ {x1, . . . , x2g} and generates cylinders of closed leaves. In each
unbounded interval it corresponds to one of the cylinders defined by a pole. Since all
zeroes are simple, the number of cylinders changes at each xi by a unit: on one side
there is one cylinder approaching, on the other, two. Hence, over I1 and I2g−1 there
are two connected components of the fiber.
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The graph of horizontal cylinders of ω is the trivalent connected graph having 2g
vertices (one for each zero) and we put an edge between two zeroes if there is a cylinder
of closed leaves that has both zeroes in the boundary. (see Figure 4 for an example).

Figure 4. An example of the graph of cylinders

If there is an intermediate segment I2, . . . , I2g−2 for which the fiber h−1
ω (Ij) is one

cylinder we will be done. We will analyze how the graph of horizontal cylinders changes
along a movement of zeroes, via Schiffer variations and verify that up to this further
surgery we fall in the desired situation.

Let us analyze the change of graph we can obtain by applying a particular Schiffer
variation at a zero z0 that has two components going upwards. We denote by v0 the
vertex of the cylinder graph corresponding to z0. Among the two edges e0, e

′
0 that go

from v0 upward, one has smallest length, say e0. Its other extremity is denoted v1. Let
e1 be an edge going upward at v1. There exists a pair of twins at z0 whose projections
to the cylinder graph are

1) the concatenation of e0 with a small interval in e1,
2) a portion of e0.

Indeed, first choose a geodesic starting at z0 whose projection to the cylinder graph
satisfies (1), and then take its twin. The Schiffer variation along this pair of twin
produces a new meromorphic differential whose cylinder graph is depicted in Figure 5.

Choose two paths in the graph, each leaving the top vertex of the cylinder graph on
different edges, and choose any way of going down the graph with each of them. At
the first moment they meet (they always do, since the graph ends at a unique vertex)
we find a point y0 that has two edges upward. Let v be the number of vertices that
we find in the union of the paths. If v = 2, we are done, since there is a cylinder just
under y0. Use the choice of paths to move y0 up the graph. As explained in Figure 5,
we can move the point y0 upwards along the given choice of paths. At each step we
transform the cylinder graph, and reduce the number v by one. Proceeding inductively
we reach the situation where this number is two.

7.2. Degeneration in the case of non-real periods. The proof works in a more
general case. Suppose (C,m, ω) is a meromorphic form with simple poles on a smooth
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Figure 5. Graph changes when a zero moves upward.

connected curve, whose residues at the poles lie in a real line. Suppose further that
there is some period not lying in the same real line. In particular this is the case for
the case of two simple poles of residues ±1 and non-real periods.

We claim that by Schiffer variations we can either find a pair of distinct non-closed
twin paths with common end-point (at a zero) or join all zeroes to a point. By chang-
ing the point locally in the period fiber using period coordinates in the stratum (see
Remark 3.8 in [9]), we can suppose that the coordinates corresponding to saddle con-
nections between distinct zeroes of ω have different values in C, and, moreover, none
coincides with the period of a cycle, i.e. lies in the (countable) image of the period
map Per(C,m, ω) in C. Consider one of the shortest saddle connection, and the set of
all its twins at its starting point. By the choices made so far, the only possibilities for
endpoints of any of those paths is a regular point, or the endpoint of the original saddle
connection. If one of the twin paths has the same endpoint, we have found a pair of
twins whose endpoints coincide. Otherwise, the Schiffer variation along the set of all
twins at the point produces a meromorphic differential with one zero less (of higher
order). Continuing the process with the obtained form inductively we end up in one
of the desired situations. If we have found the couple of twins between distinct zeroes,
the Schiffer variation will degenerate the surface to a node with zero residue and no
zero components and we are done.

Next we claim that if the form has a single zero, we can also find, up to some Schiffer
variations, a pair of twins having the same endpoints (but this time the starting point
and endpoints might coincide also). Indeed, consider the horizontal foliation induced
by ω on C. Around each pole it has an open cylinder of infinite volume formed by
closed regular geodesics. The complement U ⊂ C of the cylinders in C has finite
volume. It cannot be empty since the form ω has some non-real period. The boundary
is formed by a collection of saddle connections at the unique saddle of ω. According
to [34, Proposition 5.5] in each connected component of U \ {saddle connections} the
real foliation is either a finite volume cylinder formed by closed regular geodesics, or
minimal. We claim that, up to changing the direction of the foliation we can find a
cylinder by closed regular geodesics. Indeed, if there are none for the real foliation, we
can apply Lemma 5.12 in [34] to one of the minimal components and find a finite volume
cylider in U formed by closed regular geodesics (necessarily in a different direction).
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The boundary curves b+ and b− of a finite volume cylinder by closed geodesics have
the same length. Each defines a finite sequence of saddle connections based at the zero
of ω. In this situation up to some Schiffer variations, we can always find a pair of twin
curves having the same endpoints. It suffices to carry exactly the same proof by cases
of section 5.3 in [11]. As in that case, the Schiffer variation along this pair of twins
degenerates the surface to an isoperiodic stable form with no zero components and a
node of zero residue.

7.3. From boundary points to simple boundary points.

Proposition 7.2. Let g ≥ 2. Then any form in Ω±∗0 Sg,2 with period homomorphism
of degree at least three is equivalent to a simple boundary point.

Proof. By induction on the genus. Let p : H1(Σ2,Z) → C/Z with deg(p) ≥ 3. Since
Per−1

2 (p) is connected by Corollary 4.6 it is enough to prove that there exists a simple
boundary point in the bordification.

By Lemma 6.23 there exists a decomposition H1(Σ2,Z) = W1 ⊕W2 into rank two
symplectic submodules such that each p(Wi) has at least three elements. Up to identi-
fying Wi with H1(Σ1,Z), p|Wi

can be thought as an element in H1(Σ1,C/Z) of degree
at least three. By Theorem 1.4 we can consider a form ωi on a smooth curve with two
poles and periods p|Wi

. Hence ω1∨ω2 is a simple boundary point of the fiber Per−1
2 (p).

Fix some g ≥ 3 and suppose that the statement of the proposition is true up to
genus g − 1. Consider p : H1(Σg,Z)→ C/Z with deg(p) ≥ 3.

Along this proof, and by abuse of notation, we will denote the stable form obtained
by gluing two meromorphic forms ω1,ω2 on smooth curves C1, C2 glued at points that
are poles or not by ω1∨ω2 and omit the information of the points where they are glued.
A smoothing of such a form will be denoted by ω1∨̃ω2.

