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On the Converse Safety Problem for Differential Inclusions: Solutions, Regularity, and Time-Varying Barrier Functions

This paper presents converse theorems for safety in terms of barrier functions for unconstrained continuous-time systems modeled as differential inclusions. Via a counterexample, we show the lack of existence of autonomous and continuous barrier functions certifying safety for a nonlinear system that is not only safe but also has a smooth right-hand side. Guided by converse Lyapunov theorems for (non-asymptotic) stability, time-varying barrier functions and appropriate infinitesimal conditions are shown to be both necessary as well as sufficient under mild regularity conditions on the right-hand side of the system. More precisely, we propose a general construction of a time-varying barrier function in terms of a marginal function involving the finite-horizon reachable set. Using techniques from set-valued and nonsmooth analysis, we show that such a function guarantees safety when the system is safe. Furthermore, we show that the proposed barrier function construction inherits the regularity properties of the proposed reachable set. In addition, when the system is safe and smooth, we build upon the constructed barrier function to show the existence of a smooth barrier function guaranteeing safety. Comparisons and relationships to results in the literature are also presented.

I. INTRODUCTION

Beyond stability and convergence, safety is among the most important properties to analyze for a general continuous-time system modeled as the differential inclusion ẋ ∈ F (x)

x ∈ R n .

(

) 1 
Differential inclusions extend the concept of differential equations by allowing the dynamics to be governed by a set-valued map instead of only a single-valued function [START_REF] Aubin | Differential calculus of set-valued maps[END_REF]. Safety is the property that requires the solutions to (1) starting from a given set of initial conditions X o ⊂ R n to never reach a given unsafe region X u ⊂ R n , where, necessarily, X o ∩ X u = ∅ [START_REF] Prajna | A framework for worstcase and stochastic safety verification using barrier certificates[END_REF], [START_REF] Wieland | Constructive safety using control barrier functions[END_REF]. Safety with respect to (X o , X u ) is verified when a set K ⊂ R n , with X o ⊂ K and K ∩ X u = ∅, is forward preinvariant, i.e., the solutions to (1) starting from K remain in K for all time [START_REF] Prajna | Optimization-based methods for nonlinear and hybrid systems verification[END_REF] -the prefix "pre" indicates that solutions may not exist for all t ∈ [0, ∞), in particular, due to finite escape times. Such a set K is called inductive invariant in [START_REF] Taly | Deductive verification of continuous dynamical systems[END_REF]. Depending on the considered application, reaching the unsafe set X u can correspond to the impossibility of applying a predefined feedback law [START_REF] Belleter | Observer based path following for underactuated marine vessels in the presence of ocean currents: A global approach[END_REF] or, simply colliding with an obstacle [START_REF] Tanner | Stable flocking of mobile agents, Part I: Fixed topology[END_REF].

A. Background

Analogous to Lyapunov theory for stability, the concept of barrier functions is a powerful tool to study safety without computing the solutions to the system. Generally speaking, two main types of barrier functions can be identified in the literature [START_REF] Ames | Control barrier function based quadratic programs for safety critical systems[END_REF]. The first type of barrier functions consists of a scalar function B defined on the interior of K, denoted int(K), with nonnegative values such that

lim x→∂K B(x) = ∞,
where ∂K is the boundary of K. This barrier function certifies safety when the growth condition

∇B(x), η ≤ γ(B(x)) ∀η ∈ F (x), ∀x ∈ int(K) (2)
is satisfied, where the scalar function γ is such that condition [START_REF] Prajna | A framework for worstcase and stochastic safety verification using barrier certificates[END_REF] implies that the map t → B(φ(t, x o )) does not become unbounded in finite time for every solution φ to (1) starting from x o ∈ int(K) -each such solution is denoted t → φ(t, x o ).

Hence, the solution φ remains in int(K) for all time. This type of barrier functions, often named potential functions, has been used in constrained optimization [START_REF] Wills | Barrier function based model predictive control[END_REF], multiagent systems [START_REF] Tanner | Stable flocking of mobile agents, Part I: Fixed topology[END_REF], and constrained nonlinear control design [START_REF] Tee | Barrier lyapunov functions for the control of output-constrained nonlinear systems[END_REF].

The second type of barrier functions is given by a scalar function B with a prescribed sign on the initial set X o and with the opposite sign on the unsafe set X u . Without loss of generality, we can assume that B and (X o , X u ) satisfy

B(x) > 0 ∀x ∈ X u B(x) ≤ 0 ∀x ∈ X o . (3) 
In this case, safety is guaranteed when the zero-sublevel set

K := {x ∈ R n : B(x) ≤ 0} (4) 
is forward pre-invariant. The first characterization of forward pre-invariance dates back to the work of Nagumo in [START_REF] Nagumo | Über die lage der integralkurven gewöhnlicher differentialgleichungen[END_REF], where tangent-cone-based conditions are proposed; see Section V-A for more details. Note that the computation of a tangent cone to a general set is not always a trivial task. Fortunately, when the set K satisfies (4), it is possible to formulate sufficient conditions for forward pre-invariance using only the barrier candidate B and the right-hand side of (1), F . Such sufficient conditions are usually expressed in terms of an inequality constraining the variation of B along the solutions to the system [START_REF] Aubin | Differential calculus of set-valued maps[END_REF]. In [2, Proposition 2], the condition

∇B(x), η ≤ 0 ∀η ∈ F (x), ∀x ∈ R n (5) 
is used. Condition [START_REF] Taly | Deductive verification of continuous dynamical systems[END_REF] has been relaxed in the literature in different ways. According to our previous work in [START_REF] Maghenem | Sufficient conditions for forward invariance and contractivity in hybrid inclusions using barrier functions[END_REF], the inequality in [START_REF] Taly | Deductive verification of continuous dynamical systems[END_REF] does not need to hold on the entire R n to guarantee forward pre-invariance. It is enough to guarantee that ∇B(x), η ≤ 0 ∀η ∈ F (x), ∀x ∈ U (K)\K, [START_REF] Belleter | Observer based path following for underactuated marine vessels in the presence of ocean currents: A global approach[END_REF] where U (K) is any open neighborhood around the (closed) set K. Furthermore, according to [13, Theorem 1], when F is locally Lipschitz and ∇B(x) = 0 for all x in the boundary of K denoted ∂K, the inequality in [START_REF] Taly | Deductive verification of continuous dynamical systems[END_REF] can be relaxed to hold only on the boundary of K; namely, it is enough to assume ∇B(x), η ≤ 0 ∀η ∈ F (x), ∀x ∈ ∂K.

The non-positiveness required in ( 5) and ( 6) can be relaxed using uniqueness functions, or, minimal functions; see Section V for more details. It is important to note that conditions [START_REF] Taly | Deductive verification of continuous dynamical systems[END_REF], [START_REF] Belleter | Observer based path following for underactuated marine vessels in the presence of ocean currents: A global approach[END_REF], and [START_REF] Tanner | Stable flocking of mobile agents, Part I: Fixed topology[END_REF] require continuous differentiability of the barrier function candidate B. Similar conditions can be formulated when B is only locally Lipschitz or only lower semicontinuous, using appropriate tools; see [START_REF] Maghenem | Sufficient conditions for forward invariance and contractivity in hybrid inclusions using barrier functions[END_REF]. In the most general case where B is not necessarily smooth, the aforementioned conditions can be replaced by the following solution-dependent monotonicity property: ( ) Along each solution φ to (1) starting from

x o ∈ U (K)\int(K) and such that φ([0, T ], x o ) ⊂ U (K)\int(K), for some T > 0 , the map t → B(φ(t, x o )) is nonincreasing on [0, T ].

• The second type of barrier functions in [START_REF] Wieland | Constructive safety using control barrier functions[END_REF] has been applied to multi-robots collision avoidance in [START_REF] Glotfelter | Nonsmooth barrier functions with applications to multi-robot systems[END_REF], [START_REF] Glotfelter | Hybrid nonsmooth barrier functions with applications to provably safe and composable collision avoidance for robotic systems[END_REF], adaptive cruise control in [START_REF] Xu | Correctness guarantees for the composition of lane keeping and adaptive cruise control[END_REF], and bipedal walking in [START_REF] Nguyen | Safety-critical control for dynamical bipedal walking with precise footstep placement[END_REF].

Finally, a notion equivalent to safety, named conditional invariance, is studied and characterized in [START_REF] Ladde | On flow-invariant sets[END_REF], [START_REF] Ladde | Analysis of invariant sets[END_REF], [START_REF] Lakshmikantham | Differential and Integral Inequalities: Theory and Applications[END_REF], [START_REF] Kayande | Conditionally invariant sets and vector Lyapunov functions[END_REF] using Lyapunov-like conditions. Roughly speaking, a set X s ⊂ R n is conditionally invariant with respect to a set X o ⊂ X s if the solutions starting from X o never leave the set X s . Connections between Lyapunov-like conditions guaranteeing conditional invariance and the more recent conditions using barrier functions are discussed in Section V-D.

B. Motivation

Many existing tools to certify safety for control systems are based on the search of a controller and the corresponding barrier function that certifies safety for the resulting closedloop system [START_REF] Dai | Barrier certificates revisited[END_REF], [START_REF] Kong | Exponentialcondition-based barrier certificate generation for safety verification of hybrid systems[END_REF], [START_REF] Robey | Learning robust hybrid control barrier functions for uncertain systems[END_REF]. By solving the converse safety problem, in this case, one can be assured that a barrier function exists when the control system can be rendered safe. Generally speaking, given a safe system (1) with respect to (X o , X u ), the converse safety problem pertains to showing the existence of a barrier function candidate B : R n → R satisfying (3) and verifying conditions guaranteeing safety, such as those in [START_REF] Taly | Deductive verification of continuous dynamical systems[END_REF], [START_REF] Belleter | Observer based path following for underactuated marine vessels in the presence of ocean currents: A global approach[END_REF], [START_REF] Tanner | Stable flocking of mobile agents, Part I: Fixed topology[END_REF], and ( ). To the best of our knowledge, [START_REF] Prajna | On the necessity of barrier certificates[END_REF], [START_REF] Wisniewski | Converse barrier certificate theorems[END_REF], and [START_REF] Ratschan | Converse theorems for safety and barrier certificates[END_REF] are the only existing works treating the converse safety problem via barrier functions. We review these results next.

The converse safety result proposed in [START_REF] Prajna | On the necessity of barrier certificates[END_REF] applies when F is single valued and continuously differentiable. Furthermore, it assumes that there exists a continuously differentiable function V : R n → R that is strictly decreasing along the solutions to [START_REF] Aubin | Differential calculus of set-valued maps[END_REF]; namely, V and F satisfy

∇V (x), F (x) < 0 ∀x ∈ R n . ( 8 
)
Under these conditions, safety with respect to (X o , X u ) is shown to imply the existence of a continuously differentiable barrier function candidate B satisfying [START_REF] Taly | Deductive verification of continuous dynamical systems[END_REF]. Note that this result does not apply when system (1) admits a limit cycle. Indeed, for systems with limit cycles, it is not possible to find a function V such that (8) holds; see Example 6.

In [START_REF] Wisniewski | Converse barrier certificate theorems[END_REF], a geometric point of view is adopted using Morse-Smale theory when system (1) is defined on a smooth and compact manifold. The right-hand side F is assumed to be single valued and smooth. Also, the sets X o and X u are assumed to be compact and disjoint. In the study in [START_REF] Wisniewski | Converse barrier certificate theorems[END_REF], a robust safety notion (see Definition 17) is introduced, for which necessary and sufficient conditions using barrier functions are proposed. Furthermore, in the converse safety result in [START_REF] Wisniewski | Converse barrier certificate theorems[END_REF], the strictly decreasing function V assumed to exist in [START_REF] Prajna | On the necessity of barrier certificates[END_REF] is replaced by the existence of a Meyer function; see [START_REF] Wisniewski | Converse barrier certificate theorems[END_REF]Definitions 7 and 8] for more details.

