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Abstract

Viscoelastic flows of polymer solutions in complex geometries can generate a strong localiza-
tion of stress within small regions of the fluid and the formation of birefringent strands. In
porous media, these localized structures of stress drive preferential flow paths and increase
global dissipation. Modeling the impact of such effects at Darcy or larger scales is a daunt-
ing task – one of the reasons being the lack of approaches using homogenization theories to
help figure out both the correct form of the averaged transport equations and the relevant
set of effective parameters. Here we homogenize the incompressible Oldroyd-B equations at
zero Reynolds number to obtain a Darcy scale model that captures the effect of localized
polymeric stress. This model consists of an advection-reaction transport equation for the
average conformation tensor along with a form of Darcy’s law that contains an additional
drag term associated with structures of localized stress. The derivation is based upon a limit
of high dilution, a regime where the Oldroyd-B model can be transformed into a sequence
of linear problems using asymptotic developments. We validate our approach in test cases
corresponding to flows in a channel and through arrays of circles. Besides providing a new
model for viscoelastic flows in porous media, our work also shows that modelling viscoelastic
flows through porous media is not simply a matter of determining an apparent permeabil-
ity tensor – the homogenized model cannot be easily reduced to a simple form of Darcy’s
law – but rather requires the development of specific homogenized models that capture the
coupling between the transport of the polymeric stress and momentum.

1. Introduction

Modeling the flow of viscoelastic polymer solutions through porous media is a problem of
interest in a number of engineering applications including soil remediation processes or en-
hanced oil recovery [12, 29, 44, 46, 47]. Solving viscoelastic flows at pore-scale in complex
structures is challenging, even for moderate Weissenberg numbers – the dimensionless num-
ber that measures the relative importance of elastic effects. This issue is often referred to as
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the High Weissenberg Number Problem (HWNP) [6, 7, 25, 27, 39] and stems from a strong
localization of the polymeric stress in small regions of the domain where the conformation
tensor can reach extremely high values. The archetypal example is the birefringent strand
observed past a single cylinder [18, 22, 49] or in cross-slot devices [33, 37, 43]. This HWNP
strongly constrains the simulations with strong limits upon accessible Weissenberg numbers
and upon the extent of the simulation domains [28, 53]. Deriving average formulations that
do not require the detailed description at pore-scale, but rather capture small-scale phenom-
ena through effective parameters at larger scale, is an interesting fundamental problem and
would also be a useful tool in engineering applications.

A few computations of apparent permeabilities are available in the literature [2, 10, 20, 31,
48, 50]. However, there are very few works attempting to perform a direct homogenization
of viscoelastic flows through porous media and, in so doing, to question the form of the
macroscale equations and the relevant set of effective parameters. Khuzhayorov et al. [30]
used formal multiple scale asymptotics and De Haro et al. [11] used volume averaging to
derive a form of dynamic Darcy’s law. Unfortunately, the homogenization in both these
works is limited to a linear form of viscoelasticity with a constitutive equation that is not
frame indifferent and that does not capture transport of the polymeric stress – it is similar to
a low Weissenberg approximation. This approach eliminates right away terms that actually
generate the birefringent strands, in particular an important part of the upper-convected
derivative in the transport of the conformation tensor. Slattery [45] proposes a generalization
of the resistance tensor for several fluids, including a Noll simple fluid, but without performing
the homogenization of the constitutive equation.

In this work, we use volume averaging to derive a homogenized model starting from the
incompressible Oldroyd-B equations at low Reynolds number [3, 38],

0 = −∇p+ ∆u +
β

Wi
∇ · C + F, (1.1a)

0 = ∇ · u, (1.1b)

∂tC + u · ∇C = ∇u · C + C · ∇uT − 1

Wi
(C− Id) , (1.1c)

with a no-slip and no-penetration boundary condition for fluid/solid interfaces. Here p is a
dimensionless pressure, u a dimensionless velocity, C the conformation tensor, Id the iden-
tity in dimension d = 2 or 3 and F a constant/uniform dimensionless force density vector
field. β def

= ηp/ηs is the ratio of polymeric to solvent viscosities and Wi
def
= λU/H is the Weis-

senberg number with λ the relaxation time of the polymer, U a reference velocity and H a
characteristic lengthscale.

Our idea is to perform the homogenization in a limit that allows us to derive a linearized
form of the problem but that still captures the stress localization. Wi� 1 is frequently used
for the linearization but does not capture the stress localization that appears for moderate
Weissenberg numbers. Instead, we proceed by considering the limit β � 1 that can be
thought of as a limit of large dilution for polymer solutions (ηp small and thus β small). In
this case, the leading order for the velocity is simply the Newtonian field with viscosity ηs
and the leading order for the conformation tensor corresponds to the transport in Eq 1.1c
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with the Newtonian velocity, therefore transforming the problem into a sequence of linear
problems with one-way couplings. This makes it possible to treat cases with relatively large
Wi numbers and thus to derive a form of Darcy’s law that captures some of the fundamental
features of viscoelastic flows, such as birefringent strands.

The paper is organized as follows. In Section 2, we detail the non-dimensionalization of the
problem, reformulate the Oldroyd-B model in terms of a conformation vector, rather than a
matrix, and derive the sequence of problems in the limit β � 1. We then proceed in Section 3
to averaging the partial differential equations at each order in the asymptotic developments
and to deriving the corresponding average model. To finish, we study in Section 4 the
behaviour of our model for three 2D test cases in simple geometries (channel, crystalline and
amorphous periodic structures of circles).