Case 1: Suppose Im(p) ⊂ R
Up to applying Proposition 7.1 we can suppose that we start at a form ω = ω1 ∨ ω2

with precisely one node that separates the surface and has one pole on each side. The
decomposition of the form provides a decomposition p = p1 ⊕ p2. Suppose that one
of pi has degree two. Since deg p ≥ 3 , we cannot have both of degree two. If the
component which is not of degree two, say ω1, is of genus at least two, we can use the
hypothesis to join ω1 to a nodal stable form ω3 ∨ω4 with non-zero residue at the node,
and each part of which has periods of degree at least three. The form ω2 ∨ ω3 has
periods of degree at least three, and so does ω4. Then ω ∼ (ω2∨̃ω3) ∨ ω4.

If the form ω1 (of degree at least three) has genus one, then ω2 has genus g − 1 and
degree two. We can still find an equivalent ω3 ∨ω4 each part of which will have degree
two. However, the sum ω1 ∨ ω3 will have degree at least three and genus at least two.
The previous case can be applied to the form (ω1∨̃ω3) ∨ ω4, that is equivalent to ω.

Case 2: Suppose p has a non-real number in the image.

Subcase 2.1 From a non-simple boundary point to either a simple boundary point
or a form on a curve with a non-separating node with zero residue.

Up to applying Proposition 7.1 we can suppose that we start at a form ω with
precisely one node with zero residue. If it is non-separating we are done. Suppose the
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node is separating and write ω = ω1 ∨ ω2. Let gi be the genus of ωi. One of the parts,
say ω2, has no poles and the other has two poles. Therefore ω2 has infinite degree.

If g1 ≥ 2 and ω1 has degree at least three then we can connect ω1 to a simple
boundary point ω3∨ω4 in genus g1. The form ω is therefore connected to ω3∨ (ω4∨̃ω2)
which has a separating node with non-zero residue and degree at least three on each
part. It corresponds to a simple boundary point.

If g1 = 1 then g2 ≥ 2 and we can connect ω2 to a stable holomorphic form on a
nodal curve by an isoperiodic path (see section degeneration in [10]). If the node is
non-separating we are in the second possibility of subcase 2.1. Otherwise, we can write
this nodal curve as ω3 ∨ ω4 both holomorphic with non-zero components. The form ω
is connected to (ω1∨̃ω3) ∨ ω4 which falls in the previous case.

Next we suppose that ω1 has period map of degree two. Up to using Lemma 7.1
repeatedly to ω1 we can further suppose g1 = 1 and therefore g2 ≥ 2. Since the periods
p are not all real, ω2 has non-real periods and has infinite degree. If it has no poles
we fall in a previous case. If it has poles, we can use the hypothesis to connect ω2 to
ω3 ∨ ω4 with both parts of degree at least three and two poles. The form (ω1∨̃ω3)∨ ω4

is a simple boundary point that can be connected to ω by an isoperiodic path.

Sub-case 2.2 From a form with zero residue on a non-separating node to a simple
boundary point.

Given a form without zero components ω with some non-separating nodes of zero
residue, we denote by ω̃ some form obtained by smoothing the non-separating nodes
of ω.

Let (C,m, ω) be a form on a curve with a single non-separating node of zero residue.
We claim first that ω is equivalent to a stable form ω1 ∨ω2 where ω1 is a meromorphic
stable form with two poles on a singular curve of genus one (containing the non-
separating node of zero residue) and ω2 is a meromorphic form on a smooth curve with
two poles. This can be achieved if we find a smooth closed geodesic for ω that separates
the surface C in two parts with the said properties. We claim that up to deforming
ω by an isoperiodic path in its stratum we can find such a geodesic. Indeed, consider
a simple closed curve γ on C with base-point at the node that defines a non-trivial
homology class in H1(C,Z). Let γ0 denote the path with distinct endpoints obtained
in the normalization (C0,m0, ω0) of (C,m, ω). Any continuous deformation γt of γ0 in
the space of paths in C0 with distinct endpoints such that t 7→

∫
γt
ω0 is constant allows

to define an isoperiodic path starting at (C,m, ω). It suffices, for each t, to glue the
endpoints of the path γt to obtain a curve with a single non-separating node of zero
residue (Ct, ωt) and follow the same rule that marked C0 from C to mark the homology
Ct from C0. By construction, geodesics of ω0 are sent to geodesics of ωt for each t.
Therefore, if me manage to find such a deformation γt for which both endpoints lie in
the cylinder around one of the poles of ω0 we will be able to find the closed geodesic as
one of the geodesics of the cylinder leaving both endpoints at the same side of the pole.
Consider the oriented directional foliation in C0 defined by ω0 on a generic direction in
C that is not tangent to the real line and such that the endpoints q1, q2 of γ0 do not
belong to saddle connections (see [33], section 11.4). All geodesics in that direction
that are not saddle connections converge to the same pole under the geodesic flow Gt

of the chosen direction. Let t1 be a time such that Gt1(qi) belongs to the interior of
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the infinite cylinder around that pole for i = 1, 2. Then for each t ∈ [0, t1], the path γt
obtained by joining Gt(q1) with q1 along the geodesic, γ0 and then q2 with Gt(q2) along
the geodesic, satisfies

∫
γt
ω0 =

∫
γ0
ω0 for all t ∈ [0, t1] and γt has distinct endpoints.

If ω2 has a period map of degree at least three we can write ω2 ∼ ω3 ∨ ω4 with each
part of degree at least three and with non-zero residues. The form ω is equivalent to
the form (ω̃1∨̃ω3) ∨ ω4 which determines a simple boundary point.

If ω2 has degree two, then ω1 cannot have degree two (otherwise ω would). Write
ω2 ∼ ω3 ∨ ω4 where now ω3 and ω4 have degree two. The form ω1 ∨ ω3 has periods of
degree at least three over a curve of genus at least two. By inductive hypothesis it is
equivalent to a form ω5∨ω6 where each part has degree at least three. The initial form
is equivalent to ω5 ∨ (ω6∨̃ω4) has parts of degree at least three and non-zero residue.
Hence determines a simple boundary point.

�

8. Sufficient conditions for the connectedness of the set of simple
boundary points of a period fiber

8.1. Equivalence of simple boundary points inducing the same factors.

Proposition 8.1. Let g ≥ 3 and p ∈ H1(Σg,C/Z) of degree at least three. Suppose
Theorem 1.5 is true up to genus g − 1. Then any pair of p-simple boundary points
inducing the same factors V1, . . . , Vk in the decomposition of H1(Σg) (maybe in different
order) lie in the same connected component of the set of p-simple boundary points of
the period fiber.

Proof. The homomorphism pi := p|Vi has degree at least three for each i. Identify Vi
with the homology group H1(Σgi) for the appropriate gi < g. By Theorem 1.5 applied
to pi, the fiber Per−1

gi
(pi) is connected.