Finally, in [START_REF] Ratschan | Converse theorems for safety and barrier certificates[END_REF], a converse robust safety result that does not assume existence of V : R n → R such that (8) holds nor the existence of a Meyer function is established when F is smooth and single valued. According to the latter reference, system (1) is robustly safe with respect (X o , X u ) if, for some > 0, the perturbed system

ẋ ∈ F (x) + B x ∈ R n , (9) 
where B ⊂ R n is the closed unit ball centered at the origin, is safe with respect (X o , X u ). It is shown in [START_REF] Ratschan | Converse theorems for safety and barrier certificates[END_REF] that when additionally the closures of the sets X o and X u are disjoint, and the set R n \X u is bounded, robust safety of system (1) with respect to (X o , X u ) is equivalent to the existence of a barrier function candidate satisfying (3) and such that

∇B(x), F (x) < 0 ∀x ∈ ∂K.
To the best of our knowledge, providing necessary and sufficient conditions for safety, or robust safety, without restricting the class of systems [START_REF] Aubin | Differential calculus of set-valued maps[END_REF], are not available in the literature. Furthermore, as we show in this paper, safe systems may not admit a barrier function with the properties assumed in the literature. In fact, Example 1 presents a system as in (1) that is safe with respect to (X o , X u ) ⊂ R n × R n , where F is single valued and smooth, but does not admit a barrier function candidate B : R n → R, function of x only, that is continuous and satisfies any of the sufficient conditions for safety in ( 5), ( 6), [START_REF] Tanner | Stable flocking of mobile agents, Part I: Fixed topology[END_REF], and ( ). This fact motivates the new class of barrier functions introduced in this paper.

C. Contributions

This paper makes the following contributions: 1) We formulate a safety problem in terms of time-varying barrier functions, that are not necessarily smooth, and propose necessary and sufficient conditions for safety without assuming existence of V : R n → R such that (8) holds, the existence of a Meyer function, or boundedness of the set R n \X u . Allowing for nonsmooth barrier functions is justified by the lack of existence of smooth scalar functions satisfying (3) for some scenarios of sets (X o , X u ) as shown in Example 5. Furthermore, timevarying barrier functions are motivated by the existing converse Lyapunov theorems for stability, where timevarying Lyapunov functions are constructed for systems with a stable origin [START_REF] Persidskii | On a theorem of Liapunov[END_REF], [START_REF] Kurzweil | On the inversion of Lyapunov's first theorem on the stability of motion (In Russian)[END_REF], [START_REF] Kurzweil | Transformation of Lyapunov's theorems on stability and Persidskii's theorems on uniform stability (In Russian)[END_REF], [START_REF] Krasovskii | Stability of Motion. Applications of Lyapunov's Second Method to Differential Systems and Equations With Delay[END_REF], [START_REF] Hahn | Stability of Motion[END_REF]. 2) In Section IV-A, inspired by the converse Lyapunov stability theorem in [START_REF] Persidskii | On a theorem of Liapunov[END_REF], given initial and unsafe sets (X o , X u ), we construct a time-varying barrier function as a marginal function of an appropriately defined reachable set over a given finite window of time, along the solutions to [START_REF] Aubin | Differential calculus of set-valued maps[END_REF], and starting from a given initial condition.

We show that such a barrier function guarantees safety provided that ( 1) is safe with respect to (X o , X u ). 3) Furthermore, we show that this barrier function inherits the regularity properties of the proposed reachable set when this one is viewed as a set-valued map [START_REF] Aubin | Differential Inclusions: Set-Valued Maps and Viability Theory[END_REF]. As a result, when F satisfies mild regularity conditions, we show that safety of (1) with respect to (X o , X u ) is equivalent to the existence of a lower semicontinuous time-varying barrier function; see Theorem 2. 4) In Section IV-B, when in addition F is locally Lipschitz, we establish Lipschitz continuity of the proposed reachability map using Filippov Theorem [START_REF] Aubin | Viability Theory[END_REF]Theorem 5.3.1]. As a result, using the dependence of the constructed barrier function on the reachability map, we conclude that safety is equivalent to the existence of a locally Lipschitz time-varying barrier function; see Theorem 3. 5) In Section IV-C, inspired by the converse Lyapunov stability theorem in [START_REF] Kurzweil | On the inversion of Lyapunov's first theorem on the stability of motion (In Russian)[END_REF], we build upon the barrier function constructed in Section IV-B to conclude the existence of a barrier function that is continuously differentiable provided that F is single valued and continuously differentiable; see Theorem 4. As observed in [START_REF] Kurzweil | Transformation of Lyapunov's theorems on stability and Persidskii's theorems on uniform stability (In Russian)[END_REF], Lyapunov stability of the origin is equivalent to conditional invariance with respect to a sequence of compact sets {(X oi , X si )} ∞ i=0 that converges to the origin. However, extending the converse stability result in [START_REF] Kurzweil | On the inversion of Lyapunov's first theorem on the stability of motion (In Russian)[END_REF] to the context of safety is not straightforward and offers many technical challenges. Those challenges are due to the fact that the sets X o and R n \X u are not necessarily bounded, X o is not necessarily forward pre-invariant, and the solutions to the system are not necessarily bounded. Preliminary version of this work is in [START_REF] Maghenem | Characterization of safety and conditional invariance for nonlinear systems[END_REF], where only differential equations are considered and the proofs are omitted. Furthermore, the current paper includes more examples and a more detailed comparison to the existing literature.

The remainder of the paper is organized as follows. Preliminary notions are in Section II. The converse safety problem using time-varying barrier functions is formulated in Section III. The main results are in Section IV. A comparison to existing literature is in Section V. Finally, conclusion and future work are in Section VI.

Notation. Let R ≥0 := [0, ∞), N := {0, 1, . . .}, and N * := {1, 2, . . . , ∞}. For x and y ∈ R n , x denotes the transpose of x, |x| the Euclidean norm of x, and x, y := x y denotes the scalar product between x and y. For a set K ⊂ R n , we use cl(K) to denote its closure and |x| K := inf y∈K |x -y| to define the distance between x and the set K. For O ⊂ R n , K\O denotes the subset of elements of K that are not in O. By B, we denote the closed unite ball centered at the origin. By F : R n ⇒ R n , we denote a set-valued map associating each element x ∈ R n into a subset F (x) ⊂ R n . For a setvalued map F : R n ⇒ R m , dom F denotes the domain of definition of F and F -1 (x) denotes the reciprocal image of F evaluated at x. For a continuously differentiable function B : R n → R, ∇B(x) denotes the gradient of B evaluated at x. Finally, by C k (K), with k ∈ N, we denote the class of k-times differentiable functions on K where the k-th derivative is continuous on K (when K = R n , we only write C k ).

II. PRELIMINARIES A. Set-Valued and Single-Valued Maps

We start this section by recalling the following continuity notions for set-valued and single-valued maps.

Definition 1 (Semicontinuous set-valued maps): Consider a set-valued map F : K ⇒ R n , where K ⊂ R m .

• The map F is said to be outer semicontinuous at

x ∈ K if, for every sequence {x i } ∞ i=0 ⊂ K and for every sequence {y i } ∞ i=0 ⊂ R n with lim i→∞ x i = x, lim i→∞ y i = y ∈ R n , and y i ∈ F (x i ) for all i ∈ N, we have y ∈ F (x); see [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, stability, and robustness[END_REF]Definition 5.9].

• The map F is said to be lower semicontinuous (or, equivalently, inner semicontinuous) at x ∈ K if for each > 0 and y x ∈ F (x), there exists U (x) satisfying the following property: for each z ∈ U (x) ∩ K, there exists y z ∈ F (z) such that |y z -y x | ≤ ; see [ 

: K → R, where K ⊂ R m .
• The scalar function B is said to be lower semicontinuous

at x ∈ K if, for every sequence {x i } ∞ i=0 ⊂ K such that lim i→∞ x i = x, we have lim inf i→∞ B(x i ) ≥ B(x).
• The scalar function B is said to be upper semicontinuous at x ∈ K if, for every sequence {x i } ∞ i=0 ⊂ K such that lim i→∞ x i = x, we have lim sup i→∞ B(x i ) ≤ B(x).

• The scalar function B is said to be continuous at x ∈ K if it is both upper and lower semicontinuous at x. Furthermore, B is said to be upper semicontinuous, lower semicontinuous, or continuous if, respectively, it is upper semicontinuous, lower semicontinuous, or continuous for all x ∈ K.

• Definition 3 (Locally bounded set-valued maps): A setvalued map F : K ⇒ R n , with K ⊂ R m , is said to be locally bounded if, for any x ∈ K, there exist U (x) and β > 0 such that |ζ| ≤ β for all ζ ∈ F (y) and for all y ∈ U (x) ∩ K.

• Definition 4 (Locally Lipschitz set-valued maps): The setvalued map F : K ⇒ R n , with K ⊂ R m , is said to be locally Lipschitz if, for each nonempty set K o ⊂ K, there exists k > 0 such that, for all

(x 1 , x 2 ) ∈ K o × K o , F (x 1 ) ⊂ F (x 2 ) + k|x 1 -x 2 |B, (10) 
or, equivalently,

d H (F (x 2 ), F (x 1 )) ≤ k|x 2 -x 1 |, (11) 
where d H (X 1 , X 2 ) is the Hausdorff distance between the sets

X 1 ⊂ R m and X 2 ⊂ R m ; namely, d H (X 1 , X 2 ) := max sup x∈X1 |x| X2 , sup x∈X2 |x| X1 . (12) 
• Definition 5 (Locally Lipschitz functions): A function F :

K ⇒ R n , with K ⊂ R m , is said to be locally Lipschitz if, for each nonempty set K o ⊂ K, there exists k > 0 such that, for all (x 1 , x 2 ) ∈ K o × K o , |F (x 1 ) -F (x 2 )| ≤ k|x 1 -x 2 |. (13) 
• Definition 6 (Epigraph of functions): Given a scalar function B : R n → R, its epigraph is given by

epi B := {(x, r) ∈ R n × R : r ≥ B(x)} . (14) 
• Definition 7 (Regular sets and functions): A set K ⊂ R n is said to be regular if T K (x) = C K (x) for all x ∈ K, where T K and C K are the contingent and the Clarke tangent cones of K at x, respectively, and given by

T K (x) := v ∈ R n : lim inf h→0 + |x + hv| K h = 0 . ( 15 
)
C K (x) := v ∈ R n : lim sup y→x,h→0 + |y + hv| K h = 0 . (16)
Furthermore, a locally Lipschitz function B : R n → R is regular if epi B is regular.

• Remark 1: The definition of regular functions used in this paper is equivalent to the definition used in [START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF]; see Proposition 7.3 therein.

•

B. Proximal Subdifferential and Clarke Generalized Gradient

In this section, we recall from [START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF] the tools to certify safety using nonsmooth barrier function candidates.

Definition 8 (Proximal normal cone): Given a set S ⊂ R n , the proximal normal cone N P S associated with S evaluated at x ∈ cl(S) is given by

N P S (x) := {ζ ∈ R n : ∃r > 0 so that |x + rζ| S = r|ζ|} . (17) 
• Definition 9 (Proximal subdifferential): The proximal subdifferential of a lower semicontinuous function B : R n → R is the set-valued map ∂ P B : R n ⇒ R n such that, for all x ∈ R n ,

∂ P B(x) := ζ ∈ R n : [ζ -1] ∈ N P epi B (x, B(x)) . ( 18 
)
Moreover, each vector ζ ∈ ∂ P B(x) is said to be a proximal subgradient of B at x. • Remark 2: Using [39, Theorem 2.5], we conclude that

∂ P B(x) = {ζ ∈ R n : ∃U (x), ∃ > 0 : ∀y ∈ U (x) B(y) ≥ B(x) + ζ, y -x -|y -x| 2 . (19)
Furthermore, when B ∈ C 2 , we conclude that ∂ P B(x) = {∇B(x)}. Moreover, the latter equality holds also when B is only C 1 provided that ∂ P B(x) = ∅.

• Definition 10 (Clarke generalized gradient): Let B : R n → R be locally Lipschitz. Let Ω be any subset of zero measure in R n , and let Ω B be the set of points in R n at which B fails to be differentiable. The Clarke generalized gradient at x is defined as

∂ C B(x) := co lim i→∞ ∇B(x i ) : x i → x, x i / ∈ Ω B , x i / ∈ Ω . (20) 
• Remark 3: Definition 10 is equivalent to the original definition of the Clarke generalized gradient in [START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF]; see Theorem 8.1 therein.

•

C. Safety and Set-Invariance in Differential Inclusions

First, we recall the concept of solution to [START_REF] Aubin | Differential calculus of set-valued maps[END_REF]. Definition 11 (Concept of solution):

A function φ : dom φ → R n , where dom φ is of the form [0, T ] or [0, T ) for some T ∈ R ≥0 ∪ {+∞}, is a solution to (1) starting from x o ∈ R n if t → φ(t, x o
) is locally absolutely continuous and satisfies [START_REF] Aubin | Differential calculus of set-valued maps[END_REF] for almost all t ∈ dom φ.