2. Reformulation of the flow problem

2.1. Non-dimensionalization

In the Introduction, Eq 1.1 is a dimensionless form of the Oldroyd-B problem. Here we show
how to obtain this form starting from the dimensional form of the Oldroyd-B problem

0 = −∇p + ηs∆u +
ηp
λ
∇ · C + F, (2.1a)

0 = ∇ · u, (2.1b)

∂tC + u · ∇C = ∇u · C + C · ∇uT − 1

λ
(C− Id) . (2.1c)

u and p are the velocity and pressure, respectively. F is the dimensional force density vector
field that we take constant and uniform. ηs and ηp are solvent and polymeric viscosities,
respectively. λ is a characteristic time associated with the relaxation of the polymers. This
problem may be written in dimensionless form as

0 = −∇p+ ∆u +
β

Wi
∇ · C + F, (2.2a)

0 = ∇ · u, (2.2b)

∂tC + u · ∇C = ∇u · C + C · ∇uT − 1

Wi
(C− Id) , (2.2c)

with

x
def
=

x

H
, t

def
=
‖F‖H
ηs

t, p
def
=

p

‖F‖H , F
def
=

F

‖F‖ , β
def
=
ηp
ηs
, Wi

def
=
λ ‖F‖H

ηs
.

2.2. Vector form of the transport equations

The transport equation for the conformation tensor in the fluid domain Ωf is

∂tC + u · ∇C = ∇u · C + C · ∇uT − 1

Wi
(C− Id) , (2.3)
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with C (x, t) ∈ Rd×d
S,>0 a symmetric (S) positive (> 0) d×dmatrix with d = 2 or 3. Dealing with

the transport of a matrix in the homogenization procedure is tedious. Closure relationships
for C would involve tensors of at least rank 4, with complex symmetries and the process
would be extremely cumbersome. The homogenization procedure can be greatly simplified
with a reformulation of the problem in terms of a vector, c (x, t) ∈ R

d(d+1)
2 , defined such

that c
def
=
(
Cxx Cyy Cxy

)T in 2D and c
def
=
(
Cxx Cyy Czz Cyz Cxz Cxy

)T in 3D. This
approach is reminiscent of the Voigt and Mandel notation often used in linear elasticity
[13, 24, 32, 52]. The new transport equation can be written as

∂tc + u · ∇c = (Du) · c− 1

Wi
(c− i) (2.4)

with

Du
def
=




2∂xux 0 2∂yux
0 2∂yuy 2∂xuy

∂xuy ∂yux 0


 for d = 2, (2.5)

and

Du
def
=




2∂xux 0 0 0 2∂zux 2∂yux
0 2∂yuy 0 2∂zuy 0 2∂xuy
0 0 2∂zuz 2∂yuz 2∂xuz 0
0 ∂yuz ∂zuy ∂yuy + ∂zuz ∂xuy ∂xuz

∂xuy ∂yux 0 ∂zux ∂zuy ∂xux + ∂yuy
∂xuz 0 ∂zux ∂yux ∂xux + ∂zuz ∂yuz




for d = 3,

(2.6)

and

i
def
=




1
1
0


 for d = 2 and i

def
=




1
1
1
0
0
0




for d = 3. (2.7)

Note in particular that Du · i = ∇u + (∇u)T.

For the momentum transport equation, we rewrite this as

0 = −∇p+ ∆u +
β

Wi
∇c · c (2.8)

with

∇c
def
=

(
∂x 0 ∂y
0 ∂y ∂x

)
for d = 2 and ∇c

def
=




∂x 0 0 0 ∂z ∂y
0 ∂y 0 ∂z 0 ∂x
0 0 ∂z ∂y ∂x 0


 for d = 3. (2.9)

Note in particular that (∇c ·Du) · i = ∆u.
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The final form of the system of equations is thus

0 = −∇p+ ∆u +
β

Wi
∇c · c + F, (2.10a)

0 = ∇ · u, (2.10b)

∂tc + u · ∇c = (Du) c− 1

Wi
(c− i) . (2.10c)

2.3. Approximate form of transport through β asymptotics

To perform the asymptotic development, we use the standard mathematical approach [21, 19,
51] that consists in scaling the dimensionless parameters as a function of a small parameter,
ε, and searching for solutions in the form of series of ε. The limit Wi = O (εn) with n ≥ 1
is trivial (see e.g. detailed asymptotics in [4, 36]), yielding a standard Darcy’s law with a
viscosity 1 + β at leading-order. This case does not require considering asymptotics in β.
Our interest is in the case Wi = O (1) and β = O (ε) where strands start forming. Cases
of large Weissenberg numbers can also be treated following a similar strategy, but the most
interesting case is actuallyWi = O (1) because it maintains a competition between stretching
and relaxation in the transport equation for the conformation tensor.

For Wi = O (1) and β = O (ε), we write β = εβ? and have

0 = −∇p+ ∆u + ε
β?

Wi
∇c · c + F, (2.11a)

0 = ∇ · u, (2.11b)

∂tc + u · ∇c = (Du) c− 1

Wi
(c− i) . (2.11c)

. We are looking for a solution in the form

p =p(0) + εp(1), (2.12a)

u =u(0) + εu(1), (2.12b)

c =c(0), (2.12c)

in order to obtain a sequence of problem corresponding to the different orders. At leading
order for the momentum transport and mass conservation, we have

0 = −∇p(0) + ∆u(0) + F, (2.13a)

0 = ∇ · u(0), (2.13b)

and for the transport of the conformation tensor

∂tc
(0) + u(0) · ∇c(0) = Du(0)c(0) − 1

Wi

(
c(0) − i

)
. (2.14)

At first order for momentum and mass conservation, we have

0 = −∇p(1) + ∆u(1) +
β?