Suppose first that the decompositions associated to the two simple boundary points
have the factors in the same order. Then, both lie in the image of the same (restricted)
attaching map

Per−1
g1

(p1)× · · · × Per−1
gk

(pk)→ Ω±Sg,2

that attaches following the same rule of attaching of the given forms: the (+1)-pole of
a part is glued to the (−1)-pole of the next. Any form in the image has some node and
period homomorphism p1⊕p2⊕· · ·⊕pk = p. Since the source is connected both points
belong to the same connected component of Per−1(p) and are therefore equivalent.

Next we claim that changing the order of the parts of a given form ω1 ∨ · · · ∨ ωk
of genus at least three with parts of degree at least three defines forms that lie in the
same connected component of the boundary of Per−1(p). Up to applying Proposition
7.2 to each of the parts and using (20) we can suppose that all the parts of the form
have genus one. It suffices to check that when g ≥ 3 we can change the order of two
consecutive factors of genus one without leaving the boundary to deduce the result.

Now, for any pair of forms ω1, ω2 of genus one with two poles of residues ±1, we
know by Corollary 4.6 that there is an isoperiodic path {ηt}t∈[1,2] joining ω1 ∨ ω2 with
ω2 ∨ ω1. This path will, in general, leave the boundary. However for any other pair
of forms ω, η (not both zero) with two poles of residues ±1 the path η ∨ ηt ∨ ω joins
η ∨ ω1 ∨ ω2 ∨ ω with η ∨ ω2 ∨ ω1 ∨ ω along p-simple boundary points.

�
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8.2. Proof of Proposition 2.3. It remains to find equivalences between simple bound-
ary points whose associated decompositions have distinct factors.

The realization of decompositions given by Lemma 6.23 allows to algebraize the prob-
lem completely. Recall the definition of admissible decompositions given in Definition
2.2.

By smoothing all except for one node, we reduce the problem to finding equivalences
between simple boundary points with one node. For each such form we can associate
a vertex of the graph of [p]-admissible submodules, namely the vertex corresponding
to the pair {V, V ⊥} where V ⊕ V ⊥ = H1(Σg) is the decomposition induced by the
simple boundary point. By Proposition 8.1, two simple boundary points having the
same associated vertex are equivalent. It suffices to find equivalences between distinct
vertices.

If two simple boundary points are associated to distinct vertices {V1, V2} and {V ′1 , V ′2}
that are joined by an edge in the graph of [p]-admissible decompositions, it means that
there exists a decomposition W1 ⊕ · · · ⊕Wk with at least three factors one of which is
in the first pair and another in the other pair. Using Lemma 6.23, let ω1 ∨ . . . ∨ ωk be
a simple boundary point of period homomorphism p whose associated decomposition
is W1 ⊕ · · · ⊕Wk. By smoothing the nodes appropriately we can find an equivalence
between this form and a form having the factors {Wj,W

⊥
j } for any j = 1, . . . , k and

period homomorphism p. Hence the two simple boundary points are equivalent.

The connectedness of the graph of [p]-admissible decompositions implies that all
simple boudary points are equivalent.

9. Connectedness of graphs of p-admissible decompositions

In this section we prove Theorem 2.4.

We consider V a symplectic unimodular module over Z, of rank at least four, and
p : V → A a non zero morphism to an abelian group. (Ultimately, this morphism
will be the reduction modulo Z (resp. modulo 1

2
Z) of the period of a meromorphic

differential with two poles around which the periods are 1 and −1, so A = C/Z or C
1
2
Z)

Recall the definition of the graph of p-admissible decompositions and elements in
Definitions 2.2 and 3.1. To lighten the notation we introduce an equivalence relation
among p-admissible submodules.

Definition 9.1. Two p-admissible submodules V1 and V2 of V are said to be equivalent
and denoted V1 ∼ V2 if the vertices corresponding to V1 ⊕ V ⊥1 and V2 ⊕ V ⊥2 lie in the
same connected component of the graph of p-admissible submodules.

We start with a corollary of Lemma 3.2:

Corollary 9.2. Any p-admissible symplectic decomposition is equivalent to one with a
rank two factor.

The rest of the section will be devoted to find equivalences between rank two p-
admissible decompositions.

9.1. Forcing intersection.

Lemma 9.3. Assume rank(V ) ≥ 6. Then, given any pair W,W ′ of p-admissible
submodules of rank two, there exists another pair W1,W

′
1 which is such that
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• W1 and W ′
1 are p-admissible submodules of rank two,

• W1 ∩W ′
1 6= {0},

• W1 ∼ W and W ′
1 ∼ W ′.

Proof. The spaces W⊥ and (W ′)⊥ intersect on a linear subspace of dimension at least
two. In particular, the set

(
W⊥ ∩ (W ′)⊥

)
\
(
NA(p|W⊥) ∪NA(p|(W ′)⊥)

)
is non empty.

By Lemma 3.2, an element in this set belongs to the spaces W1 and W ′
1 of p-admissible

symplectic decompositions W⊥ = W1 ⊕W2 and (W ′)⊥ = W ′
1 ⊕W ′

2. The three items
are satisfied for the pair W1,W

′
1 and we are done. �

9.2. Turning around a line.

Lemma 9.4. Assume that dim(V ) ≥ 6. Let W1,W
′
1 be a pair of p-admissible submod-

ules of rank two such that W1 ∩W ′
1 6= {0}. Then W ′

1 is equivalent to W1.

Proof. The statement is obvious if W1 = W ′
1. Next suppose a1 ∈ V is a primitive

element such that W1 ∩W ′
1 = Za1, b1 ∈ W1 such that W1 = Za1 ⊕ Zb1. Let a2 ∈ W⊥

1

be a primitive element such that W ′
1 = Za1 ⊕ Z(b1 + α2a2) for some α2 ∈ Z \ 0.

Complete a,b1, a2 into a symplectic basis a1, b1, . . . , ag, bg. We have (W1 ⊕W ′
1)⊥ =

Za2⊕
∑

i≥3(Zai⊕Zbi). Notice that we have the following indeterminacy on the choice
of basis: given elements mi, ni ∈ Z for i ≥ 3, define

a′1 = a1, b
′
1 = b1, a

′
2 = a2, b

′
2 = b2 +

∑
i≥3

niai −mibi

and
a′i = ai +mia2, b

′
i = bi + nia2 for i ≥ 3.