• A solution φ starting from x o ∈ R n is forward complete if dom φ is unbounded, and it is maximal if there is no solution ψ starting from x o such that ψ(t, x o ) = φ(t, x o ) for all t ∈ dom φ and dom φ is a proper subset of dom ψ. Finally, the system (1) is said to be forward complete if each of its maximal solutions is forward complete.

Next, we consider a set X u ⊂ R n denoting the unsafe region of the state space, a set X o ⊂ R n denoting the set of initial conditions -namely, the region that the solutions start fromand a set X s denoting the safe set. Without loss of generality, we assume that

X o ∩ X u = ∅, X o ⊂ X s , and X s ∩ X u = ∅.
Definition 12 (Safety): System ( 1) is said to be safe with respect to (X o , X u ) if, for each solution φ to (1) starting from

x o ∈ X o , we have φ(t, x o ) ∈ R n \X u for all t ∈ dom φ. • Definition 13 (Conditional invariance [18]): A set X s ⊂ R n is conditionally invariant with respect to a set X o ⊂ X s for system (1) if, for each solution φ starting from x o ∈ X o , we have φ(t, x o ) ∈ X s for all t ∈ dom φ. • Definition 14 (Forward pre-invariance): A set X s ⊂ R n is forward pre-invariant for (1) if, for each solution φ to (1) starting from x o ∈ X s , we have φ(t, x o ) ∈ X s for all t ∈ dom φ.
• The safety and the conditional invariance notions are related as follows: system (1) is safe with respect to (X o , X u ) if and only if the set X s := R n \X u is conditionally invariant with respect to X o for [START_REF] Aubin | Differential calculus of set-valued maps[END_REF]. Safety generalizes the forward preinvariance notion: forward pre-invariance of a set X s ⊂ R n is equivalent to safety with respect (X s , R n \X s ). Note that, the prefix "pre" in forward pre-invariance is used to accommodate maximal solutions that are not complete. For example, if a solution φ to (1) starts from x o ∈ X s and has a finite-time escape while remaining in X s , then such a solution may still satisfy φ(t, x o ) ∈ X s for all t ∈ dom φ, but with dom φ bounded and open to the right.

III. THE CONVERSE-SAFETY PROBLEM FORMULATION

Generally speaking, converse safety theorems identify classes of dynamical systems for which safety is equivalent to the existence of a smooth barrier function satisfying (3) plus a sufficient condition for safety. According to the following (counter) example, for the system in (1) that is safe with respect to (X o , X u ), it is not always possible to find a barrier function candidate B : R n → R, function of x only, that is continuous and such that both (3) and ( ) hold.

Example 1:

Consider the system in (1) with x ∈ R 2 , F (x) :=        -x 2 + rx 1 sin(1/r) 2 x 1 + rx 2 sin(1/r) 2 if x = 0 0 otherwise, (21) 
and r := |x|. The system is safe with respect to the sets

X o := {0} , X u := R 2 \X o . (22) 
Indeed, the safety property, in this case, is equivalent to forward invariance of the origin (which coincides with X o ). Forward invariance of the origin holds since the origin is an equilibrium point for system [START_REF] Kayande | Conditionally invariant sets and vector Lyapunov functions[END_REF]. However, we show below that it is not possible to find a barrier candidate B, function only of x, that is continuous, nonincreasing along the solutions to the system, and at the same time having a value at the origin that is strictly smaller than all the values elsewhere as (3) requires.

In polar coordinates, system (21) can be rewritten as

ṙ = (r 2 /2) sin(1/r) 2 , θ = 1. (23) 
Furthermore, from [START_REF] Kong | Exponentialcondition-based barrier certificate generation for safety verification of hybrid systems[END_REF], it follows that the origin is surrounded by (countably) infinitely many limit cycles centered at the origin, denoted by Q i , i ∈ N. Moreover, the radius of the limit cycles monotonically converges to zero as i → ∞ and the trajectories starting from the interior of the annulus formed by each two circles Q i+1 and Q i are spirals that leave Q i+1 and approach Q i . Figure 1 depicts such limit cycles as well as solutions starting from different initial conditions. Now, assume the existence of a continuous function B that is nonincreasing along the solutions to [START_REF] Kayande | Conditionally invariant sets and vector Lyapunov functions[END_REF] and positive definite. Furthermore, for a sequence of points

{x i } ∞ i=0 with x i ∈ Q i , the sequence {B(x i )} ∞ i=0 converges
to zero, and is strictly positive. Hence, there exists a strictly positive and monotonically decreasing subsequence {B(x i k )} ∞ k=0 that also converges to zero. As a result, there exist (l 1 , l 2 ) ∈ N × N and > 0 such that B(x l1 ) -B(x l2 ) = . We assume, further and without loss of generality, that l 2 -l 1 = 2 (the same reasoning is valid if l 2 -l 1 > 2). Next, using the continuity assumption on B and the properties of solutions to [START_REF] Kayande | Conditionally invariant sets and vector Lyapunov functions[END_REF], it follows that for any 1 > 0 we can find T > 0 and two initial conditions x o and x o1 in the interior of the annulus formed by Q l2 and Q l2-1 and, respectively, in the interior of the torus formed by

Q l2-1 and Q l1 such that max {|B(x o ) -B(x l2 )|, |B(x o1 ) -B(φ(T, x o ))|, |B(x l1 ) -B(φ 1 (T, x o1 ))|} ≤ 1 ,
where φ and φ 1 are the solutions to (21) starting from x o and x o1 , respectively. Now, having

=B(x l1 ) -B(x l2 ) = B(x l1 ) -B(φ 1 (T, x o1 ))+ B(φ 1 (T, x o1 )) -B(x o1 ) + B(x o1 ) -B(φ(T, x o ))+ B(φ(T, x o )) -B(x o ) + B(x o ) -B(x l2 )
and using the fact that B does not increase along the solutions to system [START_REF] Kayande | Conditionally invariant sets and vector Lyapunov functions[END_REF], we obtain

=B(x l1 ) -B(x l2 ) ≤ |B(x l1 ) -B(φ 1 (T, x o1 ))|+ |B(x o1 ) -B(φ(T, x o ))| + |B(x o ) -B(x l2 )| ≤ 3 1 .
The latter fact yields to a contradiction since is fixed and 1 can be made as small as possible, that is, for 1 = /4, we obtain ≤ 3 /4 which is a contradiction. Hence, though it is safe, an autonomous barrier function does not exist. This example is inspired from [32, Page 82] and [START_REF] Krasovskii | Stability of Motion. Applications of Lyapunov's Second Method to Differential Systems and Equations With Delay[END_REF]Page 46], where the existence of Lyapunov functions for (nonasymptotically) stable systems is analyzed.

To handle the lack of existence of smooth barrier functions for safe systems, we introduce the following time-varying barrier function candidate notion.

Definition 15 (Time-varying barrier function candidate): A scalar function B : R ≥0 × R n → R is a time-varying barrier function candidate for safety with respect to (X o , X u ) if

B(t, x) > 0 ∀(t, x) ∈ R ≥0 × X u , (24) 
B(t, x) ≤ 0 ∀(t, x) ∈ R ≥0 × X o . (25) 
• Using time-varying barrier functions, we will be able to address the following converse safety problem. 1) is safe with respect to (X o , X u ) if and only if there exists a time-varying barrier function candidate B : R ≥0 × R n → R, with the best possible regularity 1 , such that ( ) Along each solution φ to (1) starting from x o ∈ U (K)\int(K) and remaining in U (K)\int(K), the map t → B(t, φ(t, x o )) is nonincreasing, where

Problem 1 (Converse safety problem): Given sets (X o , X u ) ⊂ R n × R n , with X o ∩ X u = ∅, show that the system in (
K := {(t, x) ∈ R ≥0 × R n : B(t, x) ≤ 0} . (26) 
• Note that the property in ( ) requires the computation of the solutions to [START_REF] Aubin | Differential calculus of set-valued maps[END_REF]. However, depending on the regularity of the function B and of the map F , as shown in [START_REF] Maghenem | Monotonicity along solutions to constrained differential inclusions[END_REF], it is possible to use the following infinitesimal conditions that are necessary and sufficient to conclude ( ).

• When B is continuously differentiable, ( ) is satisfied if ∇B(t, x), [1 η ] ≤ 0 ∀η ∈ F (x), ∀(t, x) ∈ U (K)\K. ( 27 
)
When additionally F is locally Lipschitz, ( 27) is equivalent to ( ).

• When B is locally Lipschitz and F is locally bounded, ( ) is satisfied if ζ, [1 η ] ≤ 0 ∀ζ ∈ ∂ C B(t, x), ∀η ∈ F (x), ∀(t, x) ∈ U (K)\K, (28) 
where ∂ C B is the Clarke generalized gradient of B (see Definition 10). When additionally F is locally Lipschitz and B is regular according to Definition 7, ( 28) is equivalent to ( ), • When B is only continuous and F is locally Lipschitz with closed images, ( ) is satisfied if and only if

ζ, [1 η ] ≤ 0 ∀ζ ∈ ∂ P B(t, x), ∀η ∈ F (x), ∀(t, x) ∈ U (K)\K, (29) 
where ∂ P B is the proximal subdifferential of B (see Definition 8). To solve Problem 1, we start showing that having a timevarying barrier function candidate verifying ( ) is enough to conclude that the system in ( 1) is safe with respect to (X o , X u ). In particular, note that ( ) reduces to ( ) when B is time-independent.

Theorem 1: Given initial and unsafe sets (X o , X u ) ⊂ R n × R n , system (1) is safe with respect to (X o , X u ) if there exists a lower semicontinuous time-varying barrier function candidate B : R ≥0 × R n → R such that ( ) holds.

Proof. Consider the extended system

( ṫ, ẋ) ∈ (1, F (x)) (t, x) ∈ R ≥0 × R n (30) 
and the extended initial and unsafe sets X oa := R ≥0 × X o and X ua := R ≥0 × X u , respectively. To use a contradiction argument, we assume that there exists a solution φ a := (t, φ) starting from φ ao := (0, x o ) ∈ X oa that reaches the set X ua in finite time. This implies, using the continuity of φ a , the existence of 0 ≤ t 1 < t 2 such that φ a ([t 1 , t 2 ], φ ao ) ⊂ U (∂K)\int(K), φ a (t 1 , x ao ) ∈ ∂K, and φ a (t 2 , φ ao ) ∈ U (∂K)\K. Hence, B(φ a (t 1 , φ ao )) ≤ 0 and B(φ a (t 2 , φ ao )) > 0. However, this contradicts ( ). The challenge in Problem 1 is to prove the reverse direction of the statement in Theorem 1, namely, necessity of the existence of a barrier function when (1) is safe. In Section IV, we prove that result inspired by the converse Lyapunov theorems for (non-asymptotic) stability in [START_REF] Persidskii | On a theorem of Liapunov[END_REF], [START_REF] Kurzweil | On the inversion of Lyapunov's first theorem on the stability of motion (In Russian)[END_REF], [START_REF] Kurzweil | Transformation of Lyapunov's theorems on stability and Persidskii's theorems on uniform stability (In Russian)[END_REF].

IV. SOLUTIONS TO THE CONVERSE SAFETY PROBLEM

Given the differential inclusion in (1), we consider the following mild condition on F .

Assumption 1: The map F : R n ⇒ R n is upper semicontinuous, and F (x) is compact and convex for all x ∈ R n .

• Assumption 1 is used in the literature to assure existence of solutions and adequate structural properties for the set of solutions to differential inclusions; see [START_REF] Aubin | Differential Inclusions: Set-Valued Maps and Viability Theory[END_REF], [START_REF] Aubin | Viability Theory[END_REF], [START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF]. When F is single valued, Assumption 1 reduces to continuity of F .

Remark 4: In some of the existing literature, e.g. [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, stability, and robustness[END_REF], Assumption 1 is replaced by the equivalent assumption stating that F needs to be outer semicontinuous and locally bounded with convex images. Outer semicontinuous and locally bounded set-valued maps are upper semicontinuous with compact images [START_REF] Rockafellar | Variational Analysis[END_REF]Theorem 5.19]. The converse is also true using [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, stability, and robustness[END_REF]Lemma 5.15] and the fact that upper semicontinuous set-valued maps with compact images are locally bounded. • Next, we define the concept of backward solutions to [START_REF] Aubin | Differential calculus of set-valued maps[END_REF]. Definition 16 (Backward solutions to (1)): A function ψ : dom ψ → R n starting from x o ∈ R n is a backward solution to (1) if there exists a solution φ in the sense of Definition 11, starting from x o , to the system

ẋ ∈ -F (x) x ∈ R n (31) 
such that dom φ = -dom ψ and ψ(t, x o ) = φ(-t, x o ) for all t ∈ dom ψ.