Wi
∇c · c(0), (2.15a)

0 = ∇ · u(1). (2.15b)
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Figure 3.1: Schematics of the volume averaging procedure with (a) the large scale domain, magnifications for
the averaging volume at point x and notations for the sets considered; and (b) a unit-cell with corresponding
notations.

3. Homogenization through volume averaging

3.1. Definitions

We define the intrinsic average operator as

〈χ〉 (x) =

∫
Vf (x)

χ dV
∫
Vf (x)

dV
. (3.1)

The porosity φ is

φ =

∫
Vf (x)

dV
∫
V(x) dV

. (3.2)

To simplify the developments, we also consider a porous structure such that
∫
Vf
dV and the

porosity are uniform and constant. Important notations for the averaging procedure are
summarized in Fig 3.1.

Note that in this paper, 〈χ〉 refers to the intrinsic average of χ, which is not the most
standard notation in the volume averaging literature (usually we use 〈〉fluid or similar) but is
more compact and simpler when the porosity is constant and uniform.

3.2. Volume averaging for the transport of u(0)

We indicate key steps here as the technique is described in details in many works (see for
instance [55, 54, 9]). First, we average

0 = −∇p(0) + ∆u(0) + F, in Ωf (3.3a)

0 = ∇ · u(0), in Ωf (3.3b)

u(0) = 0, on Γfs (3.3c)
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considering a no-slip/no-penetration boundary condition on the fluid/solid interface Γfs. We
then use the average plus perturbation decomposition

p(0) =
〈
p(0)
〉

+ p̃(0), (3.4a)

u(0) =
〈
u(0)
〉

+ ũ(0), (3.4b)

to obtain

0 = −∇
〈
p(0)
〉

+
〈
−∇p̃(0) + ∆ũ(0)

〉
+ F, (3.5a)

0 = ∇ ·
〈
u(0)
〉
, (3.5b)

where the Brinkman term ∆
〈
u(0)
〉
has been removed as is standard Whitaker [55]. The

perturbation equation reads

0 = −∇p̃(0) + ∆ũ(0) −
〈
−∇p̃(0) + ∆ũ(0)

〉
in Ωf (3.6a)

0 = ∇ · ũ(0) in Ωf (3.6b)

ũ(0) = −
〈
u(0)
〉

on Γfs (3.6c)

and is simply obtained by subtracting Eqs 3.5a and 3.5b from Eqs 3.3a and 3.3b, respectively.
Because of the linearity of the problem, we may seek a solution of the problem in the form

p̃(0) = −b(0) ·
〈
u(0)
〉
, (3.7a)

ũ(0) = −B(0) ·
〈
u(0)
〉
, (3.7b)

with the corresponding closure problem

0 = −∇b(0) + ∆B(0) −
〈
−∇b(0) + ∆B(0)

〉
in Ωu-c

f (3.8a)

0 = ∇ · B(0) in Ωu-c
f (3.8b)

B(0) = Id on Γu-c
fs (3.8c)

Periodicity on Γu-c
fe (3.8d)

Averages
〈
b(0)
〉

= 0 and
〈
B(0)

〉
= 0 (3.8e)

This problem is used to calculate the effective parameters appearing in the macroscale equa-
tions. The periodicity on boundary conditions for the outside of the unit-cell (Γu-c

fe ) is the
standard approach [42, 54].

The macroscale equation is obtained by introducing the closure relations into Eq 3.5a to
obtain

0 = −∇
〈
p(0)
〉
−
〈
−∇b(0) + ∆B(0)

〉
·
〈
u(0)
〉
, (3.9a)

0 = ∇ ·
〈
u(0)
〉
. (3.9b)

We further define the Darcy velocity
〈
u(0)
〉D def

= φ
〈
u(0)
〉

(3.10)
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and
K−1

def
= φ−1

〈
−∇b(0) + ∆B(0)

〉
, (3.11)

assuming that K is invertible. We then obtain Darcy’s law

〈
u(0)
〉D

= K ·
(
−∇

〈
p(0)
〉

+ F
)
. (3.12)

Note that we can reformulate the problem for b(0) and B(0) using the change of unknown
functions

b(0) = g · φK−1 (3.13)

B(0) = Id + G · φK−1 (3.14)

with

0 = −∇g + ∆G− Id in Ωu-c
f (3.15a)

0 = ∇ · G in Ωu-c
f (3.15b)

G = 0 on Γu-c
fs (3.15c)

Periodicity on Γu-c
fe (3.15d)

Average 〈g〉 = 0 (3.15e)

〈
b(0)
〉

= 0 implies that 〈g〉 = 0 and
〈
B(0)

〉
= 0 leads to Id + 〈G〉 · φK−1 = 0 and thus

K = −φ 〈G〉 . (3.16)

The advantage of solving the problem for (g, G) rather than the one for
(
b(0), B(0)

)
is that

it is differential and not integro-differential.