We then have the symplectic decompositions V = W1 ⊕W2 ⊕W3 and V = W ′
1 ⊕

W ′
2 ⊕W3 with W2 = Za2 ⊕ Zb′2, W ′

2 = Za2 ⊕ Z(α2a1 + b′2), and W3 =
∑

i≥3 Za′i ⊕ Zb′i.
Case 0: If p(a2) 6= 0 it suffices to choose m3 such that p(a′3) 6= 0. Then none of the

restrictions of p to any of the modules W1,W2,W3 (resp. W ′
1,W

′
2,W3) is trivial, hence

W1 ∼ W3 ∼ W ′
1.

In the sequel we suppose p(a2) = 0. For any choice of the m′js and nj’s and any
i ≥ 3 we have p(a′i) = p(ai), p(b

′
i) = p(bi).

Case 1: If p(W3) 6= 0.
Sub-case 1.1: If p(a1) = 0 . Then, since W1 is p-admissible, p(b1) 6= 0 and we can choose
mi, ni ∈ Z appropriately to guarantee that p(b′2) 6= 0. Since p(α2a1 + b′2) = p(b′2) 6= 0
all submodules W1,W

′
1,W2,W

′
2,W3 are p-admissible, so W1 ∼ W3 ∼ W ′

1.
Sub-case 1.2: If p(a1) 6= 0 .

Sub-subcase 1.2.1 If p(W3) contains at least three elements. We can still choose the
mi, ni ∈ Z appropriately to guarantee that p(α2a1 + b′2) 6= 0, p(b′2) 6= 0 to conclude
as in the last case.

Sub-subcase 1.2.2: If p(W3) has at most two elements, i.e. it is either trivial or Z/2Z.
The intersection of Za2 ⊕W3 = (W1 + W ′

1)⊥ with the kernel of p contains a primitive
rank two subgroup K. We then follow a route similar to that of Lemma 9.3. There
exists an element in K which does not belong to the union of the spaces NA(p|(W1)⊥)
and NA(p|(W ′1)⊥) which have each rank bounded by one by Lemma 3.2. Such an
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element belongs to a symplectic p|(W1)⊥-admissible rank two submodule W2 ⊂ (W1)⊥,

and to a symplectic p|(W ′1)⊥-admissible rank two submodule W ′
2 ⊂ (W ′

1)⊥. We then have
W2 ∼ W1 and W ′

2 ∼ W ′
1. By construction, the intersection W2∩W ′

2 contains a non zero
element in the kernel of p and v = a1 belongs to (W2 + W ′

2)⊥, and satisfies p(v) 6= 0.
By Case 0 or Sub-case 1.1 , we conclude that W ′

2 ∼ W2 and therefore W ′
1 ∼ W1.

Case 2: If p(W3) = 0. We then have p(a2) = p(ai) = p(bi) = 0 for i = 3, . . . , g
Sub-case 2.1: If p(a1) 6= 0 we apply the same arguments of Sub-subcase 1.2.2
Sub-case 2.2: If p(a1) = 0. Since W1 is p-admissible, p(b1 6= 0. In particular, p(a2) =
p(ai) = p(bi) = 0 for i ≥ 3 and p(b1) 6= 0. Define W ′′

1 = Za1⊕Z(b1 +α2a2 +
∑

i≥3miai+
nibi), for some choices of mi, ni ’s. The orthogonal of W ′′

1 contains the elements

a2, α2a1 + b2 and for i ≥ 3 by α2ai + nib2, α2bi −mib2

So since p(b1 +α2a2 +
∑

i≥3miai + nibi) = p(b1) 6= 0 and p(α2a1 + b2) = p(b2) 6= 0, W ′′
1

is p-admissible.

The module (W1+W ′′
1 )⊥ contains α2a3+n3b2 for instance, so if n3 = 1, the restriction

of p to (W1 + W ′′
1 )⊥ does not vanish identically. In particular, by Cases 0 or 1 we

conclude that W ′′
1 ∼ W1. On the other hand, (W ′

1)⊥ is the module generated by
a2, α2a1 + b2 and the ai, bi ’s for i ≥ 3, so (W ′

1 + W ′′
1 )⊥ contains α2a1 + b2 which does

not belong to the kernel of p. Again by Cases 0 or 1 shows that W ′′
1 ∼ W ′

1.

This finishes the proof. �

Proof of Theorem 2.4. By Lemma 9.3, any pair of p-admissible symplectic modules is
equivalent to a pair of p-admissible modules that intersect on a non trivial subspace. We
then deduce from Lemma 9.4 that such a pair are equivalent, showing that the original
two modules were equivalent as well. Hence the graph of p-admissible symplectic
submodules of rank two is connected. The fact that the whole graph is connected
comes from Corollary 9.2. �

10. Proofs of main Theorems

Proof of Theorem 1.5: By induction on the genus. The cases g = 1 and g = 2 are
treated in Corollaries 4.2 and 4.6. Suppose g ≥ 3 and Theorem 1.5 is true up to genus
g − 1. Let p ∈ H1(Σg,C/Z) with deg(p) ≥ 3.

By Proposition 7.2, any point of Per−1
g (p) is equivalent to a simple boundary point

with precisely one node. The homomorphism [p] : H1(Σg) → Z
1
2
Z is non-trivial by

hypothesis. By Theorem 2.4 the graph of [p]-admissible decompositions is connected.
Therefore, we can apply Proposition 2.3 to deduce that all simple boundary points are
equivalent. In other words, the bordification of Per−1(p) is connected. By Corollary
6.14 we deduce that Per−1(p) is connected. �

Proof of Theorem 1.10: Apply the Transfer Principle ([11]) to transfer the properties
of the action of the mapping class group on the image of Per to properties of the
isoperiodic foliation. The analysis of the action of the mapping class group of Σg on
H1(Σg,C/Z) can be found in [19, Proposition 4.2] where Ratner’s Theory is used to
provide the described classification of the closures of the orbits. Moore’s Theorem
allows to deduce the ergodicity property. The closedness of the leaves with discrete Λ
is easy. If Λ is infinite then the leaf cannot be algebraic, with respect to the Deligne-
Mumford algebraic structure on moduli space. More precisely, let ΩMg,2 be the Hodge
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bundle over the Deligne-Mumford compactification. In the boundary component ∂ ⊂
ΩMg,2 consisting of forms having a node separating the curve in a curve of genus g
and a rational curve containing the two marked points, let us consider the Zariski
open subset ∂∗ defined by the curve of genus g being smooth. Given any lift P of p
satisfying Proposition 3.5, let us introduce the subset HP ⊂ ∂∗ consisting of nodal forms
constructed by attaching the form (P1, dz

2iπz
) with an abelian differential having a period

equal to P after conveniently marking it. Since the image of P is a lattice, the set HP

is a copy of the a Hurwitz space of ramified coverings of degree deg(P ) := <P ·=P
vol(C/Im(P ))

over the elliptic curve C/Im(P ). We claim that

L ∩ ∂∗ =
⋃

P lift of p

HP ,

which explains the reason why L is not algebraic since a union of a countable number
of disjoint algebraic suvarieties is not algebraic. The inclusion ⊂ is merely the fact
already mentioned that the limit of a sequence of elements of L is a nodal meromorphic
differential whose period is equal to p in a certain marking. The inclusion ⊃ comes
from the fact that one can deform isoperiodically a form in any element of ∂∗ in the
smooth part, together with the fact that, by Theorem 1.5, the leaf L is exactly the set
of element in ΩMg,2 having period p in a certain marking. �

11. Appendix: The isoperiodic foliation on moduli spaces of stable
meromorphic forms with simple poles

In this appendix we review, adapt and extend Section 3 of [11] to the case of moduli
spaces of stable meromorphic forms with simple poles.