• Furthermore, for the system in (1), we introduce the reachability map R : R × R n ⇒ R n as follows: [START_REF] Aubin | Differential Inclusions: Set-Valued Maps and Viability Theory[END_REF] where S(x) is the set of maximal solutions to (1) starting from x and S back (x) is the set of maximal backward solutions to (1) starting from x. In simple words, when t ≥ 0, the set R(t, x) includes all the elements reached by the solutions to (1) starting from x over the interval [0, t]. Similarly, when t < 0, the set R(t, x) includes all the elements reached by the backward solutions to (1) starting from x over interval [t, 0]. Finally, given system (1) and a set X o ⊂ R n , we introduce the scalar function B defined for each

• For each (t, x) ∈ R ≥0 × R n , R(t, x) := {φ(s, x) : φ ∈ S(x), s ∈ dom φ ∩ [0, t]}, (32) • For each (t, x) ∈ R <0 × R n , R(t, x) := {φ(s, x) : φ ∈ S back (x), s ∈ dom φ ∩ [t, 0]},
(t, x) ∈ R ≥0 × R n by B(t, x) = inf{|y| Xo : y ∈ R(-t, x)}. ( 34 
)
Note that the function B in ( 34) is inspired by the converse Lyapunov stability theorem in [START_REF] Persidskii | On a theorem of Liapunov[END_REF]. As we show in this section, when system (1) is safe with respect to (X o , X u ), the function B in (34) becomes a time-varying barrier function candidate with respect to (X o , X u ) in the sense of Definition 15. Furthermore, we also show that the scalar function B in (34) inherits the regularity properties of the reachability map R.

A. When F Satisfies Assumption 1

In the following result, for system (1) satisfying Assumption 1, we show that the reachability map R is outer semicontinuous, locally bounded, and continuous with respect to time. A proof is in the appendix.

Proposition 1: Suppose that the system in ( 1) is forward complete and F satisfies Assumption 1. Then, the following hold:

1) The map R is outer semicontinuous and locally bounded.

2) The map t → R(t, x) is continuous for all x ∈ R n .

Along the lines of [START_REF] Aubin | Set-valued Analysis[END_REF]Theorem 1.4.16], given a set-valued map Π : R m ⇒ R n and a set X ⊂ R n , we show how the marginal function f : R m → R given by

f (z) := inf{|y| X : y ∈ Π(z)} (35) 
inherits the regularity of the set-valued map R. A proof is in the Appendix. Lemma 1: Consider a locally bounded set-valued map Π : R m ⇒ R n such that Π(z) is nonempty for all z ∈ R m . Consider a closed and nonempty set X ⊂ R n and the marginal function f : R m → R in [START_REF] Maghenem | Characterization of safety and conditional invariance for nonlinear systems[END_REF]. The following hold:

1) If Π is outer semicontinuous, then f is lower semicontinuous. 2) If Π is lower semicontinuous, then f is upper semicontinuous. 3) If Π is locally Lipschitz, then so is f . The following result is a direct consequence of Proposition 1 and Lemma 1.

Proposition 2: Suppose the system in ( 1) is forward complete and that F satisfies Assumption 1. Consider a closed set X o ⊂ R n and the function B in [START_REF] Aubin | Viability Theory[END_REF]. The following hold:

1) The function B is lower semicontinuous.

2) The map t → B(t, x) is continuous.

Proof. The backward solutions to (1) starting from x ∈ R n are the forward solutions to (31) starting from x. Furthermore, having (1) forward complete and F satisfying Assumption 1 implies that (31) is also forward complete and -F satisfies Assumption 1. Hence, using Proposition 1, we conclude that the reachability map R is outer semicontinuous and locally bounded. Next, using the first item in Lemma 1, we conclude that B is lower semicontinuous.

Furthermore, using Proposition 1, we conclude that the map t → R(t, x) is continuous; hence, lower semicontinuous. Next, using the second item in Lemma 1, we conclude that the map t → B(t, x) is upper semicontinuous. Finally, since we already showed that B is lower semicontinuous, we conclude that t → B(t, x) is continuous.

We are now ready to provide a solution to Problem 1 when F satisfies Assumption 1.

Theorem 2: Suppose the system in ( 1) is forward complete and F satisfies Assumption 1. Consider initial and unsafe sets 1) is safe with respect to (X o , X u ) if and only if there exists a lower semicontinuous time-varying barrier function candidate B : R ≥0 × R n → R, with t → B(t, x) continuous, such that ( ) holds.

(X o , X u ) ⊂ R n ×R n such that X o is closed and X o ∩X u = ∅. System (
Proof. The sufficiency part follows using Theorem 1. To prove the necessary part, we use the barrier function candidate B in [START_REF] Aubin | Viability Theory[END_REF]. Since the set X o is closed and system (1) is safe and the system (1) is forward complete, we conclude that the backward solutions to (1) starting from x ∈ X u will neither reach nor converge to the set X o in finite time; hence, B(t, x) > 0 for all (t, x) ∈ R ≥0 × X u . Then, [START_REF] Robey | Learning robust hybrid control barrier functions for uncertain systems[END_REF] holds. Furthermore, ( 25) is trivially satisfied under [START_REF] Aubin | Viability Theory[END_REF]. Then, B is a time-varying barrier function candidate for safety with respect to (X o , X u ). Next, we show that the barrier function candidate B is monotonically nonincreasing along the solutions to [START_REF] Aubin | Differential calculus of set-valued maps[END_REF]. Indeed, consider a solution φ :

[t, t+h] → R n to (1) starting from x o ∈ R n at t = 0, for some h > 0. Note that B(t + h, φ(t + h, x o )) = inf{|y| Xo : y ∈ R(-t -h, φ(t + h, x o ))}. Furthermore, we use the fact that R(-t, φ(t, x o )) ⊂ R(-t -h, φ(t + h, x o )), which implies that B(t + h, φ(t + h, x o )) = inf{|y| Xo : y ∈ R(-t -h, φ(t + h, x o ))} ≤ inf{|y| Xo : y ∈ R(-t, φ(t, x o ))} = B(t, φ(t, x o )).
Hence, the barrier function candidate B does not increase along the solution φ. Hence, ( ) holds. Finally, the fact that B is lower semicontinuous and t → B(t, x) is continuous follows from Proposition 2.

Example 2 (Example 1 revisited): Consider system (21) in Example 1 with the sets (X o , X u ) as in [START_REF] Dai | Barrier certificates revisited[END_REF]. According to the proof Theorem 2, the function B : R ≥0 × R 2 → R given by

B(t, x) = φ(-t, |x|), ( 36 
)
where φ is the backward solution to ṙ = (r 2 /2) sin 2 (1/r) starting from |x|, is a lower semicontinuous time-varying barrier function candidate satisfying ( ). Indeed, the function B in (36) coincides with the time-varying barrier function candidate B in [START_REF] Aubin | Viability Theory[END_REF]. Furthermore, the explicit formula of B in ( 36) is given by

B(t, x) =      0 if x = 0, 1 kπ if 1 |x| = kπ, k ∈ N * 1 arc cot(cot( 1 |x| )-t 2 )+kπ if 1 |x| ∈ (kπ, (k + 1)π), k ∈ N, ( 37 
)
where cot is the cotangent function and arc cot is its inverse function; namely, arc cot(cot(x)) = x for all x ∈ (0, π).

B. When F is Locally Lipschitz

For system (1) with F locally Lipschitz and having closed images, one can use the well-known Filippov Theorem (see Lemma 6 in the appendix) to conclude that the reachability map R is also locally Lipschitz. In this setting, we have the following result.

Proposition 3: Suppose system (1) is forward complete and F satisfies Assumption 1 and is locally Lipschitz. Then, R is locally Lipschitz.

Next, using Lemma 1, we show that, when F is locally Lipschitz, B in ( 34) is locally Lipschitz.

Proposition 4: Suppose that the system in ( 1) is forward complete and F is locally Lipschitz with closed images. Let X o ⊂ R n be closed. Then, B in ( 34) is locally Lipschitz.

Proof. The backward solutions to (1) starting from x ∈ R n are the solutions to (31) starting from x. Furthermore, having (1) forward complete and F locally Lipschitz and satisfying Assumption 1 imply that ( 31) is also forward complete and -F is locally Lipschitz and satisfies Assumption 1. Hence, using Proposition 3, we conclude that the reachability map R is locally Lipschitz. Finally, using the third item in Lemma 1, we conclude that B is locally Lipschitz.

We are now ready to present an equivalent characterization of safety solving Problem 1 when F is locally Lipschitz.

Theorem 3: Suppose the system in ( 1) is forward complete, and F satisfies Assumption 1 and is locally Lipschitz. Consider the initial and unsafe sets 1) is safe with respect to (X o , X u ) if and only if there exists a locally Lipschitz timevarying barrier function candidate B : R ≥0 × R n → R such that ( ) holds.

(X o , X u ) ⊂ R n ×R n such that X o is closed and X o ∩X u = ∅. System (
Proof. The proof of the sufficient part follows via Theorem 1. To prove the necessary part, we consider the barrier function candidate B in [START_REF] Aubin | Viability Theory[END_REF]. The properties in [START_REF] Robey | Learning robust hybrid control barrier functions for uncertain systems[END_REF], [START_REF] Prajna | On the necessity of barrier certificates[END_REF], and ( ) follow as in the proof of Theorem 2. Finally, using Proposition 4 and Lemma 1, we conclude that the candidate B in (34) is locally Lipschitz.

In the following result, we provide a characterization of safety that, rather than using ( ), uses an equivalent infinitesimal condition. Before that, we first introduce the following lemma relating monotonicity of B to infinitesimal inequalities.

Lemma 2: Suppose the system in ( 1) is such that F satisfies Assumption 1 and is locally Lipschitz. Let B : R n → R be lower semicontinuous. Then, given an open set O ⊂ R n , the monotonicity property ( ) Along each solution φ starting from

x o ∈ R n and satisfying φ(dom φ, x o ) ⊂ O, the map t → B(φ(t, x o )) is nonincreasing; • is satisfied if and only if ζ, η ≤ 0 ∀ζ ∈ ∂ P B(x), ∀η ∈ F (x), ∀x ∈ O. ( 38 
)
Lemma 2 is a particular case of [START_REF] Maghenem | Monotonicity along solutions to constrained differential inclusions[END_REF]Corollary 4.13].

Corollary 1: Suppose the system in ( 1) is forward complete and F satisfies Assumption 1 and is locally Lipschitz. Consider initial and unsafe sets 

(X o , X u ) ⊂ R n ×R n such that X o is closed and X o ∩ X u = ∅. System (1) is safe with respect to (X o , X u ) if
× R n → R such that ζ, [1 η ] ≤ 0 ∀ζ ∈ ∂ P B(t, x), ∀η ∈ F (x), ∀(t, x) ∈ R ≥0 × R n . (39) 
Proof. According to Theorem 3, safety with respect to (X o , X u ), when the set X o is closed, is equivalent to the existence of a locally Lipschitz time-varying barrier function B : R ≥0 × R n → R satisfying ( 24), [START_REF] Prajna | On the necessity of barrier certificates[END_REF], and ( ). Moreover, according to the proof of Theorem 2, for each solution φ to (1) starting from x o ∈ R n , the map t → B(t, φ(t, x o )) is nonincreasing. This property is equivalent to saying that property ( ) in Lemma 2 is satisfied while replacing (x, O) therein by ((t, x), (R × R n )), which completes the proof since the function B is continuous.

Example 3 (Example 1 revisited): Consider system (21) in Example 1 with the sets (X o , X u ) as in [START_REF] Dai | Barrier certificates revisited[END_REF]. Since the righthand side in ( 21) is locally Lipschitz and X o is closed, we conclude via Theorem 3 that the time-varying barrier function B in ( 36) is locally Lipschitz and satisfies [START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF].