3.3. Volume averaging for the transport of the conformation tensor

We now proceed to averaging the transport equation for the conformation tensor at leading
order

∂tc
(0) + u(0) · ∇c(0) = Du(0)c(0) − 1

Wi

(
c(0) − i

)
. (3.17)

We use the average plus perturbation decomposition

c(0) =
〈
c(0)
〉

+ c̃(0) (3.18)

We have
〈
∂tc

(0)
〉

= ∂t
〈
c(0)
〉
since there is no time variation of the geometry. We also have

〈
u(0) · ∇c(0)

〉
=
〈
u(0)
〉
· ∇
〈
c(0)
〉

+
〈
u(0) · ∇c̃(0)

〉
, (3.19)

〈
Du(0) · c(0)

〉f
=
〈
Du(0)

〉
·
〈
c(0)
〉

+
〈
Du(0) · c̃(0)

〉
. (3.20)
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Averaging thus leads to

∂t
〈
c(0)
〉

+
〈
u(0)
〉
· ∇
〈
c(0)
〉

=
〈
Du(0)

〉
·
〈
c(0)
〉
− 1

Wi

(〈
c(0)
〉
− i
)

−
〈
u(0) · ∇c̃(0)

〉
+
〈
Du(0) · c̃(0)

〉
(3.21)

Upon neglecting terms in ∇
〈
c(0)
〉
(leading order in

〈
c(0)
〉
) and assuming quasi-stationarity,

the perturbation equation reads

u(0) · ∇c̃(0) −
〈
u(0) · ∇c̃(0)

〉
=
(
Du(0) · c̃(0) −

〈
Du(0) · c̃(0)

〉)
− 1

Wi
c̃(0) + D̃u(0) ·

〈
c(0)
〉
,

(3.22)

which is obtained by subtracting Eq 3.21 from Eq 3.17. Because of the linearity, we write a
closure in the form

c̃(0) = A ·
〈
c(0)
〉
, (3.23)

so that

u(0) · ∇A = Du(0) · A− 1

We
A +Du(0) − B in Ωu-c

f (3.24a)

with 〈A〉 = 0, (3.24b)

and B =
〈
Du(0) ·

(
I d(d+1)

2

+ A
)〉
−
〈
u(0) · ∇A

〉
, (3.24c)

and periodicity on Γu-c
fe (3.24d)

Again this equation is integro-differential but can be simplified through the decomposition

A =
(
M− I d(d+1)

2

)
−Wi M · B (3.25)

with M solution of

u(0) · ∇M = Du(0) ·M− 1

Wi

(
M− I d(d+1)

2

)
in Ωu-c

f (3.26a)

Periodicity on Γu-c
fe (3.26b)

〈A〉 = 0 implies that
B = Wi−1

(
I d(d+1)

2

− 〈M〉−1
)
. (3.27)

Also note that A = M · 〈M〉−1 − I d(d+1)
2

so that

c(0) = M · 〈M〉−1 ·
〈
c(0)
〉
. (3.28)

The macroscopic equation reads

∂t
〈
c(0)
〉

+
〈
u(0)
〉
· ∇
〈
c(0)
〉

= B ·
〈
c(0)
〉
− 1

Wi

(〈
c(0)
〉
− i
)
. (3.29)
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3.4. Volume averaging for the transport of u(1)

At first order, we have

0 = −∇p(1) + ∆u(1) +
β?

Wi
∇c · c(0), in Ωf (3.30a)

0 = ∇ · u(1), in Ωf (3.30b)

u(1) = 0 on Γfs (3.30c)

that we average as

0 = −∇
〈
p(1)
〉

+ ∆
〈
u(1)
〉

+
β?

Wi
∇c ·

〈
c(0)
〉

+

〈
−∇p̃(1) + ∆ũ(1) +

β?

Wi
∇c · c̃(0)

〉
, (3.31a)

0 = ∇ ·
〈
u(1)
〉
. (3.31b)

The perturbation equation is

0 = −∇p̃(1) + ∆ũ(1) +
β?

Wi
∇c · c̃(0) −

〈
−∇p̃(1) + ∆ũ(1) +

β?

Wi
∇c · c̃(0)

〉
in Ωf (3.32a)

0 = ∇ · ũ(1) in Ωf (3.32b)

ũ(1) = −
〈
u(1)
〉

on Γfs (3.32c)

Upon using
c̃(0) =

(
M · 〈M〉−1 − I d(d+1)

2

)
·
〈
c(0)
〉
, (3.33)

we have
∇c · c̃(0) = ∇c ·

(
M · 〈M〉−1

)
·
〈
c(0)
〉

(3.34)
so that

0 = −∇p̃(1) + ∆ũ(1) −
〈
−∇p̃(1) + ∆ũ(1)

〉
in Ωf

+
β?

Wi
∇c ·

(
M · 〈M〉−1

)
·
〈
c(0)
〉
− β?

Wi

〈
∇c ·

(
M · 〈M〉−1

)〉
·
〈
c(0)
〉

(3.35a)

0 = ∇ · ũ(1) in Ωf (3.35b)

ũ(1) = −
〈
u(1)
〉

on Γfs (3.35c)

We have the following closure

p̃(1) = −b(0) ·
〈
u(1)
〉
− β?

Wi
P (1) ·

〈
c(0)
〉

(3.36a)

ũ(1) = −B(0) ·
〈
u(1)
〉
− β?