11.1. Augmented Teichmüller space and its stratification. Recall the definition
of the Augmented Teichmüller space from subsection 6.1

Definition 11.1. The augmented Teichmüller space Tg,n is the set of all homotopically
marked stable genus g curves with n marked points up to equivalence.

The Teichmüller space Tg,n is the subset of Tg,n formed by curves without nodes. Its

complement, denoted by ∂Tg,n = Tg,n \ Tg,n is called the boundary. Given a subset K

of Tg,n its boundary is defined as ∂K := C ∩ ∂Tg,n.

Definition 11.2. A curve system c = tci in Σg,n = (Σg, p1, . . . , pn) is a disjoint
collection of simple closed curves ci on Σg \ {p1, . . . , pn} none of which is isotopic to
any other, to a point or to a cylinder in Σg \ {p1, . . . , pn}. To a curve system c we
can associate the subset Bc ⊂ ∂Tg of the boundary consisting of homotopically marked
stable curves topologically equivalent to a collapse Σg → Σg/c obtained by identifying
each curve in c to a distinct point (careful, we do not mean all curves in c to a point)

Given a curve system c, for each component Σi of Σg \ c we define (Σgi , Pi) to be the
closed surface of genus gi with a set of marked points Pi obtained by collapsing each
boundary component of Σi to a (marked) point and keeping the marked points of Σg

lying on Σi in Qi. By using attaching maps there is a natural identification

(21) Bc
∼= ΠiTgi,ni .

The boundary ∂Tg,n is the disjoint union of all boundary strata tcBc where c varies
in the set of nonempty curve systems. Tg,n corresponds to the empty curve system.
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Each stratum Bc has a topology and complex structure given by the bijection (21).
In particular it is connected. All the curves that appear in a stratum have the same
number of separating and non-separating nodes. When all the nodes are non-separating
we say that the stratum is of compact type.

Given a simple closed curve c′ ⊂ Σg,n we denote by

Dc′ =
⊔
c′⊂c

Bc

the union of all strata that collapse c′ to a node.

11.2. Topology on Tg,n. For a detailed description of the topology we refer to [3][pp.
485-493] and references therein.

The restriction of the given topology to Tg,n produces the so-called conformal topol-
ogy. Abikoff showed (in [1][Theorem 1]) that this topology is equivalent to the Te-
ichmüller topology.

The restriction of the topology to the boundary set Bc corresponding to a curve
system c is equivalent to the product topology obtained from (21).

The topology is not locally compact around any boundary point. Indeed, if U is a
neighbourhood of a point in Bc, the action of the Dehn twist ∆a : Σg → Σg around a
simple closed curve a ∈ c fixes all the points in U for which the marking collapses a
to a point, but has infinite orbits at any other point in U , see Remark 6.4. Therefore,
there is no manifold structure in Tg,n compatible with the given topology.

Definition 11.3. Given a curve system c the distinguished neighbourhood of the
stratum Bc is the set

Uc =
⊔
c′⊂c

Bc′ .

We think of Uc as the union of Tg,n with some of the boundary strata. These open
sets will be useful to define and work with the complex structure on quotients of the
Augmented Teichmüller space.

11.3. Complex structure and Deligne-Mumford-Knudsen compactification.
The mapping class group of Σg,n, i.e. the group Mod(Σg,n) of isotopy classes of orien-

tation preserving diffeomorphisms that fix each marked point, acts on Tg,n by home-
omorphisms that preserve the stratification and are holomorphic in restriction to any
stratum. The action is defined by pre-composition on the marking. The quotient

Mg,n = Tg,n/Mod(Σg,n)

is a compact topological space. It can be endowed with a complex orbifold structure.

Consider a curve system c and define Γc the abelian group generated by Dehn twists
around the curves in c. Following [6], the quotient Uc/Γc is equivalent to a bounded
domain in C3g−3. Under this equivalence, each stratum Bc′ associated to a simple
closed curve c′ ⊂ c has image contained in a regular divisor Dc′ . These divisors intersect
normally and their intersections define the other different strata: the stratum associated
to c′ ⊂ c is the intersection of all the divisors associated to the simple curves in c′. The
complement of this divisor is the stratum B∅ = Tg,n formed by smooth marked curves.

The union of all natural maps Uc/Γc → Mg,n induce a system of (orbifold) charts

with holomorphic transition maps on Mg,n.
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The boundary ∂Mg,n = Mg,n \ Mg,n is a normal crossing divisor each of whose

components correspond to the image of one of the Dc’s of Tg,n in the quotient Mg,n.

11.4. The subgroup of Mod(Σg,n) acting trivially on punctured homology.
Let g, n ∈ N. Choose an oriented closed genus g reference surface Σg with a set of
n ordered distinct marked points P = (p1, . . . , pn). Denote by Σg,n∗ the (possibly
nonclosed) surface Σg \ P . We will use the following notation for certain relative
homology groups

H1(Σg,n∗) = H1(Σg \ P,Z)

that we call punctured homology groups. The mapping class group Mod(Σg,n) induces
an action on H1(Σg,n∗) that fixes every element in the peripheral module, i.e, the
module Πn generated by cycles turning positively once around each puncture pi for
i = 1, . . . , n.

The subgroup of Mod(Σg,n) that acts trivially on H1(Σg,n∗) will be denoted by
I(Σg,n∗) and called the (punctured) Torelli group of Σg,n∗ . For future reference we
explicit the associated exact sequence of groups

(22) 0→ I(Σg,n∗)→ Mod(Σg,n)→ Aut(H1(Σg,n∗), ·)

where the product preserved in homology is the intersection product. The action of
the Dehn twist ∆γ around a simple closed curve γ in Σg,n∗ in H1(Σg,n∗) is the module
morphism defined by

(23) a 7→ a+ (a · [γ])[γ]

The quotient will be denoted

Sg,n∗ := Tg,n/I(Σg,n∗)

is what we call the augmented Torelli space of Σg,n∗ . A point in this space will be
denoted by a triple (C,Q, [f ]) where [f ] denotes the equivalence class of the homotopical
collapse map f under the action of the corresponding Torelli group. To each such point
there corresponds an exact sequence

(24) 0→ ker[f ]∗ → H1(Σg,n∗)
[f ]∗−−→ H1(C \Q,Z)→ 0

where ker[f ]∗ is the isotropic subgroup generated by the homology classes induced by
the curves in the curve system c collapsed by f to the nodes of C.