C. When F is Single Valued and Smooth

In the context of (non-asymptotic) stability of the origin, Kurzweil in [START_REF] Kurzweil | On the inversion of Lyapunov's first theorem on the stability of motion (In Russian)[END_REF] deduced from the Lyapunov function constructed in [START_REF] Persidskii | On a theorem of Liapunov[END_REF], which is similar to [START_REF] Aubin | Viability Theory[END_REF], the existence of a Lyapunov function that is C 1 everywhere (except at the origin) under continuous differentiability of F and using the fact that the origin is an equilibrium point. The compactness of the origin is an important requirement for the proof in [START_REF] Kurzweil | On the inversion of Lyapunov's first theorem on the stability of motion (In Russian)[END_REF] to hold. Unfortunately, this assumption does not hold when a generic (not necessarily invariant) set X o is considered instead of the origin, as X o might be unbounded. To handle this situation, we extend [START_REF] Hahn | Stability of Motion[END_REF]Lemma 48.3] via Lemma 3 and Lemma 4 below, whose proofs are in the Appendix.

Lemma 3: Consider a continuous function h : R ≥0 × R n → R ≥0 and a closed set K ⊂ R n . Assume that i) The function h is positive definite with respect to K uniformly in t; namely, h(t, x) = 0 for all t ≥ 0 if and only if x ∈ K, ii) The map t → h(t, x) is nonincreasing for each x ∈ R n . Then, for any compact set I ⊂ R n such that I ∩ K = ∅, there exists a continuous function g : R ≥0 × I → R ≥0 such that 1) The function g ∈ C 1 (R ≥0 × int(I)), 2) For any (t, x) ∈ R ≥0 × I,

1 2 h(t, x) ≤ g(t, x) ≤ 2h(t, x), (40) 
3) The map t → g(t, x) is nonincreasing for each x ∈ I.

Lemma 4: Consider a continuous function h : R ≥0 × R n → R ≥0 and consider a closed set K ⊂ R n . Assume that i)-ii) in Lemma 3 hold. Then, there exists a continuous function

g : R ≥0 × R n → R ≥0 such that 1) The function g ∈ C 1 (R ≥0 × (R n \K)), 2) For all (t, x) ∈ R ≥0 × R n , 1 2 h(t, x) ≤ g(t, x) ≤ 2h(t, x), (41) 
3) The map t → g(t, x) is nonincreasing for each x ∈ R n .

It should be added that the origin being an equilibrium plays an important role in [START_REF] Kurzweil | On the inversion of Lyapunov's first theorem on the stability of motion (In Russian)[END_REF] to guarantee positive definiteness of a certain function constructed in the proof. However, such a function is not necessarily positive definite when the origin is replaced by a generic closed set. To handle this situation, we propose a state dependent change in the time scale such that, in the new time scale, this function becomes positive definite.

Theorem 4: Suppose the system in ( 1) is forward complete, and F is single valued and continuously differentiable. Consider initial and unsafe sets 1) is safe with respect to (X o , X u ) if and only if there exists a continuous time-varying barrier function candidate B :

(X o , X u ) ⊂ R n × R n such that X o is closed and X o ∩ X u = ∅. System (
R ≥0 × R n → R of class C 1 ((R ≥0 × R n )\K), where K := {(t, x) ∈ R ≥0 × R n : B(t, x) ≤ 0}, such that ∇B(t, x), [1 F (x) ] ≤ 0 ∀(t, x) ∈ (R ≥0 × R n ) \K. (42) 
Proof. In order to prove the sufficient part of the statement, we use a contradiction. That is, assume the existence of a solution φ starting from x o ∈ X o such that φ(T, x o ) ∈ X u for some T > 0. The latter fact implies, using [START_REF] Sideris | Ordinary differential equations and dynamical systems[END_REF], that B(0, φ(0, x o )) ≤ 0 and B(T, φ(T, x o )) > 0. Furthermore, since t → B(t, φ(t, x o )) is continuous, we also conclude the existence of 0 ≤ T 1 < T such that B(T 1 , φ(T 1 , x o )) = 0 and B(t, φ(t, x o )) > 0 for all t ∈ (T 1 , T ]. Hence, B(T, φ(T, x o )) -B(T 1 , φ(T 1 , x o )) > 0 and using the continuity of t → B(t, φ(t, x o )), we also conclude the existence of > 0 sufficiently small such that T 1 + 2 < T and

B(T -, φ(T -, x o ))-B(T 1 + , φ(T 1 + , x o )) > 0. However, since B(t, φ(t, x o )) > 0 for all t ∈ (T 1 , T ], it follows that t → B(t, φ(t, x o )) is C 1 ((T 1 , T )). Hence, B(T -, φ(T -, x o )) -B(T 1 + , φ(T 1 + , x o )) = T - T1+ ∂B ∂t (t, φ(t, x o )) + ∂B ∂x (t, φ(t, x o ))F (φ(t, x o ))dt ≤ 0,
which yields to a contradiction.

To prove the necessary part, we first propose to render the behavior of the system (1) around the set X o similar to the behavior of a smooth system around its equilibrium point. More precisely, by proposing a new time scale, we render the set X o unreachable in finite time by the solutions starting from R n \X o . To this end, given an initial condition x o ∈ R n \X o , we propose the following new time scale

τ (t, x o ) := t + t 0 1 V (φ(s, x o )) ds, (43) 
where V is any locally Lipschitz and positive definite function with respect to the set X o which is differentiable everywhere outside the set X o and φ is the solution to (1) starting from x o . The function V always exists for any given closed set X o ⊂ R n and it can be constructed using Lemma 4 by considering the distance function with respect to X o to be the function h therein. Furthermore, we let ψ(τ (t, x o ), x o ) := φ(t, x o ). As a consequence, the derivative of y with respect to the new time scale τ satisfies

ψ (τ, x o ) := dψ dτ (τ, x o ) = dφ dτ (t, x o ) = F (φ(t, x o )) dτ dt (t, x o ) = F (φ(t, x o ))V (φ(t, x o )) 1 + V (φ(t, x o )) . (44) 
Hence,

ψ (τ, x o ) = F (ψ(τ, x o ))V (ψ(τ, x o )) 1 + V (ψ(τ, x o )) . ( 45 
)
Note that the solutions to the system

ψ = F (ψ)V (ψ) 1 + V (ψ) (46) 
starting from x o cannot reach X o when starting outside that set X o . Moreover, the set X o is forward invariant under the system [START_REF] Jankovic | Robust control barrier functions for constrained stabilization of nonlinear systems[END_REF].

Let us now introduce the continuous function

h : R ≥0 × R n → R ≥0 as h(τ, x o ) := inf{|y| Xo : y ∈ R(τ, x o )}, (47) 
where R in this case is the reachable set along the solutions to the system [START_REF] Jankovic | Robust control barrier functions for constrained stabilization of nonlinear systems[END_REF]. Using Proposition 4, we conclude that the function h is locally Lipschitz. Furthermore, since the righthand side of ( 46) is locally Lipschitz, we conclude that h positive definite with respect to the set X o . Finally, the map τ → h(τ, x o ) non-increasing for all x o ∈ R n . Therefore, using Lemma 4, we conclude the existence of a continuous function g : R ≥0 × R n → R ≥0 which is C 1 outside the set X o , nonincreasing with respect to the first argument, and satisfies

1 2 h(τ, x o ) ≤ g(τ, x o ) ≤ 2h(τ, x o ) ∀(τ, x o ) ∈ (R ≥0 × R n ).
Next, we introduce the barrier candidate B : R ≥0 ×R n → R ≥0 as

B(t, x) :=    g(τ (t, χ(-t, x)), χ(-t, x)) if χ([-t, 0], x) ∩ X o = ∅, 0 otherwise, ( 48 
)
where χ is the backward solution to (1) starting from x. Note that when x ∈ X u , for each t ≥ 0, we have χ(

[-t, 0], x) ∩ X o = ∅, hence, B(t, x) = g(τ (t, χ(-t, x)), χ(-t, x)) ≥ h(τ (t, χ(-t, x)), χ(-t, x))/2 > 0.
Contrary, when x ∈ X o , χ([-t, 0], x) ∩ X o = ∅, hence, B(t, x) = 0. Furthermore, we show that the candidate B is non-increasing along the solutions to (1) by showing that

B(t + h, φ(t + h, x o )) ≤ B(t, φ(t, x o )) ∀t ≥ 0, ∀h ≥ 0,
and for each solution φ to (1) starting from x o . To this end, we distinguish two complementary situations.

1) When χ([-(t + h), 0], φ(t + h, x o )) ∩ X o = ∅, it follows that B(t + h, φ(t + h, x o )) = 0 ≤ B(t, φ(t, x o )). 2) When χ([-(t + h), 0], φ(t + h, x o )) ∩ X o = ∅, it follows that B(t + h, φ(t + h, x o )) = g(τ (t + h, x o ), x o ) = g(τ (t + h, χ(-t, φ(t, x o ))), χ(-t, φ(t, x o ))) ≤ g(τ (t, χ(-t, φ(t, x o ))), χ(-t, φ(t, x o ))) = B(t, φ(t, x o )).
To obtain the latter inequality, we used the fact that the function g is non-increasing with respect to its first argument uniformly in the second. In order to complete the proof, it remains to show that χ(-t, x)), χ(-t, x)). Furthermore, since the function B is continuous, we conclude the existence of U (t, x) an open neighborhood around (t, x) such that, for any (t , x ) ∈ U (t, x), we have B(t , x ) = g(τ (t , χ(-t , x )), χ(-t , x )) > 0. Next, we note that the map (τ, x) → g(τ, x) is continuously differentiable on R ≥0 × (R n \X o ). Furthermore, χ(-t, x) is continuously differentiable with respect to its arguments since F ∈ C 1 , see [START_REF] Sideris | Ordinary differential equations and dynamical systems[END_REF]Chapter 5]. Moreover, the map

B ∈ C 1 ((R ≥0 × R n )\K). Indeed, for (t, x) ∈ (R ≥0 × R n )\K, we have B(t, x) > 0. Hence, χ([-t, 0], x) ∩ X o = ∅ and B(t, x) = g(τ (t,
(t, x) → τ (t, χ(-t, x)) is C 1 provided that χ(-s, x) / ∈ X o for all s ∈ [0, t],
which completes the proof.

Example 4 (Example 1 revisited): Consider system ( 21) in Example 1 with the sets (X o , X u ) as in [START_REF] Dai | Barrier certificates revisited[END_REF]. Since the righthand side in ( 21) is continuously differentiable, we conclude using Theorem 4 that system (21) admits a continuous timevarying barrier function candidate [START_REF] Sideris | Ordinary differential equations and dynamical systems[END_REF]. In particular, the function B in [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, stability, and robustness[END_REF], given explicitly in [START_REF] Michael | Continuous selections. I[END_REF], corresponds to such a smooth barrier function.

B : R ≥0 × R n → R of class C 1 ((R ≥0 × R n )\K) satisfying

V. CONNECTIONS TO RESULTS IN THE LITERATURE A. Connections to Tangent-Cone-Type Conditions

According to [START_REF] Nagumo | Über die lage der integralkurven gewöhnlicher differentialgleichungen[END_REF], given a closed set K ⊂ R n , when the solutions to (1) are unique or when F is locally Lipschitz according to Definition 4, the set K is forward pre-invariant if and only if

F (x) ⊂ T K (x) ∀x ∈ ∂K. ( 49 
)
Note that (49) involves the contingent cone T K and the map F on the boundary of the closed set K. However, in general, as stressed in [START_REF] Aubin | Viability Theory[END_REF], invariance depends on the values of F outside K rather than on its boundary. Under mild regularity properties on F , the external contingent cone E K is used in [START_REF] Aubin | Viability Theory[END_REF], and ( 49) can be replaced by

F (x) ⊂ E K (x) ∀x ∈ R n \K, (50) 
where E K is the external contingent cone of K at x is given by E 49) and ( 50) resemble conditions ( 7) and ( 6), respectively. Indeed, in ( 49) and ( 50), we are using the distance function B(x) := |x| K since (4) holds. However, since the distance function to a set is only locally Lipschitz, the gradient-based inequalities in ( 7) and ( 6) are replaced by the limits in the definitions of T K and E K in ( 49) and ( 50), respectively.

K (x) := v ∈ R n : lim inf h→0 + |x+hv| K -|x| K h ≤ 0 . Note that conditions (

B. Connections to Results using Barrier Functions

Before comparing our results to the existing literature, we recall the following useful notions.