Wi
U(1) ·

〈
c(0)
〉

(3.36b)

with
(
P (1), U(1)

)
solution of

0 = −∇P (1) + ∆U(1) −∇c ·
(
M · 〈M〉−1

)
−N in Ωu-c

f (3.37a)

0 = ∇ ·U(1) in Ωu-c
f (3.37b)

U(1) = 0 on Γu-c
fs (3.37c)

Periodicity on Γu-c
fe (3.37d)

Averages
〈
P (1)

〉
= 0 and

〈
U(1)

〉
= 0 (3.37e)
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with
N

def
=
〈
−∇P (1) + ∆U(1) −∇c ·

(
M · 〈M〉−1

)〉
. (3.38)

As usual, this system is integro-differential (here because of N) and we can simplify it using
the decomposition

P (1) = P (1)∗ + g ·N (3.39a)

U(1) = U(1)∗ + G ·N (3.39b)

with (g, G) solving Eqs 3.15a and
(
P (1)∗, U(1)∗

)
solving

0 = −∇P (1)∗ + ∆U(1)∗ −∇c ·
(
M · 〈M〉−1

)
in Ωu-c

f (3.40a)

0 = ∇ ·U(1)∗ in Ωu-c
f (3.40b)

U(1)∗ = 0 on Γu-c
fs (3.40c)

Periodicity on Γu-c
fe (3.40d)

Average
〈
P (1)∗

〉
= 0 (3.40e)

Using
〈
U(1)

〉
= 0 , we have that

N = −〈G〉−1 ·
〈
U(1)∗

〉
. (3.41)

We also define N∗ as
N∗

def
= −φ 〈G〉 ·N = K ·N = φ

〈
U(1)∗

〉
(3.42)

Introducing Eq 3.36 into Eq 3.31, we obtain the macroscale equation

〈
u(1)
〉D

= K ·
(
−∇

〈
p(1)
〉

+
β?

Wi
∇c ·

〈
c(0)
〉)
− β?

Wi
N∗ ·

〈
c(0)
〉
. (3.43)

3.5. Summary

Summing up the equations for momentum transport at different orders, considering the
leading order transport for the conformation tensor and removing the ε for simplicity, we get

〈u〉D = K ·
(
−∇〈p〉f + F +

β

Wi
∇c ·

〈
c(0)
〉f)− β

Wi
N∗ ·

〈
c(0)
〉

(3.44a)
〈
u(0)
〉D

= K ·
(
−∇

〈
p(0)
〉f

+ F
)

(3.44b)

∇ · 〈u〉D = ∇ ·
〈
u(0)
〉D

= 0 (3.44c)

∂t
〈
c(0)
〉

+ φ−1
〈
u(0)
〉D · ∇

〈
c(0)
〉

= B ·
〈
c(0)
〉
− 1

Wi

(〈
c(0)
〉
− i
)

(3.44d)
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with

K = −φ 〈G〉 , (3.45a)

N∗ = φ
〈
U(1)∗

〉
, (3.45b)

B =
1

Wi

(
I d(d+1)

2

− 〈M〉−1
)
. (3.45c)

The corresponding closure problems are

0 = −∇g + ∆G− Id in Ωu-c
f (3.46a)

0 = ∇ · G in Ωu-c
f (3.46b)

G = 0 on Γu-c
fs (3.46c)

Periodicity on Γu-c
fe (3.46d)

Average 〈g〉 = 0 (3.46e)

and

u(0) · ∇M = Du(0) ·M− 1

Wi

(
M− I d(d+1)

2

)
in Ωu-c

f (3.47a)

Periodicity on Γu-c
fe (3.47b)

and

0 = −∇P (1)∗ + ∆U(1)∗ −∇c ·
(
M · 〈M〉−1

)
in Ωu-c

f (3.48a)

0 = ∇ ·U(1)∗ in Ωu-c
f (3.48b)

U(1)∗ = 0 on Γu-c
fs (3.48c)

Periodicity on Γu-c
fe (3.48d)

Average
〈
P (1)∗

〉
= 0 (3.48e)

4. Test cases

In this section, we study two test cases corresponding to flows in a channel and through
arrays of cylinders. We aim at validating our approach by comparison with either analytical
solutions in the case of channel flow or direct numerical simulations in the case of the cylinders.
We also use these test cases to evaluate further the model, for instance by calculating how
the effective parameters vary with the Weissenberg number.
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4.1. Channel flow

Let us consider a steady two-dimensional flow between the two lines y = 0 and y = 1 with
no-slip boundary conditions. We further suppose that the flow is periodic in the x direction
and is imposed through a force F =

(
1 0

)
T. The reference analytical solution of this

problem is given by

uref =

(
1
2
y(1−y)
(1+β)

0

)
(4.1)

and

cref =




1 + Wi2

2
(1−2y)2

(1+β)2

1
Wi
2

(1−2y)
1+β


 . (4.2)

Through asymptotics in β, we then have

u
(0)
ref =

(
1
2
y (1− y)

0

)
(4.3)

and

u
(1)
ref = β

(
−1

2
y (1− y)

0

)
(4.4)

and

c
(0)
ref =




1 + Wi2

2
(1− 2y)2

1
Wi
2

(1− 2y)


 (4.5)

Averaging these equations, we obtain

〈
u
(0)
ref

〉
=

(
1/12
0

)
, (4.6)

and 〈
u
(1)
ref

〉
= β

(
−1/12

0

)
, (4.7)

and
〈
c(0)ref

〉
=




1 + 1
6
Wi2

1
0


 . (4.8)
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Solution of the homogenized formulation. Now that we have reference analytical solutions,
we proceed to calculating the result of our homogenized formulation. G solves Eq 3.46 and
can be easily calculated as

G =

(
−1

2
y (1− y) 0

0 0

)
. (4.9)

We then have
K = −〈G〉 =

(
1/12 0
0 0

)
(4.10)

and
〈
u(0)
〉

= K · F leading to

〈
u(0)
〉

=

(
1/12
0

)
=
〈
u
(0)
ref

〉
. (4.11)

We thus recover the correct average velocity.