The action of the Torelli group on augmented Teichmüller space preserves the stratifi-
cation. The class of each stratum Bc in the quotient is characterized by the equivalence
class c of curve system c under the action of the Torelli group and denoted Bc.

The open sets Uc defined at the level of augmented Teichmüller space induce open
sets that we denote Uc that are characterized by the Torelli class c of curve system c.
The action in Uc of the group Γc generated by Dehn-twists around the curves in the
curve system coincides with that of the group generated only by non-separating curves
of the curve system. Indeed, the Dehn twists around separating curves of c define
elements in I(Σg,n∗) (even when the separating curve induces a non-trivial element in
H1(Σg,n∗)). The quotient Uc/Γc is a complex manifold. In particular Uc is a complex
manifold whenever all curves in c are separating.
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11.5. The stratification of Sg,n∗ and its dual boundary complex.

Lemma 11.4. The stratification induced on Sg,n∗ by that of Tg,n is a local abelian

ramified covering of a normal crossing divisor and its dual boundary complex C(Sg,n∗)
is isomorphic to the quotient Cg,n/I(Σg,n∗) of the curve complex Cg,n of the surface Σg

deprived of the n marked points.

Proof. The stratification of the open set Uc is invariant under the action of the subgroup
Γc ∩ I(Σg,n∗) ⊂ Γc and a local abelian ramified cover of a normal crossing divisor.
Therefore, the quotient on Uc/(Γc ∩ I(Σg,n∗)) has the same local property. On the
other hand, as a consequence of the fact that any automorphism of a stable curve
that acts trivially on homology is equivalent to some Dehn twist around the pinched
curves, Uc/(Γc ∩ I(Σg,n∗)) → Uc/I(Σg,n∗) ⊂ Sg,n∗ is a local homeomorphism at every

point of the stratum Bc. A connected component of stratum of Sg,n∗ corresponds to

one orbit of connected components of a stratum of Tg,n under the action of I(Σg,n∗).

The isomorphism of complexes then follows from the isomorphism C(Tg,n) ' Cg,n.

�

11.6. Moduli of stable forms with simple poles and its substratification. Let
us denote by ΩMg,n → Mg,n the bundle whose fiber over a point (C,Q) is the vector
space of meromorphic stable forms on the marked curve (C,Q) having at worst simple
poles on the n distinct ordered points of Q. In other words the space of meromorphic
sections of the twisted line bundle KC(−(q1 + . . . + qn)). A point in ΩMg,n will be
denoted by (C,Q, ω). When (ω)∞ = q1 + . . .+ qn1 we will omit Q and write (C, ω). In
the next Lemma we analyze the domain and analytic properties of functions defined
by integrating stable forms along certain paths:

Lemma 11.5. Let c be a curve system in Σg,n∗ and Uc/Γc → U ⊂Mg,n a distinguished
(orbifold) chart. Given γ a path in Σg \ {c, P} (avoinding possible nodes and poles),
the map ΩUc → C defined by

(C,Q, {f}, ω) 7→
∫
f∗(γ)

ω ∈ C

where f is a representative in its isotopy class that collapses some curves of c, is well
defined and invariant by the action of Γc. It induces a holomorphic map Ω(Uc/Γc)→ C.

Proof. The map is well defined on Uc/Γc because γ does not intersect any of the simple
closed curves in the curve system c that is collapsed to the nodes of the curve. It is
holomorphic around any point with finite value outside the boundary and bounded in
the neighbourhood of every boundary point with finite value. On the other hand, we
know that the boundary forms a divisor. Hence by Riemann’s extension Theorem we
deduce that there is a unique holomorphic extension to the boundary. �

The boundary stratification of the bundle ΩMg,n by the number of nodes is substrat-
ified by the orders of the form at zeros and nodes. The order of ω at a regular point
q ∈ C is defined to be the ordq(f) where ω(z) = f(z)dz in a holomorphic coordinate
z : (C1, q)→ C around q. The order of ω at a node q ∈ C is

ordq(ω) = 2 + ordq(ω|C1) + ordq(ω|C2)

where C1 and C2 are the branches of C at q. The order of the form at any point is
clearly invariant by biholomorphism.



ISOPERIODIC MEROMORPHIC FORMS: TWO SIMPLE POLES 39

Definition 11.6. Two stable forms belong to the same substratum if there is a home-
omorphism between the underlying curves with marked points preserving the order of
the forms at each point (nodes to nodes, zero components to zero components, isolated
zeros (resp. poles) are preserved with the same order.

Some strata admit a distinguished atlas produced by integration and a use of the
Gauss-Manin connection to identify homology groups:

Lemma 11.7. Let (C,Q, ω) ∈ ΩMg,n be a stable meromorphic form ω on a marked
stable curve (C,Q) having simple poles on P (ω) = Q, discrete zero set Z(ω) and zero
residues at the nodes N(C). Then, integration on cycles produces a well defined map
from a neighbourhood R in its stratum of 1-forms

(25) R→ Hom(H1(C \ P (ω), N(C) ∪ Z(ω);Z);C)

that is a homeomorphism onto its image.

Proof. The result is well known if C is smooth. ([20, 21]) There is a slight generalization
in this case that will be useful for our purposes: the case where C \Q has also a set A
of m marked points (that can coincide or not with the zeros of ω). Integration allows
to define a map on the neighbourhood R of (C,Q ∪ A, ω) in its stratum of ΩMn+m

namely

(26) R→ Hom(H1(C \Q,Z(ω) ∪ A,Z);C).

It is also a homeomorphism onto its image.

Let us assume C has some node. Consider the normalization Ĉ marked by the pairs
Nj = {n+

j , n
−
j } of points that produce the j’th node of C. Denote N = ∪Nj and

C1, . . . , Ck the (smooth) components of the normalization Ĉ, ω1, . . . , ωk the restriction
of ω to Cj, Qj = Cj∩Q and Aj = Cj∩N . Let R denote the neighbourhood of (C,Q, ω)
in its stratum and Rj denote the neighbourhood of the point (Cj, Qj ∪ Aj, ωj) in its
stratum. Up to reducing R we can construct a homeomorphism

R1 × · · · ×Rk → R

by applying the rule of attaching map given by that of C. Since each (Cj, Qj ∪Aj, ωj)
is a non-zero form on a smooth compact curve with marked points we can apply the
Lemma in the case of a smooth curve with marked points to deduce that, up to reducing
the size of the Rj’s, we have a homeomorphism

R1 × . . . ,×Rk '
k⊕
j=1

Hom(H1(Cj \ P (ωj), Z(ωj) ∪ Aj,Z);C).