• Uniqueness function [START_REF] Maghenem | Sufficient conditions for forward invariance and contractivity in hybrid inclusions using barrier functions[END_REF]. A function g : R → R is said to be a uniqueness function if, for each continuous function l : R ≥0 → R ≥0 satisfying l(0) = 0 and, for some > 0, lim sup

h→0 + l(t + h) -l(t) h ≤ g(l(t)) for a.a. t ∈ [0, ],
it follows that l(t) = 0 for all t ∈ [0, ]. • Minimal functions [START_REF] Konda | Characterizing safety: Minimal control barrier functions from scalar comparison systems[END_REF]. A function g : R → R is said to be a minimal function if, for each continuous function l : R ≥0 → R ≥0 satisfying l(0) ≤ 0 and, for some > 0, lim sup

h→0 + l(t + h) -l(t) h ≤ g(l(t)) for a.a. t ∈ [0, ],
it follows that l(t) ≤ 0 for all t ∈ [0, ]. • Extended class-K functions [START_REF] Ames | Control barrier function based quadratic programs for safety critical systems[END_REF]. A continuous function g : R → R is said to be an extended class-K function if g is strictly increasing and g(0) = 0. The nonpositive sign required in ( 27) can be relaxed using uniqueness functions or minimal functions, as shown in [START_REF] Maghenem | Sufficient conditions for forward invariance and contractivity in hybrid inclusions using barrier functions[END_REF] and [START_REF] Konda | Characterizing safety: Minimal control barrier functions from scalar comparison systems[END_REF], respectively. More precisely, for a general timevarying barrier function candidate B ∈ C 1 , condition [START_REF] Ratschan | Converse theorems for safety and barrier certificates[END_REF] can be relaxed to

∇B(t, x), [1 η ] ≤ g(B(t, x)) ∀η ∈ F (x), ∀(t, x) ∈ U (K)\K, ( 51 
)
where g is either a uniqueness or a minimal function. Furthermore, given a time-independent barrier function candidate B ∈ C 1 , according to [START_REF] Dai | Barrier certificates revisited[END_REF], [START_REF] Kong | Exponentialcondition-based barrier certificate generation for safety verification of hybrid systems[END_REF], [START_REF] Ames | Control barrier function based quadratic programs for safety critical systems[END_REF], the following condition implies forward pre-invariance of the set K in (4):

∇B(x), η ≤ g(B(x)) ∀η ∈ F (x), ∀x ∈ U (K), ( 52 
)
where the function g is either an extended class-K or a locally Lipschitz function. Moreover, when F is locally Lipschitz and the set K is compact, ( 52) is equivalent to forward preinvariance of the set K. This converse result, in addition to restricting the class of systems (1), requires the existence of a C 1 barrier function candidate. As we show in the following example, it is possible to find situations where the sets (X o , X u ) do not admit a C 1 time-independent barrier function candidate.

Example 5:

Let X u := R 2 \X o and X o := {x ∈ R 2 : ρ 1 (x) ≤ 0, ρ 2 (x) ≤ 0}
, where ρ 1 and ρ 2 : R n → R are C 1 functions such that, for each i ∈ {1, 2}, ∇ρ i (x) = 0 for all x ∈ R n such that ρ i (x) = 0. Furthermore, suppose there exists x o ∈ R 2 such that ρ 1 (x o ) = ρ 2 (x o ) = 0 and the vectors ∇ρ 1 (x o ) and ∇ρ 2 (x o ) are linearly independent. For this choice of (X o , X u ), we show that it is not possible to find a C 1 barrier function candidate. To arrive to a contradiction, we assume the existence of B : R n → R such that X o := {x ∈ R 2 : B(x) ≤ 0}. Assume without loss of generality that ∇B(x o ) = 0. Hence, using [START_REF] Aubin | Set-valued Analysis[END_REF]Proposition 4.3.7], we conclude that

T Xo (x o ) = {v ∈ R 2 : ∇B(x o ), v ≤ 0}.
Moreover, from the construction of X o using ρ 1 and ρ 2 , we conclude that

T Xo (x o ) = {v ∈ R 2 : ∇ρ 1 (x o ), v ≤ 0, ∇ρ 2 (x o ), v ≤ 0}.
Now, let y ∈ R 2 \{0} be such that ∇B(x o ), y = 0; hence, λy ∈ T Xo (x o ) for all λ ∈ R. The latter implies that ∇ρ 1 (x o ), y = 0 and ∇ρ 2 (x o ), y = 0, which contradicts the fact that the vectors ∇ρ 1 (x o ) and ∇ρ 2 (x o ) are linearly independent.

When g is an extended class-K function, the condition in (52) is a particular case of ( 6), and thus a particular case of [START_REF] Ratschan | Converse theorems for safety and barrier certificates[END_REF]. Furthermore, when g is locally Lipschitz, (52) becomes a particular case of (51). Indeed, every locally Lipschitz function is a uniqueness function and a minimal function at the same time. However, Osgood functions are examples of uniqueness and minimal functions that are not locally Lipschitz [START_REF] Redheffer | The theorems of bony and brezis on flow-invariant sets[END_REF], [START_REF] Agarwal | Uniqueness and nonuniqueness criteria for ordinary differential equations[END_REF]. Finally, imposing the inequality in (52) to hold on U (K) instead of only on U (K)\K is not necessary to guarantee safety; however, it becomes useful when using numerical methods for the (online) design of smooth controllers that enforce safety [START_REF] Jankovic | Robust control barrier functions for constrained stabilization of nonlinear systems[END_REF].

Remark 5: When the barrier function candidate B is locally Lipschitz, condition (28) can also be relaxed using uniqueness functions and minimal functions. Furthermore, when B is time independent, condition [START_REF] Persidskii | On a theorem of Liapunov[END_REF] reduces to the condition used in [14, Theorem 2] and [START_REF] Glotfelter | Hybrid nonsmooth barrier functions with applications to provably safe and composable collision avoidance for robotic systems[END_REF].

•

C. Connections to Existing Converse Safety Results

Via the following simple example, we illustrate the limitation of the converse safety results in [START_REF] Prajna | On the necessity of barrier certificates[END_REF], [START_REF] Wisniewski | Converse barrier certificate theorems[END_REF], and [START_REF] Ratschan | Converse theorems for safety and barrier certificates[END_REF].

Example 6: Consider the system

ẋ = -1 -10 1 0 x x ∈ R 2 , (53) 
and let the initial and unsafe sets be given by

X o := x ∈ R 2 : x 2 1 + x 2 2 ≤ 1 , X u := x ∈ R 2 : x 2 ≥ 2 .
Note that the set X o is not forward pre-invariant but the system (53) is safe with respect to (X o , X u ). One way to show this fact consists in verifying (5) using the barrier function candidate B(x) := x 2 1 /10+x 2 2 -1. Note that system (53) admits the origin as an equilibrium point, which is a trivial limit cycle. Hence, it is not possible to apply the converse safety result in [START_REF] Prajna | On the necessity of barrier certificates[END_REF]. Furthermore, according to the robust safety notion introduced in [START_REF] Wisniewski | Converse barrier certificate theorems[END_REF], which is included below, the system (53) is robustly safe with respect to (X o , X u ). However, the system (53) is not defined on a bounded manifold. Hence, it is not possible to use the converse result in [START_REF] Wisniewski | Converse barrier certificate theorems[END_REF].

Definition 17 (Robust safety [START_REF] Wisniewski | Converse barrier certificate theorems[END_REF]): System (1) is said to be robustly safe with respect to (X o , X u ) if there exists

V o := U (X o ) and V u := U (X u ) such that the vector field F separates V o from V u . In turn, a vector field F is said to separate a set V o from a set V u if F does not join V o to V u .
In turn, a vector field F is said to join a set V o to a set V u if one of the following is true.

1) There exists a solution to (1) starting from V o that reaches V u . 2) There is not a succession of singular elements (singular points and limit cycles) {β 1 , β 2 , ..., β N }, N ∈ N, such that the following properties hold simultaneously:

• A forward solution to (1), starting from V o , converges to β 1 . • A backward solution to (1), starting from V u , converges to β N . • A broken solution joins β 1 to β N ; namely, for each i ∈ {1, 2, ..., N }, there is x oi ∈ R n such that the forward solution to (1) starting from x oi converges to β i+1 and the backward solution to (1) starting from x oi converges to β i ; see [START_REF] Wisniewski | Converse barrier certificate theorems[END_REF] for more details.

• Finally, note that the system ẋ ∈ -1 -10

1 0 x + B x ∈ R 2 (54) 
is input-to-state stable (ISS) with respect to and the sets X o and X u are closed and disjoint. Hence, for > 0 sufficiently small, system (54) is safe with respect to (X o , X u ). However, the complement of the set X u is unbounded. As a result, we cannot use the converse result in [START_REF] Ratschan | Converse theorems for safety and barrier certificates[END_REF].

D. Connections to Results on Conditional Invariance

According to [18, Theorem 2], the set X s is conditionally invariant with respect to X o if there exists a continuously differentiable function V : R n → R such that the following three conditions hold: i) For each x ∈ R n \X o and for each y x ∈ X o satisfying y x := arg inf{V (x -z) : z ∈ X o }, we have ∇V (xy x ), η ≤ 0 for all η ∈ F (y x ). ii) There exists a ∈ R such that the function B : R n → R given by B(x

) := inf{V (x -z) -a : z ∈ X o } satisfies B(x) > 0 ∀x ∈ ∂X s , B(x) ≤ 0 ∀x ∈ ∂X o . (55) 
iii) For each (x, y)

∈ (R n \X o ) × X o , ∇V (x -y), η x -η y ≤ g(V (x -y) -a) (56) 
for all (η x , η y ) ∈ F (x)×F (y), where the scalar function g is a minimal function (see Section V-B). The proof of this result is based on showing that, along the solutions to (1), the function B cannot become positive when starting from nonpositive values. Indeed, using i) and iii), we can prove that

ζ, η ≤ g(B(x)) ∀ζ ∈ ∂ C B(x), ∀η ∈ F (x), ∀x ∈ R n \X o .
(57) Note that ii) along with (57) guarantee forward pre-invariance of the set K in (4); however, condition (3) is not necessarily satisfied in this case. Furthermore, ii) and (57) imply that int(X s ) is conditionally invariant with respect to X o , when

X o ⊂ int(X s ).
Next, we present a result that generalizes [START_REF] Ladde | On flow-invariant sets[END_REF]Theorem 2]. In our result, we distinguish strict conditional invariance, where the solutions starting from X o remain in the interior of X s , from conditional invariance, where the solutions starting from X o remain in X s . To match the setting in [START_REF] Ladde | On flow-invariant sets[END_REF], it is written for a time-independent barrier function candidate.

Theorem 5: Consider the system in (1) such that F satisfies Assumption 1. Let (X o , X s ) ⊂ R n × R n with X o ⊂ X s , g : R → R be a minimal function, and B : R n → R be locally Lipschitz.

1) The set X s is conditionally invariant with respect to X o if

B(x) > 0 ∀x ∈ U (X s )\X s , B(x) ≤ 0 ∀x ∈ ∂X o , (58) 
ζ, η ≤ g(B(x)) ∀ζ ∈ ∂ C B(x), ∀η ∈ F (x), ∀x ∈ U (X s )\X o . (59) 
2) The set X s is strictly conditionally invariant with respect to X o ⊂ int(X s ) if (55) holds and

ζ, η ≤ g(B(x)) ∀ζ ∈ ∂ C B(x), ∀η ∈ F (x), ∀x ∈ X s \X o . (60) 
Proof. To reach a contradiction and establish item 1 (respectively, item 2), we assume that (58) (respectively, (55)) holds and X s is not conditionally invariant (respectively, not strictly conditionally invariant) with respect to X o . That is, there exists a solution φ starting from x o ∈ ∂X othus, B(x o ) ≤ 0 -and there exists T > 0 such that φ(T, x o ) ∈ U (X s )\X s (respectively, φ(T, x o ) ∈ ∂X s ); thus, φ(T, x o ) > 0, and φ((0, T ], x o ) ⊂ U (X s )\X o (respectively, φ((0, T ], x o ) ⊂ X s \X o ). Hence, according to [47, Page 7] and [48], we conclude that, for almost all t ∈ [0, T ],

Ḃ(φ(t, x o )) ≤ sup{ ζ, φ(t, x o ) : ζ ∈ ∂ C B(φ(t, x o ))} ≤ g(B(φ(t, x o ))),
with B(x o ) ≤ 0 and B(φ(T, x o )) > 0, which yields a contradiction since g is a minimal function, implying that B(φ(T, x o )) has to be nonpositive.

Theorem 5 relaxes condition (3) while assuming that the inequality in (51) holds in a relatively larger set.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose sufficient and necessary conditions for safety in differential inclusions. Guided by the lack of existence of autonomous and continuous barrier functions certifying safety, time-varying barrier functions are proposed, and their existence is shown to be both necessary as well as sufficient. The regularity of the proposed time-varying barrier functions depends on the regularity of the right-hand side of the system.