For the conformation tensor, the problem for M is

0 = Du(0) ·M− 1

Wi

(
M− I d(d+1)

2

)
(4.12)

so that

M =
(
I d(d+1)

2

−Wi Du(0)
)−1

=




1 1
2
Wi2 (1− 2y)2 Wi (1− 2y)

0 1 0
0 1

2
Wi (1− 2y) 1


 . (4.13)

By averaging, we obtain

〈M〉 =




1 1
6
Wi2 0

0 1 0
0 0 1


 (4.14)

and thus

〈M〉−1 =




1 −1
6
Wi2 0

0 1 0
0 0 1


 . (4.15)

We finally have

B = Wi−1
(
I d(d+1)

2

− 〈M〉−1
)

=




0 1
6
Wi 0

0 0 0
0 0 0


 , (4.16)

and
〈
c(0)
〉
is given by

〈
c(0)
〉

=
(
I d(d+1)

2

−WiB
)−1
· i. (4.17)

We further have
(
I d(d+1)

2

−WiB
)−1

=




1 1
6
Wi2 0

0 1 0
0 0 1


 (4.18)
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so that
〈
c(0)
〉

=




1 + 1
6
Wi2

1
0


 =

〈
c
(0)
ref

〉
, (4.19)

and we also recover the exact solution.

Let us now consider the first-order correction to the velocity. We want to solve Eq 3.48 so
that we first need to evaluate M · 〈M〉−1. Using Eqs 4.14 and 4.15, we have

M · 〈M〉−1 =




1 −1
6
Wi2 + 1

2
Wi2 (1− 2y)2 Wi (1− 2y)

0 1 0
0 1

2
Wi (1− 2y) 1


 (4.20)

We can then calculate

−∇c ·
(
M · 〈M〉−1

)
=

(
0 Wi 0
0 0 0

)
(4.21)

Solving Eq 3.48 then leads to

U(1)∗ =

(
0 1

2
y (1− y)Wi 0

0 0 0

)
(4.22)

By averaging, we have 〈
U(1)∗

〉
= N∗ =

(
0 1

12
Wi 0

0 0 0

)
(4.23)

Finally, Eq 3.43
〈
u(1)
〉

=
β

We
K ·
(
∇c ·

〈
c(0)
〉)
− β

Wi
N∗ ·

〈
c(0)
〉

(4.24)

with

∇c ·
〈
c(0)
〉

=

(
0
0

)
(4.25)

and

−N∗ ·
〈
c(0)
〉

=

(
− 1

12
Wi

0

)
(4.26)

leads to
〈
u(1)
〉

= β

(
− 1

12

0

)
=
〈
u
(1)
ref

〉
. (4.27)

4.2. Flow through biperiodic arrays of cylinders

We now turn to arrays of cylinders with both crystalline and amorphous structures – amor-
phous structures generated by randomly displacing cylinders from the crystalline structure,
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Figure 4.1: Geometry and mesh for simulations through biperiodic arrays. The crystalline structure corre-
sponds to the grey circles of radius R with distance P between the centers of the circles. The amorphous
structures are obtained by randomly displacing each circle. Each component of the displacement vector is
obtained by uniform random sampling of the interval [0, ε]. The mesh is Cartesian and consists of N × N
square cells of equal size. The cells are taken as holes if they are cut by the cylinder. An example of a mesh
for a single cylinder is given in (b) in the case N = 40. This mesh is refined by splitting each face into 2
equal parts, which amounts to splitting each cell into 4 parts.

as detailed in Fig 4.1. We consider steady biperiodic flow. We can eliminate gradients of
average quantities because of the periodicity and the macroscale model simply boils down to

〈u〉D −
〈
u(0)
〉D

β
= − 1

Wi
N∗ ·

〈
c(0)
〉

(4.28a)

0 = B ·
〈
c(0)
〉
− 1

Wi

(〈
c(0)
〉
− i
)

(4.28b)

Calculating
〈
c(0)
〉

=
(
I d(d+1)

2

−WiB
)−1
· i from the second equation and injecting it in the

first one, we further get

〈u〉D −
〈
u(0)
〉D

β
= −N∗ ·

(
Wi I d(d+1)

2

−Wi2B
)−1
· i, (4.29)

that can also be written as

〈u〉D −
〈
u(0)
〉D

β
= − 1

Wi
N∗ · 〈M〉 · i. (4.30)

In this case, the caracteristic lengthscale used to determine the Wi number is H = P − 2R,
which corresponds to the smallest distance between the surfaces of two successive circles.
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4.2.1. Numerical methods

The aim is to solve both the Oldroyd-B problem Eq 2.2 and the closure problems Eqs 3.46,
3.47 and 3.48. Our numerical approach follows that developed and detailed in [34]. The
space discretization relies on a partition of the domain with quadrilateral cells and consists
in a staggered approximation of the unknowns with nonconforming low-order finite elements,
namely the Rannacher and Turek (RT) element. The discrete unknowns of u, G and U(1)∗

are located at the center of the faces of the mesh while the discrete unknowns of C and M
are associated with the cells of the mesh. C and M are discretized as piecewise constant and
the corresponding transport equations are then solved using a finite-volume scheme.