The latter is isomorphic to

Hom
(( k⊕

j=1

H1(Cj \ P (ωj), Z(ωj) ∪ Aj,Z)
)
;C
)
.

To finish the proof, we claim that there exists a natural isomorphism

(27)
k⊕
j=1

H1(Cj \ P (ωj), Z(ωj) ∪ Aj,Z) ' H1(C \ P (ω), N(C) ∪ Z(ω),Z).

We sketch the last equivalence in the case of one node, and leave the recurrence argu-
ment for the reader. Suppose that C has one node N1 and its normalization one or
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two components Cj’s. Let A1 the marked points in the normalization corresponding to
N1. The relative homology of the pair

(
(tCj \ P (ωj))/A1, {A1} ∪ Z(ω)

)
is isomorphic

to the sum of relative homologies of the left hand side of (27). On the other hand the
pair is homeomorphic to the (C \ P (ω), N(C) ∪ Z(ω)). �

11.7. Homology coverings of bundles of stable forms and period map. The
pull back of the bundle ΩMg,n by the (branched) cover Sg,n∗ →Mg,n will be denoted

ΩSg,n∗ → Sg,n∗

A point in ΩSg,n∗ will be denoted by (C,Q, [f ], ω). We want to describe the set of
forms in this space for which all integrals on classes of H1(Σg,n∗) are well defined
complex numbers that coincide with those of some form on a smooth curve. A problem
that arises is that stable forms can have non-zero residues at nodes, and this does
not allow to integrate any path passing through the node. The Mayer-Vietoris exact
sequence can be used to overcome this difficulty in the case of separating nodes. Indeed,
consider a family of separating curves c1, . . . , ck of some curve system c and write
Σg \{c1∪· · ·∪ck} = Σ(1)t . . .tΣ(ν), where each Σ(i) is connected and non-empty. Each
Σ(i) can be identified with some Σgi,n∗i

, a genus gi compact surface with ni punctures
(we think of a boundary component as a point). For each ci we consider two peripheral
curves γ−i , γ

+
i on each of its sides. Then

(28) H1(Σg,n∗) ∼=
H1(Σg1,n∗1

)⊕ · · · ⊕H1(Σgν ,n∗ν )

< [γ+
i ] + [γ−i+1] : i = 1, . . . , k − 1 >

where the class [γ−i ] (resp. [γ+
i ]) is in the homology group of the (punctured) component

to which it belongs.

We deduce that every homology class in H1(Σg,n∗) can be written as a sum of classes
disjoint from the separating nodes. However this is not true for non-separating nodes.
To be able to integrate a stable form on any class in H1(Σg,n∗) we need to suppose that
the residues are zero at non-separating nodes. The union of strata with this property
will be useful for our purposes:

Ω0Sg,n∗ = {(C,Q, [f ], ω) ∈ ΩSg,n∗ : Resq(ω) = 0 ∀ non-separating node q of C}.
Unfortunately this set is neither open (its interior is formed by stable forms on curves
of compact type) nor closed (it is dense) in ΩSg,n∗ . However it is the set where forms
can be integrated in all classes of H1(Σg,n∗)

Definition 11.8. Given (C,Q, [f ], ω) ∈ Ω0Sg,n∗ , we define an element p = Per(C,Q, [f ], ω) ∈
Hom(H1(Σg,n∗);C) called the period homomorphism of (C,Q, [f ], ω) as follows:

• Consider the decomposition as in (28) using all separating nodes of C.
• Define the homomorphism

ν⊕
i=1

H1(Σgi,n∗i
) 3 a 7→

∫
[f ]∗(a)

ω ∈ C.

The opposite residue condition of stable forms at nodes implies that the homomorphism
defines a homomorphism p on the quotient on the right hand side of (28) that can be
thought as an element in Hom(H1(Σg,n∗);C).

Definition 11.9. The period map on Ω0Sg,n∗ is the map

Perg,n∗ : Ω0Sg,n∗ → Hom(H1(Σg,n∗);C)
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sending each point to its period homomorphism.

By the decomposition in (28), and Lemma 11.5 the period map is holomorphic in
the neighbourhood of a marked stable form on a curve of compact type. Moreover if the
residues at the nodes are all zero and the zeros of the form are isolated, the restriction of
the period map to the stratum, written in the coordinates of Lemma 11.7, is just a linear
projection. This implies that the period map is submersive in the neighbourhood of
such a point (even in restriction to the stratum or to any smooth manifold containing
it). In particular the local fiber at such a point is a regular holomorphic manifold
transverse to any boundary component passing thorough it.

This description of the local fibers of the period map is also true in more generality
(possibly up to a branched cover) for forms with isolated zeros.

Theorem 11.10. The local fiber of the period map in Ω0Sg,n∗ at a point (C,Q, [f ], ω) ∈
Ω0Sg,n∗ with isolated zeros, projects to the orbifold chart of ΩMg,n as a complex manifold
transverse to all boundary divisors through the point. Therefore, it is an abelian ramified
cover of a normal crossing divisor in (C2g+n−3, 0) having precisely one component of
codimension one in each component of codimension one of the ambient space through
the point.

Proof. The local period fiber on Ω0Sg,n∗ at (C,Q, [f ], ω) ∈ Ω0Sg,n∗ can be lifted to a

local period fiber L ⊂ Ω0Tg,n of the map

(29) Ω0Tg,n → H1(Σg, q1, . . . , qn,C)

that associates to any stable form with zero residues at non-separating nodes its period
homomorphism. If the lift of (C,Q, [f ], ω) belongs to the stratum ΩBc, the covering
group is the subgroup Γc ∩ Ig ⊂ Γc. Hence, to prove the result we just need to prove
that L is locally an abelian ramified cover over a normal crossing divisor.

Let Uc denote the distinguished neighbourhood of Bc. It suffices in fact to show
that at the level of the quotient Ω0(Uc/Γc) the period fiber is a holomorphic manifold
transverse to every boundary component passing through the point. Thanks to the
normal crossing condition of the ambient space, this is guaranteed if the period map is
submersive in restriction to the (regular) stratum of the normal crossing divisor where
the point belongs to. In fact we will not use the boundary stratum but a smaller
regular submanifold, consisting of the substratum through the point (C,Q, {f}, ω) ∈
L ⊂ Ω0Tg,n.