Future work pertains to solve Problem 1 for constrained systems of the form

ẋ ∈ F (x) x ∈ C ⊂ R n (61) 
or, more generally, hybrid systems as in [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, stability, and robustness[END_REF]. Although the sufficient conditions for safety in constrained and hybrid systems are studied in [START_REF] Maghenem | Sufficient conditions for forward invariance and contractivity in hybrid inclusions using barrier functions[END_REF], the converse problem is still not fully answered in the literature. Indeed, the converse safety results in [START_REF] Wisniewski | Converse barrier certificate theorems[END_REF] and [START_REF] Prajna | On the necessity of barrier certificates[END_REF] consider only particular cases of constrained systems, where the sets C, X o , and X u are assumed to be compact, and F is assumed to be at least continuously differentiable. Furthermore, in [START_REF] Wisniewski | Converse barrier certificate theorems[END_REF], the system is assumed to admit a Meyer function and in [START_REF] Prajna | On the necessity of barrier certificates[END_REF] (8) is assumed to hold which, as shown in Example 6, are rather restrictive conditions to impose. It is important to note that Theorem 2 can already be extended to constrained and hybrid systems; see [START_REF] Maghenem | Characterizations of safety in hybrid inclusions via barrier functions[END_REF]. However, to establish the existence of a barrier function that is continuous or smooth, the problem becomes more challenging due to the presence of the constraint. In particular, the regularity properties of the reachability map R, that allows to conclude Lipschitz continuity and continuous differentiability of the marginal functions in [START_REF] Aubin | Viability Theory[END_REF] and [START_REF] Sanfelice | Invariance principles for hybrid systems with connections to detectability and asymptotic stability[END_REF], are not necessary satisfied in the constrained case; see [START_REF] Maghenem | Minimal-time functions in constrained nonlinear systems with applications to reachability analysis[END_REF].

VII. APPENDIX

A. Auxiliary Results

We start this section by introducing the reachability map R b : R ≥0 × R n ⇒ R n , along the solutions to (1), given by

R b (t, x) := {φ(s, x) : φ ∈ S(x), s ∈ dom φ ∩ [0, t], ∃s ∈ [0, t] ∩ dom φ s.t. s > s} . (62) 
In words, the set R b (t, x) includes only the last element reached by each maximal solution to (1) starting from x over the interval [0, t].

The following lemma can be found in [START_REF] Aubin | Differential Inclusions: Set-Valued Maps and Viability Theory[END_REF]Theorem 1]. Lemma 5: Suppose that the system in ( 1) is forward complete and that F satisfies Assumption 1. Then, the following hold for each t ≥ 0:

1) The map x → R b (t, x) is outer semicontinuous and locally bounded. 2) The map x → A(t, x) is outer semicontinuous and locally bounded, where A : R ≥0 × R n ⇒ S(R n ) is given by

A(t, x) :={φ : φ ∈ S(x), dom φ = [0, t]}. (63) 
The following lemma recalls the well-known Filippov Theorem that can be found in [START_REF] Aubin | Viability Theory[END_REF]Theorem 5.3.1].

Lemma 6 (Filippov Theorem): Consider the system in (1) and suppose that F is locally Lipschitz on a compact set K ⊂ R n ; namely, there exists λ > 0 such that F (y) ⊂ F (x) + λ|x -y|B for all (x, y) ∈ K × K. Assume further that F (x) is closed for all x ∈ R n . Then, for any (x, y) ∈ K × K and t > 0 such that (R(t, x), R(t, y)) ⊂ K ×K, each solution φ to (1) starting from x satisfies |φ(s, x)| R b (s,y) ≤ exp(λs)|x -y| for all s ∈ [0, t], where the map R b is introduced in (62).

B. Proof of Proposition 1

To prove the first item using Lemma 5, we start showing outer semicontinuity of R b in (62). Let (t o , x o ) ∈ R ≥0 × R n and let two sequences

{(t oi , x oi )} ∞ i=0 and {y i } ∞ i=0 be such that lim i→∞ (t oi , x oi ) = (t o , x o ), y i ∈ R b (t oi , x oi ), and lim i→∞ y i = y ∈ R n . Outer semicontinuity of R b at (t o , x o ) follows if we show that y ∈ R b (t o , x o ).
To this end, we introduce t := min{t o , inf{t oi : i ∈ N}} and t := max{t o , sup{t oi : i ∈ N}}. Furthermore, consider a sequence of solutions {φ i } ∞ i=0 to (1) such that each solution φ i starts from x oi , dom φ i = [0, t oi -t], and y i ∈ R b (t, z i ), where z i := φ i (t oi -t, x oi ). Now, since the sequence {(t oi , x oi )} ∞ i=0 is uniformly bounded, the solutions to (1) are forward complete, and since x → A( t, x) is locally bounded, we conclude that the sequence {φ i } ∞ i=0 is uniformly bounded. Hence, by passing to an adequate subsequence, we conclude the existence of a function φ : dom φ → R n such that lim i→∞ φ i = φ; hence, φ(0, x o ) = x o and dom φ = [0, t o -t]. The function φ is a solution to (1) since the map x → A( t, x) is outer semicontinuous via item 2) of Lemma 5. Furthermore, we note that lim i→∞ z i = lim i→∞ φ i (t oi -t, x oi ) = φ(t o -t, x o ) =: z. Finally, using the first item in Lemma 5, we conclude that Having y i ∈ R(t oi , x oi ), for each i ∈ N, implies the existence of t i ∈ [0, t oi ] such that y i ∈ R b (t i , x oi ), for each i ∈ N. By passing to an adequate subsequence, we conclude the existence of t ∈ [0, t o ] such that t = lim i→∞ t i . Hence, since R b is outer semicontinuous, we conclude that

y ∈ R b (t, z) ⊂ R b (t o , x o ); thus,
y ∈ R b (t , x o ) ⊂ R(t o , x o ).
Next, we show that R b is locally bounded using contradiction. That is, assume the existence of a sequence {(t oi , x oi )} ∞ i=0 such that lim i→∞ (t oi , x oi ) = (t o , x o ) and

∀ > 0, ∃i ∈ N s.t. R b (t oi , x oi ) ⊂ B ∀i ≥ i . (64) 
Note that R b (t oi , x oi ) ⊂ R b ( t, z i ), where z i := φ i (t oi -t, x oi ) and φ i is a backward solution to (1) starting from x oi with dom φ i = [t oi -t, 0]. Since the backward solutions to (1) are the forward solutions to [START_REF] Krasovskii | Stability of Motion. Applications of Lyapunov's Second Method to Differential Systems and Equations With Delay[END_REF], the solutions to (31) are forward complete, and since x → A( t, x) for the system (31) is locally bounded, we conclude that the sequence {φ i } ∞ i=0 is uniformly bounded. Hence, by passing to an adequate subsequence, we conclude the existence of a function φ : dom φ → R n such that lim i→∞ φ i = φ; hence, φ(0, x o ) = x o and dom φ = [t o -t, 0]. The function φ is a backward solution to (1) since the map x → A(t , x) for ( 31) is outer semicontinuous. Furthermore, we note that lim i→∞ z i = lim i→∞ φ i (t oi -t , x oi ) = φ(t o -t , x o ) =: z. The later contradicts (64) since, using Lemma 5, x → R b ( t, x) is locally bounded. Now, we show that R is locally bounded via contradiction. Assume the existence of a sequence {(t oi , x oi )} ∞ i=0 such that lim i→∞ (t oi , x oi ) = (t o , x o ) and,

∀ > 0, ∃i ∈ N s.t. R(t oi , x oi ) ⊂ B ∀i ≥ i . (65) 
This implies the existence of t i ∈ [0, t oi ], for all i ∈ N, such that

∀ > 0, ∃i ∈ N s.t. R b (t i , x oi ) ⊂ B ∀i ≥ i . (66) 
By passing to an adequate subsequence, we conclude the existence of t ∈ [0, t o ] such that t = lim i→∞ t i . Having R b locally bounded contradicts (66) and, thus, R is locally bounded.

To prove the second item in Proposition 1, given x ∈ R n , we establish continuity of the set-valued map t → R(t, x). Since t → R(t, x) is outer semicontinuous and locally bounded, it is enough to show that it is lower semicontinuous. We show lower semicontinuity of t → R b (t, x) in (62) via contradiction. Assume that there exist > 0, t o ≥ 0, y ∈ R b (t o , x), and a sequence {t oi } ∞ i=0 such that lim i→∞ t oi = t o and, at the same time, 

|y -z| ≥ ∀z ∈ R b (t oi , x), ∀i ∈ N. ( 67 
-z| ≥ ∀z ∈ R b (t i , x), ∀i ∈ N. (69) 
However, (69) contradicts lower semicontinuity of the map t → R b (t, x).

C. Proof of Proposition 3

To show that the set-valued map R is locally Lipschitz, we will first show that the map R b in (62) is locally Lipschitz. To that end, we consider

(t o , x o ) ∈ R ≥0 × R n and the set U r (t o , x o ) := {(t, x) ∈ R ≥0 × R n : t ∈ [0, t o + r], |x -x o | ≤ r} , (70) 
for some r > 0. Furthermore, let λ K > 0 be the Lipschitz constant of F on the set K := R(U r (t o , x o )). Note that K is compact since the system is forward complete. Next, we show the existence of > 0 such that, for any

((t 1 , x 1 ), (t 2 , x 2 )) ∈ U r (t o , x o ) × U r (t o , x o ), for any y 1 ∈ R b ([0, t 1 ], x 1 ) there exists y 2 ∈ R b (t 2 , x 2 ) such that |y 1 -y 2 | ≤ (|x 1 -x 2 | + |t 1 -t 2 |) . (71) 
The latter inequality is enough to conclude that R b is locally Lipschitz. Let ((t 

y ∈ R(U r (t o , x o )), τ ∈ [0, t o + r]} < ∞,
where S(y) is the set of maximal solutions to system (1) starting from y. Hence,

|y 2 -y 2 | ≤ M r (t o , x o )|t 1 -t 2 | and |y 1 -y 2 | ≤ |y 1 -y 2 | + |y 2 -y 2 | ≤ (|x 2 -x 1 | + |t 1 -t 2 |)
, where

:= max exp λ K (to+r) , M r (t o , x o ) . (72) 
Now, to show that the set-valued map R is locally Lipschitz, we consider (t o , x o ) ∈ R ≥0 × R n and the compact neighborhood U r (t o , x o ) introduced in (70). We will show the existence of > 0 such that for any two elements

((t 1 , x 1 ), (t 2 , x 2 )) ∈ U r (t o , x o ) × U r (t o , x o ), for any y 1 ∈ R(t 1 , x 1 ) we can find y 2 ∈ R(t 2 , x 2 ) such that (71) holds. Indeed, consider t y1 ∈ [0, t 1 ] such that R b (t y1 , x 1 ) = y 1 and (t y1 , x 1 ) ∈ U r (t o , x o ). Hence, there exists y 2 ∈ R b (t y2 , x 2 ) with t y2 the closest element to t y1 while being in [0, t 2 ]. Note that (t y2 , x 2 ) ∈ U r (t o , x o ) and since R b is locally Lipschitz, we have |y 1 -y 2 | ≤ (|t y1 -t y2 | + |x 1 -x 2 |) ≤ (|t 1 -t 2 | + |x 1 -x 2 |)
, where is introduced in (72).