We use a mesh that is structured and uniform, consisting of N ×N square cells of equal size.
Circles are approximated as “stair steps” by making holes into the mesh. In order to keep the
geometry unchanged, mesh refinement is obtained by cutting each face into 2 equal parts and
each cell into 2× 2 parts. An exemple of the mesh for a single circle is given Fig 4.1 in the
case N = 40. We used a constant mesh size with N = 100, corresponding to a characteristic
cell size of 1/50 radius of a circle. In all the computations, steady-state is obtained by running
a transient computation until the solution stabilizes in time. The time step is monitored to
ensure time convergence towards steady-state solutions.

Decoupling of the Oldroyd-B problem. The scheme is based upon a fractional step approach.
Hydrodynamics equations (i.e. mass and momentum balance equations) are decoupled from
the constitutive equation by using a beginning-of-step approximation Cn of the conformation
tensor in the momentum balance equation. The problem then consists of iteratively solving
a Stokes system

0 = −∇p+ ∆u +
β

Wi
∇c · Cn + F, (4.31a)

0 = ∇ · u, (4.31b)

with no-slip/no-penetration boundary conditions on solid interfaces and a transport equation
of the conformation tensor

∂tC
n+1 + u · ∇Cn+1 = ∇u · Cn+1 + Cn+1 · ∇ (u)T − 1

Wi

(
Cn+1 − Id

)
. (4.32)

Solution of the Stokes problems. Systems 4.31, 3.46, and 3.48 can all be written as a Stokes
problem

0 = −∇h+ ∆H + S, (4.33a)
0 = ∇ ·H, (4.33b)

with the scalar h and the vector H as unknowns and the vector S as (volumic) source term.
These systems are solved in an iterative manner. A standard projection scheme is used to
decouple the momentum balance equation from the divergence constraint, thus making it
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possible to avoid solving a discrete saddle point problem. The solution is obtained by the
following algorithm

While ‖Hk+1 −Hk‖∞ > tol :

Prediction step− Solve for H̃k+1 :

1

dt

(
H̃
k+1 −Hk

)
+∇hk −∇ ·

(
∇H̃k+1

+
(
∇H̃k+1

)T)
+ S = 0.

Correction step− Solve for hk+1 and Hk+1 :

1

dt

(
Hk+1 − H̃k+1

)
+∇

(
hk+1 − hk

)
= 0,

∇ ·Hk+1 = 0,

where dt is the time step and the tolerance tol is fixed here to 10−6.

Solution of the transport problems. The time discretization of the conformation transport C
is performed using a Strang-type decoupling. A half-step of homogeneous transport of C
is first performed. Then we treat the reaction terms, and finish by the second half-step of
transport of C. For precision, we introduce a log transformation of the conformation tensor
(see [14, 23]) that is applied to the transport equation. The scheme reads

Advection I− Solve for Cn+
1
3 :

1

dt/2

(
log Cn+

1
3 − log Cn

)
+∇ ·

(
un+1 log Cn+

1
3

)
= 0.

ODE− Set C(tn) = Cn+
1
3 and solve for Cn+

2
3 = C(tn + dt) :

Ċ−
(
∇un+1

)
C− CT

(
∇un+1

)T
+

1

Wi
(C− I) = 0.

Advection II− Solve for Cn+1 :

1

dt/2

(
log Cn+1 − log Cn+

2
3

)
+∇ ·

(
un+1 log Cn+1

)
= 0.

The matrix C being symmetric positive definite, there exists an invertible matrix P ∈ Rd×d

and λ1, . . . , λd ∈ R+∗ such that C = P−1diag(λ1, . . . , λd)P . The log transformation of C is
then defined by log C = P−1diag (log(λ1), . . . , log(λd))P .

The local ODE is solved using a first-order implicit Euler scheme
{
C0 = Cn,
1
δt

(Ck+1 − Ck) = ∇un+1 Ck+1 + (Ck+1)
T (∇un+1)

T − 1
Wi

(Ck+1 − I) ,

where δt is a local time-step for the solution of the ODE on each mesh element. To preserve
the positive definiteness of the conformation tensor, this local time-step for the solution of the
ODE is set to δt = dt/n with n the smallest integer number such that δt ≤ 1/ (100‖∇un+1‖∞),
see [34].
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ForM, we proceed exactly as for C by considering the unsteady form of the transport problem
Eq 3.47

∂tM + u(0) · ∇M = Du(0) ·M− 1

We

(
M− I d(d+1)

2

)
(4.34a)

M(t=0) = I d(d+1)
2

(4.34b)

and wait until steady-state is reached. The matrix is no longer symmetric but remains
positive definite. The computation of the logarithm is then done by a block diagonalization
which consists in computing the Schur form and to eliminate off-diagonal blocks by solving
Sylvester equations [8].

Implementation and high performance computing. The solvers are implemented as specific
modules of the CALIF3S platform [1] developed at the French Institut de Radioprotection et
de Sûreté Nucléaire (IRSN). Parallel computations were carried out on TotalEnergies’ group
supercomputer Pangea II through a domain decomposition approach using the OpenMPI
(3.1.5) library [15] and the METIS (4.0.3) graph partitioner [26]. All the linear systems
are preconditionned by a Block-Jacobi preconditioner. The linear systems coming from the
prediction steps and the transport problems are solved using the GMRES method [41]. The
projection steps are solved using a classical conjugate gradient method. The log transforma-
tion of the conformation tensor is done by diagonalizing C, using a QR decomposition. The
log transformation of M is carried out using the Eigen (3.4.0) library [16]. Finally, the linear
systems coming from the local ODE are solved using a direct LU method.