Next we prove the analyticity of L/Γc in two steps corresponding to the dual exact
sequence of (24), namely

0→ Hom(H1(C \Q),C)→ Hom(H1(Σg,n∗),C)→ Hom(ker[f ]∗,C)→ 0.

Remark that by definition the intersection of any pair of elements of ker[f ]∗ is zero.

1) Integration on the(peripheral) curves of c and a use of Riemann-Roch’s Theorem
as in subsection 3.16 in [11] we show that there is a well defined map

NRes : Ω(Uc/Γc)→ Hom(ker[f ]∗;C)

that is holomorphic thanks to Lemma 11.5. It extends the residue map at the
nodes of C for forms in Ω(C). The same application of Riemann-Roch’s The-
orem allows to show that the (linear) restriction of NRes to Ω(C) is surjective.
Denote by p = Per(C,Q, [f ], ω) the period homomorphism. By construction
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NRes(C,Q, [f ], ω) = p| ker[f ]∗ . The base point belongs to the smooth complex

manifold NRes−1(p| ker[f ]∗) ⊂ Ω0(Uc/Γc). Denote ÑRes−1(p| ker[f ]∗) the lift of

NRes−1(p| ker[f ]∗) to ΩUc. It is contained in Ω0Uc, and by construction it is a
union of fibers of the period map.

2) The restriction of the period map to ÑRes−1(p| ker[f ]∗) is well defined. It is Γc-
invariant, because for every curve ci of the curve system c we have that either its
intersection with any other class is zero (if ci is separating) or the period along

ci of a form in ÑRes
−1

(p| ker[f ]∗) is zero. Therefore it induces a holomorphic map

(30) h : NRes−1(p| ker[f ]∗)→ Homp| ker[f ]∗
(H1(Σg,n∗),C)

with image in the set Homp| ker[f ]∗
(H1(Σg,n∗),C) of homomorphisms that extend

p| ker[f ]∗ to a homomorphism on H1(Σg,n∗). The fibers of h are analytic sets.
Locally at the base point the fiber is L/Γc.

Next we prove that under the hypothesis of isolated zeros of ω the set L/Γc is smooth
and transverse to each boundary component. This is a consequence of the stronger

Lemma 11.11. The map h defined by (30) restricted to the intersection with the
substratum at a point with isolated zeros is submersive .

Hence the local fiber H of the map (30) at the base point is a smooth complex
manifold transverse to every smooth manifold containing the substratum of the base
point. In particular H is transverse to each irreducible boundary component passing
through the base point. We deduce that ∂H is a normal crossing divisor in H, and
moreover ∂H, H and H \ ∂H are connected.

Proof of Lemma 11.11: Let R denote a neighbourhood in its stratum of the form
(C,Q, ω) ∈ ΩMg,n that has zero residues at the non-separating nodes. Recall that,
if a composition of maps is submersive then the last map of the composition is sub-
mersive also. We want to show that

h|R : R ∩ NRes−1(p| ker[f ]∗)→ Homp| ker[f ]∗
(H1(Σg,n∗);C)

is submersive whenever ω has isolated zeros.

If all nodes of C have zero residue for ω we can apply Lemma 11.7 and find coordi-
nates in R where the map h|R is written as the linear projection

Hom(H1(C \Q,N(C) ∪ Z(ω);Z);C)→ Hom(H1(C \Q, ;Z);C)

induced by inclusion H1(C \ Q,Z) → H1(C \ Q,N(C) ∪ Z(ω),Z). Therefore it is
submersive.

Suppose there is some node with non-zero residue. Let PN(C) = {N1, . . . , Nk−1}
denote the nodes of C with non-zero residue for ω (i.e. polar nodes). All of them are
separating by hypothesis. Write C \ PN(C) as a disjoint union tνj=1(Cj \ PN(Cj))
where Cj is a stable curve where the restricted form ωj = ω|Cj has only zero residues at
the nodes and simple poles on the set Qj = (Q∪PN(C))∩Cj. Let Rj be the stratum

of the form (Cj, Qj, ωj) in ΩMgj ,nj , where gj is the genus of Cj and nj the cardinality
of Qj. Consider the subset R′j ⊂ Rj of forms having the same residues at the poles
PN(Cj) as ωj has.
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The attaching rule to obtain C from the Cj’s can be used to define a holomorphic
map

ϕ : R′1 × · · · ×R′k → R ∩ NRes−1(p| ker[f ]∗).

In its image we find only forms in the stratum having the same residues at the nodes
corresponding to PN(C) as ω has. We claim that

h ◦ ϕ : R′1 × · · · ×R′k → Homp| ker[f ]∗
(H1(Σg,n∗);C)

is submersive. Recall from Lemma 11.7 that in each Rj we have holomorphic coordi-
nates with values in Hom(H1(Cj\P (ωj), N(Cj)∪Z(ωj),Z);C). In the given coordinates,
the set R′j corresponds to a codimension one or two linar subspace, corresponding to
fixing the residues at the poles PN(Cj). As before, the projection

(31) πj : Hom(H1(Cj \ P (ωj), N(Cj) ∪ Z(ωj),Z);C)→ Hom(H1(Cj \ P (ωj),Z);C)

is linear, surjective. The restriction of πj to R′j is submersive onto the subspace

HomPN(ωj)(H1(Cj \ P (ωj),Z);C)

of homomorphisms whose value around the peripherals of PN(Cj) is the same as that
of ωj. The projections allow to define a map on the cartesian product

(32) R′1 × · · · ×R′k →
k⊕
j=1

HomPN(ωj)(H1(Cj \ P (ωj),Z);C)

that is submersive. By using a similar argument as in equation (28), but only with the
separating nodes of non-zero residue, we deduce that the target space of the map (32)
is homomorphic to Homp| ker[f ]∗

(H1(Σg,n∗);C). In this expression, the map h ◦ ϕ is the

map (32), so we have proven that h ◦ ϕ is submersive. Therefore, so are h|R and h.

�

�

Corollary 11.12. Let F ⊂ ΩSg,n∗ be a fiber of Perg,n∗ and F its closure in Ω∗0Sg,n∗.
Then F is connected if and only if F is connected.

Proof. All the points in F have the same value for Perg,n∗ . Suppose F is connected.
Thanks to Theorem 11.10, the connected component of F at any boundary point
contains points of F . Hence F is connected. For the converse, suppose F is connected.
It is also path connected. Let t 7→ γ(t) be a path in F joining a pair of points of F . By
Theorem11.10 there are points of F in any neighbourhood of any of the points γ(t).
All of them lie in the same component of F . Hence the starting and endpoint lie in
the same connected component of F . This shows that F is path connected. �
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