D. Proof of Lemma 1

We prove item 1 by directly showing that B satisfies the definition of lower semicontinuity for scalar functions. That is, for every sequence

{z i } ∞ i=0 ⊂ R m such that lim i→∞ z i = z o , we show that lim inf i→∞ f (z i ) = lim inf i→∞ min y∈Π(zi) |y| X ≥ min y∈Π(zo) |y| X = f (z o )
provided that the set-valued map Π is outer semicontinuous in which case, since Π is already locally bounded, inf in f becomes min. Since the map Π is outer semicontinuous, we conclude that, for all y i ∈ Π(z i ) such that lim i→∞ y i = y o ∈ R n , we have y o ∈ Π(z o ). Choose {y i } ∞ i=0 to be such that y i ∈ Π(z i ) and |y i | X = min y∈Π(zi) |y| X for each i ∈ N. Hence, lim inf i→∞ f (z i ) = lim inf i→∞ min y∈Π(zi) |y| X = lim inf i→∞ |y i | X . Since the distance function to X is continuous, we conclude that lim inf i→∞ f (z

i ) = lim inf i→∞ min y∈Π(zi) |y| X = | lim inf i→∞ y i | X . Since Π is locally bounded, the sequence {y i } ∞ i=0 is bounded; hence, lim inf i→∞ y i = y o ∈ R n .
Moreover, by passing to a suitable sub-sequence {y i k } ∞ k=0 , we conclude that lim inf i→∞ y i = lim k→∞ y i k = y o . Thus, since Π is outer semicontinuous, it follows that

y o ∈ Π(z o ). Finally, lim inf i→∞ f (z i ) = |y o | X ≥ min y∈Π(zo) |y| X = f (z o ).
We prove item 2 by directly using the definition of upper semicontinuity for scalar functions. That is, we show that, for every sequence

{z i } ∞ i=0 ⊂ R m such that lim i→∞ z i = z o , we have lim sup i→∞ f (z i ) = lim sup i→∞ min y∈Π(zi) |y| X ≤ min y∈Π(zo) |y| X = f (z o )
provided that the set-valued map Π is lower semicontinuous. To reach a contradiction, we assume the existence of a sequence {z i } ∞ i=0 such that lim i→∞ z i = z o and lim i→∞ f (z i ) > f (z o ). The latter implies the existence of > 0 and i o ∈ N such that, for all i ≥ i o , given by η k := min{h(t, x) : x ∈ I, t ∈ [0, k]}.

f (z i ) -f (z o ) = inf y∈Π(zi) |y| X -inf y∈Π(zo) |y| X > . (73) 
(
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This sequence is strictly positive and nonincreasing. Next, we propose to partition the set R ≥0 using an increasing sequence {t i } ∞ i=0 ⊂ R ≥0 that we design as follows: 1) For each interval T k := [k -1, k], k ∈ N * , we associate u k ∈ N * . Furthermore, we introduce the sequence {j k } ∞ k=1 such that j 1 := 0 and j k+1 := j k + u k . 2) The subsequence {t i } u1 i=0 satisfies t 0 := 0 and t i+1 := t i + 1 u1 for all i ∈ {0, 1, ..., u 1 -1}. It follows that t u1 = 1. 3) For each k ≥ 2, the subsequence {t i } j k +u k i=j k satisfies t j k = k -1 and t i+1 := t i + 1 u k for all i ∈ {j k , j k + 1, ..., j k + u k -1}. It follows that t j k +u k = t j k+1 = k. 4) Under the continuity of h, we choose the parameter u k such that, for each i ∈ {j k , j k + 1, ..., j k + u k -1} and for each x ∈ I, h(t i , x) -h(t i+1 , x) = h(t i , x) -h(t i + (1/u k ), x) < 1 4 η k . Now, we consider a nonincreasing sequence

{ζ i } ∞ i=0 ⊂ R >0 such that ∞ i=j k ζ i < 1 8 η k . (80) 
Furthermore, using the continuity of h, we conclude the existence of a sequence of functions {w i } ∞ i=0 such that: Each w i : R n → R >0 is continuously differentiable on int(I). For each x ∈ I, the sequence {w i (x)} ∞ i=0 is nonincreasing. For each i ∈ N,

|h(t i , x) -w i (x)| < 1 2 ζ i + ∞ l=i ζ l . (81) 
Finally, we construct the function t → g(t, x) by interpolating the sequence of functions {w i (x)} ∞ i=0 by means of a nonincreasing third order polynomial to obtain, for any t ∈ [t i , t i+1 ] and i ∈ N, g(t, x) := q(t, t i , t i+1 , w i (x), w i+1 (x)), where q(t, t i , t i+1 , w i (x), w i+1 (x)) := w i (x)+ (w i+1 (x) -w i (x)) 3(t

-t i ) 2 (t i+1 -t i ) 2 - (w i+1 (x) -w i (x)) 2(t -t i ) 3 (t i+1 -t i ) 3 .
Note that q is nonincreasing on [t i , t i+1 ] and q(t i , t i , t i+1 , w i (x), w i+1 (x)) = w i (x), q(t i+1 , t i , t i+1 , w i (x), w i+1 (x)) = w i+1 (x), q(t i , t i , t i+1 , w i (x), w i+1 (x)) = 0, q(t i+1 , t i , t i+1 , w i (x), w i+1 (x)) = 0.

In order to complete the proof, it remains to show that ( 40) is satisfied for all (t, x) ∈ R ≥0 × I. Without loss of generality, consider x ∈ I and t ∈ [k -1, k), for k ∈ {1, 2, ..., ∞}. Assume that t ∈ [t i , t i+1 ] for some t i ∈ [k -1, k). Hence, i ∈ (j k , j k + u k ). It follows that g(t, x) -h(t, x) ≤ g(t i , x)h(t i+1 , x) ≤ |g(t i , x) -h(t i , x)| + h(t i , x) -h(t i+1 , x) ≤ ∞ j=i ζ j + 1 2 ζ i + 1 4 η k < 1 2 η k , where we used the fact that g(t i , x) = w i (x), (81), and (80). Similarly, h(t, x)-g(t, x) ≤ h(t i+1 , x) -g(t i , x) ≤ |g(t i+1 , x) -h(t i+1 , x)| + h(t i , x) -h(t i+1 , x)

≤ ∞ j=i+1 ζ j + 1 2 ζ i + 1 4 η k < 1 2 η k .
Therefore, |h(t, x) -g(t, x)| ≤ 1 2 η k and h(t, x) -1 2 η k ≤ g(t, x) ≤ h(t, x) + 1 2 η k . Finally, using (79), we conclude that η k ≤ min{h(τ, x) : τ ∈ [0, k]} and, since t ∈ [k -1, k), it follows that η k ≤ h(t, x).

F. Proof of Lemma 4

We propose to adapt the proof of [START_REF] Hahn | Stability of Motion[END_REF]Lemma 48.3] to the case where the origin is replaced by a general closed set K ⊂ R n . For each integer s, we introduce the set . Furthermore, the map t → ψ s (t, x) nonincreasing , ψ s ∈ C 1 (R ≥0 × int(I s )), and satisfies [START_REF] Rockafellar | Variational Analysis[END_REF] for all (t, x) ∈ R ≥0 × I s .

I s := x ∈ R n : 2 s-3 ≤ |x|
3) In the last step, we consider g(t, x) :=

1 λ(x)
+∞ s=-∞ ψ s (t, x)λ s (x), λ(x) := +∞ s=-∞ λ s (x). Finally, it is easy to see that for all x ∈ R n , the previous sum is finite.

Fig. 1 .

 1 Fig. 1. Solutions to system (21) starting from different initial conditions.

  w∈X |w| Π(z) = inf w∈Π(z) |w| X = f (z),(75)|y | Π(y) = inf w∈X |w| Π(y) = inf w∈Π(y) |w| X = f (y).(76)Using the triangular inequality, we conclude that|y | Π(z) ≤ |y | Π(y) + d H (Π(z), Π(y)) and |z | Π(y) ≤ |z | Π(z) + d H (Π(z), Π(y)), where d H (Π(z), Π(y)) is the Hausdorff distance between the two sets R(z) and R(y) introduced in (12). Furthermore, using the first equality in (75) and (76), respectively, we conclude that|z | Π(z) ≤ |y | Π(z) ≤|y | Π(y) + d H (Π(z), Π(y)), (77) |y | Π(y) ≤ |z | Π(y) ≤|z | Π(z) + d H (Π(z), Π(y)).(78)Hence, using (77)-(78) and the second equality in (75) and (76), respectively, we obtain|f (z) -f (y)| ≤ |Π(z) -Π(y)|.Finally, when the map Π is locally Lipschitz, using Definition 4, we conclude the existence of λ > 0 such that |f (z) -f (y)| ≤ |Π(z) -Π(y)| ≤ λ|z -y|.E. Proof of Lemma 3Given a compact set I ⊂ R n such that I ∩ K = ∅ and the continuous function h, we introduce the sequence {η k } ∞ k=1

  and only if there exists a locally Lipschitz timevarying barrier function candidate B : R ≥0

  R b is outer semicontinuous. Now, to show outer semicontinuity of R, we consider two sequences {(t oi , x oi )} oi , x oi ) = (t o , x o ), y i ∈ R(t oi , x oi ), and lim i→∞ y i = y ∈ R n . Outer semicontinuity of (t, x) → R(t, x) at (t o , x o ) follows if we show that y ∈ R(t o , x o ).

	∞ i=0 and {y i }	∞ i=0 such that
	lim i→∞ (t	

)

  Consider a maximal solution φ to (1) starting from x such that φ(t o , x) = y and let y i := φ(t oi , x). Note that y i ∈ R b (t oi , x). Since the solution φ is continuous, it follows that lim i→∞ |y -y i | = 0, which contradicts (67). Now, to show lower semicontinuity of t → R(t, x), we assume that there exist > 0, t o ≥ 0, y ∈ R(t o , x), and a sequence {t oi } ∞ Moreover, for each sequence {t i } ∞ i=0 such that t i ∈ [0, t oi ] and lim i→∞ t i = t , we have |y

i=0

such that lim i→∞ t oi = t o and, at the same time,

|y -z| ≥ ∀z ∈ R(t oi , x), ∀i ∈ N.

(68)

Note that (68) implies the existence of t ∈ [0, t o ] such that y ∈ R b (t , x).

  1 , x 1 ), (t 2 , x 2 )) ∈ U r (t o , x o ) × U r (t o , x o ), assume without loss of generality that t 2 ≥ t 1 , and note that both R(t 2 , x 2 ) and R(t 1 , x 1 ) belong to the compact set K. Hence, using Lemma 6, we conclude that |y 1 | R

b (t1,x2) ≤ exp λ K (to+r) |x 2 -x 1 |. Thus, for y 2 := arg min y 1 -y : y ∈ R b (t 1 , x 2 ) , we have |y 1 -y 2 | ≤ exp λ K (to+r) |x 2 -x 1 |. Furthermore, for any y 2 ∈ R b (t 2t 1 , y 2

) and since F is locally bounded, we conclude that M r (t o , x o ) := max{|F (φ(τ, y))| : φ ∈ S(y),

  there exists i 1 ∈ N such that, for all i ≥ i 1 , there existsw i ∈ Π(z i ) such that |w i -w o | ≤ /2. Using (74), we conclude that, for all i ≥ max {i o , i 1 }, |z i | X ≥ |z i | X and |z i | X -|z o | X ≥ |z i | X -|z o | X > .Finally, since the distance function with respect to the set X is globally Lipschitz, we obtain, for alli ≥ max {i o , i 1 }, /2 ≥ |w i -w o | ≥ |w i | X -|w o | X > , which yields to a contradiction.To prove the third item, we consider two elements (z, y) ∈ R n ×R n and the corresponding two elements (z , y ) ∈ X ×X such that |z | Π(z) = inf

Let z o := arg inf y∈Π(zo) |y| X , and

w i := arg inf y∈Π(zi) |y| X ∀i ∈ N.

(74)

Using (73), we conclude that |w i | X -|w o | X > . On the other hand, since the set-valued map Π is lower semicontinuous, it follows that

  2 K ≤ 2 s+4 . (82) Furthermore, we propose to decompose the set I s into a sequence of nonempty compact subsets {D s i } N i=1 , where N ∈ {1, 2, ..., ∞}, such that D s i ⊂ I s for all i ∈ {1, 2, ..., N }. Furthermore, for each i ∈ {1, 2, ..., N }, there exist a finite set N s Ds j = ∅ for all j / ∈ N s i . The rest of the proof follows in three steps. 1) In the first step, we use Lemma 3 to construct a function ψ s i : R ≥0 × Ds i → R ≥0 that is nonincreasing with respect to its first argument, C 1 on R ≥0 × int( Ds i ), and satisfies (41) for all (t, x) ∈ R ≥0 × Ds i . 2) In the next step, we consider an open set O s i ⊂ Ds i that contains D s i , and a differentiable function λ s i : R n → R ≥0 , which is positive in O s i and vanishes outside. Then, we introduce the function ψ s (t, x) := Note that, for each x ∈ I s , the previous sum is finite by construction of the sequence {D s i } N i=1

	Ds i ∩ 1 λs(x)	s i ⊂ j∈N s i i (x) with λ s (x) := i (t, x)λ s i=1 ψ s N N i=1 λ s D s j , and i (x).

i ⊂ {1, 2, ..., N } and a compact set Ds i including D s i in its interior such that Ds i ∩ K = ∅, D

By "best regularity" means the strongest smoothness property.
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