4.2.2. Results

We plot in Fig 4.2a and Fig 4.2b the components of the matrices B and N∗ for the crystalline
case. The dominant terms are B12 and N∗12, which is similar to the channel flow. This is
because of the structure of the birefringent strands and the flow in this case. As discussed
in Harlen [17], Mokhtari et al. [35], Rallison and Hinch [40], the strands follow streamlines
and can be thought of as a line distribution of forces in an otherwise Newtonian fluid. In the
crystalline case, strands connect the circles on both sides and a large channel flow develops
between lines of circles, see Fig 4.3. Because of this structure, the situation is actually close
to the channel flow and dominant terms in the B and N∗ are the same. It is also important
to note that, although B11 is much smaller, it still is important with the increase in C

(0)
xx

being controlled by B11C
(0)
xx +B12C

(0)
yy . Similarly, the additional drag due to viscoelasticity is

primarily determined by both N∗11 and N∗12 .

To assess the validity of our approach and its limits, we plot in Figs 4.2c and 4.2d the nor-
malized trace of the conformation tensor and the average velocity for both the homogenized
model and the average results of the direct numerical simulations for different values of β. We
see that the homogenized model is, as expected, valid in the limit β � 1 with our approach
providing a reasonable approximation up to β ' 10−1. Beyond β ' 10−1, the overall trend
is similar but the feedback of the strands upon the flow field becomes too important and
higher-order terms would be needed to obtain a more accurate representation.

We now turn to the case of a flow in an amorphous structure, with example fields for the
conformation tensor and the velocity shown in Fig 4.4 at different values of β. The strands
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Figure 4.2: Crystalline structure: components of the effective matrices in the homogenized models and
comparison between homogenized and direct numerical simulations for different values of β.
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tr(C(0)) ‖u(0)‖

Figure 4.3: Example of fields obtained for tr
(
C(0)

)
and

∥∥u(0)
∥∥ in the crystalline structure at Wi = 3.4. We

observe, in the tr
(
C(0)

)
field, the formation of an envelope that encompasses the cylinder and delimits a low

velocity zone upstream and downstream of the cylinder.
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Figure 4.4: Trace of the conformation tensor and velocity fields for the amorphous structure (δ = 0.5) at
Wi = 3.4.
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Figure 4.5: Amorphous structure (δ = 0.5): components of the effective matrices in the homogenized models
and comparison between homogenized and direct numerical simulations for different values of β.
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show clearly in the wake of each circle at β = 10−2 and β = 10−1. β = 1 is associated
with a stronger coupling between momentum and transport of the conformation tensor with
both a decrease in the intensity of the strands and the velocity magnitude. In Figs 4.5a and
4.5b, we plot the components of matrices B and N∗. Again, B12 and N∗12 are the dominant
components but are relatively weaker compared to the crystalline case. We further compare
direct numerical simulations of the Oldroyd-B model with the homogenized model in Figs 4.5c
and 4.5d. These results show again that our approach yields a reasonable appoximation up
to β ' 10−1. We also see that the behaviour of the velocity difference is non-monotonic
with the Weissenberg number. Such apparent thinning, followed by apparent thickening, is
a known phenomenon in the flow of polymer solutions through porous media [5, 20]. We
have hypothesized in Mokhtari et al. [35] that, for steady flows, this is due to the presence
of the birefringent strands. Interestingly, our homogenized model is able to capture this
phenomenon.

Figs 4.6a and 4.6b show the xx and yy components of the conformation tensor for the solution
of the homogenized model in all the different structure. We recover a solution for C(0)

xx that
is very close to the channel flow in all different structures, even though the components of
B vary significantly (see Figs 4.6c). The primary difference is for C(0)

yy . C
(0)
yy = 0 for the

channel case but is non-zero for all other cases and seems to increase with the “disorder” in
the structure.

5. Conclusions

We have developed a homogenized model for the flow of an Oldroyd-B fluid through porous
media. The model consists of an advection-reaction transport equation for the average
conformation tensor along with a Darcy’s law containing an additional drag generated by
viscoleastic stress. It is valid in a limit of high dilutation for polymer solutions. Our sim-
ulations and test cases show that we obtain reasonably accurate solutions for sufficiently
dilute suspensions. The homogenized model can also capture both apparent shear-thinning
and shear-thickening, an important property of the flow of polymer solutions through porous
media.

Although the case of high dilution is of course limiting, our model is the first proposition of
a homogenized model for viscoelastic flows through porous media that can actually capture
the effects of birefringent strands. Our model shows that modeling viscoelastic flows through
porous media cannot be reduced to calculating an apparent permeability in a simple Darcy’s
law. Our model couples a transport equation for the polymeric stress with a modified form
of Darcy’s law that features an additional drag term associated with stress localization at
pore-scale. This suggests that we need specific models for viscoelastic flows through porous
media and not just empirical extensions of Darcy’s law. Generalizations of our approach
to a wider range of flow regimes may be possible, for instance by considering higher-order
asymptotics that can describe the feedback of the strands upon the flow field at pore-scale.
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